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The paper deals witb the fuzzy logic controller (FLC) tuning by the aid ofthe optimization with genetic 
algorithm (GA). Because ofthe complexity of calculations the SugenoOth orderFLC was used. The GA 
optimization tuned 25 consequent parameters while the membership functions remained fixed. Because 
oflarge number of parameters traditional optimization methods were not successful. Beside appropriately 
selected GA parameters the choice of appropriate reference signal ofthe control system was extremely 
important Namely it must be selected so that the whole ranges ofboth FLC inputs are used. It is recom-
mended to plot trajectory ofFLC inputs to see which parts ofthe truth table is appropriately covered by the 
inputs and to find out which conseguentparameters can not be optimized. Filtering ofFLC characteristic 
is another useful method, which makes output characteristics smoother and so improves responses. The 
e£ficiency ofthe proposed approach were verified and validated on a hydraulic control system. 

1 Introduction 

The life cycle of a control system demands several opti-
mizations in several steps. Probably the most demanding 
steps are those in the phases of process modelling and con­
troller design. Sometimes these optimizations are very sim-
ple, based on experiences, tunning rules or simulation tri-
als [3, 4]. Sometimes better result are obtained by con­
ventional optimization techniques [1]. This approach is ex-
tremely important for control systems with lower number 
of loops and with so called parametric controllers, e.g. tra­
ditional PID controllers. Such optimization is extremely 
efScient when no more than app. 10 parameters must be 
tuned. However more advanced control algorithms con-
tain usually much more parameters, which must be appro-
priately tuned. More complex control algorithms result in 
better efficiency, when systems are complex, nonlinear or 
time varying, multivariable, highly oscillating, with signif-
icant delays etc. Conventional optimization algorithms are 
not able to properly handle such problems, so there is a 
constant search for new and better methods. In this search 
researchers also started looking at how nature and peo-
ple handle similar problems. Such thinking led to fuzzy 
logic and artificial neural nets as important elements for 
advanced control algorithms and genetic algorithms as new 
robust optimization techniques based on natural evolution. 

One of the important advantages of Fuzzy Logic Con­
trollers (FLC) in comparison with conventional linear con­
trollers is that they provide an ability of non-linear control 
behaviour. However, the design of such a controller is not 
an easy task because there are many parameters, which are 
usually set with designer experiences or with simulation 

studies. Another approach is to use optimization. But FLC 
has several inputs (very usually two: for control error and 
its derivative) and each input has several membership func­
tions. Beside there are many rules in the FLC knowledge 
base in which many so called consequent parameters ap-
pear. 

As traditional optimization methods are too sensitive to 
the number of parameters, an advantage with optimization 
based on genetic algorithm (GA) was expected. 

Modem tools, which were used for this study 
(MATLAB-SIMULINK, Fuzzy Logic Toolbox, Genetic 
Algorithm Toolbox [11]) give wide possibilities for effl-
cient design and experimentation. 

2 Description of genetic algorithm 
GA [2], [6], [7] used for optimization has four standard 
operations: 

- evaluationof individuals, 

- reproduction, 

- crossoverand 

- mutation 

These operations are repeated until the terminating con-
dition is met. In our čase the optimization was stopped after 
a specified number of generations were evaluated. Table 1 
shows the characteristic parameters of GA. 

As a reproduction mechanism a method called determin-
istic roulette wheel was used [11]. Parameters were binary 
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number of generations 
crossover probability 
number of crossover points 
mutation probability 
number of individuals in gen. 

N, 
Pc 
Ne 
Pm 
Np 

Table 1: GA parameters 

Goded (with 12 bits). The most important parameter of the 
GA is fitness flinction, which is given by Eqs. (1), (2) and 
(3). Eq. (1) is well known criterion flinction often used in 
control systems design. 

/ 
rtr, 

Jo 
[e{t)\dt (1) 

e(t) is the error betvveen reference and controlled vari-
able. Absolute error is used, as error is usually an oscillat-
ing signal. To get faster convergence, relative difFerences 
between fitness values for particular individuals are further 
increased by subtracting the minimal fitness in a generation 
k from the criterion defined with Eq. (1). 

fi{k) = m min (/(j)) + l (2) 

So the offset of the fitness flinction is removed. One 
is added to prevent the value zero of the fitness function 
j\(k). The difFerences between individuals are further in­
creased by the transformation into final fitness flinction 

/2(fc) im 
Erji/i« 

(3) 
Af, 

Individuals with fitness above the average fitness get 
higher fitness value, while the ones below get lower fitness 
value. So with Eqs. (2) and (3) the relative difFerences be­
tvveen fitness values are greatly increased, enabling better 
individuals to have more offspring. 

were equally spaced as it is shown in Figure 1. They were 
fixed during optimization. 

Figure 1: Membership functions of FLC input variables 

Knowledge base of the FLC consisted otP x Q rules as 
is depicted in Figure 2. 

1. IFa: = MF^i ANDy = M F „ i THEN u i i = Cj . i 
2. IFx = MF^i AND y = MFy2 THEN ui,2 = Cj.a 
3. IFx = AfF. i A N D i / = Mi^„3 THEN «1,3 = Ci,3 

Q IF 3; = M K i AND y = MFyQ THEN « I , Q = C I , Q 
Q + 1 Wx = MF,2 AND y = MFyi THEN «2,1 = ^2,1 

P xQ IF X = MF^p AND y = MFyQ THEN UP,Q = CP,Q 

Figure 2: Knowledge base of FLC 

y 

MFyi 

the first input variable 
the second input variable 

Q 

i"* membership function of the first input vari­
able 
J"" membership function of the second input 
variable 
output of the (i, i ) " ' rule 
consequent parameter 
the number of membership functions of the 
first input variable 
the number of membership functions of the 
second input variable 

3 Description of the fuzzy logic 
controller 

The controller used in experiments was Sugeno O"' order 
type of FLC [14]. This type was chosen, because it is sim-
pler in comparison with other types of FLCs also from the 
calculation complexity point of view. Namely each opti­
mization performs many simulation runs and the CPU tirne 
needed for one simulation depends very much on the time 
needed for controller action evaluation. On the other hand 
its properties satisfied one of the important requirements -
the ability to control non-linear process [14]. 

The FLC has usually two inputs x and y for control er­
ror and its derivative. Membership functions in our studies 

The flizzy logic operation and inference mechanism 
were realized as product [12]. 

* t j Cijmximyj = Cijrij (4) 

where 

mxi membership grade of the first input 
•myj membership grade of the second input 
rij fulfilment of the (i.j)"* rule, calculated as 

the product of membership grades 
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The controller output is calculated as the integral of the 
vveighted average of consequent values 

^Q 

2-11=1 z ^ j = i " j , j 
(5) 

-L o Z^i=\ l^j=i ''».i 
-dt 

With integration the fuzzy logic controller, which is ac-
tually a non-linear PD controller, was transformed into a PI 
one in order to eliminate steady state error. 

4 Optimization 
In our optimization study five equally spaced membership 
functions(P — ^,Q — 5) were used for each input variable 
(as shown in Figure 1). With optimization 25 consequent 
parameters Cj,^, each was coded with 12 bits, were deter-
mined. It is obvious that many troubles could be expected 
using conventional optimization techniques. The procedure 
is shown in Figure 3. 

Reference En-g,-

O 
Controlled 

variable 

Process | > 

Figure 3: Optimization of fuzzy controller 

FLC design is much more complex than linear controller 
design, because its output characteristic is non-linear. Out­
put values for ali possible input values have to be defined. 
The range of input values is divided into smaller intervals. 
The number of these intervals depends on the number of 
membership functions. Table 2 shows the truth table for 
control error e and its derivative de/dt. The fuzzyfied 
values are NB (negative big), NM (negative medium), ZE 
(zero), PM (positive medium) and PB (positive big). 

Eq. 5 shows that control signal u is influenced only by 
those consequent parameters Cj,j which have appropriate 
non zero membership grades ri^j. In other words, only the 
rules with membership functions, which are defined on the 
domains of the čurrent input variables are active. So it is 
obvious that the optimization of controller parameters d j 
is efficient only when the control error and its derivative 
cover the vvhole area defined by both variables during tran-
sient responses (simulation runs). Unfortunately as close 
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Table 2: Trajectory of error and its derivative drawn on the 
FLC's truth table 

loop system is optimized, it is not possible to select di-
rectly the appropriate signals e(i) and de{t)/dt. Instead 
one has to select appropriately the reference signal. In Ta­
ble 2 a typical trajectory of error and its derivative caused 
by a simple reference step change shows that with such in­
put many consequent parameters can not be appropriately 
optimized. To overcome this problem, several types of ref­
erence signals were tested: 

- a signal consisting of sinusoidals with different ampli-
tudes and frequencies, 

- a signal consisting of steps with different amplitudes 
and delays, 

- a square wave signal with increasing amplitude. 

After substantial testing the square wave signal with in­
creasing amplitude seemed to be the best solution. It is 
shovvn in Figure 4, together with control error for a typi-
cal example, while the appropriate trajectory is shown in 
Figure 5. 

Figure 4: Reference signal (dashed line) and control error 

As the whole phase area is fiilfilled, it is possible to op-
timize ali consequent parameters. However, in most cases 
GA finds solution close to the optimum, not the exact op-
timum. In our čase this means, that some consequent pa­
rameters are slightly smaller than they should be, while the 
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5 Experimental results: 
Optimization of the FLC 
controUer of a hydraulic system 

Our laboratory hydraulic set-up consists of three tanks and 
a main reservoir [5]. The transfer function which describes 
the relation between the input flow of liquid (incoming flow 
in the first tank) and the level in the third tank (controUed 
variable) is 

Figure 5: Trajectory in the error - derivative plane 

others (perhaps the neighbours, see Table 2) are slightly 
larger. If the FLC output characteristics is considered as 
a non-linear function of two independent variables e and 
de/dt the surface is not very smooth as it has many local 
minima and maxima. Such surface can not assure the ap-
propriate performance of the control system. As this incon-
venience can be considered as a kind of noise introduced by 
stochastic features in GA, the idea to use a kind of filtering 
arose. 

The idea of filtering is, to calculate the consequent pa­
rameter value by averaging in which the parameter itself 
and aH parameter's neighbours are included (see Table 2) 

^i,0 ~ 
f (Cj-ij-i + Ct_i,j+i + Cj+ij_i + Cj+ij+i) 

a + h-\- C 

4-

+ 

4 (^j>j-l + ^i,j+i + ^i-i,3 + Ci+ij) 
a + b + C 

a + b + C 
(6) 

where 

a, b,c 

new (filtered) value of the consequent parame­
ter 
current values ofconsequent parameters (m = 
i-l,i,i + l, n = j-l,j,j + l) 
vveights (parameters of the filter) 

Using the filtering, the best results are obtained with op­
timization in several steps. After each step the filtering is 
used, what means that the new individuals are calculated 
fi-om ali individuals of the last generation of previous op­
timization step. Values of the filtering parameters a, b and 
C depend mostly on the type of process. There is no strict 
rule how to set them, but in our examples the starting values 
were set to 1 (a = 1,6= land c = 1). In some experiments 
6 and c were intensified during optimization steps. 

Gp{s) = yis) ^ 1 
U{s) s3 +2s^ + 3s + l (7) 

As mentioned FLC was Sugeno O"' order with two in-
puts (error and its derivative), for each input five equally 
spaced membership fimctions were defined (Figure 1). 
Knovvledge base was described with 25 rules (Figure2). 
The controller output was calculated with Eq.(5). Opti­
mization with GA was used to calculate optimal values of 
25 consequent parameters dj, each was coded with 12 
bits. GA selects the best controllers from the generation 
and performs other operations (crossover and mutation). 
Selection is made on the basis of fitness values that depend 
on the control error (see Eqs. (1), (2), (3)). The important 
parameters of GA are shown in Table 3. 

number of generations 
crossover probability 
number of crossover points 
mutation probability 
number of individuals in gen. 

N, 
Pc 
Ne 
Pm 
Np 

70 
1 
3 
0.01 
30 

Table 3: GA parameters 

The overall scheme is shown in Figure 3. 

The first generation of individuals was initialized with 
random numbers - no knovvledge about the process was in­
cluded. The optimal control system performance is shovra 
in Figure 6. 

The small oscillations are caused by rough FLC output 
characteristic which can be confirmed by Figure 7, where 
gray scale is used to denote the profile of the plane (darker 
means less). 

After this study the filtering was introduced. Three op­
timization iterations were performed, each with 70 genera­
tions. After each optimization the filtering was used. After 
the first optimization and filtering the criterion fimction was 
672, after the second 275 and after the third 262. As the 
change between the second and the third iteration was not 
significant, the iterative procedure was terminated. Other 
examples also confirm that three iterations are usually rea-
sonable. Figures 8, 9 and 10 represent the optimal results 
(reference sp, controUed variable y and control signal u ) 
after the first, second and the third iteration of optimization. 



TUNING OF FUZZV LOGIC CONTROLLER WITH Informatica 23 (1999) 559-564 563 

• 

v • • ' • fc 

š 

• 

••. . - • ' i l -̂ '̂ . 

y 
sp 
U 

!̂  A ^'t- in 'f- ^\ i^ t;.UVV/y i;l i/: !;l \U 

[\ 
ju 

t 
1'"̂  

-

-

• ' -

• 

100 
I[3] 

120 140 160 180 200 80 100 120 140 160 180 200 

Figure 6: Optimal results (without filtering, y . . . con-
trolled variable, u ... control variable, sp .,, reference) 

Figure 9: Results after the second iteration of optimization 

40 60 80 100 120 140 160 160 200 

Figure 7: Output characteristic of the FLC optimized with 
GA (without filtering) 

Figure 8: Results after the first iteration of optimization 

It can be seen, that responses at rising and falling edges 
are not the same, because FLC characteristic is not sym-
metrical (linear). The response in Figure 10 is much bet-
ter as it is fast and 'with a small overshoot. As the fitness 
function depends only on the control error, the values of 
controller signal u are very high in the points of reference 
change. If such values are unacceptable for actuator, the 
control variable u should be somehow included in the cri-
terion fiinction. 

Figure 11 depicts the output characteristic of the FLC. 

Figure 10: Results after the third iteration of optimization 

Using filtering it is much smoother. 

Figure 11: Output characteristic of the FLC optimized with 
GA (with filtering) 

6 Conclusion 

Genetic algorithms seem to be an efficient optimization ap-
proach in complex control systems with many tuning pa-
rameters. In fuzzy logic control systems there are many 
parameters, which can influence the behaviour: the num-
ber and the shape of membership functions, consequentpa-
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rameters, etc. So conventional optimization techniques are 
usually not enough efiicient or even unusable. 

In our presented study the consequent parameters of FLC 
were optimized with GA. Experiences show that some of 
the parameters can have more or less random values after 
the optimization if some facts are not taken into account. 
To avoid such situation, appropriate type of reference sig­
nal should be used. It is also recommended to plot trajec-
tory of FLC inputs (e.g. plane e, de/dt) to see which parts 
of the truth table is appropriately covered by the inputs and 
to find out which consequent parameters can not be opti­
mized. Observation of FLC output characteristics is also 
useful because smooth shapes mean that the optimization 
produce at least near optimum values. 

Filtering of FLC characteristic is another useful method, 
which makes output characteristics smoother and so im-
proves responses. The procedure also decreases bad influ­
ence of parameters which are not satisfactory optimized, 
because their values get closer to the average of other opti­
mized parameters. 

Hovvever in the fliture more effort should be devoted to 
additional experiments with different reference or distur-
bance signals, which are more similar to shapes, which oc-
cur in reality. A lot of possibilities give also different types 
of FLCs as well as the study of the influence of different 
approaches in GA. 
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