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Abstract. We develop a formalism to study tetraquarks using the generalized flip-flop

potential, which include the tetraquark potential component. Technically this is a difficult

problem, needing the solution of the Schrödinger equation in a multidimensional space.

Since the tetraquarkmay at any time escape to a pair of mesons, herewe study a simplified

two-variable toy model and explore the analogy with a cherry in a glass, but a broken one

where the cherry may escape from. We also compute the decay width in this two-variable

picture, solving the Schrödinger equation for the outgoing spherical wave.

1 Introduction, tetraquarks with flux tubes

Our main motivation is to contribute to understand whether exotic hadrons exit

or not. Although there is no QCD theorem ruling out exotics, they are so hard to

find, thatmany friends even state that either exotics dont exist, or that at least they
should be very broad resonances. Nevertheless candidates for different continue

to exotics exit [1]! Here we specialize in tetraquarks, the less difficult multiquarks
to compute beyond the baryons and hybrids. Notice that there are many possible

sorts of tetraquarks:

— the borromean 3-hadron molecule
— the Heavy-Heavy-antilight-antilight

— the hybrid-like tetraquark
— the Jaffe-Wilczek diquark-antidiquark with a generalized Fermat string

1.1 The borromean 3-hadron molecule

In an exotic channel, quark exchange leads to repulsion, while quark-antiquark

annihilation is necessary for attraction. A possible way out is adding another me-

son, allowing for annihilation, to bind the three body system. This has already
led to the computation of decay widths, which turned out to be wide [2,3].

1.2 The Heavy-Heavy-antilight-antilight

The heavy quarks are easy to bind since the kinetic energy p2/(2m) is smaller,

thus their Coulomb short distance potential could perhaps provide sufficient bind-

ing, while the light antiquarks would form a cloud around them [4].

⋆ Talk delivered by P. Bicudo
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1.3 The hybrid-like tetraquark

Possibly a quark and antiquark may be in a colour octet, and then the tetraquark

is equivalent to a quark-gluon-antiquark hybrid. Recently we computed in Lat-
tice QCD the color fields for the static hybrid quark-gluon-antiquark system, and

studied microscopically the Casimir scaling [5].

Notice that our lattice simulation shows that flux tubes prefer to divide into

fundamental flux tubes, or flux tubes carrying a colour triplet flux, as we show in
Fig. 1.
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Fig. 1. (left) In a hybrid, flux tubes divide into two fundamental flux tunes, one connecting

the octet with the quark and another connecting the octet to the antiquark. In the baryon

and in the three-gluon glueball, static quenched Lattice QCD simulations also show con-

finement via fundamental flux tubes. (right) Triple flip-flop Potential potential. To the list

of potentials to minimize including usually only two different meson pair potentials, we

join another potential, the tetraquark potential.

1.4 The Jaffe-Wilczek diquark-antidiquarkwith a generalized Fermat string

Since there is no evidence for long distance polarization forces, or Van der Waals

forces, in hadron-hadron interactions, the two-body confinement potentials can-
not be right for multiquarks [6]! A solution to this problem consists in consider-

ing the flip-flop potential, where confining flux tubes or strings take the geometry
minimizing the energy of the system. Quark Confinement And Hadronic Interac-

tions [7].

Again the flux tubes in the tetraquark are expected to divide and link into

fundamental flux tubes, and a possible configuration is in a H-like or butterfly-
like flux tube. This tetraquark can be classified as a Jaffe-Wilczek one since the

quarks are combined in a diquark-like antitriplet and the antiquarks are com-

bined in a antidiquark-like triplet [8].

The technical difficulty in that framework is to compute the decay widths
since this tetraquark is open for the decay into a pair of mesons. Moreover it is

expected that the absence of a potential barrier above threshold may again pro-

duce a very large decay width to any open channel, although Marek and Lipkin
suggested that multiquarks with angular excitations may gain a centrifugal bar-

rier, leading to narrower decay widths [9].
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Here we continue a previous work, where we assumed confined (harmonic

oscilator-like) wavefunctions for the confined objects, one tetraquark and two dif-

ferent pairs of final mesons, and computed their hamiltonian. We utilized the Res-
onating Group Method and were surprised by finding very small decay widths

[10].

1.5 Our approach to study the tetraquark with a generalized Fermat string

We thus return to basics and decide to have no overlaps. We want to solve the

Schrödinger equation for the four particles, and from the Schrödinger solutions

also compute the decay widths. Our starting point is the extended triple flip-flop
potential [11], obtained minimizing the three lengths depicted in Fig. 1. Recently,

we devised a numerical algorithm to compute the Fermat points of the tetraquark

and the tetraquark potential [12].

Solving the Schrödinger equation is then a well defined problem which sho-

uld be solvable, placing our system in a large 12 dimensional box. However this is

a very difficult problem. Even assuming s-vaves, we would get 3 variables, some
confined and some in the continuum (similar to problems in extra compactified

dimensions or to lattice QCD) so we decide to work in a toy model, where the
number of variables is simplified. We thus simplify the triple flipflop potential,

with a single inter-meson variable, using the approximation on the diquark and

anti-diquark Jacobi coordinates,

ρ13 = ρ24 (1)

of having a single internal variable ρ in the mesons. We get a flipflop potential

where ρ is open to continuum and r is confined, minimizing only two potentials,

VMM(r, ρ) = σ(2r) , (2)

VT (r, ρ) = σ(r +
√
3ρ) . (3)

Our problem is similar to the classical student’s problem of a Cherry in a glass.

However this is not a simple student’s problem since the glass is broken and

the cherry may escape from the glass! The flip-flop and broken glass potentials
are depicted in Fig. 2. Here we report on our answer [13] to the question, in the

quantum case, are there resonances, and what is their decay width?

2 Finite difference method

Since there is a single scale in the potential and a single scale in the kinetic energy,

we can rescale the energy and the coordinates, to get a dimensionless equation,

HΦ(r, ρ) = [−∆r/2− ∆ρ/2+ min(r +
√
3ρ, 2r)]Φ(r, ρ) = EΦ(r, ρ) , (4)

that we first solve with the finite difference method. Thus, our results and fig-

ures are dimensionless. This case is adequate to study equal mass quarks, where
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Fig. 2. (left) Cherry in a broken glass. Our simplified two-variable toy model is analogous

to the classical mechanics textbook problem of a cherry in a glass, but a broken one where

the cherry may escape from. Here we solve this model in quantum mechanics, addressing

the decay widths of a system compact in one variable and open in the other. (right) Plot of

our simplified flip-flop potential, as a function of the two radial variables r (compact) and

ρ (open).

the mesons and the tetraquark have no constant energy shifts. For instance that

would be ok for the light tetraquark and meson-meson system

uud̄d̄(S=2) ↔ ρ+ ρ+ , (5)

or the heavy quark system

ccc̄c̄(S=2) ↔ J/ψ J/ψ . (6)

We discretize the space in anisotropic lattices and solve the finite difference
Schrödinger equation, in up to 6000 × 6000 sparse matrices (equivalent to 40

points in the confined direction × 150 points in the radial continuum direction).

We first look for localized states, selecting among the 6000 eigenvalues the ones
more concentrated close to the origin at ρ = 0.

To measure the momenta ki and the phase shifts δi, we simply fit the large ρ
region of the non-vanishingψi, where i indexes the factorizedAiry wavefunction

in r, the expression

ψi → Ai
sin(kiρ+ δi)

ρ
. (7)

As can be seen in Fig. 4, the momenta ki obey the relation

ki(E) =
√
2(E− ǫi), (8)

where ǫi is the threshold energy of the respective channel.

However, the phase shifts we get are not only discrete but rather irregular
above threshold. In the next Section 3 we compute the phase shifts with an im-

proved method.
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Fig. 3. (left) Semi-localized state, or resonance for lr = 1.(right) Bound state for lr = 3.
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Fig. 4. (left) Momenta of the various components as a function of the energy. (right) ”Phase

shifts” obtained from the finite differences (by projecting the eigenstates in the meson-

meson eigenstates ). As can be seen the behaviour is irregularwhenwe havemore than one

channel, this is due to the different contributions of multiple channels, for each eigenstate

calculated in the finite difference scheme.

3 Outgoing spherical wave method

Because the finite difference method is not entirely satisfactory for the computa-

tion of the phase shifts δ, we move to another method, consisting in in studying
the outgoing spherical waves. Since the finite difference method shows clearly

bands for the different internal energies of the mesons, we integrate the confined
coordinate rwith eigenvalues of the meson equation, i.e. with Airy functions, and

thus we are left with a system of ordinary differential equations in the coordinate

ρ .

3.1 Projecting onto the ρ coordinate

We can reduce our problem in the dimensions ρ, r to a one-dimensional problem

in ρ but with of coupled channels. We just have to expand the two-dimensional
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wavefunction as

Φ(r,ρ) =
∑

i

ψi(ρ)φi(r) , (9)

where the φi are the eigenfunctions of the r confined hamiltonian. The one-di-
mensional potentials Vij are given by

Vij(ρ) =

∫
d3r φ∗

i (r)(VFF(r, ρ) − VMM(r))φj(r) (10)

where we subtract VMM from the potential, since ĤMM is already accounted for

in its eigenvalues and eigenfunctions, used for instance in Eq. (9).
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Fig. 5. (left) S-wave scattering cross sections from the channel with lr = 0 and nr = 0.

(right) S-wave scattering cross sections from the channel with lr = 1 and nr = 0.

3.2 Phase shifts

We now compute the phase shifts, in order to search for resonances in our sim-
plified flip-flop model. Solving the outgoing spherical Eq. for this system we can

compute the partial cross sections and the total cross section for the partial wave
l — either directly or by using the optical theorem — and determine the phase

shifts as well.

Note that our flip-flop potential has the same scales of the simple Schrödinger
equation for a linear potential, which has a single dimension

E0 =
(

~
2σ2

m

)1/3
, (11)

the only energy scale we can construct with ~, σ and m, the three relevant con-

stants in the non-relativistic region. Thus the number of non-relativistic bound-

states or resonances is independent both of the quark mass m and of the string
constant σ.
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3.3 The centrifugal barrier effect

Note that we have two distinct angular momenta, which are both conserved,
Lr = r × pr and Lρ = ρ × pρ. So, each assimptotic state is indexed by its an-

gular momentum lr and its radial number nr, and the scattering partial waves

are indexed by lρ. Thus the system can be diagonalized not only in the scattering
angular momenta Lρ but also on the confined angular momenta Lr. We can de-

scribe the scattering process with four quantum numbers: The scattering angular
momentum lρ, the confined angular momentum lr and the initial and final states

radial number in the confined coordinate r, ni and nj.
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Fig. 6. Comparison of the phase shifts for lr = 0, 1, 2 and 3, with nr = 0.

On Fig. 5 we show the lρ = 0 partial cross sections for the scattering from the
channel with lr = 0 and for lr = 1, with nr = 0. Interestingly, the bumps in the

cross section seem to occur prior to the opening of a new channel.

In Fig. 6 we compare the phase shifts for different values of lr, namely for
lr = 0, 1, 2 and 3. For lr = 0, we don’t observe a resonance, since the phase shift

doesn’t even cross π/2. However, for the lr = 1 and lr = 2 cases, the phase shifts

clearly cross the π/2 line, and a resonance is formed. This behaviour is somewhat
expected, since a centrifugal barrier in r would, in the case of a true tetraquark,

maintain the two diquarks separated, favouring the formation of a bound state.
The tendency of greater stability for greater orbital angular momenta seems to be

further confirmed by the lr = 3, where besides the resonance, a true bound state

seems to be formed, as can be seen by the different qualitative behaviour of the
phase shifts for this case. This bound state formation confirms our observation of

a localized states in Section 2, with the finite difference simulation.

Finally we can compute the decay width utilizing the phase shift derivative,
Γ/2 = (dδ/dE)−1 computed when the phase shift δ crosses π/2, and get the results

of Table 1. For instance, for light quarks wherem ≃
√

(σ) ≃ 400MeV this results

in a lr = 1 decay width close to 15 MeV.
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Table 1. Decay widths as a function of lr .

lr (E − 4mc2)/E0 Γ / E0

1 6.116 0.037

2 6.855 0.131

3 7.462 0.352

4 Conclusion and outlook to tetraquarks

We study pentaquarks in the Jaffe-Wilczek model, with a H/butterfly string, but
include the open channels of decays to meson-meson pairs. We consider an ex-

tended flip-flop model, where we add the tetraquark string to the two-meson
strings. We first apply the RGMmethod assuming that the mesons have gaussian

wavefunctions, and we obtain very narrow widths.

We then utilize an approximate toy-model, simplifying the number of Jacobi

variables. The model is similar to the model of a Cherry in a Broken Glass. This
allows the solution of the Schrödinger equation with finite differences in a box,

where we look for localised states, and try to compute phase shifts.

To compute clearly the phase shifts we then solve the Schrödinger equation
for the outgoing spherical waves. We compute de decay widths from the phase

shifts, and we find relatively narrow decay widths. When the produced mesons

are unstable, the total decay width of the tetraquark is then dominated by the
final decays of the produced mesons.
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