1

SYNTHESIS IN COMPLEX PROBLEM DOMAINS INFORMATICA 4/89

Keywords: synthesis, complex systems, abstraction,

> Maksimilijan Gerke$:
hierarchical decomposition, structuring

Metalna Maribor

ABSTRACT:

Complex systems’ synthesis becomes a bottleneck of production
process. Some researchers denote this situation as crisis, others as "crisis".
However, complex systems’' synthesis especially those, which cannot be
implemented within particular technology domain is an open problem.

The contribution gives a collection of procedures, developed with
integration and some inovations of classical procedures and more advanced
procedures. As a result, synthesis process can be based on abstraction,
hierarchical decomposition, and structuring, while its derivation is nested
in actual technological context, expressed through requests synthesized
solution must satisfy.

POVZETEK: Sinteza v domeni kompleksnih problemov

Sinteza kompleksnih sistemov péstaja vedno bolj ozko grlo produkcij-
skega procesa. Nekateri raziskovalci oznalujejo to stanje kot krizno, drugi
kot "krizno". Kakorkoli, problem sinteze kompleksnih sistemov, posebej
tistih, ki jih ni moZno rediti v domenl posamezne tehnologije, je dokaj odprt.

Prispevek podaja skupek postopkov izpeljanih, z integracijo in nekaj
inovacijami, iz klasi¢nih postdpkov in sodobnih postopkov sinteze. Kot
rezultat lahko postopek sinteze gradimo na osnovi abstrakcije, hierarhitne
dekompozicije in strukturiranja, njegovo izvajanje pa je vgnezdeno v kon-
kretni tehnolodki kontekst izrafen v obliki zahtev, ki jih mora izpolnjevati

resitev.

INTRODUCTION

Situation in high technology domains like CIM,
flexible manufacturing, software, computer architectu-
tes, VLS), etc., seems similar regarding the requests
for more efficient synthesis methods. For economic
reasons synthesized solutions must be completely valida-
ted before manufacturing. A single error can cause
exponential growth of operations to dispatch it. This
calls for formal correct synthesis methods.

Complexity is common characteristic of systems in
the above domains. It causes an enormous amount of
operations, before the synthesis goal can be satisfied.
Most of the contemporary synthesis methods seem to
fail because of their too close technological orientation.

Rapid technology development disables efficient

synthesis tools to be developed for each particular
technology. Even if this is possible, there will still
remain the problem of systems implemented in diverse
technologies.

This clearly calls for synthesis methods, which will
be technology independent and conceptualized on
complexity and functionality issues of contemporary
and advanced systems.

This contribution is based on system orientation
to the synthesis problem, where current technology
sets limits regarding system’s functionality and struc-
ture. Such an approach allows that technology based
descriptions are completely avoided until the solution
representation level. Altough technology sets very
exact limits during the synthesis process, technological
objectives are not expressed explicitly, but reflect in

system structure and functionality.

An approach to synthesis is used, which is based
on abstract system representation transformed through
hierarchical decomposition and structuring to its counter-
part, the solution. Abstraction and hierarchical decom-
position have long been recognized as a means, which
enables complexity reduction on one side and problem
decomposition to several subproblems of lower complexit'y
on the other side.

Structuring as a means to cope with complexity is
more controversial and it seems there is no unisonous
agreement about it.

However, combining abstraction and hierarchical
decomposition in the synthesis process assures only
that the initial and subsequent system structures are
replicated and impressed in solution system structure.
On the other hand it is well known that contemporary
systems are supported with an enormous amount of
software, which directs their actions and is a strict
consequence of systems’ sfructuring. To visualize this
we can imagine that software through execution connects
an object-flow graph that corresponds to problem
structure and behaviour. This means that structuring
is already extensively used in system design.

With respect to system represented with uncontrolled
object-flow graph structuring requires three additional
system structures. Its control structure directs sub-
systems , which can be at lowest representation level
represented with uncontrolled object-flow graphs,
connected in space and time. Particular strategy of
control used is of secondary importance. Its memory
structure assures object validity during controlled
execution. Transfer structure delivers objects to sub-
systems’ inputs. Both memory and transfer structures
are under control of control structure. Those structu-
res are usually partitioned throughout the system
following the principles of distribution and hierarchy.
More intensive structuring results in complex control
scheme, which is usuall;l but not necessary expressed
in a form of control code or software. Making software
more close to human comprehension capabilities does
not change its nature. However, it is interesting that
structuring does not necessary .impose any control
code or software.

This point of view allows that control code or
software are determined as structuring side product.
This is a conclusion, which sounds quite heretic,
however, it gives at least theoretical possibility for
automatic software development.

Basic structuring concept can be explained starting
with a system with uncontrolled flow of objects. Observe
that not all resources of such a system are active
simultaneously. Assume a system in which resources
are disconnected and a control mechanism, which is
capable to connect them in time and space. Under

certain conditions behaviour of both systems can be

N

identical.

This simplified description, structuring is based
on, should be completed with an observation that identical
system resources can be shared when appropriate. To
take advantage of this possibility system structure have
to be completed with memory and transfer structures.

If the behaviour of a system have to change, its
control functions which determine resource connections
will be appropriately modified. The simplest way to do
this is through program memory, which is a part of
system’s control structure.

Even when we look to software as problem
description, system should be capable of its recognition
and physical system restoration to solve the problem.
A possible way to do this is that problem is represented
with problems solvable with physical system resources.
However, this introduce structure that have to be
implemented with physical system in isomorphic way,
directly or with appropr:iate time and space partition,

System synthesis can now be conceptualized based
on the problem expressed in a form of abstract system.
which have to be transformed through hierarchical
decomposition and struciuring to a solution, a system
expressed with resources and structure that can be
implemented in physical .world.

Problem solvability seems to be in tight connection
with its representation. Different representations can be
used to express particular view on the problem. They
are equivalentin the sense that they express the same
behaviour in different ways. Synthesis procedures
proposed are defined for each representation., Change
of one representation to another is orderly developed.

1. OVERVIEW OF THE SYNTHESIS PROCESS

Problem speclfication consists of two parts.
Problem definition part determines an abstract system
for which the synthesis process have to determine a
solution expressed in the form of physical system
specification to be implemented in predetermined
technology domain. Behaviour of physical system can
be recognized as behaviour of abstract system merely
through the use of suitable abstraction, otherwise no
relation exists between the systems.

The rest of problem specification sets requests for
the solution. Two classes, called the solution classes
are determined based on the requests. Resource class
consists of resource specifications, physical system
should be built of. Resources determined with the
resource class are generally composed and can be
represented with resource structures of known behaviour.
This usually allows resource class structuring through
suitable relations. Abstraction through equivalence
relation regarding resource behaviour reduces represen-
tation complexity and allows unnecessary details to be

neglected at earlier synthesis steps. More sophisticated
abstraction procedures to reduce representational
complexity are described in section 3.

Structure class consists of abstract resource structu-
res. Physical system structure and its abstractions
should be isomorphic to structures build of structures
from structure class. Structure class is partially orde-
red with regard to substructure relation. Its represen-
tation complexity can be reduced through structure
abstraction. Structure class can be empty. From the
synthesis point of view this means that no structure
requirements are set regarding the solution.

Intuitively, abstract and physical systems can be
delimited with the notion of distance, which Is a measure
proportional to the number of synthesis steps required
to reach the solution. Its numeric determination provi-
des estimate about problem complexity - P, NP complexity
as the roughest measure, for example. An argument
will be given to show that the synthesis problem
- belongs to the domain of NP - complete problems, in
general.

Initial synthesis steps must assure the match
between problem and an abstract solution derived from
solution classes. The match is found through structures’
isomorphism and identical behaviour of corresponding
resources. Further problem abstraction and structuring
may be needed to assure it in explicit or implicit way.
It is assumed, that some generic knowledge about’
problem solvability in the context of both solution
classes is available. In the opposite case problem can
be solved with an exhaustive search only. This is
probably the strongest reason why a kind of systematic
frame for the synthesis process is needed.

Synthesis procedures cannot be deterministic
because of partial ordering of structure class. Structure
limitation can play a dominant role in limiting the
number of synthesis steps. The other limiting factor
for the synthesis step count can be searched for in
resource class. Resource class consisting of resources
with simple behaviour characteristics will necessary
complicate the synthesis. With properv problem structu-
ring and composite resources built of resources.from
resource class this prqblem can be reduced. However,
the effect of this depends on knowledge about problem
characteristic properties.)

Synthesis process can be stated as a combination
of hierarchical problem decomposition and structuring.
Hierarchical problem decomposition is a process basically
opposite to abstraction. In our case it consists of
refinement and interpretation processes. With its
application problem is stepwise decomposed to a structure
consisting of mutually dependent subproblems each of
them have lower complexity with respect to the initial
problem and subsequent subproblems obtained at
earlier decomposition steps. This increases problem
structure complexity and causes a consequence that

structures of higher problem representation levels are
re;')licated at lower representation levels. Applying
structuring to arbitrary intermediate representation
level results in structure change, while preserves
representation level and behaviour.

Since hierarchical decomposition preserves structu-
re and structuring preserves representation level it is
clear that requirements expressed through solution
classes can be met only if both hierarchical decompo-
sition and structuring are applied during the synthesis
process.

Synthesis process can be recognized as partial
ordering relation between problem, intermediate
solutions, and solution, where the solution or solutions
are those intermediate solutions, which satisfy requests
expressed through both solution classes.

To find a path between -problem and solution and
to avoid searching over ‘the whole partially' ordered
structure of possible intermediate solutions, decisions
based on their properties can drive the synthesis
process. A minimal condition for an intermediate solution
to be accepted for further synthesis is that it can be
expressed with the objects of both solution classes.
Different 's/ynthesls strategies can be used to determine
the synthesis process. The simplest one and probably
the less useful is one, where hierarchical decompositfon
to the resource class'representatio'n level is done first.
This Intermediate solution is then structured to assure
compatibility with objects from structure class. However,
structuring can become a task of excessive complexity
within this approach. To avoid such Situations, hlerar-
chical decomposition and structuring are combined
during the synthesis process. This assures manageable
subproblems’ complexity. i

. -Applying structuring and abstraction to both
solution classes match between intermediate solution
and structure consisted of objects from both solution
classes can be found at each intermediate representation
level. When such a match can be found between an
intermediate ‘solution and a structure consisting of
objects from both solution classes without any abstraction
such intermediate solution is accepted as a solution.
Structures’ isomorphism and identical behaviour of

corresponding resources assure systems’ equivalence.

2. REPRESENTATIONS

Different views can be applied to represent the
same system. In conventional one system is represented
as a structure of interconnected resources with known
behaviour. For system behaviour representation it is
interesting to represent resource inputs with input
positions and Its outputs with output positions.
Positions represent perception points from which object
flow is oriented toward the resource or from it. For

two connected resources corresponding position plays
double role. It is output position for one resource and
input position for the other. Labelled bipartite directed
graphs are suitable abstraction for this view on system’s
structure. System’s behaviour can be represented with
the behaviour of system resources. Based on resource
positions collection of objects flowing to and from
resource can be determined. Each collection corresponding
to-;:;articular resource has objects represen’ted with';
m + n tuples corresponding to objects on input and out-
put resource positions. Such a collection can naturélly
be represented with function or relation, depending
whether resource reacts to the same input in deterministic
or nondeterministic way. Relation between functional
and relational resource behaviour will be clarified later.
in this section.

During the synthesis process more attention can
be given to system structure since its behaviour
remains the same throughout this process. For this
reason resource structure can be represented neglecting
positions in system structure.

Definition: Resource structure is labelled directed
graph G = (V,E), where V = {vl,...,yn} is a set of
resources, and E = {e1,...,en}s;v x V is a set of
resource connections.

" Resource labelling is defined with functions which
assign labels to resources and connections and enable
system behaviour recognition.

Returning to the initial system model represented
with bipartite directed graph it can easy be recognized
that this representation is in close connection with
data-flow graphs defined in[1] , [2] . In our case
modification of this definition will be used for represen-
ting system’s structure and behaviour.

Definition: Controlled object-flow graph is labelled
bipartite directed graph G = (AULUK, E), LN K = @,
A= {a1,...,an} is a set of action nodes, and
LUK ={l1,...,lm,

={ky ...,k } s a set of control links.
E « (A x (LUK) U (LUK) x A) is a set of branches
defined so, that the following restrictions are satisfied,

kl""'kr}' is a set of links, where

(ai, Ik) € Eg (ai, lk) € E =3.a; = aj, lk € LUK,

3. g e Luk,

(Ik, ai] €EEES “k'- aj) € E = a,

1€i, jgm L k{m+r.

Two kinds of behaviour can be assigned to action nodes
of controlled object-flow graph. One is represented with
function, the other with controlled function. In the
final case action node: must have at least one input
control link.)

Let f: X,x...x xn—» Y be a function defined
on known sets XI,...,Xn, Y. Controlled function g
for function f is a function,

g: Bool x X,x...x X — Y, Bool ={0,1}
f(xl,...xn) ; p=1

undef ; p=0.

1
g (P' x1,---, xn) ={

Figure 2.1 shows controlled object-flow graphs for
functions f and g.

Figure 2.1: Controlled object-flow graphs for functions
fand g

To avoid confusion instead of g(0, Xgrooas xn) = undef
we can define g(o, x],...,xn) =z, z€YU{z} .
Object z has different interpretations in different
implementation situations. In electronic systems it can
be used to represent a high impedance condition, for
example. In general, it represents no object or no
activity situations.

The notion of controlled function can be extended
to more sophisticated cases of controlled execution.
Examples can be found in section 5.2. One further
example is provided below,

g9: AXX X, xX —= Y, A= {a1,’...,am}

: f,({x,, «oo,x);ax=a
gla, Xy, ...,xn]= {fj((xl xn)),-a"a‘ .
m 1ttt Ppt S T %y
However, it can be shown that they are expressible
within the initial definition of controlled function. The
notion of controlled function allows formal connection
between controlled object-flow graph and control-flow
graph.

Definition: Control flow graph is labelled bipartite
directed graph G =(QUA, E), where Q={q,,q.}
is a set of states, and A={a,, ..., a_} Is a set of
function nodes. E < ((QxA) U (AxQ)) is a set of
branches.

System’s behaviour expressed through control
flow graph is based on state concept. Particular state,
when recognized active, fires corresponding functions.
This situation is effectively modelled with a pair, consisting
of decision function and controlled function, which is
fired with decision function’s value. Section 5 gives
more detail about this topic.

To allow change of representation during the
synthesis process conversions between the above
representations are defined. To increase synthesis
flexibility they are of one - to - many type.

Conversions between resource structure and
controlled object - flow graphare based on graph
isomorphism with deleting or inserting link nodes.
However, those conversions are usually applied with

structuring, what makes correspondence between struc-
tures less explicit.

Conversions between controlled object - flow graph
and control - flow graph are less evident. Figure 2.2
gives an example of controlled object - flow graph to
control - flow graph conversion. Formal basis for those

conversions is given in section 5.

Figure 2.2: Example of controlled object - flow graph
to control - flow graph conversion '

Nodes of control - flow graph marked with 1 are inserted
to increase readability. From the formal point of view
they are not necessary. '

To describe system’s behaviour production rules
expressed with if then clauses can be used. We will
show that such system descriptions can be converted
to controlled object - flow graph descriptions and vice
versa. i

Originally conditional statements are used to
represent if then clauses.

Take R(xT, cee, xn)-——> Q (yI, ver ym) as an
example. Define characteristic functions for R and Q,

L RO e xp)

0 R(x1,...,,x])

n

p=hplxg, .0n, %)) = {

1: Qlyy,eennyy)
0 ; Qiy,. cer s Yol

with controlled function 9q’

r=hQ(y1,...,ym) .={
Implement hQ

hoy (Yar eee ¥y) p=1

. _ QN m
q= gQ(p, Yir eee o Yl = {
1 ; p=0.

It can easy be verified that p, r, and q determine
truth table for conditional. Corresponding controlled
object - flow graph Is shown on figure 2.3,

cantrblled identical
function

Figure 2.3: Controlled objgct ~ flow graph representing
conditional clause ‘

This representation allows inferehce processes’
modelling in functional way.

Model of condition - action rule can be developed
with slight modification of the above construction.

Let R(xI, - xn)—>Q(x1, cee s Xpy y), and
Q(xl, cee e X, y) &= (y = f(xI, see s xn)).

Define characteristic function h for R, which defines
domain of f.

1 R(xl,...,xn)
0 ; R{x,, ..., x_).
1 n

and implement f with controlled function g,

p = h(xl, ...,xn) = {

f(x1, P xn) ; p=1
g(p,x‘,...,xn) = { o
undef ; p =0,
Controlled object - flow graph that corresponds to the
above construction is shown on figure 2.4.

Figure 2.4: Controlled object - flow graph representing
condition - action rule

It is interesting to note that observing behaviour only
on input and output links of a graph we are not able
to identify whether function f is implemented directly
or with function g.

When dealing with systems it is usually presupposed
that resources behave functionally. For systems described
with relational connectives the above assumption may
not be true. A minor modification allows that resources,
which express relational behaviour can be treated in
functional or relational way depending on point of view
used. Since the completetreatment for arbitrary relations
is relatively extensive, we will limit this presentation to
binary relation R{x,y), which is partlally closed with
object a, R(a,y),

R(x,y)

Applying 6bject a to a resource, which behaves corres-
ponding to R, its response will be nondeterministic
since it can delivers any object from bi’ bl+1' 'bH-n
to its output position to satisfy R.

The behaviour of a such resource can be represen-
ted in functional way, if resource response is determined
with a sequence function replacing R. Sequence function
determines the order in which resource reacts with
output objects to the same input determined with object
a. Figure 2.5 gives tabular definition of sequence
function and corresponding controlled object - flow
graph for this case.

£ xk yk-'l Yk
a bi bi +1
a by | by,
a Bl b

1 xK, yk") =yk

k.
4 'Dioj

Figure 2.5: Tabular definition of sequence function
and corresponding controlled object -~ flow
graph

Identifiers 1 through 5 stand to identify functions fork,
decision Boolean functions, controlled identical functions,
function join, and memory function. Functions fork
replicate input objects, decision Boolean functions
control corresponding identical functions to deliver
particular object bi+]
hold function and delivers object bi+j to output link.

to function join, which is a tres-

Memory function assures necessary delay. Assumption
is made that y"("I has allways a value from b, ...,b;, .
Two notes are neceslsary about the above presentation.
First, It Is simplified to serve conception presentation
only, and second, sequence functlon can be defined in a
number of different ways.

3. REFINEMENT AND INTERPRETATION

Using abstraction representation complexity can be
reduced to a manageable level. During the synthesis
process the situation is reversed, complexity grows,
since this process is basically opposite to abstraction.

Assume a solution system represented with resource
structure and resource behaviour. Using a substructu-
re relation to determine an arbitrary substructure
observe that its behaviour can be described with
collection of objects which correspond to its input and

output positions. This enables that substructure is
replaced with a resource having input and output
positions that correspond to substructure input and
output positions. The replacement causes lower system
structure complexity.

Representing the system in each possible way with
replacing substructures with resources while preserving
their. input output behaviour results in a class of
systems with different structures and the same input
output behaviour.

An important hypothesis can be made at this point.
System structure abstraction has sense only if the sub-
structure behaviour can be expressed with its input
output behaviour' . Represent collections of objects
which determine resources’ behaviour with tables and
assume they are of finite leught. Resource behaviour is
represented with single table, while resource substruc-
ture behaviour is represented with a structure of inter-
dependent tables. Select a pair resource, resource
substructure with identical behaviour. The question
arises whether the structure of interdependent tables
can be developed based on the information obtained
from single table.

Results of empirical study show that this is
possible. However, for a- formal proof of the above claim
additional research is needed.

Results of mentioned study show that refinement
based on the above concept is generally NP - complete
problem since lower complexity bound grows exponentially
with the number of table entries in non - trivial cases.
Refinement is nondeterministic process that can be
automated. Automatic algorithm development is possible.
Controlled functions are necessary to obtain all possible
refined versions of particular function. Refinement can
be done on uncompletely specified tables. If this causes
a lose of significant information, obtained algorithm will
not be optimal.

Example 3.1 gives tabular refinement for selected
case of 'bfnary addition and corresponding controlled
object - flow graphs, which have no contro! links for
this case. Only one path of the whole refinement
process is presented.

Loops and circles in resource substructure can
introduce additional substructure inputs and outputs
which are local to {it.

Example 3.1
T
f: a, b1 a, bo <y d1 do G:
00 0 O 0 0 0
0 0 0 1 0 0 1
01 0 0 01 0
01 0 1 0 11 b
aG 1 % o,
00 1 0 0 0 1
00 1 1 01 0
01 1 0 0 1 1
01 1 1 1.0 0 T
100 0 c 1 0
100 1 011
11 00 100 €5 d, dy-
11 0 1 10 1
101 0 o1 1
10 11 100
1110 1 0 1
11 11 11 0.

Table T represents binary addition decompose to tables
Tl’
object - flow graph.

T, and T3, what results in the following controlled

iy
©
©
[+

-
o
o~
[=8

1"’ o "0]

- - O O
-0 - O
[~ A

T1 becomes T” after

deleting redundant entries.

R RO E X e

|

Corresponding controlled object - flow subgraph is

reduced as represented below.

b; g

a

b,
(] aa bO

d, d,
T T

fZ: a, boa1 b1 d1 f21: a, bo <,
o oj]fo o 0 00 0
0 0ojfjo 1 : 0 1 0
0 0|1 0 1 10 0
0 0|1 1 0 1 1 1
0 1| —8—10 l
0 1T+ Tyy
0 1 40—+ f22: a b] < t:i1
0 14— 8 0 0 0 0
1 0| —0—10 0 0 1 1

——

1 0| +—+—1++ 01 0 1
1 0] +——— 01 1 0
4_o) +— ¢ 1.0 0 1
1 1)1{0 o 1 1 0 1 0
1 1(|0 1 0 1 1 0 0
1 1|1 0 0 1 11 1
1 11 1
|

T, is decomposed to T21 and Ty,e

Corresponding controlled object - flow subgraph is
refined as represented below.

a’- by ag by

refinement
P EEE—

[Ny

Refinement of T, Is analogous to the refinement of T,.
The result is,

T3 =Ty s

32
fap! 3; by g
0O 0 0 0
001 |o
010 |o
o1 1 |1
1000
1 0 1 1
110 |1
111 |

Controlled object - flow graph obtained after refinement

of T T2,' and T, is given below.

1’

Because of close relation between tabular and expres-
sional function representation,A the former can be
thought of as tabular structure abstraction. Refinement
procedures are generally developed for expressional
function representation. Since this type of refinement
is widely known its presentation will be avoided.

3.1 Function refinement

This subsection states conditions that have to be
satisfied with function refinement. Figure 3.1 shows
graph of relations and controlled object - flow graphs
for functions f and g, which is composition of functions
9ys +s- 4 9, obtained through refinement. Refined
function g and {initial function f have to satisfy the
relation f = h;] ogoh, =g, and h;, h, are identical

functions.

2

f
A1x eee X Am-—— 81x x_Bn

hy hy

Alx vee X Am——g—> le cee X Bn

Figure 3.1:

Function refinement

Dependent of actual representation defined in section 2
function refinement is completed with corresponding
graph refinement. Procedures for them can be found
inf2],[3].

Refinement can be thought of as a case of inter-
pretation. However, we will give only basfc definition
and neglect this possibility.

Figure 3.2 shows graphs of relations and corres-
ponding controlled object - flow graphs wheﬁ interpre-
ting function f with function g.

f .
vAix R Am——> B‘x vee X Bn

h, I h,

C]x vee X cm—’D

1x see X Dn
g

by

Figure 3.2: Interpretation of f with g

The notion of position is not restricted to physical
position only.

When interpreting function f with function g the

relation f = h;l

ogo h2' where h1 and h2 are surjec-
tive and possibly partial functions must be satisfied.
Functions h, and h2 assure compatibility with the
environment. They can be stepwise removed with
interpretation of environmental functions.

Since h'l'1 is generally relation this can cause
formal inconsistency with controlled object - flow graph
behaviour. Since h;l can be represented with sequence
function as illustrated in section 2 this can cause no
serious problems. On the other hand h;1 and h2 can
be stepwise removed as mentioned above. The inconve-
nience can be avoided when h1 is bijective.

3.2 Object interpretation and refinement

Until now objects were considered as integral
units. However, for the reason of efficiency such
observation is too restrictive. To avoid this, object
'representation can be adapted to problem representation
level.

Intuitively, an arbitrary object composed of several
objects can be viewed as integral unit or as a structure
of objects positionally2 determined. In first case the
fact that object is composed is neglected. Severai
objects must sa-'tisfy some known relation which determine
their mutual positions to be recognized as integral unit .
To represent such structures n - tuples are used.

Object refinement and interpretatipn3a'e defined
in connection with corresponding system’s functions.
Figure 3.3 shows a graph of relations and correspon-
ding controlled object - flow graphs when refining
objects of function f with objects of function g.

A _f ., =8

A1x cee X Am—- le vee X Bn
g

Figure 3.3: Object refinement and interpretation

3

. Difference between refinement and interpretation is
semantical. Refinement is restricted to common
semantic domain, while interpretation is not.

Object refinement and interpretation must satisfy,

f=h1

possibly partial functions. With further refinement

0 go hz' where hl and h2 are surjective and

functions h1 and h2 can be stepwise removed from the
system.
Object refinement and interpretation can be

BI' ves ,» B .

extended to objects from A1, ver o A n

ml
Stepwise refinement of an object results in a tree
structure, an example of which is shown on figure 3.4.

Figure 3.4: An example of object representation

hierarchy

Refinement and interpretation have an interesting
property, they preserve structure of previous higher
represantation levels.

For illustration and application of this property
assume an abstract system S1 and a physical system S2
and imagine both systems’ behaviour in state spaces.
Select an arbitrary state of 5, and with interpretation
and refinement determine corresponding state of Sz.
This state will cause in S2 a sequence of state changes.
Assume a state from the sequence that has a correspon-
ding state in S, and assume that this state is next
state of initially selected state of S;. The impression

an observer seeing only the states of S, will have, is

1
that S, changes states altough in reality state changes
of S, are consequence of state changes in system Sy

Figure 3.5 illustrates the above explanation.

IIS.l i
initial ——e . next
state state
initial next
state state

abstraction abstraction

sequence of

state changes
—————

S,

Figure 3.5: Implementation of S1 with S

2

10

Refinement and interpretation were defined for all
representations given in section 2. More details about
them can be found in[2] and [3] .

4. STRUCTURING

Assume arbitrary system represented with resource
structure. Select a resource and denote it with r.
Since system representation level can vary such resource
can represent resource substructure of lower represen-
tation level.

Determine those positions of system resource
structure which carry objects from system input positions
to resource r input positions. In the resource structure
positions determine resource substructure which input
positions are part of system resource structure input
positions, while its output positions comprise resource
r input positions.

For a subsystem, which belongs to the resource
substructure determine composed relational expression
denoted with E, which is satisfied when objects’ state
on resource r input positions enable resource activation.
Instead with resource r function f determine its behaviour
with relation corresponding to f and denote corresponding
expression with Q. Form conditional E-» Q, which is
satisfied after resource r delivers objects on its output
positions. In the context of structuring it will be called
control condition, since it allows uniform determination
of each subsystem’s state which causes resource r
action.

Control condition can be rewritten as E—»R §
R —= Q, where R denotes relational expression descri-
bing states on resource r input positions, which cause
its action. This form of control expression enables
associative approach to control.

Determine characteristic function fE for E,

fE:A———Bool

o178
where A stands for subsystem’s states and Bool
determines {0, 1}

Characteristic function fE will be interpreted as
decision function since its value decides about resource
r activation. Implement resource r function f with
controlled function g as described in section 2. Join
functions fg and g Into a pair. Collection of such pairs
determined for each system’s resource enables system
behaviour and its structure reconstruction,

Figure 4.1 illustrates a distinction between the
initial system and the system determined with collection
of pairs decision function, controlled function.

resaource r

copy of
subsystem states

Figure 4,1: Distinction between systems

Define in A equivaience relation such that all states
which activate the same subsystem’s resource and
resource r belong to the same equivalence class. Actually,
more than one resource can correspond to particular
equivalence class. Denote the set of equivalence classes
with A/R and define bijective function from A/R to Q,
where Q stands for the set of states. Based on each
state q from Q it can be uniformly determined which
resource(s) have to be activated as a consequence of
this state, because bijective connection between A/R
and Q. .

Assume q from Q corresponds to equivalence class
of states which causes resource r activation. Decision
function corresponding to r can now be defined on set
Q. To identify, when state q is active, what means that
corresponding subsystem is in state which activates
resource r, state transition _function fs : Q—+-Q is
defined. It imitates subsystem state transitions from
initial state to state corresponding to state q.

This model of control can now be expressed with
the relations,

fs(s)=q, fE(q)=1, gll, Xyr enes xm) = f(x1, e, xm),

where s is the state preceeding state q, fe is decision
function, and g is controlled function corresponding
to resource r function f.

Process of control as describéed above, can be
defined for arbitrary system resources. There are no
restrictions to {imit it to a single state transition function.
Extension of the model that state transition function’
enables n-way branching including loop control is
relatively simple and will not be considered here. State
approach to control is not the only one that can be

developed based on decision function. In fact, as far

11

as recognized all popular control strategies and
combinations of them can be developed on that base.
One can easy recognize that if parts of control
conditions are not necessary strictly distinct. This allows
their logic composition, what results in decision function

of the form,

k

f.: A—=Bool , k>1.,

E

More than simple resource can be controlled with
a decision function and consequently more resources
can be controlled with state transition function as
mentioned earlier.

A pair decision function, controlled function
enables structuring. A set of such pairs which determines
the system can be partitioned to disjunctive subsets.
The same effect can result from system partition on the
set of disjunctive subsystems.

System integration based on its arbitrary partition
can be realized in more different ways. Before do this
we have to develop object transfer functions and memory
functions. Transfer functions realize object transfer
between positions, while memory functions assure that
objects retain particular positions so long as determined
with control structure. '

4.1 Transfer functions

Flow of objects between two arbitrary subsystems
separated with a partition can be implemented with
selecting and distributive functions.

Assume a subsystem which has to be connected to
another subsystem over positions Pys ess o P - Denote
sets of objects corresponding to positions with
Ryo vee s Xppo and let X=X U...UX..

Selecting function T is defined as,

T: NxX x...xxn~—x

1

— . X, 1ign
W, Xg0 oae) X0 = {

undef, otherwise,

The set of natural numbers N above can be replaced
with arbitrary linearly ordered set. Indexes of
Xiroes o Xy become objects of such set. Linear ordering
can be avoided if selecting function is defined in tabular
form. Both approaches to define selecting operation can
be mixed. Levels of indirection can be built to the above
definition to determine particular position of n-tuple.
Figure 4.2 shows controlled object - flow graph of
selecting function.

12

subsystem

Figure 4.2: Controlled object - flow graph of

selecting operation

Distributive function delivers objects obtained from
selecting function to prespecified positions of a sub-
system.

Distributive function is defined as,

3:NxX—=Y x..xVY

y
{uncef,..., x, ..., undef) ,yi= X,

(Yqeeeer Y)= 8 (jix)= 1<jKm

undef, otherwise.

Variables Yir coor Y correspond to subsystem input
positions. Pair (i,j) determines a path from output
position of one subsystem to input position of another
subsystem. Composition of T and & can then realize
arbitrary connenction between subsystems.

Figure 4.3 shows controlied object - flow graph of

distributive function.

subsystem

Figure 4.3: Controlled object - flow graph of

distributive function

Selecting and distributive functions can be composed
to realize arbitrary complex networks, which are capable
of transfering specified amount of objects in time and
space.

More requests for transfer than transfer paths
available can exist simultaneously. Such requests are
paid with appropriate time - space partition of transfer.

Selecting and distributive functions are not the

only transfer functions possible. However, they are

4 Recall a no object situation described in section 2.

sufficient to implement arbitrary connection between
two subsystems. They can be decomposed and expressed
with controiled function defined in section 2.

4.2 Object representation in recursive domain

Let X be a set of objects to be represented in
recursive domain. This representation is achived with
function,

f:NxX—X
f{i,x) =y

Pair (i, x) is represented with the notation x'.

N x, n, {i¢n,, n,, n, from N
”x;)={ 1 2 1 2

undef, otherwise.

The value of x is represented in domain which is
linearly ordered set. Because of simple notation the
set of natural numbers was selected, otherwise a set
of states can be used, since it is linearly ordered with
the state transition function.

In the real systems objects may have the ability
to retain particular position - objects in mechanical
systems for example have such property. However, since
this is generally not true memory property have to be
assured for objects not having this property.

It is defined in recursive domain with the function,

f:Nx X—+=NxX

yi+1 = (xi) = xl,

i <n,.

In the language of state transitions it has the ability
to assure object position from current state to next
state.

This limitation can be removed with memory function

control. Let p be the value from Bool of decision

function at i from N. Then,
i .
. . . x,p=l, nCi<n
y* = op! o, yh = { P 1 ?
Y., p=0, n1(i< n,.
i_ . i+k

For k > 1 and p= 1 for particular i only, y

have the value of xi, if itk < n,.

Extension to represent an object in time domain is
straightforward and will not be considered here.

4.3 Function representation in recursive domain

System’s behaviour can be represented in recursive
domain when its functions are transformed to this domain.
Similar extension in representation can be developed for
time domain, continous or discrete. This allows synthesis
in time domain.

13

Let f : Xlx vee X xm—— Y be a function to be

represented in recursive domain.
Define object interpretation functions,

h,: N x X

T 1 -x...me

X aes X Xm——> X.l

h1 (i, Xqr ooy xn) = (xl, v xm).

. T | i
Represent (i, Xqseeer xm]f with (x1,..., xm), and

define

i i (x1_,...,xm); n‘lg1<n2
h1 (x1,..., xm) = .
. undef ; otherwise.

hZ:NxY—bY

hy (i, ¥) =y

Represent pair (i,y) with yi and define,
s y n, <ig n,

h, (y') = {
undef ; otherwise.
Function f can now be represented in recursive domain

with function g,

g:NxX1x...me——NxY

g (i, x4, oo, %) = (i+1, y) or,

m
i -
m) =Y
i {f(xi,...,xm) M

g(xi1,..., X i+

nl(i<n2

vee, X)=

i
9 (xll' m

undef ; otherwise.
Function value is determined with i+1, while domain
values are. determined with i. This assures memory
property. In fact, function g is a composition based
on function f and memory function. If defined as
controlled function its value can be retained arbitrary
long. Figure 4.4 shows controlled object - flow graph
for such case.

Figure 4.4:

Controlled object - flow graph for

controlled implemeritaiion of g

With the above developments we have minimal tools to

define basic structuring concepts.

4.3 Distributive structuring

Assume a system determined with the pairs decision
function, controlled function at an arbitrary level of
representation. Define a partition of pair set. Each
subset of the pair set determines a subsystem, un-
connected in general. Define at least one input and at
least one output position for each subsystem. Select
two arbitrary subsystems and determine all connections
between them with. regard to unpartitioned system.
Between subsystems define transfer functions to
reconstruct connections determined with unpartitioned
system. At this point representation should be changed
to recursive domain In general, since resource sharing
is introduced. A sketch of the above development is
shown on figure &.5.

subsystem ! subsystem 2

connections to be implemented
between subsystems

copy of

subsystem’s
state
Figure 4.5: A sketch for subsystem connection -

The process of developing connectlons is repeated for
all subsystems. Analogous approach is used to develop
connections with theé system environment. With the
insertion of transfer functions which are compositions of
selecting, distributive and memory fuctions additional
system states are introduced. Decision function which
controls particular resource should take this into
atecount to retain compatibility.

Distributive structuring results in a system
organized around more or less tightly connected sub~
systems and preserves the behaviour of the initial
system. Figure 4.6 shows a simplified example of a
system distributively structured. '

bus

Note: Control structure is not shown.

Figure 8.6: Example of distributive structuring

4.5 Hierarchical structuring

Assume a2 system represented with a set of pairs
decision function, controlled function. Define a partition,
such that each subsystem determined with it is connected.
Determine a copy of all those positions, which with the
system partition decay to input and output positions.
Those positions are actually subsystems’ input and
output positions. Each copied position will be during
structuring process connected to corresponding sub-
systems’ input and output positions.

For each pair consisting of input and output
positions determined with the partition and corresponding
copied position define transfer function, which enables
object transfer from output position over copled position
to input position. To connect two subsystems over
corresponding copied position;.s a composition of selecting,
memory, and distributive functions is generally needed.

Since objects on copied positions represent system’s
state at higher level of representation than the initial
representation level the behaviour of hierarchically
structured system can be interpreted in the context
figure 3.5. Transfer functions can namely be completed
with object abstraction and interpretation functions.
This assures compatibility in representation levels,

The approach to hierarchical structuring can be
upgraded to state hierarchy, which is similar to memory
hierarchy in contemporary systems.

Similar as with distributive structuring transfer
functions introduce additional system'é states. Because
of this decision functions, which control the execution
must be appropriately modified.

Figure 4.7 shows a simplified example of
hierarchically structured system.

copied apparent
positions

controlled
transfer

functions

states

subsystem 1 subsystem 2

Figure 4.7: Example of hierarchical structuring

Both structuring techniques can also be applied on
system’s control, transfer, and memory structures,
Distributed and hierarchical structuring can be combined
and applied at arbitrary system representation level.
As far as recognized, the proposed structuring
techniques are sufficient to model arbitrary system
architecture. They were developed for all representations
given In section 2. To structure a system in particular
representation this can be done without representation
change. Since structuring allows resource sharing,
system’s synthesis can respect cost and performance
requirements. Based on the given approach to structuring
system’s synthesis and software development cannot be
separated since they are tightly connected with
structuring. This gives at least theoretical possibility
for automatic software development. On the other hand

- highly structured systems can be developed without

any control code or software in the usual meaning.

5. CONCLUSION

Review of system’s synthesis process Is given.
Since this topic is very extensive this presentation is
focused on these domains estimated as significant.
However, domains determined with real - time, fault
tolerance, and intelligent behaviour paradigms were
completely avoided in the presentation. This does not
mean that systems from these domains cannot be
developed within the proposed context. In contrary,

some significant practical results were obtained in the
synthesis of hard real - time systems and fault tolerance
in the domain of industrial process control systems. At
the same time it was shown that structuring is still very
controverse notion with diverse span of significance,
although it is more or less clear that hard real - time
and fault tolerance paradigms-"are of littie use in lousy
structured domains. Similarly, fault tolerance cannot be
a compensation for poor system design. Those were
some of the reasons why structuring was givén such
attention in the presentation.

Since it becomes more clear, that differences
caused with separate development of software systems,
software engineering, artificial intelligence, knowledge
engineering, etc., are caused mainly because of diverse
views to problems and that their solution can only be
achieved with multidisciplinary approach, latest efforts
to avoid such situation result in systems engineering
approach.

Based on this approach, systems which are capable
to learn particular behaviour, analyse it and construct
systems that behave equivalent can be synthesized,
based on the proposed approach to the synthesis process.

6. REFERENCES

1 K.M. Kavi, B.P. Buckles, U.N. Bhat
A Formal Definition of Data - Flow Graph Models,
IEEE Trans. -on Computers, p. 940-948, No. 11,
Vol. C-35, Nov. 1986.

2 K.M, Kavi, B.P. Buckles, U.N. Bhat
Isomorphism Between Petri Nets and Dataflow
Graphs, |EEE Trans. on Software Eng.,

p. 1127-1134, No. 10, Vol. SE-13, Oct. 1987.

3 M. Gerkes .
Structures and Models, Resource Interconnection,
Functional Behaviour, and Control, Rep_ort,
Metalna, 1988.

4 M. Gerke$
Funkcionalno modeliranje sistemov, Strukturiranje,
Porotilo, Metalna 1988.

15

