UDK621.3:(63+54+621+66), ISSN0352-9045 Informacije MIDEM 35(2005)3, Ljubliana

DEVELOPMENT OF USB 2.0 COMPLIANT GPIB CONTROLLER

Bostjan Glazar, Marko Jankovec, Marko Topic

University of Ljubljana, Faculty of Electrical Engineering, Ljubliana, Slovenia

Key words: Automated measurement, Computer interfaces, General Purpose Interface Bus

Abstract: This paper describes a development of a custom designed General Purpose Interface Bus (GPIB) controller which is used as the interface
between GPIB and PC. The controller is designed as a Universal Serial Bus (USB) 2.0 compliant external device, which provides piug-and-play operation,
high speed of data transfer and is powered fully from the USB. In contrast to conventional GPIB controliers in the form of PC cards, such a design extends
its usage to notebooks or other computers with no available 1/0 slots. The FLASH program memory based ATS0S8515 microcontroller which is used for
data transfer and protocol handling also enables easy firmware upgrade. For simple controller usage the appropriate driver is developed in a graphical
programming language LabVIEW, which we use for instrument control software development.

Razvoj GPIB krmilnika zdruzljivega z USB 2.0

Kjuéne besede: Avtomatizirane meritve, rac¢unalniski vmesniki, GPIB

Izvledek: Clanek opisuje razvoj krmilnika za GPIB vodilo (General Purpose Interface Bus), ki se uporablia kot vmesnik med GPIB vodilom in osebnim
racunalnikom. Krmilnik se na racunalnik prikljuéi preko univerzalnega serijskega vodila (USB), ki omogoda enostavno uporabo, visoko hitrost prenosa podatk-
ovin nudi napajanje. Za razliko od obicajnih GPIB krmilnikov, ki so osnovani kot vticne kartice, je ta krmilnik primeren tudi za prenosnike in radunalnike brez
prostih razsiritvenih rez. Jedro krmilnika je mikrokrmilnik ATQ0S8515, ki je vsebuje FLASH spomin in tako omogoéa enostavno nadgradnjo programske

opreme. Za enostavno uporabo krmilnika smo izdelali tudi gonilnik za programski jezik LabVIEW, ki ga tudi uporabljamo za avtomatizacijo meritev.

1. Introduction

Personal computers became necessary equipment in sci-
ence laboratories in the last decade /1/. One of reasons
is their usage in measurement automation and documen-
tation which is achieved with computer-controlled instru-
ments. A very popular interface for connection between
the PC and instruments is General Purpose Interface Bus
(GPIB), which is still the most common interface, although
several other types of interfaces (Universal Serial Bus
(USB), IEEE 1394, Ethernet, etc.) are on the move /2/,
/3/. Reasons for this include numerous GPIB instruments
available and low latency when compared to otherwise fast-
er standards in parentheses above /4/.

To connect instruments to a PC a suitable GPIB controller
is required which is usually in a form of a computer card.
Because of relatively simple design and low-cost compo-
nents we have decided to develop a GPIB controller our-
selves. Since we wanted the controller to be applicable
also for notebooks, we have chosen USB, which is the
most common built-in interface on contemporary comput-
ers. Our concept was accepted as Design idea in EDN
Journal /5/. In the following, the development of the USRB
based GPIB controller will be presented in detail and an
example of its usage will be given.

2. Development of USB based GPIB
controller

GPIB /6/, initially named Hewlett-Packard Interface Bus
(HP-IB), later standardized as IEEE-488 and IEC-625,isa

144

parallel bus that uses 24-pin connector to connect devic-
es in a star or a bus configuration. There are three main
types of devices on the GPIB bus; controller, talker and
one or more listeners. The bus can have only one active
controller, which is a bus master and addresses devices to
talk or listen by use of GPIB bus commands. A talker trans-
mits data that are received by one or more listeners.

The GPIB controller we developed is designed as a USB
device controlled by a host PC, where one port of the con-
troller is connected to the USB and other to a GPIB bus.
The controller is built on a double-sided PCB that fits into a
box of outer dimensions of 123 mm x 30 mm x 70 mm.

In order to simplify the usage of the GPIB controller a Lab-
VIEW driver was developed, which communicates with the
controller by a custom developed protocol through USB
using a virtual COM port (VCP) driver. To simplify adapta-
tion of existing programs in LabVIEW, the driver is compat-
ible to the built-in one. In the following sections the hard-
ware, protocol, firmware and the driver are described in
detail.

3. Hardware

The controller can be divided into three main parts, where
the microcontroller as the central block represents the
communication gateway between PC (through USB inter-
face) and GPIB bus (through GPIB fine drivers), as shown
in Fig. 1.

B. Glazar, M. Jankovec, M. Topic:
Development of USB 2.0 Compliant GPIB Controller

Informacije MIDEM 35(2005)3, str. 144-147

SWITCHED SUPPLY

supPLY e

|

UsB <L>

CONTROL
LINES

e oc

Fig. 1: Block diagram of the USB based GPIB
controller

USB interface is based on a FTD! FT245BM integrated
circuit /7/ that provides an 8-bit parallel interface to the
microcontroller and a virtual COM port on the PC side.
Built-in buffer (FIFO) greatly simplifies firmware in the mi-
crocontroller. The integrated circuit provides USB 2.0 com-
patibility and allows data transfer under USB 1.1 specifica-
tion, i.e. 12 Mb/s. It also provides an output line that goes
low when itis enumerated and USB is not in suspend state.
External memory chip provides storage for information such
as product description and maximum current consump-
tion and can be programmed directly from a host PC.

At GPIB side of the controller appropriate line drivers are
required to meet GPIB standard specifications of 48 mA
sink current and high impedance state when no power is
applied. Standard integrated circuits, 75160 /8/ and
75161 /9/ developed especially for GPIB are used, while
sequence control is completely implemented in control-
ler's firmware. The most important control signals for oper-
ation for data transfer are Attention (ATN), Data Valid (DAV),
Not Ready For Data (NRFD), Not Data Accepted (NDAC)
and End Or ldentity (EOI). Direction of signals is controlled
by TE (Talk Enable) input for data and handshake lines and
by DC (Direction Control) for management lines. Both sig-
nals are controlled by the firmware.

An AVR microcontroller Atmel AT90S8515 /10/ is used to
control all circuitry. ltis a 44 pin RISC device with in-circuit
programmable FLASH memory and many peripheral units,
which are not all utilized in our case, since besides input /
output (I/0) ports the only peripheral unit used is timer. In-
circuit programming through a 6-pin connector simplifies
firmware design and its upgrades. The microcontroller runs
at its maximum frequency of 8 MHz to allow the fastest
data transfer possible. Both external interrupts are used in
conjunction with the USB interface. One triggers when USB
goes to suspend state, while the other wakes up the mi-
crocontroller on the first received byte.

USB provides power supply of +5V / 500 mA and thus
allows low power devices to be used without additional
power supply. In our design USB interface with memory
[C and microcontroller are powered directly from USB,
while GPIB buffers are powered from USB through a tran-
sistor switch. Overall maximum current consumption of the
controller is 320 mA during normal operation and is mini-
mized during USB suspend state, by disconnecting the
GPIB buffers from the power supply and setting the micro-
controller to low-power mode.

Fig. 2 shows the PCB of the controller, while Fig. 3 shows
the controller with connected USB and GPIB cables. The
PCB was made using milling machine and partially assem-
bled on the manual SMD placer that we use for research &
development prototypes and educational purposes. Pre-
dominant use of SMD components in the controller makes
its fabrication easily automated and lowers the cost of com-

ponents.

Fig. 2: Top view of printed circuit board of the controller

The controller with connected cables

Fig. 3:

4., Protocol

The controller communicates with the PC through a logi-
cal serial interface which does not provide control signals
and registers like plug-in boards and therefore a certain
protocol is necessary to distinguish between data and con-
trol bytes.

We have developed a protocol, which is based on the AT
protocol for modems; commands begin with letters B,
which are followed by a one character command code and
an optional binary or character parameter. Bus commands
are sent as binary values, which enables each of 256 pos-
sible values to be transferred. The problem of transferring
binary data or a problem of data transparency was solved
by a protocol similar to Binary Synchronous Communica-
tion (BSC) protocol / 11/ in which three control characters
are used to transfer a binary data block. These are Data
Link Escape (DLE), Start Of Text (STX) and End Of Text
(ETX). A data block always begins with the pair DLE/STX
and ends with DLE/ETX. If a DLE is to be transferred any-
where in the data stream, it is followed by another DLE,

145

Informacije MIDEM 35(2005)3, str. 144-147

B. Glazar, M. Jankovec, M. Topic:
Development of USB 2.0 Compliant GPIB Controller

denoting it as a part of the data as can be seen in Fig. 4.
Bus addressing when sending or receiving data is not im-
plemented in firmware and has to be done by sending bus
commands, which is implemented in the driver. The con-
troller commands are listed in Table 1. All responses of the
controller are one byte long to allow simple interpretation
and include success code or error specific code.

| DLE | $TX | data | DLE | DLE | data | DLE | ETX |

Fig 4: BSC protocol

5. Firmware

The AVR microcontroller is used to control all lines of the
GPIB interface and to communicate with the PC through
the USB interface. Main loop of firmware program con-
tains two major successive operations: (a) waiting for 1B
delimiter and receiving a command and (b) executing the
command. If the command is in error (i.e. too long or an
invalid command code) it is rejected and a Negative Ac-
knowledge (NAK) is returned to the PC.

Data and bus command transfer have a time limit for each
transferred byte. If time-out occurs the microcontroller's
program sends an error code to the PC and the loop re-
peats. When USB goes into suspend state the transfer is
also interrupted and is followed by powering off the GPIB
drivers and putting the microcontroller into low-power
mode. The microcontroller wakes up again when another
byte is received. The program was written in C language,
compiled by CodeVision AVR and is approximately 1500
words (3.0 KB) long.

The execution speed of the microcontroller mainly deter-
mines the maximum data transfer rate which is in our case
theoretically limited to 225 KB/s. Actual measured trans-
fer rates using HP54522A digital oscilloscope were 190
and 174 KB/s for talking and listening, respectively.

6. PC driver

We designed a driver in LabVIEW /12/ environment as a
collection of Vs, since LabVIEW is widely implemented at
our faculty and at the same time it is one of the most pop-
ular programs for measurement control and automation.
LabVIEW allows fast development of complex and easy-
to-use programs. The driver is compatible with the Lab-
VIEW's built-in GPIB driver simplifying adaptation of exist-
ing programs to the new interface. Only one additional in-
put is required, i.e. serial port number. Vis are described
below.

USB GPIB Initialization opens serial port, powers on the
controller and initializes it according to specified parame-
ters (re-addressing required, REN state).

USB GPIB Write transfers data to a device. It also address-
es the device if an address is given and the device is not
already addressed. After data exchange, the function de-
addresses the device if specified at initialization. This ad-
dressing logic is the same for all functions.

USB GPIB Read reads data from a device. The VI will stop
reading when EOS is detected or specified number of bytes
received. This is additional option to the EQl implemented
in firmware. Data transfer mode for write and read (EOI,
End Of String character (EOS)) can be adjusted with a
parameter.

Command Function

IB Powers on and initializes the controller.

IBCx, [Bex Sends byte x (binary) as a bus command. ATN line can be
released after transfer or not, which enables multi-byte
commands to be sent.

IBdata Sends binary data to GPIB bus. Returns error if there is no
listener.

IB? Receives binary data till EOI is detected, timeout or cancelled.

IBB Receives one byte (ignores EOI).

IBIx Sends identification string to the PC.

IBZ Conducts interface clear.

1BO Powers off the controller.

IBe Sets EOI mode for sending data.

IBt, IBT Sets timeout for handshake and total timeout.

IBm Controls state of REN line.

IBDE\AA, Debug commands enables each line of the GPIB bus to be

IBDTx, IBDCx, independently controlled. They are useful when developing new

IBDMx, IBD?x protocol and for hardware debugging.

Table 1: Controller commands

146

B. Glazar, M. Jankovec, M. Topic:
Development of USB 2.0 Compliant GPIB Controller

informacije MIDEM 35(2005)3, str. 144-147

USB GPIB Clear resets a device or all devices using Select-
ed Device Clear (SDC) or Device Clear (DCL). Which com-
mand is send depends on whether an address is given.

USB GPIB Read STB reads status byte using serial poll.

USB GPIB Wait RQS calls USB GPIB Read STB in regular
interval waiting for request bit to be set. This bit is an indi-
cator that a device needs aftention (ex. measurement is
finished).

USB GPIB Close powers off the controller and closes se-
rial port.

The microcontroller performs only simple tasks while high-
er level operations are implemented in the driver. For ex-
ample: the controller cannot address a device, send data
to it and de-address using a single command from the PC.
This must be implemented in three steps, i.e. with three
controller commands. This separation enables many fea-
tures to be implemented or updated without changing the
controller's firmware and enables faster and simpler up-
dates since the reprogramming of the microcontroller is
not required.

Since many other programs (Visual Designer, FieldPoint
and HPVee and other programs like MATLAB, C++ or Vis-
ual Basic) support virtual serial port, our USB based GPIB
controller needs no hardware or firmware changes, but
only specific drivers to be implemented in these programs.

7. Discussion and conclusions

The USB GPIB controller was developed as a compact
plug-and-play device with maximum transfer rate of 225
KB/s. Predominant use of SMD components in the con-
troller makes its fabrication easily automated and lowers
the cost of components.

Firmware of the microcontroller can be upgraded to sup-
port other GPIB features like operation as a device. Upgrad-
ing can be very simplified by using newer version of micro-
controller, ATmega8515, which features self-programming
that enables firmware to be upgraded directly from a PC
(without opening the controller). This would enable users to
download new firmware from the Internet and install it them-
selves. Atthe same time, ATmega8515 with its 16 MHz clock
frequency would double maximum transfer rate, since the
microcontroller is the limiting factor. The speed can be fur-
ther increased by using special GPIB circuits.

Many features can be added in the driver and therefore
performed in the field, without using a microcontroller pro-
grammer. Nevertheless, drivers can be upgraded easily in
LabVIEW programming environment as well as easily adapt-
ed to other programming environments that support serial
port. VISA drivers would also be beneficial and would ad-
ditionally ease conversion of existing programs. Nonethe-
less, USB interface enables the controller to be used with
both, desktop computers and notebooks. In this way, re-

searchers may use their notebooks to run self-built virtual
instruments with the USB GPIB controller in a laboratory.
Furthermore, non-standard features can be also implement-
ed. GPIB printer emulation was already successfully ap-
plied and used for digital oscilloscope’s (HP 54600B) wave-
form printout. The controller is comparable (concerning
speed and dimensions) to commercial controllers like Na-
tional Instruments’ GPIB USB B.

Acknowledgments

Franc Smole and Janko Drnovsek are acknowledged for
helpful discussions.

References

/1/ W. Winiecki, Methodology for teaching measuring systems,
Measurement, Vol. 18 (4), 1996, pp. 237-244

/2/ B. Murovec, S. Kocijancic, A USB-based Data Acquisition Sys-
tem Designed for Educational Purposes, The International Jour-
nal of Engineering Education, Vol. 20, 2004, pp. 24-30

/3/ M. Smith, Bridging the future of GPIB, R&D Magazine, Vol. 43,
2001, p. 10, Available: http://www.rdmag.com/features/
Ot12gpib.asp

/4/ Choosing the Right Bus Technology: LAN, USB, GPIB, PCI/PXI,
Automated test summit 2005, National Instruments’ seminar,
2005

/5/ B. Glazar, M. Jankovec, M. Topi¢, USB based GPIB controller,
EDN (Electronic Design News), 2005, in-print

/6/ M. Colloms, Computer controlled testing and instrumentation:
an introduction to the IEC-625: IEEE-488 bus, Pentech Press,
1983

/7/ FT245BM USB FIFO (USB-Parallel}1.C., /FTDI datasheet/, Avail-
able: http://www.ftdi.co.uk, 2003

/8/ SN75160B, Octal General-Purpose Interface Bus Transceiver,
/Texas Instruments datasheet/, 1995

/9/ SN751618, SN75162B, Octal General-Purpose Interface Bus
Transceivers, /Texas Instruments datasheet/, 1995

/10/ AT90S8515, 8-bit AVR Microcontroller with 8K Bytes In-System
Programmable Flash, /ATMEL datasheet/, /Online/, Available:
http://www.atmel.com, 2001

/11/ B. A. Forouzan, Introduction to data communications and net-
working, WCB/McGraw-Hill, 1998

/12/ R. H. Bishop, LabVIEW student edition 6i, Prentice Hall, Upper
Saddle River, 2001

BoStjan Glazar, univ. dipl. ing. el.
Dr. Marko Jankovec, univ. dipl. ing. el.
Prof. dr. Marko Topi€, univ. dipl. ing. el.

University of Ljubljana,

Faculty of Electrical Engineering

Laboratory of Semiconductor Devices

TrZzaska cesta 25, SI-1000 Ljubljiana, Slovenia

Tel.: +386 (0)1 4768 723, Fax: +386 (0)1 4264 630
E-mail: bostjan.glazar@fe.uni lj.si

Prispelo (Arrived): 01,06.2005 Sprejeto (Accepted): 30.09.2005

147

