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Abstract. In this work an adaptive method for accurate and robust grouping of local features belonging to planes

of interior scenes and object planar surfaces is presented. For arbitrary set of images acquired from different views,
the method organizes a huge number of local SIFT features to fill the gap between low-level vision (front end) and
high level vision, i.e. domain specific reasoning about geometric structures. The proposed method consists of
three steps: exploration, selection, and merging with verification. The exploration is a data driven technique that
proposes a set of hypothesis clusters. To select the final hypotheses a matrix of preferences is introduced. It
evaluates each of the hypothesis in terms of number of features, error of transformation, and feature duplications
and is applied in quadratic form in the process of maximization. Then, merging process combines the information
from multiple views to reduce the redundancy and to enrich the selected representations. The proposed method is
an example of unsupervised learning of planar parts of the scene and objects with planar surfaces.
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Nenadzorovano tenje prizora in planarnih objektov v njem

Povzetek. Metoda, predstavljena &lanku, je namenjena ne- scale-invariant features in imagég.[ SIFT features can

nadzorovanemudenju prizora oziroma planarnih delov objek- he ysed to perform reliable matching between different
tov, ki ga sestavlajo. Eknje je izvedeno s poljubnim naborom .

slik, zajetih iz razlénih zornih kotov. Predlagani postopek je pri_lmages_of an ot_)ject or scene. The invariance to imz_slge
lagojen za nataino in robustno raz#tanje velikanskegstevila translation, scaling, and rotation makes them appropriate

lokalnih deskriptorjev SIFT v skupine, ki ddiejo posamezne for stereo matching, tracking applications and also suit-
planarme dele v prizoru. Geometrijske enote, ki jih d_obl_mosbI for mobile robot | lization. SIET featur r d
takim urejanjem nizkonivojskih zii#lk, so most med nizkim @P!€ Tor mobile robot localization. eatures are goo

0z. zaznavnim in visokim oz. vsebinskim nivojem razumevanjaatural visual landmarks appropriate for tracking over a
vizualne informacije. long period of time from different views, e.g., iiQ]

Metoda je sestavljena iz treh korakov: raziskovanja pro "
tora, izbire hipotez in zdizevanja hipotez. Prvi korak, razisko-sme authors propose to use SIFT features for building 3D

vanje vizualne informacije, je podatkovno voden postopek, knaps. Local descriptors have previously been used for
fZgradlSlrSfl nabor hlth}(eZ-kleOF leottehz_ Jetlzvedlendsélftvaqllratﬂ@cene descriptio®]. In [11,/9] local descriptors are used
ormo preferéne matrike, ki ovrednoti hipoteze glede3tavilo - ; ; : )
zn&ilnic in transformacijsko napako, pri tem se podvajanjet,0 extract ObJECtS, from video clips but no 3D |nf0rma.
zna.';il!']ic pena!izira_. \/vzadnj.em korak_u zcﬁm‘no h.ip.oteze,.ki tion about the ObjeCt IS generated. On the other hand in
so isti planarni del, izfeunan iz slik, zajetih iz raztnih zornih  work of [6] 3D geometrical information is built about ob-

kotov. Tako se izognemo podvajanju hipotez in hkrati oboga- : PR
timo predstavitev posameznega dela prizora. Eksperimentaaﬂr‘ﬁCt surfaces. 3D geometrical presentation is model from

rezultati potrjujejo uspEnost metode za nenadzorovanienje  range images.
planarnih delov prizora in objektov.

. . - . I In this work we present a method for accurate and
Klju ¢ne besede: nenadzorovano aenje, vizualno Genje,

lokalni deskriptorji, deskriptor SIFT, grupiranje zfiic. robust grouping of local features belonging to planes of
interior scenes such as walls, floor, and the planar sur-
faces of objects. In for exampl@,|5, 8] features such as
line segments and junctions are selected for plane descrip-
tion. RANSAC algorithm is used to estimate transforma-
1 Introduction tion between imaged.B]. Here we experiment with SIFT

descriptors as they uniquely describe a particular part of

The use of local features is becoming increasingly POPYRe scene. For an arbitrary set of images acquired from

lar for solving different vision tasks. Recently, the SIFTdifferent views, the method organizes a huge number of
descriptor has been proposed for describing distincti '

MBcal SIFT features to fill the gap between the low-level
Received 3 April 2005 vision (front end), i.e. outputs of various filtering op-
Accepted 28 October 2005 erations and high-level vision, i.e., domain-specific rea-
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soning about geometric structures. The proposed meth|
consists of three steps: exploration, selection, and mer
ing with verification. The exploration step is a data-driver
technique that proposes a set of hypothesis models fr
which the selection step chooses the ones that explain tess =
data in accordance with a matrix of preferences. Since tigg
set of local features varies from view to view, the goal o
the merging process is to combine the information from
multiple views to reduce the redundancy and to enrich the

selected representations. As demonstrated by experimen- Figure 2.The best matches fro;,.
tal results, the proposed method is an example of unsu-

pervised learning of planar parts of the scene and objects

with planar surfaces. computation of the plane-to-plane homography requires
at least four features in two images of the same plane. For
a larger set of points the system is over-determined and
the plane-to-plane homography is estimated by a homo-

Given a set of descriptors of local patches of an interigd€neous estimation method. A relir:_lble s_olution requires
scene, the goal is to group them into clusters in accolo start the process of plane searching with a large set of

dance with some geometric property or a model. Here wiinall SIFT feature clusters, i.e. the initial hypotheses.
examine the planar surfaces. The features of;;, here represented by their coordinates,

Let us assume that we have a set of images= Ui i = (i)t = 1,2, 1Sy}, are clustered by
{I1, I, ...In} of a particular interior scene. The first stepthe k-means clu_sterlng algor_lthm. The alg_orlthm 'S per-
of our approach is detection of DoG points and comp 0 rmgd .Se.v.eral times, each time starting with different ar-
tation of SIFT descriptor for each local regicf] [Fig- itrarily initial sets of cluster centers. The.vallae_ienotes
urel). Next, for each pair of images(I;, I;)|i < j.i — the number of clusters obtained by one |terat|o'n and de-

’ v X pends on the number of featuriék;|. In the experiments

1,...,N—1, 5 =2,..., N}, asetof matching features is N
determined. The matches are obtained on the basis of g+ Was settd = maz{round(|S;|/30), 3}-

Euclidean distance between SIFT descriptors. Each SIFT The obtained clusters of features define a set of ini-
feature in imagd; is compared to all SIFT features in im- tial hypothesesit;; = {H};, H,,...,H]}. For each
agel;. The feature has a match if the Euclidean distandeypothesisi}; a plane to plane homograpt#/; from I;
to the closest SIFT feature is at least four times shorté® I; is computed by applying the RANSAC algorithm
than the Euclidean distance to the next closest SIFT fefAlgorithm 1). If the algorithm fails to find a solution,
ture. LetS;; denote a set of SIFT features hfhaving a the proportions of features denoted byand K are de-
match inl; (Figure2). creased by a factor 0.95 and the RANSAC is proceeded
Now, the task is to find inS;; the features that be- 29an.
long to planar parts of the scene and to group them in Next, the coordinates of all matching featuresSpf
accordance with the plane they belong to. For this puare transformed to imagé&; in accordance with trans-
pose we apply a plane-to-plane homograpBly [The formation ij. Displacement errors( },fijj);t =

2 Step 1: Exploration
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1,2,...,|S;;| are computed as Euclidean distances. AlB Step 2: Selection

features with a displacement error below a pre-specified _ ‘ o
tolerance are included in the hypothesis (FigBreNote A redundant set of clusters results in many ‘overlapping

that features of the initial hypothesis can also be excludd®yPotheses. To reduce the redundancy and to keep the
from the hypothesis. Then, a plane-to-plane homograpﬁ]}’pmhes’eS that' efficiently group the data, a matrix of
is recomputed and new features are included in the h{éferenceq is introduced. It is preferred to have a

pothesis. The process is stopped when there are no f /pothesis with a large number of features and small
tures that can be added to the hypothesis. error-of-transformation encoded in diagonal elements of

Q. The off-diagonal terms encode the interaction be-
tween the hypotheses. Duplication of features in different
hypotheses is penalized. We consider only pairwise
overlaps of the hypotheses. Selection of the hypotheses
is performed by maximization of an objective function of
guadratic formh@h™ [12). h is a binary vector of length

n and denotes a set of selected hypotheses. A value 1 at
position: indicates the presence of thh hypothesis and

0 its absence(Q is an x n symmetric matrix. The ele-
ments of Q are defined asg.. = Ki|Z.] — Ka..;

Algorithm 1 Random Sample Consensus Algorithm.
Assume:

The parameters are estimated frahdata items.

and Ger = 7K1|ZCQZ2TI+KZ§C’T; c 7é r. ‘ZC|
There areT' data items in total. (In our experimentsIs i the number of features in Fhe:-th hypoth-

esis Hf;, ie., |Z. = sum(Hf). &ery SO
D=0.7xT.) called the error-of-transformation, is defined as

maX(Zfe\ZcmZH d(f, fpicj)27 Zfe|zcnz_,,,| d(f, szZ)Q)
Tolerancet corresponds to the distance of maximal al-1N€ constantsk; and K are the weights determined
experimentally. (In our experiment&; = 4 and
=1.)
To maximize the objective functiohQh”, we use
when transformed to the same image plane and is set td1 tabu searcli]. Vectorh that maximizes the objective
function represents the final selection. Figdrdepicts
pixel. the hypotheses selecteq by the proposed approach. Note
that each of them describes one plane.

lowable displacement between features in a matching pa’ﬁ2

1. SelectD data items at random.
3.1 Hypothesis rejection

2. Estimate parametegs Due to small differences in camera locations for some ac-

quired image pairg,[;, I;), the computed plane-to-plane
homography lacks the sensitivity and therefore groups to-
gether SIFT features which do not lie on the same plane.
parameterg within a tolerance. Call thisK'. See f‘?r example Fig“TE' To.refuse ?UCh hypotheses,
the rejection process is applied to give the final set of
hypotheses. For each hypotheﬁ% we find all image
4. If K is big enough, exit with success. (In our experpairs that contain matches relevant to the hypothesis. The
plane-to-plane homography is determined for each such
imentsK = 0.8 x T') image pair. If for at least one image pair the plane to
plane homography does not satisfy most of the matches,
the hypothesiﬂfj is removed from further consideration.

3. Find how many data items df fit the model with

5. Repeat steps from 1 to A times. (In our experi-

mentsZ=100.
) 4 Step 3: Merging

6. Fail if you get here. Selections on pairs of image§(;, ;)i < j,i =
1,....,N =1, = 2,...,N} end up with a set of final
hypothese${ = {H,, ..., H,,}. Each hypothesis deter-
mines a cluster of SIFT features. A SIFT feature is repre-
sented as a structure of feature coordinéieg), a SIFT
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(b)

Figure 3. (a) Initial hypothesis. (b) The hypothesis is enlarged by adding all the features that satisfy the prespecified tolerance of
plane-to-plane homography.

vector, and a weight which determines the importance afenerated hypotheses) until there is no pair of hypothe-
the feature. At the beginning all the weights are set to 1ses with a sufficient number of matching features. The
\gFights of features give us information about feature sta-

the scene acquired from different locations and viewin llity. Features with high weights are more stable while

directions. Hence, multiple hypotheses can determine t %atures with low weights arg Vef}’ likely to be outliers.
same parts of the scene. To reduce the redundancy and to | '€ reader has to keep in mind that the merged hy-

enrich the final representation, we apply a merging prd2otheses are still only hypotheses. By acquiring new im-
cess toH. ages of the scene new information is obtained and the re-

Tjection of a hypothesis is still possible.

In Z, there are images representing the same parts

SIFT descriptors are highly distinctive local parts o
the scene, therefore even a small number of SIFT features
uniquely determines the particular part of the scene. If
in H; and H; there exists a subset of common match® Experiments

ing features, the hypotheses are candidates for mergian. ] ]
It is still possible thatfl; and H; describe two different esults are presented for two experiments. In the first ex-

planar parts or different parts of a slightly bending Surperiment_the scene is fixed_. In_ the second the co_nfigura-
face. To filter out such cases, features in both hypothest@n of objects in the scene is different for the acquired set
are examined in the following way. First, we divide the®f images. In both experiments we deal with gray images
features ofH; and H; in three subsetsA = H; N H;, of resolution640 x 480.

B = H;\ Hj, andC = H; \ H;. Next, we find allimage In the first experiment the feature clustering was ge-
pairs that contain matches from all the three above detgterated from 15 images leading to 86 final hypotheses.
mined subsets. We require at least one match from eaé¥iter the process of merging we end up with 8 different
subset to do the merging. By applying a plane-to-planelanes (Fig6).

homography to each such image pair we test if the match- In the second experiment 10 different images were ac-
ing features from subsetd, B, and C lie on the same quired. The process ends up with 54 hypotheses (#ig.
plane. If for all such image pairs the test is positive, w&ome hypotheses of feature clusters of the same plane
mergeH; andH;. Features of both hypotheses are transwvere not merged due to the sparse nature of SIFT fea-
formed to the same image, the weights of featdfeand tures and insufficient number of the acquired images. The
H; weights are summed and all the SIFT descriptors atgypotheses are built from different images, showing the
kept. The process of merging is repeated (also on newsame planar part from angels where some parts are un-
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planar parts as demonstrated by the second experiment.
The weights attached to the SIFT descriptors can also
be exploited to detect changes in the interior scene, e.g.
changes on the wall newspaper, a coat hanger, and would
together with the time parameter allow for continuous
long-time learning.
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