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Background. During a nuclear accident, numerous products of nuclear fission are released, including isotopes of 
radioactive iodine. Among them is iodine-131, with a half-life of 8.02 days, which emits β radiation. For decades, it has 
been effectively and safely used in medicine. However, in the event of a nuclear accident, uncontrolled exposure 
can have harmful biological effects. The main sources of internal contamination with iodine-131 are contaminated 
air, food and water. The most exposed organ is the thyroid gland, where radioactive iodine accumulates via the 
Na+/I- symporter (NIS). NIS does not distinguish between radioactive iodine isotopes and the stable isotope iodine-127, 
which is essential for the synthesis of thyroid hormones. Exposure to radioactive iodine during a nuclear accident is 
primarily associated with papillary thyroid cancer, whose incidence begins to increase a few years after exposure. 
Children and adolescents are at the highest risk, and the risk is particularly significant for individuals living in iodine-
deficient areas. 
Conclusions. Ensuring an adequate iodine supply is therefore crucial for lowering the risk of the harmful effects of ex-
posure to radioactive iodine at the population level. Protecting the thyroid with potassium iodide tablets significantly 
reduces radiation exposure, as stable iodine prevents the entry of radioactive iodine into the thyroid. Such protec-
tion is effective only within a narrow time window - a few hours before and after the exposure and is recommended 
only for those under 40 years of age, as the risks of excessive iodine intake outweigh the potential benefits in older 
individuals.
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Introduction

Various sources of ionizing radiation play a crucial 
role in nuclear medicine, industry, the military, 
as well as in science and research. Nuclear power 
plants, significant sources of electrical energy, ex-
ploit the nuclear fission reaction of enriched ura-
nium-235 or plutonium-239. Risks associated with 
radioactive contamination in the event of a nuclear 
reactor accident have been the subject of numerous 
public debates, especially in the last few decades 
following the catastrophic consequences of the ac-

cidents in Chernobyl in 1986 and Fukushima in 
2011.1,2

The nuclear fission reaction was also character-
istic of nuclear weapons used in the Second World 
War. A representative of the newer generation of 
nuclear weapons is the hydrogen bomb, which uti-
lizes the process of nuclear fusion in combination 
with nuclear fission and can be up to 1000 times 
more powerful than a fission bomb.3 In addition 
to the threat of nuclear warfare, nuclear terrorism 
poses one of the major threats to international se-
curity today. It involves the illegal and intention-
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al use of radioactive material to achieve various 
harmful objectives. This includes terrorist attacks 
on nuclear power plants and the use of nuclear 
weapons, as well as the use of “dirty bombs” that 
disperse radioactive substances into the environ-
ment without a nuclear explosion.4

According to the definition provided by the 
International Atomic Energy Agency, nuclear and 
radiation accidents involve exposure to radioactive 
radiation, resulting in significant consequences 
for individuals, the environment, or objects.5 In 
contrast to radiation incidents, where exposure to 
radioactive radiation is not linked to nuclear fis-
sion, nuclear accidents are distinguished by their 
association with an explosion that involves nuclear 
fission. This can be observed in events such as a 
nuclear bomb detonation or a nuclear reactor inci-
dent.4,6 Such accidents are characterized by a sub-
stantial release of energy, with approximately 90% 
being released in the form of explosion and heat, 
and about 10% being released in the form of ion-
izing radiation. Additionally, a variety of nuclear 
fission products are released, including isotopes of 
radioactive iodine (Figure 1).7

Sources of ionizing radiation in 
a nuclear incident

In a nuclear accident, energy in the form of ionizing 
radiation is predominantly released immediately 
within the first minute after the explosion. The 
risks associated with immediate radiation primar-
ily relate to the harmful effects of gamma and neu-
tron radiation, which have the highest penetration 
capability.8,9 Neutron radiation, in addition to its 
direct effects on living organisms, destabilizes sta-
ble atoms of materials (such as iron and concrete) 
in objects surrounding the explosion, transform-
ing them into new sources of ionizing radiation. 

Over an extended period following the explosion, 
residual radiation is emitted into the atmosphere 
in the form of a radioactive cloud, traveling several 
hundred kilometers from the accident site, and de-
positing radioactive substances gradually onto the 
Earth (Figure 1).9

In the immediate vicinity of the explosion site, 
larger radioactive particles settle locally, with the 
most intense settling occurring within the first 24 
hours. Smaller particles reaching the troposphere 
continue to settle for several months after the acci-
dent, particularly in the broader vicinity of the nu-
clear explosion. The smallest particles, especially 
in powerful nuclear weapon explosions, can reach 
the stratosphere, settling on the entire surface of 
the Earth for several years after the explosion.4,9

During a nuclear accident, a broad spectrum of 
different radioactive fission products can be pro-
duced, with half-lives ranging from a few seconds 
to several million years.7,10 Their total radioactiv-
ity is initially extremely high, but it decreases 
relatively rapidly due to radioactive decay.11 Only 
those radioactive isotopes with appropriate physi-
cal properties (small particles reaching higher at-
mospheric layers, water-soluble particles, etc.) and 
a sufficiently long half-life can represent a long-
term source of radiation exposure in the broader 
vicinity of a nuclear incident. Examples of such 
radioactive isotopes that are a source of harmful 
β radiation include cesium-137, strontium-90, and 
iodine-131.12,13 Similar to the mentioned isotopes, 
xenon-133 is also a source of β radiation, easily 
entering the atmosphere due to its gaseous form. 
Although its physical half-life is approximately 
5 days, its biological half-life is only 30 seconds. 
After entering the body, it is exhaled within a few 
minutes, thus having no significant harmful ef-
fects.10

Cesium-137, with a half-life of approximately 30 
years, has a relatively low boiling point and is wa-
ter-soluble. Consequently, it travels effectively in 
the air, spreading even after deposition from the 
atmosphere to the soil, causing radioactive con-
tamination of land, water, and living organisms. 
Once absorbed into the body, it accumulates in tis-
sues, constituting a source of prolonged exposure 
to radiation.12 Strontium-90, with a half-life of 28 
years, chemically resembles calcium. As a result, 
it accumulates in bones and teeth, representing 
a source of radiation exposure for the bone mar-
row.14 Iodine-131 is water-soluble and emits both 
β radiation and, to a lesser extent, γ radiation. 
Compared to cesium-137 and strontium-90, it has a 
significantly shorter half-life, causing no long-term 

FIGURE 1. Sources of ionizing radiation during a nuclear accident.
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environmental contamination. It accumulates in 
the thyroid gland, where it has harmful biological 
effects.10,15

Characteristics of iodine 
isotopes

There are 37 known isotopes of iodine, ranging 
from iodine-108 to iodine-144. The only stable iso-
tope is iodine-127, which is essential for the syn-
thesis of thyroid hormones and is commonly con-
sumed in the form of iodized salt in everyday life. 
All other iodine isotopes exhibit radioactive decay 
with half-lives, mostly shorter than 60 days. Only 
iodine-129 has a long half-life of 1.57 × 107 years.16

In medicine, radioactive iodine has been used 
for several decades, particularly for diagnosing 
and treating thyroid diseases.17 Various isotopes 
of iodine, including iodine-123, iodine-124, io-
dine-125, and iodine-131 play important roles to-
day. Iodine-123 is a cyclotron-produced isotope 
with a half-life of 13.2 hours. It emits low-energy 
γ radiation with a long range, causing no tissue 
destruction. It is suitable for diagnostic purposes, 
as the γ radiation detected by a gamma camera 
provides valuable information about the uptake 
of iodine in the thyroid.18 Similarly, iodine-124 is 
a cyclotron-produced isotope with a half-life of 
4.18 days. Due to the emission of positrons dur-
ing radioactive decay, it is suitable for imaging 
with positron emission tomography.19 Iodine-125, 
obtained in nuclear reactors, has a long half-life of 
59.4 days and emits low-energy γ radiation. It is 
used in brachytherapy20 and serves as a tracer in 
radioimmunoassays for the laboratory determina-
tion of various analytes.19

Iodine-131, also obtained in nuclear reactors, 
has a half-life of 8.02 days. Upon decay, it emits 
high-energy β radiation of 0.61 MeV with a short 
tissue range of up to 0.8 mm.19,21 Iodine-131 is the 
treatment of choice for patients with autonomous 
thyroid tissue and a second-line treatment for pa-
tients with Graves’ disease. In both patient groups, 
the goal of treatment is to alleviate hyperthyroid-
ism. Iodine-131 is an effective medication for ab-
lating residual thyroid tissue after thyroid cancer 
surgery, and it can also be used to treat euthyroid 
nodular goiter with the goal of reducing thyroid 
volume.21 The activity required for the successful 
treatment of thyroid diseases must be sufficiently 
high to expose the target tissue to the determinis-
tic effects of iodine-131. Our study involving pa-
tients with Graves’ disease, for example, indicates 

that iodine-131 treatment successfully eliminated 
hyperthyroidism in over 90% of patients with an 
average received dose of 144 Gy or 164 Gy, whereas 
in patients with an average received dose of 105 
Gy, success was achieved in only 64% of patients.22

Iodine and the thyroid

Non-radioactive or stable iodine is a fundamental 
constituent element of thyroid hormones thyrox-
ine (T4) and triiodothyronine (T3), which are es-
sential for metabolism in all age groups and for 
the develpoment and brain maturation in foetuses 
and young children. According to World Health 
Organisation (WHO) recommendations, the daily 
iodine intake for adults should be around 150 µg, 
while pregnant and lactating women should aim 
for around 250 µg.23

A healthy adult body contains 15–20 mg of io-
dine, 70–80% of which is stored in the thyroid 
gland.24 As reported, serum concentration of free 
iodide (I-), however, is only 50 nM to 300 nM.25 The 
thyroid cells have evolved an extremely efficient 
mechanism to accumulate iodine. The glycoprotein 
responsible for active iodine transport into the thy-
roid cell was identified in 1996 as Na+/I- symporter 
(NIS), localized in the basolateral membrane of 
thyroid epithelial cells, facing the bloodstream.26,27 
NIS facilitates Na+/I- symport with a 2:1 stoichiom-
etry, driven by the Na+ electrochemical gradient 
established by the basolateral Na+/K+ ATPase. As 
a result, I- is actively concentrated in the thyroid 
cells. NIS cannot differentiate between stable and 
radioactive iodine, making it a powerful tool for 
diagnostics and treatment with radioiodine, as 
it rapidly concentrates in the thyroid.27 Upon en-
tering the thyroid cell, I- passes transcellularly to 
reach the apical membrane. Here, it undergoes 
oxidation catalysed by the enzyme thyroid peroxi-
dase (TPO) in the presence of H2O2, followed by io-
dination of tyrosine residues on thyroglobulin (Tg) 
and synthesis of thyroid hormones.28

The regulation of NIS is primarily influenced 
by thyroid stimulating hormone (TSH), a pituitary 
hormone. TSH, a key regulator of thyroid function 
and size, stimulates thyroid gland by promoting 
NIS transcription, upregulating the expression of 
TPO and Tg, as well as facilitating Tg endocytosis. 
Moreover, TSH also regulates NIS localization and 
is necessary for targeting NIS to the plasma mem-
brane, as well as its retention there.29

In addition to TSH, iodine content in the thyroid 
cell itself regulates the I- uptake. If iodine content 
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is low, the expression of NIS is increased and vice 
versa. A mechanism, known as autoregulation, 
enables the normal synthesis of thyroid hormones 
irrespective of iodine supply.30 Exposure to high 
concentrations of I- inhibits thyroid hormone syn-
thesis and secretion, likely by supressing H2O2 
production and reducing the expression of TPO 
and Tg. This phenomenon was named the Wolff-
Chaikoff effect.30,31 However, despite ongoing ex-
cess of I-, its inhibitory effect diminishes after ap-
proximately 48 hours, allowing for the restoration 
of thyroid hormone synthesis. This escape from 
the Wolff-Chaikoff effect is enabled by an intrinsic 
autoregulatory mechanism, wherein NIS is down-
regulated by high intracelluar I- leading to the in-
tracellular iodine concentration below critical in-
hibitory threshold.31 This downregulation occurs 
through several mechanisms, including inhibition 
of NIS transcription and increased degradation of 
NIS mRNA and NIS protein as well as transloca-
tion of NIS molecules from the basolateral mem-
brane into the thyroid cell.27,30

Radioactive iodine 
contamination in a nuclear 
accident

During a nuclear accident, the by-products of nu-
clear fission released into the environment include 
various isotopes of radioactive iodine. Notably, io-
dine-131, with its relatively long half-life and high 
energy, poses the most significant biological risks.32 
Released in the form of a radioactive cloud, radio-
active iodine contaminates air, water, soil, vegeta-
tion, and surfaces, thereby constituting a source 
of external contamination. Inhalation of contami-
nated air and ingestion of tainted food and water 
result in internal contamination of both humans 
and animals.33 For infants of exposed mothers, 
breastfeeding is also a risk factor for iodine-131 in-
gestion, since NIS expression in breast occurs dur-
ing lactation enabling I- secretion into the milk as 
the sole source of this nutrient for the newborn.27 
During internal contamination, the thyroid is the 
most exposed organ, as approximately 10–30% of 
the incorporated amount accumulates in it within 
24 hours, facilitated by the action of NIS. Most of 
the remaining radioactive iodine is excreted from 
the body with urine.34

Experiences from Chernobyl reveal that con-
taminated cow’s milk was the primary source of 
iodine-131 internal contamination for residents, 
while the contaminated air affected exposed work-

ers at the power plant. Factors such as age, place 
of residence, and milk consumption habits during 
the first 8 weeks after the accident had the greatest 
impact on the doses received by residents.35 They 
estimate that residents in exposed areas of Belarus 
and Ukraine received an average thyroid dose of 
about 0.65 Gy, with the maximum dose reaching 
42 Gy. Workers at the power plant exposed to ra-
dioactive iodine received an average dose of 0.18 
Gy. In the most affected region of Belarus, children 
received an average dose of 0.75 Gy, with a maxi-
mum estimated dose of 8.7 Gy.36 According to the 
largest study on in utero exposure to iodine-131 
from Chernobyl fallout in selected regions of 
Ukraine, the mean estimated fetal thyroid dose 
was 0.072 Gy, with a range of 0–3.23 Gy.37 Higher 
thyroid doses in children and adolescents com-
pared to adults are attributed to factors such as a 
higher iodine uptake, smaller thyroid glands, and 
greater milk consumption.38 A 5-year-old child at 
the time of the accident received a thyroid dose 
approximately four times larger than that of an 
adult.39

In Fukushima, only approximately 10% of ra-
dioactivity compared to Chernobyl was released.40 
Early public notification prevented the majority of 
residents from ingesting contaminated water and 
food, making inhalation of iodine-131 the primary 
route of internal contamination.41 According to one 
of the earliest reports, the median thyroid dose was 
estimated at 0.0042 Gy for exposed children and 
0.0035 Gy for adults.42 A recent assessment of chil-
dren who were 1 year old at the time of the accident 
in the most affected areas around the Fukushima 
power plant showed that their thyroid glands were 
exposed to an average dose of 0.015 Gy, with the 
maximum received dose being 0.029 Gy.43 These 
values appear to be lower than earlier estimates, 
where average thyroid doses at 1 year ranged from 
0.033 to 0.083 Gy.44 Among workers 0.7% exceeded 
thyroid dose of 0.1 Gy, while the majority received 
less than 0.1 Gy.45 Unlike the Chernobyl accident, 
where residents’ thyroids were primarily exposed 
to iodine-131, in Fukushima, internal contamina-
tion with iodine-131 contributed to thyroid dose in 
40–50%, with other short-lived isotopes of radio-
active iodine (iodine-132, iodine-133, iodine-135) 
contributing 5–20%, and external irradiation due 
to radionuclides in the radioactive cloud and on 
surfaces in 40–50%.41

Among atomic bomb survivors from Hiroshima 
and Nagasaki exposed as children under 10 years, 
the mean thyroid radiation dose was 0.182 Gy, 
ranging from 0–4 Gy46, whereas the mean mater-
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nal uterine radiation dose was 0.256 Gy.47 After 
atmospheric nuclear weapons tests conducted 
in the second half of the last century in Arizona, 
Kazakhstan, China and French Polynesia, the 
mean estimated thyroid doses were up to 4 Gy due 
to radioactive fallout and external thyroid irradia-
tion, whereas they were several times higher dur-
ing experiments on the Marshall Islands.44

Harmful effects of radioactive 
iodine in nuclear accident

The harmful effects of I-131 in a nuclear accident 
are primarily stochastic in nature, meaning they 
are random, with their likelihood proportional to 
the received dose, while the level of harm is not de-
pendent on the dose size.43 They are usually asso-
ciated with a higher incidence of papillary thyroid 
cancer and benign thyroid nodules, as well as a 
higher prevalence of autoimmune thyroid diseas-
es.33,44 Low doses are typically classified as those 
under 0.1 Gy, while moderate doses fall within the 
range of 0.1 to 1 Gy.47 Exposure to high I-131 dos-
es results in deterministic effects, where the fre-
quency and severity increase with the dose after 
a threshold dose is reached, potentially resulting 
in hypothyroidism.48 Unlike the effects of uncon-
trolled exposure to I-131, in medicine we safely uti-
lize its deterministic effects through the targeted, 
controlled use of higher activities of I-131 (Table 1).

The most vulnerable to the harmful effects of 
radioactive iodine are the thyroids of children, es-
pecially those under 5 years of age.10 Additionally, 
research has shown a significant inverse correla-
tion between age at radiation exposure and thy-
roid cancer risk, with this correlation diminish-
ing to statistical insignificance by age of 15.49 The 
increased cancer risk is attributed to rapid tissue 
growth and smaller thyroid sizes, resulting in 
higher radiation doses.37,45 Moreover, this elevated 
risk persists for at least four decades after expo-
sure.10,48,49 Even doses as low as 0.05–0.1 Gy have 
been linked to higher thyroid cancer risk in chil-
dren, with a linear dose-response up to about 10–
20 Gy, beyond which the risk stabilizes.44,48,49 In in-
dividuals with radiation exposure in utero the risk 
of cancer is comparable to that of those exposed 
during childhood.50 The ability of the fetal thyroid 
to take up iodine increases from the third month, 
reaching the maximum at around the sixth month 
of pregnancy. During this period, the fetal thyroid 
receives the highest dose in cases of iodine-131 
exposure.51 In early pregnancy, the fetal exposure 

originates from the iodine-131 activity in the moth-
er’s thyroid, peaking at one month of gestation and 
then gradually decreasing during gestation.52

Experiences from Chernobyl indicate that the 
incidence of thyroid cancer began to increase 
only 4–5 years after exposure. In the population 
under 18 years of age in 1986 residing in contami-
nated areas of Belarus, Ukraine and Russia, nearly 
20,000 new cases of thyroid cancer were detected 
between 1991 and 2015.35 In individuals younger 
than 15 years who received a thyroid dose of ≥ 0.3 
Gy, the risk of thyroid cancer was 5 times higher 
than in individuals with a received dose < 0.3 Gy.39 
The Belarus data reveal distinctions in radiation-
related pediatric thyroid cancers compared to 
radiation-nonrelated cases, including a higher in-
cidence in boys, in children of the youngest age, 
a dominant follicular structural component, ex-
trathyroidal tumor extension, and greater risk of 
distant metastases.53,54 However, the 15-year over-
all survival rate in radiation-related cases is excel-
lent, exceeding 95%, despite recurrences occurring 
in 28% of cases.53 Childhood exposure of Belarus 
residents was also associated with benign thyroid 
nodules larger than 10 mm and the risk signifi-
cantly increased with thyroid dose.55 In a cohort 
of exposed Ukrainian subjects with an estimated 
mean prenatal thyroid dose of 0.073 Gy, a mark-
edly increased risk of thyroid cancer and a strong, 
significant dose-response relationship for large (≥ 
10 mm) benign thyroid nodules were found three 
decades after the Chernobyl nuclear accident.56

After the Fukushima accident, a 10-year follow-
up of individuals exposed before the age of 18, 
using ultrasound screening, confirmed a 10-fold 
increase in the prevalence of thyroid cancer, pre-

TABLE 1. Differences in exposure to iodine-131 in medicine and during nuclear 
accident

Parameter In medicine In nuclear accident

Radioactivity High Low

Average received  
dose (Gy) > 100 < 10

Effects Deterministic Stochastic

The source Controlled production 
in a nuclear reactor

Uncontrolled release 
during a nuclear 

accident
(nuclear reactor, 
nuclear bomb)

Form Capsule
Solution Radioactive cloud

Body intake Ingestion
Intravenously

Ingestion
Inhalation
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dominantly the papillary variant.57,58 Some believe 
that this observation might reflect overdiagno-
sis due to the use of highly sensitive ultrasound 
equipment during screening.44,59 However, analy-
sis of a substantial number of operated patients 
revealed cervical lymph node metastases in 79% 
and extrathyroidal spread in 46%.58 Furthermore, 
a strong positive correlation was observed be-
tween the incidence rate of thyroid cancer among 
exposed children and thyroid dose, underscoring 
the necessity for close monitoring in high-risk in-
dividuals.44,59

During the follow-up of Japanese atomic bomb 
survivors, the increased thyroid cancer risk per-
sisted for more than 50 years after childhood ex-
posure, with about 36% of thyroid cancer cases 
being attributable to radiation exposure before age 
of 20.60

Hypothyroidism can be directly related to the 
deterministic effects of radiation, or it can be a re-
sult of autoimmunity induced by radiation expo-
sure.40 After the Chernobyl accident, hypothyroid-
ism was observed in 4.8% of emergency workers 
and in 3–6.2% of children under 18 years of age at 
the time of the accident.40,61,62 The risk of hypothy-
roidism increased with thyroid dose, decreased 
with increasing age at exposure and was similar 
for both genders.62 In Fukushima, where thyroid 
doses were much lower, the association between 
thyroid dose and hypothyroidism was not con-
firmed.40 More than six decades after the bombing, 
observations in atomic bomb survivors exposed as 
children, who had a mean thyroid radiation dose 
of 0.182 Gy, confirmed hypothyroidism in 7.8% 
and positive thyroid antibodies in 21.5%. None of 
these observations were associated with radiation 
dose.45

The impact of iodine deficiency 
on the effects of exposure to 
radioactive iodine

One of the key factors regulating the uptake of io-
dine by the thyroid is the iodine supply. Adequate 
iodine supply for populations is ensured through 
national iodine fortification programs, with the 
iodization of table salt being the easiest and most 
effective method.23,63 Iodine deficiency is indeed 
associated with health complications, such as goi-
tre and hypothyroidism. It leads to increased se-
cretion of TSH, which stimulates the expression of 
NIS to maximize iodine uptake into thyrocytes.64

It was shown that after the improvement in 
iodine supply, thyroid uptake decreases.65-68 In 
Poland, an approximately 40% decrease in 24-hour 
iodine uptake was observed in euthyroid patients 
following a 30% increase in salt iodization.65 In 
Graves’ patients a 40% decrease in radioiodine up-
take was associated with a 74% increase in iodine 
intake.66 Twice the urinary iodine excretion was 
associated with a 25% lower iodine intake.67 Ten 
years after the 2.5-fold increase in mandatory salt 
iodization in Slovenia, the early and late thyroid 
uptake of iodine were significantly lower (37% and 
32%, respectively) than before the increase.68 Most 
likely, the decrease in early thyroid uptake reflects 
decreased expression and activity of NIS.69 The 
mechanism for the decrease in late thyroid uptake 
could be increased intracellular iodine content, 
which decreases the incorporation of diagnostic 
radiopharmaceuticals into thyroid hormones.68

In accordance with thyroid uptake research 
findings, studies demonstrate that the improve-
ment of iodine supply is also associated with a 
higher activity of iodine-131, needed for the suc-
cessful treatment of thyroid diseases. In patients 
with Graves’ disease, 40% higher iodine-131 activ-
ity was required to cure hyperthyroidism after a 
74% increase in iodine intake.66 In Slovenia, around 
11% higher iodine-131 activity was needed to elim-
inate hyperthyroidism after the change from mild 
iodine deficiency to adequate iodine supply.68

Iodine deficiency is associated with an increased 
susceptibility of the thyroid gland to nuclear radi-
ation and with an increased risk of developing ra-
diation-related thyroid cancer.32,33,64 Although data 
on iodine intake at the time of the Chernobyl ca-
tastrophe are not available, the region had histori-
cally been known as an area of iodine deficiency.70 
Additionally, research conducted in the affected 
territories during the first decade after the disaster 
also pointed to the problem of iodine deficiency, 
with some areas placed even in the category of se-
vere iodine deficiency.71 An epidemiological study 
in the Russian Federation confirmed that the risk 
of thyroid cancer was significantly associated with 
thyroid radiation dose and inversely associated 
with urinary excretion levels.72 In severely iodine-
deficient areas, the risk of radiation-related thyroid 
cancer was approximately 2–3 times higher than in 
areas with adequate iodine intake.72,73 Ensuring an 
adequate supply of iodine is therefore an impor-
tant measure to reduce the risk of exposure to the 
harmful effects of radioactive iodine at the popula-
tion level.64
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In the Fukushima nuclear disaster, long-term 
dietary habits with high iodine content, mostly 
from seaweeds, certainly contributed to a lower 
radiation burden on the thyroid glands of the ex-
posed population.33,74 Based on available data from 
dietary records, food surveys, urine iodine analy-
sis, and seaweed iodine content, it was estimated 
in 2011 that the average iodine intake in Japan 
exceeded 1000 μg/day.75 Additionally, a study of 
children performed over a 5-year period after the 
accident confirmed sufficient iodine intake, with 
urine iodine content being twice the limit recom-
mended by the WHO.74

Thyroid blocking with 
potassium iodide administration

Timely administration of stable iodine is highly 
effective in reducing radiation exposure to the 
thyroid.32 It saturates the thyroid, inhibiting NIS 
activity, and consequently blocking the uptake 
of radioactive iodine into the thyroid.33 Inhibition 
of I- uptake appears to occur within a few hours 
after exposure to I- excess.76 Early animal and in 
vitro studies demonstrated that after acute I- expo-
sure, NIS mRNA levels decreased within 6 hours, 
while NIS protein levels decreased only after 24 
hours, indicating that the reduced NIS expression 
does not account for the initial I- uptake inhibi-
tion.31,69,76 Subsequent research demonstrated that 
acute excess of I- leads to NIS inactivation at the 
plasma membrane, caused by reactive oxygen spe-
cies generated in response to elevated I- levels.76 
An excess of stable iodine also leads to the dis-
placement of radioiodine at the carrier site on the 
basolateral membrane, inhibiting its entry into the 

cells.77 In human investigations, it was found that 
single doses of sodium iodide exceeding 10 mg 
suppressed 24-hour thyroid radioiodine uptake to 
approximately 1%, while continued daily intake of 
15 mg or more consistently yielded values below 
2%.78

For thyroid protection in nuclear emergencies, 
the most commonly used form of stable iodine is 
potassium iodide (KI) tablets, where 130 mg of 
KI contains 100 mg of iodine.32,79 The WHO rec-
ommends thyroid blocking when the estimated 
thyroid radiation dose exceeds 0.05 Gy. This pro-
tection is suitable for adults under 40, given the 
higher prevalence of thyroid diseases in older indi-
viduals, where the risks of excessive iodine intake 
outweigh the potential benefits. WHO advises a 
single administration of 130 mg of KI for adults, 
adolescents, as well as pregnant and breastfeeding 
women. For children aged 3–12 years, the recom-
mended dose is 65 mg, for children aged 1 month 
to 3 years it is 32 mg, and for infants under 1 month 
old it is 16 mg.79 Iodine is quickly and almost en-
tirely absorbed in the stomach and duodenum.24 
KI tablets offer protection for approximately 24 
hours. If exposure persists beyond this timeframe, 
repeated administrations for up to 7 consecutive 
days may be required for certain groups, excluding 
neonates, pregnant or breastfeeding women.79,80

KI tablets offer effective protection only within 
a narrow time window less than 24 hours before 
and up to 2 hours after exposure.32,79 They are 99% 
effective when administered at the time of expo-
sure, at least 85% effective within 24 hours before 
or 2 hours after, but ineffective 96 hours before 
and only 50% effective 3–4 hours after.32 However, 
administration later than 24 hours following expo-
sure can even be harmful, as it can lead to the trap-

TABLE 2. Influential factors on the risk of harmful effects from iodine-131 in nuclear accidents

Parameter Higher risk Lower risk

Exposure
Late public notification Accompanying 
accident (earthquake, fire …) Exposed 

workers

Early public notification Preventing 
contaminated food and water intake 

Indoor sheltering

Received dose (Gy) > 0.05 < 0.05

Age Children (especially < 5) Exposure in utero Adults

Iodine intake before exposure Deficient Sufficient

Thyroid blocking  (KI tablets) No blocking Inappropriate timing Appropriate timing (less than 24 hours 
before and up to 2 hours after exposure)

Pre-existent thyroid disease Iodine deficiency disorders No pre-
existent thyroid disease

After thyroidectomy Hormone 
replacement therapy for other reasons

Medical surveillance No surveillance Close surveillance in high-risk individuals
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ping of radioactive iodine in the thyroid, thereby 
prolonging its biological half-life and increasing its 
harmful effects.79 Due to the narrow time window, 
pre-distribution of KI tablets in exposed areas, 
such as the vicinity of nuclear reactors, is impor-
tant.34

During the Chernobyl accident, administering 
KI to 95% of Polish children and 23% of the total 
population was estimated to reduce their pro-
jected thyroid dose by approximately 40%.34,81 In 
Belarus and Russian children under 15 years of 
age, administering lower doses of KI primarily to 
prevent goiter reduced the risk of radiation-related 
cancer by 3-fold.73 However, Japan did not imple-
ment KI prophylaxis for the general public after 
Fukushima accident, acknowledging its unprepar-
edness for such measures.32

Thyroid blocking with KI may be associated 
with adverse events. Based on observations from 
Poland, mild reactions, such as skin rash, vomit-
ing, or abdominal discomfort were experienced 
in less than 4% of children and less than 3% of 
adults.32,33 In neonates, the concern can be iodine-
induced hypothyroidism, which can occur even 
with iodine administration exceeding twice the 
recommended amount.81 In adults, however, ex-
cess iodine exposure can induce thyroid dysfunc-
tion in patients with thyroid autoimmune diseases 
or goiter.34,82 Since these thyroid diseases are prev-
alent in the population and their incidence rises 
with age, the administration of KI tablets is associ-
ated with health risks, particularly after the age of 
40.34,83 Finally, it is important to note that patients 
who have had a thyroidectomy or are undergoing 
hormone replacement therapy for other reasons do 
not need protection with KI tablets.34

Conclusions

Given the threat of nuclear accidents, good prepar-
edness is crucial for effectively managing critical 
events. One of the many products of nuclear fis-
sion is radioactive iodine, which, due to its proper-
ties, can contaminate the broader area surround-
ing the accident. Adverse effects from exposure to 
I-131 depend on several factors, including national-
level emergency preparedness and response, the 
thyroid dose received, the age of the exposed per-
son, iodine intake prior to exposure, the adequacy 
of KI tablet administration, and any pre-existing 
thyroid disorder (Table 2). Experience from past 
accidents indicates that children’s thyroids are the 
most vulnerable. The risk of thyroid cancer starts 

to increase a few years after exposure and is relat-
ed to the thyroid dose received, with higher risks 
observed even many years later. However, in older 
adults, the risk of adverse effects from I-131 is low-
er, yet the prevalence of thyroid diseases is high. 
Therefore, the use of KI tablets for thyroid block-
ade could pose health risks. The most effective 
measure to reduce the consequences of exposure 
to radioactive iodine at the population level is en-
suring adequate iodine intake, which is achieved 
in several countries through the consumption of 
iodized salt.
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