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Abstract

Concordance index (c-index) was adapted to survival data by Harrell (1982). In its basic

form, the index depends on censoring, however the issue can be effectively dealt with. More

importantly, Harrell’s c-index cannot be used with time-varying effects and/or time-dependent

covariates, and several generalisations were proposed. We look at some of them, explore their

differences, point to a basic difference between these generalisations, and strongly favour one

type of generalisation.
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1. Introduction

Concordance parameter defines the probability of selecting a concordant pair from the

population. Without considering time-to-event data this parameter is also known under the

name of probability index (Acion et al., 2006), and it is identical to the area under the curve

(AUC) measure (Hanley & McNeil, 1982). Its estimator (see Lehmann, 1951) is consistent

and unbiased with minimum variance; and scaled version of this estimator is used as a test

statistic for the non-parametric Mann-Whitney U test (Lehmann, 1951).

One of commonly used estimators for the concordance parameter for survival data is

the c-index. There have been some suggestions (Antolini et al., 2005; Gerds et al., 2013;

Kremers, 2007) on how to generalise the c-index since Harrell et al. (1982) first adapted it for

use for event history data. The concordance estimation parameter can be also obtained using

the estimate for the area under the ROC curve for which multiple generalisations have been

proposed (Chambless & Diao, 2006; Heagerty & Zheng, 2005). The common goal of such

generalisations is to adapt the measure to time-varying effects and time-dependent covariates.

None of these suggestions (Antolini et al., 2005; Chambless & Diao, 2006; Gerds et al., 2013;

Heagerty & Zheng, 2005; Kremers, 2007) defines what is meant by generalisation, possibly
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because the idea is so obvious that it doesn’t have to be explicitly formulated. Still, a clear

definition helps to distinguish generalisations from modifications. In this brief note we first

define what we believe should be understood as a generalisation of the c-index, and then

discuss some proposals in light of this definition, compare them, and strongly argue for one

type of generalisations.

C-index for survival data (Harrell et al., 1982) is defined as follows

c =
# concordant pairs

# comparable pairs
. (1.1)

A pair is concordant if predicted survival times for the pair are in the same order as observed

survival times.

If there is no censoring in the data, all the pairs are comparable. Censoring makes some

comparisons impossible and by not using them (original option) bias is introduced. We

know that censoring up to the largest event time can effectively be dealt with the procedure

presented by Uno et al. (2011). For discussion of censoring after the largest event time

see Kejžar et al. (2016).

In this note, we limit ourselves to no censoring to leave the equations simple.

Time-dependent covariates are commonly present in studies of survival and time-varying

effects are often found during the analysis. Harrell’s c-index was defined for constant effects

and covariates, meaning that the predictions are made at time 0. If covariates and/or covariate

effects change in time, predictions have to change. This means that the original c-index

cannot be used.

There were quite some proposals to include time dependency, but before discussing (some

of) them, we first introduce some notation.

The variables of interest are the true survival time Ti and the predicted survival time

T ∗
i and we denote their observed values by ti and t∗i . T ∗ is usually a function of predictor

variables X . The concordance parameter can be expressed as

C = P(T ∗
i < T ∗

j |Ti < Tj).

Its estimator is

c =
∑

n
i=1 ∑

n
j=1 I(ti < t j)I(t

∗
i < t∗j )

∑
n
i=1 ∑

n
j=1 I(ti < t j)

, (1.2)

where I is the indicator function. This is of course the same as Equation (1.1).

2. Generalisations

There is little doubt that what is meant by the notion of a generalisation is the following:

a generalised c-index would give the same value as the c-index if the prediction model had no

time-varying effects (coefficients) and time-dependent covariates. Therefore the

Definition 1. A statistic is a generalisation of the c-index if it is equal to the c-index under

the following conditions:

1. the prediction model has no time-dependent covariates

2. the prediction model has no time-varying effects.
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In the literature, the time-dependent c-index is used in two different ways that are important

to distinguish. Time-dependency can mean (i) that c-index is computed at different (final)

time-points and (ii) that time-dependent predictions are included in the computation of c-index.

The true time-dependent statistic should be able to consider both. C-index modifications that

address only (i) are computed at a certain time t that divides the data set in two groups: those

that had the event by t and the rest, and evaluate the measure at that time point (Chambless &

Diao, 2006; Gerds et al., 2013).

To include time-dependent predictions (point (ii)) into the computation of the statistic,

the statistic has to be flexible enough to compare model predictions and observations at each

event time. To achieve this, one has to partition the data set in two at every single event time,

calculate (partial) concordance there and summarise over the whole time span.

2.1. Different functions for T ∗

To illustrate different approaches to generalisations we have chosen three, published in

statistical literature.

Antolini et al. (2005) propose a generalisation of c-index defined by

Ĉ1 =
∑t(k)

P
[
Ŝ(ti|Xi(t))< Ŝ(ti|X j(t))∧ ti < t j ∧ ti = t(k)

]

∑t(k)
P
[
ti < t j ∧ ti = t(k)

]

where t(k) denotes the ordered k-th time of events. Indexes i and j denote all comparable units

at t(k), where also t(k) = ti holds. P corresponds to sample probability and Ŝ(y|X) is a function

for predicted survival probability at time y with covariates equal to X . For time-dependent

covariates X(t), t denotes the time instants where there are covariate variations. Note that

predictions may be obtained by any type of survival model. At time t(k) only units with

observed time greater or equal to t(k) are compared and they are concordant if their predicted

survivals at t(k) are in line with that (i.e., the larger the predicted survival, the longer the actual

time of the event).

Antolini’s equation can be rewritten in a way to sum over all units (instead of ordered

event times):

Ĉ1 =
∑

n
i=1 ∑

n
j=1 I(ti < t j)I

[
Ŝ(ti|Xi(t))< Ŝ(ti|Xj(t))

]

∑
n
i=1 ∑

n
j=1 I(ti < t j)

.

This equation resembles Equation (1.2) with the only distinction in the term in bold which

denotes the function for T ∗ used to compute the rank.

Heagerty and Zheng (2005) in their paper review the extensions of diagnostic accuracy

measures (sensitivity and specificity) to survival data. They propose the incident/dynamic

definition which accounts for the multiple contributions that a unit i can make to the model at

different event times.

It is shown (Heagerty & Zheng, 2005) that the AUCt (the area under the receiver oper-

ating characteristic at given t) equals P(T ∗
i < T ∗

j |Ti < Tj ∧Ti = t) which is the concordance

parameter at time t. The function for T ∗
i in Heagerty and Zheng (2005) is taken to be the

prognostic index from a survival regression model, hence a monotone function of the hazard.

The weighted average of the AUC(t) is (as shown in the Appendix of Heagerty & Zheng,

2005) the overall c-index:

Ĉ2 = ∑
t(k)

AUCt(k) ·w
t(n)(t(k)).
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wt(n)(t) denotes the weight for each AUCt , computed from the observed overall survival and

rescaled to sum to 1 at t(n). If the prognostic index varies in time, the c-index accounts for

that.

Stare et al. (2011) proposed a measure of explained variation (RE for ranks explained) for

survival data for time-dependent covariates and/or time-varying effects. Its estimator reduces

to c-index when there is no time-dependency, and uses IPC weights for the correction of bias.

The idea of the measure is to rank model-based intensity estimates at each distinct event time

and summarise the extent to which the model matches the ranking of the data.

The estimate of the measure with no bias correction (and no ties) is

R̂E =
∑ti

(ri,null − ri,model)

∑ti
(ri,null − ri,perfect)

The concurrent ranks for unit i at time ti are defined as

ri,null =
|Rti |+1

2
average rank

ri,perfect = 1 best rank

ri,model = |Rti |−
n

∑
j=1

I(ti < t j)I
[
h(ti|Xi(t))> h(ti|X j(t))

]

where h(t) represents the predicted hazard at time t. Rt denotes the risk set at t. A close

look reveals that ri,model is computed as the maximal rank minus the number of all concordant

pairs at ti. Imputing the rank expressions into the equation of R̂E we get

R̂E =−1+2 ·
∑ti

(
∑

n
j=1 I(ti < t j)I

[
h(ti|Xi(t))> h(ti|X j(t))

])

∑ti
(|Rti |−1)

.

The denominator of the second term represents the number of all comparable pairs for each ti.

The numerator is twice the number of concordant pairs for each ti, therefore the whole term

equals time-dependent c-index R̂E = 2Ĉ3 −1. The time-dependent c-index, in this case, is of

the form

Ĉ3 =
∑

n
i=1 ∑

n
j=1 I(ti < t j)I [h(ti|Xi(t))> h(ti|Xi(t))]

∑
n
i=1 ∑

n
j=1 I(ti < t j)

,

which resembles Equation (1.2). The rank of T ∗ is computed by the use of hazard function

(the term in bold), similarly as proposed in the paper of Heagerty and Zheng (2005). Note that

the link between the measure estimator R̂E and c-index Ĉ3 is the same as between Kendall’s

τ and the original c-index.

Harrell’s c-index is usually computed for Cox regression models with proportional hazards

where the function for predicting T ∗ is usually the hazard eX⊤β or the prognostic index, the

monotonic transformation of hazard. In that setting X⊤
i β < X⊤

j β corresponds to S(t|Xi)>
S(t|X j) (Antolini et al., 2005). However with time-dependent covariates and/or time-varying

effects that does not hold anymore. Survival function S(t), as well as cumulative distribution

function 1− S(t), are cumulative measures (S(t) = P(T > t)), and hazard function is an

instantaneous measure of risk. If hazard modifies, one detects that immediately and its

relative change is larger than in survival function. In survival the whole history is also

accumulated and that makes relative changes of two time points smaller with time.
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