
Informatica 33 (2009) 511–519 511

Improvements to a Roll-Back Mechanism for Asynchronous Checkpointing
and Recovery

Monika Kapus-Kolar
Department of Communication Systems, Jožef Stefan Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia
E-mail: monika.kapus-kolar@ijs.si

Keywords: asynchronous checkpointing, recovery, maximum consistent state

Received: September 19, 2007

We indicate the existence of a logical flaw in a recently published recovery algorithm for distributed sys-
tems and suggest a correction. We also improve the associated communication protocol, the prevention of
multiple concurrent instantiations of the algorithm, the handling of obsolete messages and the organization
of the stable storing of the relevant data.

Povzetek: Opozarjamo na logično napako v pred kratkim objavljenem algoritmu za okrevanje v porazdel-
jenih sistemih in predlagamo popravek.

1 Introduction

Gupta, Rahimi and Yang recently proposed a novel recov-
ery algorithm for distributed systems in which checkpoints
are taken asynchronously [1]. A checkpoint taken by a pro-
cess is a snapshot of its local state, stored in a stable stor-
age, so that the process can roll back to it, if this becomes
necessary. The start of a process is also one of its check-
points. Asynchronous checkpointing means that processes
take their checkpoints independently.

A failure in a distributed system in principle requires
that all its constituent processes roll back, to a global state
from which the system can resume its operation as if it
had started from it, i.e., to a globally consistent set of lo-
cal checkpoints (GCSLC), ideally to the so called maxi-
mum GCSLC, in which every local checkpoint is as recent
as possible. In the case of asynchronous checkpointing,
when a failure occurs, the processes have yet to find the
maximum GCSLC. They do that by running a checkpoint
coordination algorithm (CCA).

Alternatively, the processes might agree to restart from
the GCSLC which they currently treat as the starting state
of the system, i.e., from the current recovery line. This
is the most recently computed maximum GCSLC, initially
the actual starting state of the system. [1] suggests that the
processes occasionally initiate a CCA just for advancing
the recovery line.

In this paper, we demonstrate that, because of a subtle
logical flaw, the CCA of [1] sometimes returns a check-
point set which is not globally consistent. We correct the
flaw and also suggest some other improvements. The rest
of the paper is organized as follows. In the next section,
we describe the system and the testing of checkpoint con-
sistency and give a brief outline of the CCA of [1]. In
Section 3, we explain and correct the flaw. In Section 4,

we suggest several other improvements of the CCA. A de-
tailed specification of the improved CCA is given in Sec-
tion 5. Section 6 suggests that checkpointing and recovery-
line advancing in the absence of failures should be more
flexible. As the proposed CCA correction increases the us-
age of the local stable storages, we in Section 7 suggest
how to organize them. Section 8 comprises a discussion
and conclusions.

2 Preliminaries

2.1 System properties
Of the assumptions explicitly or implicitly stated in [1] for
the distributed system considered, the following seem im-
portant:

– The set of the constituent processes is a fixed {Pj |j ∈
N} with N a {1, . . . , n}. Every process is virtually
always aware of the global time.

– From every process Pj to every other process Pj′ ,
there is virtually a reliable first-in-first-out channel
with the worst-case transit delay not exceeding a pre-
defined Tj,j′ . The channels are the only means of
inter-process communication. Processes exchange ap-
plication messages (AMs) and CCA messages (CMs).

– When a process fails, no other process fails simulta-
neously and the system does not experience another
failure until every process restarts.

2.2 Testing checkpoint consistency
A GCSLC is characterized by all its members being mutu-
ally consistent. A checkpoint Cj,r of a process Pj is con-
sistent with a checkpoint Cj′,r′ of a process Pj′ if none of

512 Informatica 33 (2009) 511–519 M. Kapus-Kolar

the processes has recorded a reception of an AM from the
partner for which the partner has not recorded a transmis-
sion [1].

As channels are reliable queues, it is acceptable that pro-
cesses record their AM transmissions and receptions sim-
ply by counting them, relative to the recovery line [1], for
this is where the system virtually started. For a checkpoint
Cj,r and a process Pj′ , let Sj,r,j′ and Rj,r,j′ indicate how
many AMs Pj has sent to or, respectively, received from
Pj′ , where Sj,r,j and Rj,r,j are by definition zero.

Suppose that the currently considered checkpoint set
is a {Cj,r(j)|j ∈ N}. To check that it is a GCSLC,
one in principle has to check Rj,r(j),j′ ≤ Sj′,r(j′),j
for every two processes Pj and Pj′ . This is what the
CCA of [2] does, by letting every process Pj check∧

j′∈(N\{j})(Rj,r(j),j′ ≤ Sj′,r(j′),j). The CCA of [1]
works under the assumption that this can be done simply
by letting every process Pj check

∑
j′∈(N\{j}) Rj,r(j),j′ ≤∑

j′∈(N\{j}) Sj′,r(j′),j . In both CCAs, if the adopted
test fails for a Pj , the process starts considering an
earlier checkpoint, namely the most recent checkpoint
Cj,r′(j) with

∧
j′∈(N\{j})(Rj,r′(j),j′ ≤ Sj′,r(j′),j) or∑

j′∈(N\{j}) Rj,r′(j),j′ ≤ ∑
j′∈(N\{j}) Sj′,r(j′),j , respec-

tively.

2.3 Outline of the algorithm

In the CCA of [1], all communication goes over the initia-
tor of the particular algorithm instance (see Example 1 in
the next section). The initiator process repeatedly polls ev-
ery process, virtually also itself, for the value of the trans-
mission counters of the local candidate for a recovery-line
checkpoint. Every such request carries all the informa-
tion on the transmission counters of the current candidate
checkpoints, if any, which the recipient needs for deciding
which checkpoint to consider in the next iteration. The first
candidate checkpoint of a process is always its most recent
checkpoint.

After every process replies, the initiator might detect that
the candidate checkpoint set has changed. In that case, it
starts another iteration. Otherwise, it broadcasts an indi-
cation that a GCSLC has been found. Finally, every pro-
cess promotes its currently considered checkpoint into its
recovery-line checkpoint, from which it, if so requested by
the initiator, subsequently restarts. The algorithm covers
also the possibility that the initiator requests an immediate
restart, from the current recovery line.

3 A flaw and a correction

3.1 The problem of inaccurate information

When a {Cj,r(j)|j ∈ N} is checked for being a GCSLC,
each Sj,r(j),j′ may be any natural up to and including the
number of the AMs sent from Pj to Pj′ , and each Rj,r(j),j′

may be any natural up to and including the number of the

[S 1 , 1 , ?] = [0 , 0 , 0]
[R 1 , 1 , ?] = [0 , 0 , 0]
C 1 , 1

[S 2 , 1 , ?] = [0 , 0 , 0]
[R 2 , 1 , ?] = [0 , 0 , 0]
C 2 , 1

[S 3 , 1 , ?] = [0 , 0 , 0]
[R 3 , 1 , ?] = [0 , 0 , 0]
C 3 , 1

[S 2 , 2 , ?] = [3 , 0 , 0]
[R 2 , 2 , ?] = [0 , 0 , 0]
C 2 , 2

[S 1 , 2 , ?] = [0 , 0 , 0]
[R 1 , 2 , ?] = [0 , 4 , 5]
C 1 , 2

[S 3 , 2 , ?] = [7 , 0 , 0]
[R 3 , 2 , ?] = [0 , 0 , 0]
C 3 , 2

P 1

P 2

P 3

Figure 1: The situation considered in Examples 1–5. The
black checkpoints represent the maximum GCSLC. The
dashed message is the one making C1,2 inconsistent with
C2,2.

AMs received at Pj from Pj′ , for remember that the check-
pointing is entirely asynchronous. It might, hence, hap-
pen that for a process Pj , the test

∑
j′∈(N\{j}) Rj,r(j),j′ ≤∑

j′∈(N\{j}) Sj′,r(j′),j adopted by [1] succeeds in spite of∧
j′∈(N\{j})(Rj,r(j),j′ ≤ Sj′,r(j′),j) false, so that Pj fails

to detect that {Cj,r(j)|j ∈ N} is not a GCSLC. If the other
processes also fail to detect that the checkpoint set is not
consistent, the CCA terminates prematurely and the set un-
acceptably becomes the new recovery line.

Example 1. A possible problematic scenario of a system
consisting of processes P1 to P3 and using the CCA of [1]
(see also Fig. 1):

(1) Upon the start of the system, every process Pj takes
a checkpoint Cj,1, with every Sj,1,j′ and Rj,1,j′ zero.

(2) P2 sends to P1 three promptly received AMs and then
takes a checkpoint C2,2, with S2,2,1 = 3 and S2,2,3 =
R2,2,1 = R2,2,3 = 0.

(3) P2 sends to P1 another promptly received AM and
P3 sends to P1 five promptly received AMs. P1 then takes a
checkpoint C1,2, with R1,2,2 = 4, R1,2,3 = 5 and S1,2,2 =
S1,2,3 = 0.

(4) P3 sends to P1 two more promptly received AMs and
then takes a checkpoint C3,2, with S3,2,1 = 7 and S3,2,2 =
R3,2,1 = R3,2,2 = 0.

(5) P1 undergoes a failure.
(6) After P1 recovers, it starts considering its most recent

checkpoint C1,2 and invites P2 and P3 to a new instance of
the CCA.

(7) In response, P2 starts considering its most recent
checkpoint C2,2 and sends to P1 a CM carrying S2,2,1 and
S2,2,3, while P3 starts considering its most recent check-
point C3,2 and sends to P1 a CM carrying S3,2,1 and S3,2,2.

(8) When P1 receives the responses, it sends (S1,2,2 +
S3,2,2) to P2 and (S1,2,3 + S2,2,3) to P3. It also observes
(R1,2,2 + R1,2,3) = 9 ≤ (S2,2,1 + S3,2,1) = 10 and con-
sequently decides to continue considering C1,2, recording
the decision by setting the local flag to 0.

IMPROVEMENTS TO A ROLL-BACK MECHANISM FOR. . . Informatica 33 (2009) 511–519 513

(9) Upon receiving (S1,2,2 + S3,2,2), P2 observes
(R2,2,1+R2,2,3) = 0 ≤ (S1,2,2+S3,2,2) = 0 and therefore
continues considering C2,2, indicating that to P1 by a CM
carrying flag 0 and S2,2,1 and S2,2,3. Likewise, P3 upon
receiving (S1,2,3 + S2,2,3) observes (R3,2,1 + R3,2,2) =
0 ≤ (S1,2,3 + S2,2,3) = 0 and therefore continues consid-
ering C3,2, indicating that to P1 by a CM carrying flag 0
and S3,2,1 and S3,2,2.

(10) After receiving the two indications, P1, observing
that the flag of every process is 0, concludes that a GCSLC
has been found, tells P2 and P3 to restart from C2,2 and
C3,2, respectively, and finally restarts from C1,2.

(11) Because of S2,2,1 = 3 before the restart, P2 af-
ter restarting retransmits the fourth AM to P1. Because of
R1,2,2 = 4 before the restart, P1 erroneously interprets the
AM as the fifth from P2 and consequently takes an inappro-
priate action.

The simplification from [1] described in Section 2.2 is,
hence, unacceptable.

3.2 The Necessary Changes of the
Algorithm

The indispensable changes to the CCA are the following:

– Where a process Pj originally stores in its stable
storage a Σj′∈(N\{j})Rj,r(j),j′ , it must actually store
Rj,r(j),j′ of every other process Pj′ .

– Where the initiator process originally sends to a pro-
cess Pj a Σj′∈(N\{j})Sj′,r(j′),j , it must actually send
a CM containing Sj′,r(j′),j of every process Pj′ other
than Pj .

– Where a process Pj originally tests a∑
j′∈(N\{j}) Rj,r(j),j′ ≤ ∑

j′∈(N\{j}) Sj′,r(j′),j ,
it must actually test

∧
j′∈(N\{j})(Rj,r(j),j′ ≤

Sj′,r(j′),j).

Example 2. If the indispensable CCA corrections are
made in Example 1, the scenario after its seventh step takes
the following direction (see also Fig. 1):

(8) After P1 receives the responses, it sends a CM carry-
ing S1,2,2 and S3,2,2 to P2 and a CM carrying S1,2,3 and
S2,2,3 to P3. It also observes R1,2,2 = 4 > S2,2,1 = 3
and consequently, because R1,1,2 = 0 ≤ S2,2,1 = 3 and
R1,1,3 = 0 ≤ S3,2,1 = 7, starts considering C1,1, record-
ing the change of focus by setting the local flag to 1.

(9) Upon receiving S1,2,2 and S3,2,2, P2 observes
R2,2,1 = 0 ≤ S1,2,2 = 0 and R2,2,3 = 0 ≤ S3,2,2 = 0
and therefore continues considering C2,2, indicating that
to P1 by a CM carrying flag 0 and S2,2,1 and S2,2,3.
Likewise, P3 upon receiving S1,2,3 and S2,2,3 observes
R3,2,1 = 0 ≤ S1,2,3 = 0 and R3,2,2 = 0 ≤ S2,2,3 = 0
and therefore continues considering C3,2, indicating that
to P1 by a CM carrying flag 0 and S3,2,1 and S3,2,2.

(10) After receiving the two indications, Pi, observing
that there is a process with a non-zero flag, sends a CM

carrying S1,1,2 and S3,2,2 to P2 and a CM carrying S1,1,3

and S2,2,3 to P3. It also observes R1,1,2 = 0 ≤ S2,2,1 = 3
and R1,1,3 = 0 ≤ S3,2,1 = 7 and consequently decides to
continue considering C1,1, recording the decision by set-
ting the local flag to 0.

(11) Upon receiving S1,1,2 and S3,2,2, P2 observes
R2,2,1 = 0 ≤ S1,1,2 = 0 and R2,2,3 = 0 ≤ S3,2,2 = 0
and therefore continues considering C2,2, indicating that
to P1 by a CM carrying flag 0 and S2,2,1 and S2,2,3.
Likewise, P3 upon receiving S1,1,3 and S2,2,3 observes
R3,2,1 = 0 ≤ S1,1,3 = 0 and R3,2,2 = 0 ≤ S2,2,3 = 0
and therefore continues considering C3,2, indicating that
to P1 by a CM carrying flag 0 and S3,2,1 and S3,2,2.

(12) After receiving the two indications, P1, observing
that the flag of every process is 0, correctly concludes that
a GCSLC has been found, tells P2 and P3 to restart from
C2,2 and C3,2, respectively, and finally restarts from C1,1.

4 Optimization of process
communication

If processes exchange transmission counters instead of just
their sums, minimization of the number and the size of the
exchanged CMs becomes even more important. In the fol-
lowing, we suggest some additional optimizations.

4.1 Early reporting of test results

In a CCA iteration testing a checkpoint set {Cj,r(j)|j ∈
N}, the initiator process, a Pi, originally (1) trans-
mits every Sj,r(j),j′ with j′ 6∈ {i, j}, (2) tests∧

j∈(N\{i})(Ri,r(i),j ≤ Sj,r(j),i) and (3) receives the ex-
pected responses. After the test, the candidate checkpoint
of Pi is a Ci,r′(i). If it is different from Ci,r(i), it was use-
less to transmit the counters Si,r(i),j′ . It is, hence, more
appropriate that the test comes before the transmissions, so
that Pi can instead transmit the counters Si,r′(i),j′ . With
the early reporting of test results, the checkpoint which Pi

considers in the current iteration is virtually Ci,r′(i), which
might spare a subsequent iteration.

Example 3. With early reporting of test results, the sce-
nario fragment in Example 2 simplifies to the following (see
also Fig. 1):

(8) After P1 receives the responses, it observes R1,2,2 =
4 > S2,2,1 = 3 and consequently starts considering C1,1.
It then sends a CM carrying S1,1,2 and S3,2,2 to P2 and a
CM carrying S1,1,3 and S2,2,3 to P3.

(9) The same as (11) in Example 2.
(10) After receiving the two indications, P1, observing

that every flag received was 0, correctly concludes that a
GCSLC has been found, tells P2 and P3 to restart from
C2,2 and C3,2, respectively, and finally restarts from C1,1.

514 Informatica 33 (2009) 511–519 M. Kapus-Kolar

4.2 Immediate counter reporting
Originally, the CMs inviting processes to another instance
of the CCA do not comprise the relevant transmission
counters of the initiator. We think that they should, because
such immediate counter reporting might spare an iteration.

Example 4. Remember that in Example 3, the first seven
steps are as in Example 1. If the process which fails in the
fifth step is changed to P2, the subsequent scenario frag-
ment changes to the following (see also Fig. 1):

(6a) After P2 recovers, it starts considering its most re-
cent checkpoint C2,2 and invites P1 and P3 to a new in-
stance of the CCA.

(7a) In response, P1 starts considering its most recent
checkpoint C1,2 and sends to P2 a CM carrying S1,2,2 and
S1,2,3, while P3 starts considering its most recent check-
point C3,2 and sends to P2 a CM carrying S3,2,1 and S3,2,2.

(8a) After P2 receives the responses, it observes
R2,2,1 = 0 ≤ S1,2,2 = 0 and R2,2,3 = 0 ≤ S3,2,2 = 0
and therefore continues considering C2,2. It then sends a
CM carrying S2,2,1 and S3,2,1 to P1 and a CM carrying
S1,2,3 and S2,2,3 to P3.

(9a) Upon receiving S2,2,1 and S3,2,1, P1 observes
R1,2,2 = 4 > S2,2,1 = 3 and consequently starts con-
sidering C1,1, indicating that to P2 by a CM carrying flag
1 and S1,1,2 and S1,1,3. On the other hand, P3 upon re-
ceiving S1,2,3 and S2,2,3 observes R3,2,1 = 0 ≤ S1,2,3 = 0
and R3,2,2 = 0 ≤ S2,2,3 = 0 and therefore continues con-
sidering C3,2, indicating that to P2 by a CM carrying flag
0 and S3,2,1 and S3,2,2.

(10a) After receiving the two indications, P2, observing
that a non-zero flag has been received, observes R2,2,1 =
0 ≤ S1,1,2 = 0 and R2,2,3 = 0 ≤ S3,2,2 = 0, consequently
deciding to continue considering C2,2, and then sends a
CM carrying S2,2,1 and S3,2,1 to P1 and a CM carrying
S1,1,3 and S2,2,3 to P3.

(11a) Upon receiving S2,2,1 and S3,2,1, P1 observes
R1,1,2 = 0 ≤ S2,2,1 = 3 and R1,1,3 = 0 ≤ S3,2,1 = 7
and therefore continues considering C1,1, indicating that
to P2 by a CM carrying flag 0 and S1,1,2 and S1,1,3.
Likewise, P3 upon receiving S1,1,3 and S2,2,3 observes
R3,2,1 = 0 ≤ S1,1,3 = 0 and R3,2,2 = 0 ≤ S2,2,3 = 0
and therefore continues considering C3,2, indicating that
to P2 by a CM carrying flag 0 and S3,2,1 and S3,2,2.

(12a) After receiving the two indications, P2, observing
that every flag received was 0, correctly concludes that a
GCSLC has been found, tells P1 and P3 to restart from
C1,1 and C3,2, respectively, and finally restarts from C2,2.

If immediate counter reporting is introduced, the sce-
nario fragment simplifies to the following:

(6b) After P2 recovers, it starts considering C2,2, send-
ing to P1 an invitation carrying S2,2,1 and to P3 an invita-
tion carrying S2,2,3.

(7b) In response, P1, observing that R1,2,2 = 4 >
S2,2,1 = 3, starts considering C1,1 and sends to P2 a
CM carrying S1,1,2 and S1,1,3, while P3, observing that
R3,2,2 = 0 ≤ S2,2,3 = 0, starts considering its most recent

checkpoint C3,2 and sends to P2 a CM carrying S3,2,1 and
S3,2,2.

(8b) After P2 receives the responses, it observes
R2,2,1 = 0 ≤ S1,1,2 = 0 and R2,2,3 = 0 ≤ S3,2,2 = 0
and therefore continues considering C2,2. It then sends a
CM carrying S2,2,1 and S3,2,1 to P1 and a CM carrying
S1,1,3 and S2,2,3 to P3.

(9b) The same as (11a).
(10b) The same as (12a).

4.3 Update reporting

Like [1], we assume that the initiator process maintains an
(n × n)-array variable V in which every component Vj,j′

with j 6= j′ is during GCSLC construction regularly up-
dated to the value of the Sj,r(j),j′ belonging to the check-
point Cj,r(j) currently considered by Pj . Every process Pj

repeatedly contributes values for the jth row and checks
the values in the jth column of V . The search for a GC-
SLC terminates when V stabilizes.

Suppose that a Pj and a Pj′ are currently consider-
ing checkpoints Cj,r(j) and Cj′,r(j′), respectively, and that
Rj,r(j),j′ ≤ Sj′,r(j′),j , as required. Then suppose that Pj

and Pj′ at some later point move their attention towards
some older checkpoints, a Cj,r′(j) and a Cj′,r′(j′), respec-
tively. Rj,r′(j),j′ ≤ Rj,r(j),j′ implies that the problematic
Rj,r′(j),j′ > Sj′,r′(j′),j is possible only if Sj′,r′(j′),j <
Sj′,r(j′),j , i.e., if Vj′,j has changed, for Sj′,r′(j′),j >
Sj′,r(j′),j is impossible. It, hence, suffices that updates to
Vj′,j are reported by Pj′ to the initiator process, a Pi, and
received by Pj from Pi. A CM sent to Pi is then a zero-
flag CM exactly if it carries no transmission counters. In
[1], a CM carrying information on V unnecessarily always
carries an entire row or column, respectively, and flags are
sent explicitly.

Example 5. If only updates to V are reported, the scenario
fragment (8b)-(10b) in Example 4 simplifies to the follow-
ing (see also Fig. 1):

(8b) After P2 receives the responses, it observes
R2,2,1 = 0 ≤ S1,1,2 = 0 and R2,2,3 = 0 ≤ S3,2,2 = 0
and therefore continues considering C2,2. It then sends a
CM carrying S3,2,1 to P1 and a CM carrying S1,1,3 to P3.

(9b) Upon receiving S3,2,1, P1 observes R1,1,3 = 0 ≤
S3,2,1 = 7 and therefore continues considering C1,1, indi-
cating that to P2 by a CM carrying no transmission coun-
ters. Likewise, P3 upon receiving S1,1,3 observes R3,2,1 =
0 ≤ S1,1,3 = 0 and therefore continues considering C3,2,
indicating that to P2 by a CM carrying no transmission
counters.

(10b) After receiving the two indications, P2, observing
that no transmission counters have been received, correctly
concludes that a GCSLC has been found, tells P1 and P3 to
restart from C1,1 and C3,2, respectively, and finally restarts
from C2,2.

IMPROVEMENTS TO A ROLL-BACK MECHANISM FOR. . . Informatica 33 (2009) 511–519 515

[S 1 , 1 , ?] = [0 , 0 , 0]
[R 1 , 1 , ?] = [0 , 0 , 0]
C 1 , 1

[S 2 , 1 , ?] = [0 , 0 , 0]
[R 2 , 1 , ?] = [0 , 0 , 0]
C 2 , 1

[S 3 , 1 , ?] = [0 , 0 , 0]
[R 3 , 1 , ?] = [0 , 0 , 0]
C 3 , 1

[S 2 , 2 , ?] = [0 , 0 , 0]
[R 2 , 2 , ?] = [1 , 0 , 0]
C 2 , 2

[S 1 , 2 , ?] = [0 , 0 , 1]
[R 1 , 2 , ?] = [0 , 0 , 0]
C 1 , 2

[S 3 , 2 , ?] = [0 , 0 , 0]
[R 3 , 2 , ?] = [1 , 0 , 0]
C 3 , 2

P 1

P 2

P 3

[S 1 , 3 , ?] = [0 , 1 , 1]
[R 1 , 3 , ?] = [0 , 1 , 0]
C 1 , 3

[S 2 , 3 , ?] = [1 , 0 , 0]
[R 2 , 3 , ?] = [2 , 0 , 0]
C 2 , 3

[S 1 , 4 , ?] = [0 , 2 , 1]
[R 1 , 4 , ?] = [0 , 2 , 0]
C 1 , 4

[S 2 , 4 , ?] = [2 , 0 , 0]
[R 2 , 4 , ?] = [3 , 0 , 0]
C 2 , 4

[S 2 , 1 , ?] = [0 , 0 , 0]
[R 2 , 1 , ?] = [0 , 0 , 0]
C 2 , 1

[S 2 , 2 , ?] = [0 , 0 , 0]
[R 2 , 2 , ?] = [1 , 0 , 0]
C 2 , 2

[S 1 , 2 , ?] = [0 , 0 , 0]
[R 1 , 2 , ?] = [0 , 0 , 0]
C 1 , 2

[S 3 , 2 , ?] = [0 , 0 , 0]
[R 3 , 2 , ?] = [0 , 0 , 0]
C 3 , 2

P 1

P 2

P 3

[S 1 , 3 , ?] = [0 , 1 , 0]
[R 1 , 3 , ?] = [0 , 1 , 0]
C 1 , 3

[S 2 , 3 , ?] = [1 , 0 , 0]
[R 2 , 3 , ?] = [2 , 0 , 0]
C 2 , 3

[S 1 , 4 , ?] = [0 , 2 , 0]
[R 1 , 4 , ?] = [0 , 2 , 0]
C 1 , 4

[S 2 , 4 , ?] = [2 , 0 , 0]
[R 2 , 4 , ?] = [3 , 0 , 0]
C 2 , 4

(a)

(b)

Figure 2: The situation considered in Example 6 (a) be-
fore and (b) after the recovery line is advanced to the black
checkpoints, which represent the maximum GCSLC.

4.4 Selective polling

If a CM which the initiator process, a Pi, is originally sup-
posed to send to a process Pj is the jth column of V and Pi

discovers that Pj already has a faithful copy of the column,
the CM may be omitted, for even if received, Pj would con-
tinue considering the same checkpoint and produce no up-
date for the jth row of V . Moreover, if Pj does not receive
the CM, it will not attempt to send a response, meaning that
it will skip an entire iteration (see Example 6, step 13). Be-
sides, if Pi discovers that all the other processes may skip
the current iteration, it may immediately indicate CCA ter-
mination (see Example 6, step 15).

Example 6. With the above optimizations, the following
scenario is possible in a system consisting of processes P1

to P3 (see also Fig. 2):
(1) Upon the start of the system, every process Pj takes

a checkpoint Cj,1, with every Sj,1,j′ and Rj,1,j′ zero.
(2) P1 sends an AM to P3 and takes a checkpoint C1,2,

with S1,2,3 = 1 and S1,2,2 = R1,2,2 = R1,2,3 = 0.
(3) P3 receives the AM and takes a checkpoint C3,2, with

R3,2,1 = 1 and S3,2,1 = S3,2,2 = R3,2,2 = 0.

(4) P1 sends an AM to P2. P2 receives the AM and takes
a checkpoint C2,2, with R2,2,1 = 1 and S2,2,1 = S2,2,3 =
R2,2,3 = 0.

(5) P2 sends an AM to P1. P1 receives the AM and takes
a checkpoint C1,3, with S1,3,2 = S1,3,3 = R1,3,2 = 1 and
R1,3,3 = 0.

(6) P1 sends an AM to P2. P2 receives the AM and
takes a checkpoint C2,3, with S2,3,1 = 1, R2,3,1 = 2 and
S2,3,3 = R2,3,3 = 0.

(7) P2 sends an AM to P1. P1 receives the AM and takes
a checkpoint C1,4, with S1,4,2 = R1,4,2 = 2, S1,4,3 = 1
and R1,4,3 = 0.

(8) P1 sends an AM to P2. P2 receives the AM and
takes a checkpoint C2,4, with S2,4,1 = 2, R2,4,1 = 3 and
S2,4,3 = R2,4,3 = 0.

(9) P2 decides to initiate the CCA just for advancing the
recovery line. So it starts considering C2,4, sending to P1

an invitation carrying S2,4,1 and to P3 an invitation carry-
ing S2,4,3.

(10) In response, P1, observing that R1,4,2 = 2 ≤
S2,4,1 = 2, starts considering C1,4 and sends to P2 a
CM carrying S1,4,2 and S1,4,3, while P3, observing that
R3,2,2 = 0 ≤ S2,4,3 = 0, starts considering C3,2 and
sends to P2 a CM carrying S3,2,1 and S3,2,2.

(11) After P2 receives the responses, it observes
R2,4,1 = 3 > S1,4,2 = 2 and therefore starts consider-
ing C2,3. It then sends a CM carrying S2,3,1 and S3,2,1 to
P1 and a CM carrying S1,4,3 to P3.

(12) Upon receiving S2,3,1 and S3,2,1, P1, observing that
R1,4,2 = 2 > S2,3,1 = 1, starts considering C1,3, indicat-
ing that to P2 by a CM carrying S1,3,2. On the other hand,
P3 upon receiving S1,4,3 continues considering C3,2, indi-
cating that to P2 by a CM carrying no transmission coun-
ters.

(13) After receiving the two indications, P2, observing
that R2,3,1 = 2 > S1,3,2 = 1, starts considering C2,2,
sending to P1 a CM carrying S2,2,1. P3 is not involved in
the iteration, because S1,3,3 = S1,4,3 and S2,2,3 = S2,3,3.

(14) Upon receiving S2,2,1, P1, observing that R1,3,2 =
1 > S2,2,1 = 0, starts considering C1,2, indicating that to
P2 by a CM carrying S1,2,2.

(15) After receiving the indication, P2, observing that
R2,2,1 = 1 > S1,2,2 = 0, starts considering C2,1. It
then, because S1,2,3 = S1,3,3 and S2,1,1 = S2,2,1 and
S2,1,3 = S2,2,3, immediately concludes that a GCSLC has
been found, indicates that to P1 and P3 and finally makes
C2,1 its recovery-line checkpoint.

(16) Upon receiving the indication, P1 makes C1,2 its
recovery-line checkpoint, meaning that it deletes C1,1 and
subtracts S1,2,3 from S1,2,3, S1,3,3 and S1,4,3. Likewise,
P2 makes C3,2 its recovery-line checkpoint, meaning that it
deletes C3,1 and subtracts R3,2,1 from R3,2,1. The resulting
situation is given in Fig. 2(b).

516 Informatica 33 (2009) 511–519 M. Kapus-Kolar

5 Details of the algorithm

5.1 Introduction

For a CCA instance I , let PIn(I) denote its initiator pro-
cess, AdvI the predicate telling whether it starts by an at-
tempt to advance the recovery line, and RstI the predi-
cate telling whether it terminates by a system restart, i.e.,
whether it is an instance initiated upon a failure. We as-
sume AdvI ∨RstI , so that I has a purpose.

Every CM of a CCA instance I is either an invitation CM
(ICM) or an ordinary CM (OCM). If it is sent by PIn(I) and
carries no transmission counters, it is also a termination
CM (TCM).

In Sections 5.2–5.4, we specify a CCA instance, an I ,
as if it runs in isolation. The given CCA is essentially the
CCA of [1] corrected and slightly modified as proposed in
Sections 3 and 4. In Section 5.5, we, unlike [1], specify
also how processes are assumed to react if they during the
execution of a specific CCA instance receive an AM or a
CM belonging to another CCA instance.

5.2 Behaviour of the initiator

In a CCA instance I , PIn(I), having decided on AdvI and
RstI , executes the following sequence of steps, starting at
a time t1I,In(I) and broadcasting a TCM at a time t2I :

(1) If ¬AdvI , it broadcasts an ICM carrying just AdvI
(and thereby implicitly also RstI) and the current time, i.e.
a TCM carrying t1I,In(I) and t2I , and then goes directly to
the procedure specified in Section 5.4. Otherwise, it pro-
ceeds as follows.

(2) It sets CC, the variable denoting its currently consid-
ered checkpoint, to its most recent checkpoint, a CIn(I),r,
and initializes in its (n×n)-array variable V every VIn(I),j

to SIn(I),r,j , every Vj,j to zero and every other Vj,j′ to a
value so large that no transmission or reception counter can
ever acquire it.

(3) To every other process Pj , it sends, and records that
by setting a Boolean variable Qj to true, an ICM carrying
AdvI , RstI , VIn(I),j and in the case of RstI also t1I,In(I).

(4) It makes a copy V ′ of V .
(5) From every other process Pj with Qj true, it receives,

and records that by setting Qj to false, an OCM carrying at
least RstI and then changes every Vj,j′ for which the CM
carries a value to the value received.

(6) It sets CC to its most recent checkpoint CIn(I),r with
RIn(I),r,j ≤ Vj,In(I) for every process Pj and sets every
VIn(I),j to SIn(I),r,j .

(7) If for every other process Pj , every Vj′,j is the same
as V ′

j′,j , it broadcasts an OCM carrying just RstI and the
current time, i.e. a TCM carrying t2I , and then goes directly
to the procedure specified in Section 5.4. Otherwise, it pro-
ceeds as follows.

(8) To every other process Pj with a Vj′,j different from
V ′
j′,j , it sends, and records that by setting Qj to true, an

OCM carrying RstI and every such Vj′,j .

(9) It iterates to the step (4).

5.3 Behaviour of the other processes

In a CCA instance I , a process Pj other than PIn(I) for
every variable Vj,j′ and Vj′,j of PIn(I) maintains a copy
with the same name, executing the following sequence of
steps:

(1) It receives, at a time t1I,j , from PIn(I) an ICM and
sets AdvI , RstI , t1I,In(I), t

2
I and VIn(I),j to the value re-

ceived, if any. We assume that (t1I,j − t1I,In(I)) does not
exceed a predefined T 1

In(I),j . An appropriate value for a
T 1
j′,j with j′ 6= j would typically be slightly over Tj′,j ,

while every T 1
j,j is by definition zero.

(2) If ¬AdvI , it goes directly to the procedure specified
in Section 5.4. Otherwise, it proceeds as follows.

(3) If possible and desired, it takes a fresh checkpoint.
(4) It sets Vj,j to zero and every Vj′,j with j′ 6∈

{In(I), j} and Vj,j′ with j 6= j′ to a value so large that
no transmission or reception counter can ever acquire it.

(5) It sets its variable CC to its most recent checkpoint
Cj,r with Rj,r,j′ ≤ Vj′,j for every process Pj′ , sends to
PIn(I) an OCM carrying RstI and, as a new value for Vj,j′ ,
every Sj,r,j′ different from Vj,j′ , and then sets every Vj,j′

to Sj,r,j′ .
(6) It receives from PIn(I) an OCM carrying at least

RstI and changes every Vj′,j for which the CM carries a
value to the value received. If the CM was a TM, it sets
t2I to the value received and goes directly to the procedure
specified in Section 5.4. Otherwise, it iterates to the step
(5).

The time when a process Pj gets involved into a CCA
instance I , hence, does not exceed a t3I,j defined as
min{(t1I,In(I) + T 1

In(I),j), t
2
I} in the case of AdvI and as

(t1I,In(I) + T 1
In(I),j) otherwise.

5.4 Moving the recovery line and/or
restarting

Here are the steps of the procedure which in a CCA in-
stance I , every process Pj , with its CC in the case of AdvI
a Cj,r, executes at the end of the CCA, terminating at a time
t4I,j :

(1) If AdvI , it deletes from its storage every checkpoint
older than Cj,r.

(2) If RstI , it deletes from its storage every checkpoint
except the oldest one.

(3) For every preserved checkpoint Cj,r′ , it decreases ev-
ery Sj,r′,j′ by Sj,r,j′ and every Rj,r′,j′ by Rj,r,j′ .

(4) If RstI , it restarts from its oldest preserved check-
point.

We assume that (t4I,j − t2I) does not exceed a predefined
T 2
In(I),j . An appropriate value for a T 2

j′,j would typically
be slightly over Tj′,j .

IMPROVEMENTS TO A ROLL-BACK MECHANISM FOR. . . Informatica 33 (2009) 511–519 517

5.5 Handling of unexpected messages

If a process waiting for an OCM of a CCA instance I in-
stead receives an AM, it freely decides whether to process
it concurrently to or after I .

If a process Pj waiting for an OCM of a CCA instance
I instead receives a CM of another CCA instance, an I ′,
it reacts as follows: An ICM with RstI′ false or an OCM
with RstI′ 6= RstI is just discarded. Upon an ICM with
RstI′ true, Pj abandons I and starts executing I ′ instead.
An OCM with RstI′ = RstI is erroneously recognized
as an OCM of I , so such situation must be prevented (see
Section 6.3).

If a process Pj currently involved in no CCA instance
receives an OCM or an ICM for which it suspects that it
belongs to an obsolete CCA instance, it just discards it.
An ICM of a CCA instance I ′, received at a time t from
a process Pj′ , is recognized as obsolete if ¬RstI′ and Pj

has participated in a CCA instance I with RstI true and
(t3I,j′ + Tj′,j) ≥ t. This is because the estimated worst-
case scenario for I overriding I ′ is that Pj′ sends the ICM
just before it gets involved into I at the time t3I,j′ and then
the ICM reaches Pj with the delay Tj′,j .

6 Optimizing algorithm activation

6.1 Introduction

[1] suggests that in the absence of failures, the CCA is ini-
tiated periodically, with the period very long, so that one
can assume that when a new CCA instance starts, the pre-
vious one, if any, has long been completed. More precisely,
[1] specifies that the period is much longer than the check-
pointing period of any individual process. [1] also suggests
that processes initiate the CCA in turns, so that they never
attempt to initiate it concurrently. To implement the pol-
icy, [1] has all system processes organized in a virtual ring
along which the right to initiate the CCA is passed as a
token, merely by the passing of time. Every reception of
the token is interpreted as an obligation to initiate the CCA
immediately.

In [1], the frequency of token passing is exactly the de-
sired frequency of running the CCA in the absence of fail-
ures. We find this scheme too rigid. On the one hand, forc-
ing processes to take a checkpoint or initiate a recovery-line
advancement periodically is seldom optimal. Processes
should rather wait for a substantial reason. On the other
hand, the initiator token should circulate as fast as possible,
so that any process wanting it receives it quickly. There-
fore, we drop the periodicity assumption for checkpointing
and recovery-line advancing, and keep the virtual ring just
as a means of concurrency control, giving it a more appro-
priate timing.

6.2 Reasons for checkpointing and
recovery-line advancing

For taking a checkpoint, a typical reason would be that the
process has since its last checkpoint accomplished a lot of
work or exchanged a lot of AMs.

For advancing the recovery line, we see three reasons:

– A process is running out of stable storage and there-
fore wants that some of the stored checkpoints become
obsolete (remember Section 5.4, step 1).

– A reception or a transmission counter of a process is
approaching overflow and the process therefore wants
more events to become obsolete for counting (remem-
ber Section 5.4, step 3).

– A process wants to reduce the discrepancy between its
current state and its recovery-line checkpoint, so that,
if a failure occurs, its roll-back in the worst case would
not be so drastic.

How often such a reason occurs, depends not only on
static parameters, such as the size of the local stable stor-
ages and the speed of the processes and the channels, but
also on the demands of the executed application, which
tend to vary with time.

6.3 Prevention of concurrent instantiations

At any moment, the initiator token is virtually either in tran-
sit or resides with one of the processes. If a process Pj

possesses the token at a time t, the next time when another
process Pj′ possesses it should ideally be soon, but not un-
til Pj′ has had a chance to detect whether Pj has initiated
the CCA at time t, i.e., not until after (t + T 1

j,j′). The de-
lay is necessary because when initiating a CCA instance I
with ¬RstI , the process PIn(I) must be aware of the most
recently initiated previous CCA instance, an I ′, if any, so
that it can, by suitably delaying I , secure that the following
is satisfied at the time t1I,In(I):

– t1I,In(I) > t4I′,In(I) and t1I,In(I) > t2I′ + T 2
In(I′),j for

every other process Pj , so that every process has al-
ready terminated execution of I ′.

– If RstI′ , t1I,In(I) > t3I′,j + Tj,j′ for every two pro-
cesses Pj and Pj′ , so that (1) the CMs which I ′ made
obsolete, if any, have already been received and (2)
the ICM of I will not be discarded upon reception (re-
member Section 5.5).

It might happen that while a process is waiting for an op-
portunity to initiate a CCA instance I with ¬RstI , another
process initiates a CCA instance I ′ with AdvI′ . Upon de-
tecting that, PIn(I) should drop its pursuit, for the task of
advancing the recovery line is already being taken care of.

518 Informatica 33 (2009) 511–519 M. Kapus-Kolar

7 Organization of the storage
When a process gets involved into a CCA instance, it has
to access information on its previous checkpoints. [1] sug-
gests that a process maintains this information primarily in
its working memory, so that any access to it can be quick.
However, a process having just recovered from a failure
can safely rely only on the copy of the information which
it has made in its stable storage. How efficiently individual
parts of the copy can be accessed, strongly depends on the
organization of the storage, which, hence, deserves some
discussion.

Obviously, each checkpoint Cj,r requires that process Pj

stores every Rj,r,j′ with j 6= j′ individually, and not just∑
j′∈(N\{j}) Rj,r,j′ , as in [1]. For each Cj,r, Pj would,

hence, store vectors ~Sj,r and ~Rj,r of size (n− 1).
If we imitated the policy of [1], every process Pj would

for every checkpoint Cj,r store in the stable storage the list
of all ~Rj,r′ (originally of all

∑
j′∈(N\{j}) Rj,r′,j′) belong-

ing to a Cj,r′ not later than Cj,r, so that, when deciding
how far back to move from Cj,r, Pj could fetch all the nec-
essary information in a single access to the storage. How-
ever, this would mean that each element of such a list is
stored several times, first in the list of the checkpoint to
which it belongs and then in the list of every subsequent
checkpoint. With list elements vectors of size (n − 1), i.e.
not of size 1 as expected in [1], this would be unacceptable
for large n.

We think that Pj should maintain a single list, for ev-
ery Cj,r comprising a triplet consisting of ~Rj,r, ~Sj,r and
a pointer to all the other details which Pj might need if it
actually restarts from Cj,r. As n is fixed, so can be the
size of the triplets, meaning that such a list can be easily
maintained and accessed as virtually a single block of con-
secutive storage locations.

Alternatively, Pj could maintain three lists, one for each
kind of the items in the triplets. With this approach, Pj

could fetch the stable data more selectively. With all the
lists consisting of fixed-sized elements, finding their corre-
sponding elements would still be trivial.

Let us also note that fetching the entire R list in a sin-
gle step might not always be a good idea, as this might be
really a lot of data. In other words, when optimizing com-
munication between processes and their stable storage, one
is usually forced to make compromises between the num-
ber and the size of the messages, where the optimal strategy
depends on the specifics of the system and the current cir-
cumstances.

It might happen that a CCA instance I does not ad-
vance the recovery line in spite of AdvI true. In such a
case, a process wanting to take fresh checkpoints in spite
of running out of stable storage may start deleting its ear-
lier checkpoints, with the only constraint that it must never
delete its recovery-line checkpoint or its current candidate
for a new recovery-line checkpoint. As the starting check-
point of any process is stored implicitly, processes can sur-
vive even without a stable storage for checkpoints [2], be-

cause further checkpoints only increase the probability that
in the case of a restart, the required roll-back will not be
too drastic.

8 Discussion and conclusions

8.1 Contributions of the paper
We have proposed the following improvements to the CCA
of [1], its activation and its storage management:

– A logical flaw has been identified and corrected.

– Instead of exchanging entire rows or columns of the
array V , processes now exchange only their updates.

– Whenever possible, processes now skip individual it-
erations of the algorithm.

– It can no longer happen that the algorithm executes a
superfluous iteration.

– Obsolete CMs are now properly recognized and ig-
nored.

– By recognizing the policy of recovery-line advance-
ment and the prevention of concurrent instantiations
as two separate issues, we have been able to make the
former more flexible and the latter, through faster to-
ken circulation, less restrictive. The assumption that
processes take their checkpoints periodically has also
become unnecessary.

– The organization of the stable storage no longer in-
cludes multiple copies of reception counters.

– Process are allowed to replace their old checkpoints
with fresh ones.

8.2 Correctness and performance of the
algorithm

The proposed CCA is essentially that of [1], except that we
properly increased the rigour of checkpoint comparison, in
every CM added the missing and removed the redundant in-
formation, and removed the CMs which consequently lost
every purpose. Hence, if the original CCA is correct up
to the rigour of checkpoint comparison, our CCA is also
correct.

In [1], it is demonstrated that, for the adopted system
topology, the there proposed CCA is an improvement over
the CCA of [3], in that the number of checkpoint com-
parisons grows, linearly, much slower with the average
number of checkpoints per process, and linearly instead
of quadratically with the number of processes. It is also
demonstrated that the proposed CCA is an improvement
over the CCA of [2], in that the number of the exchanged
CMs grows linearly instead of quadratically with the num-
ber of processes.

IMPROVEMENTS TO A ROLL-BACK MECHANISM FOR. . . Informatica 33 (2009) 511–519 519

If the checkpoint comparisons in the CCA of [1] are
made sufficiently rigorous, the algorithm preserves all the
above advantages. With the proposed additional optimiza-
tions of process communication, the number of checkpoint
comparisons and the number of the exchanged CMs are
sometimes even lower, because the redundant iterations are
skipped and because the redundant requests for informa-
tion on transmission counters are removed. Besides, the
remaining CMs are sometimes shorter, because processes
exchange just updates to V .

8.3 Concluding remarks
For a distributed algorithm, it is equally important to decide
on the task which the process should perform in coopera-
tion, on the protocol securing the necessary coordination
and on the management of concurrent instances of the al-
gorithm. For the CCA of [1], we proposed a correction of
the task and several improvements to the protocol and the
concurrency management. For further work, we propose
quantitative assessment of the expected benefits of the ad-
ditional optimizations.

References
[1] Gupta B., Rahimi S., Yang Y. (2007) A novel roll-back

mechanism for performance enhancement of asyn-
chronous checkpointing and recovery, Informatica,
31(1), pp. 1–13.

[2] Juang T., Venkatesan, S. (1991) Crash recovery with
little overhead, Proceedings of the 11th International
Conference on Distributed Computing Systems, IEEE,
Arlington, Texas, pp. 454–461.

[3] Ohara M., Arai M., Fukumoto S., Iwasaki K. (2004)
Finding a recovery line in uncoordinated checkpoint-
ing, Proceedings of the 24th International Conference
on Distributed Computing Systems Workshops, IEEE,
Hachioji, Tokyo, Japan, pp. 628–633.

