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A B S T R A C T : 

Complex systems' synthesls becomes a bottleneck of production 

process. Some researchers denote this situation as crisis, others as "crisis". 

Hovvever, compIex systems' synthesis especially those, which cannot be 

implemented within part icular technology domain is an open problem. 

The contr ibution gives a collection of procedures, developed with 

integration and some inovations of classical procedures and more advanced 

procedures. As a resul t , synthesis process can be based on abstract ion, 

hierarchical decomposition, and s t ruc tu r ing , while its derivat ion is nested 

in actual technological context, expressed through requests synthesized 

solution must sat isfy . 

POVZETEK: Sinteza v domeni kompleksnih problemov 

Sinteza kompleksnih sistemov postaja vedno bolj ozko gr lo produkc i j ­

skega procesa. Nekateri raziskovalci označujejo to stanje kot k r i zno , d rug i 

kot "k r i zno" . Kakorkol i , problem sinteze kompleksnih sistemov, posebej 

t is t ih , ki j ih ni možno rešiti v domeni posamezne tehnologije, je dokaj o d p r t . 

Prispevek podaja skupek postopkov izpel janih, z integracijo in nekaj 

inovacijami, iz klasičnih postopkov in sodobnih postopkov sinteze. Kot 

rezultat lahko postopek sinteze gradimo na osnovi abstrakci je , hierarhične 

dekompozicije in s t ruk tur i ran ja , njegovo izvajanje pa je vgnezdeno v kon­

kretn i tehnološki kontekst izražen v obliki zahtev, ki j ih mora izpolnjevati 

reš i tev . 

I N T R O D U C T I O N 

Situation in high technology domains like C I M , 

flexible manufactur ing, software, computer archi tectu-

tes, V L S I , e t c , seems similar regarding the requests 

for more eff icient synthesis methods. For economic 

reasons synthesized solutions must be completely valida-

ted before manufactur ing. A single er ror can cause 

exponential growth of operations to dispatch i t . This 

calls for formal correct synthesis methods. 

Complexity is common characterist ic of systems in 

the above domains. It causes an enormous amount of 

operations, before the synthesis goal can be satisf ied. 

Most of the contemporary synthesls methods seem to 

fail because of their too close technological or ientat ion. 

Rapid technology development disables eff icient 

synthesis tools to be developed for each part icular 

technoIogy. Even if this is possible, there wlll stil i 

remain the problem of systems impipmented in d iverse 

technologies. 

This clearly calls for synthesis methods, which will 

be technoIogy independent and conceptualized on 

complexity and functionaIi ty issues of contemporary 

and advanced systems. 

This contr ibut ion is based on system orientation 

to the synthesis problem, where c u r r e n t technology 

sets limits regard ing system's functionali ty and s t ruc -

t u r e . Such an approach allows that technoIogy based 

descriptions are completely avoided unt i l the solution 

representation level . Altough technology sets very 

exact limits dur ing the synthesis process, technological 

objectives are not expressed explicit ly, but reflect in 



system st ructure and funct iona l i t / . 

An approach to synthesis is used, whlch is based 

on abstract system representation transformed through 

li ierarchical decomposition and s t ructur ing to its counter-

p a r t , the solutlon. Abstraction and hierarchical decom­

position have long been recognized as a means, which 

enables complexity reduction on one side and problem 

decomposition to severa! subproblems of lower complexity 

on the other side. 

S t ruc tur ing as a means to čope with complexity is 

more controversial and it seems there is no unisonous 

agreement about i t . 

Hovvever, combining abstraction and hierarchical 

decomposition in the synthesis process assures only 

that the initial and subsequent system structures are 

replicated and impressed In solutlon system s t ruc ture . 

On the other hand it is well knovvn that contemporary 

systems are supported with an enormous amount of 

software, vvhich directs their actions and is a str ict 

consequence of systems' s t ruc tu r ing . To visualize this 

we can imagine that softvvare through executlon connects 

an object-f low graph that corresponds to problem 

st ructure and behaviour . This means that s t ructur ing 

is already extensively used in system design. 

VVith respect to system represented with uncontrolled 

object-f low graph s t ructur ing requires three additional 

system s t ructures . Its control s t ructure directs sub-

systems , vvhich can be at lowest representation level 

represented with uncontrolled object-f low graphs , 

connected in space and tirne. Part icular strategy of , 

control used is of secondary importance. Its memory 

s t ructure assures object val idi ty dur ing controlled 

execut ion. Transfer s t ructure del ivers objects to sub-

systems' inputs . Both memory and t ransfer structures 

are under control of control s t ruc tu re . Those s t r u c t u ­

res are usually part i t loned throughout the system 

follovving the principles of d istr ibut ion and h ierarchy. 

More intensive s t ruc tur ing results in complex control 

scheme, vvhich Is usually but not necessary expressed 

in a form of control code or software. Making softvvare 

more close to human comprehension capabilities does 

not change its na ture . Hovvever, it is interesting that 

s t ruc tur ing does not necessary impose any control 

code or softvvare. 

This point of view allovvs that control code or 

softvvare are determined as s t ructur ing side product . 

This is a conclusion, vvhich sounds quite heret ic , 

hovvever, it gives at least theoretical possibil ity for 

automatic softvvare development. 

Basic s t ructur ing concept can be explained start ing 

vvith a system with uncontrolled flow of objects. Observe 

that not ali resources of such a system are active 

simultaneously. Assume a system in vvhich resources 

are disconnected and a control mechanism, vvhich is 

capable to connect them in tirne and space. Under 

certain conditions behaviour of both systems can be 

identical . 

This simplified descript ion, s t ructur ing is based 

o n , should be completed vvith an observation that identical 

system resources can be shared when appropr ia te . To 

take advantage of this possibility system s t ructure have 

to be completed vvith memory and t ransfer s t ruc tures . 

I f the behaviour of a system have to change, its 

control functions vvhich determine resource connections 

will be approprlately modified. The simplest way to do 

this is through program memory, which is a par t of 

system's control s t ruc tu re . 

Even when we look to softvvare as problem 

descr ipt ion, system should be capable of its recognition 

and physical system restoration to solve the problem. 

A possible way to do this Is that problem is represented 

vvith problems solvable with physical system resources. 

Hovvever, this introduce st ructure that have to be 

implemented vvith physical system in isomorphic way, 

d irect ly or vvith appropriate tirne and space par t i t ion . 

System synthesls can now be conceptualized based 

on the problem expressed In a form of abstract system. 

vvhich have to be transformed through hierarchical 

decomposition and s t ructur ing to a solution, a system 

expressed vvith resources and st ructure that can be 

implemented in physical .vvorid. 

Problem 5olvability seems to be in t igh t connectlon 

vvith its representat ion. Di f ferent representations can be 

used to express part icular view on the problem. They 

are equ iva len t In the sense that they cxpress the same 

behaviour in d i f ferent ways. Synthesis procedures 

proposed are def ined for each representat ion. Change 

of one representation to another is order ly developed. 

1 . OVERVIEVV OF THE SVNTHESIS PROCESS 

Problem specification consists of two p a r t s . 

Problem definit ion par t determines an abstract system 

for vvhich the synthesis process have to determine a 

solution expressed in the form of physical system 

specification to be implemented in predetermined 

technology domain. Behaviour of physical system can 

be recognized as behaviour of abstract system merely 

through the use of suitable abstract ion, otherwise no 

relation exist5 betvveen the systems. 

T h e rest of problem specification sets requests for 

the solution. Tvvo classes, called the solution classes 

are determined based on the requests. Resource class 

consists of resource specifications, physical system 

should be bui l t of . Resources determined vvith the 

resource class are general ly composed and can be 

represented vvith resource structures of knovvn behaviour. 

This usuaily allovvs resource class s t ructur ing through 

suitable relat ions. Abstraction through equivalence 

relation regarding resource behaviour reduces represen­

tation complexity and allows unnecessary detalls to be 



neglected at earlier synthesis steps. More sophisticated 
abstraction procedures to reduce representational 
complexity are described in section 3. 

Structure class consists of abstract resource st ructu-
res. Physical 5ystem structure and its abstractlons 
should be isomorphic to structures bulld of structures 
from structure class. Structure class is partial ly orde-
red wlth regard to substructure relat ion. Its represen-
tatlon complexlty can be reduced through structure 
abstraction. Structure class can be empty. From the 
syntliesis point of view this means that no structure 
requlrements are set regarding the solution. 

Intu i t ively, abstract and physical systems can be 
delimited with the notion of distance, which Is a measure 
proportional to the number of synlhesis steps required 
to reach the solution. Its numeric determinatlon prov i -
des estimate about problem complexity - P, NP complexity 
as the roughest measure, for example. An argument 
will be given to show that the synthesis problem 
belongs to the domain of NP - complete problems, in 
general. 

Init ial synthesis steps must assure the match 
between problem and an abstract solution derived from 
solution classes. The match is found through structures' 
isomorphism and identical behaviour of corresponding 
resources. Further problem abstraction and structur ing 
may be needed to assure it In explicit or implicit way. 
It is assumed. that some generic l<nowledge about 
problem solvabHity in the context of both solution 
classes is availabie. In the opposite čase problem can 
be solved with an exhaustive search only. Thls is 
probably the strongest reason why a Itind of systematic 
frame for the synthesis process is needed. 

Synthesis procedures cannot be deterministic 
because of partial orderlng of structure class. Structure 
limitation can play a dominant role In limltihg the 
number of synthesls steps. The other l lmiling factor 
for the synlhesis step count can be searched for in 
resource class. Resource class consisting of resources 
with simple behaviour characteristics will necessary 
complicate the synthesis. VVith proper problem st ructu­
r ing and composite resources bui l t of resources from 
resource class this problem can be reduced. However, 
the effect of this depends on knovvledge about problem 
characteristic propert ies. 

Synthesis process can be stated as a combination 
of hierarchical problem decomposition and s t ruc tur ing . 
Hlerarchical problem decomposition is a process basically 
opposite to abstraction. In our čase it consists of 
refinement and interpretation processes. With its 
application problem is stepwise decomposed to a structure 
consisting of mutually dependent subproblems each of 
them have lovver compIexity with respect to the initial 
problem and subsequent subproblems obtained at 
earlier decomposition steps. This increases problem 
structure complexity and causes a consequence that 

structures of higher problem representation levels are 
replicated at lower representation levels. Applying 
structur ing to arb l t rary intermediate representation 
level results in structure change, vvhile preserves 
representation level and behaviour. 

Since hierarchical decomposition preserves s t ruc tu ­
re and st ructur ing preserves representation level i t is 
clear that requlrements expressed through solution 
classes can be met only i f both hierarchical decompo­
sition and st ructur ing are applied dur ing the synthesis 
process. 

Synthesis process can be recognized as partial 
orderlng relation between problem, intermediate 
Solutions, and solution, vvhere the solution or solutions 
are those intermediate solutions, which satisfy requests 
expressed through both solution classes. 

To f ind a path between -problem and solution and 
to avoid searching over the whole partial ly ordered 
structure of possible intermediate solutions, decisions 
based on their properties can drive the synthesi5 
process. A minimal condition for an intermediate solution 
to be accepted for fur ther synthesis is that i t can be 
expressed with the objects of both solution classes. 
Different synthesis strategies can be used to determine 
the synthesis process. The simplest one and probabiy 
the less useful is one, vvhere hierarchical decomposition 
to the resource class representation level is done f l r s t . 
This intermediate solution Is then structured to assure 
compatibility with objects from structure class. However, 
st ructur ing can become a task of excesslve complexlty 
within this approach. To avoid such situations, hierar­
chical decomposition and st ructur ing are combined 
dur ing the synthesis process. This assures manageable 
subproblems' complexity. 

Applying s t ructur ing and abstraction to both 
solution classes match between intermediate solution 
and structure consisted of objects from both solution 
classes can be found at each intermediate representation 
level. VVhen such a match can be found between an 
intermediate solution and a structure consisting of 
objects from both solution classes without any abstraction 
such intermediate solution is accepted as a solution. 
Structures' isomorphism and identical behaviour of 
corresponding resources assure system5' equivalence. 

2. REPRESENTATIONS 

Different views can be applied to represent the 
same system. In conventional one system Is represented 
as a strCicture of interconnected resources with known 
behaviour. For system behaviour representation i t is 
interesting to represent resource inputs with input 
positions and its outputs with output positions. 
Positions represent perception points from which object 
flow is oriented toward the resource or from i t . For 



two connected resources corresponding position plays 

doubie role. I t is output position for one resource and 

input position for the other . Labelled bipart l te directed 

graphs are suitable abstraction for this view on system's 

s t r u c t u r e . System's behaviour can be represented with 

the behaviour of system resources. Based on resource 

positlons collection of objects flovving to and from 

resource can be determined. Each collection corresponding 

to f iart icular resource has objects represented with •. 

m -t- n tuples corresponding to objects on input and out ­

put resource positions. Such a collection can n a t u r a l l / 

be represented with function or re lat ion, depending 

whether resource reacts to the same input In deterministic 

or nondeterministic way. Relation betvveen functional 

and relational resource behaviour vvill be clarif ied later. 

in this section. 

Dur ing the synthesis process more attention can 

be given to system s t ructure since its behaviour 

remains the same throughout this process. For this 

reason resource st ructure can be represented neglecting 

positions in system s t ruc ture . 

Def in i t ion: Resource s t ructure is labelled directed 

graph C = ( V , E ) , where V = { v . , . . . , y } is a set of 

resources, and E = { e . , . . . , e } c V x V is a set of 

resource connections. 

Resource labelling is defined with functions which 

assign labels to resources and connections and enable 

system behaviour recognit ion. 

Returning to the initial system model represented 

wlth b ipar t l te directed graph it can easy be recognized 

that this representation is In close connection vvith 

data-f low graphs defined in C l ] , [ 2 ] . In our čase 

modificatlon of this definit ion will be used for represen-

t ing system's st ructure and behaviour. 

Def ini t ion: Controlled object-f Iow graph is labelled 

bipart l te directed graph C = ( A U L U K , E ) , L fl K = O, 

A = { a . , . . . , a } is a set of actlon nodes, and 

LUK = { l . , . . . , l , k „ . . . , k } is a set of l inks, vvhere 

K = { k . , . . . , k } is a set of control l lnks . 

E C (A X (LUK) U (LUK) x A) is a set of branches 

defined so, that the follovving restrict ions are satisfied, 

( a . , 1^) e E £. ( a . , 1^) € E = - , . a j = a. , 1^ e LUK, 

<'k' ^ i ' e E t ( 1 ^ , . a.) e E = ^ a, = a j , 1^ e L U K , 

1 < i, j < m, 1 < k < m + r . 

Two kinds of behaviour can be assigned to action nodes 

of controlled object-f low g r a p h . One is represented vvith 

funct ion, the other vvith controlled funct ion. In the 

f i n al čase action node: must ha ve at least one input 

control l ink . 

Y be a function defined 

on knovvn sets X . , . . . , X , Y . Controlled function g 

for function f is a funct ion. 

F igure 2 .1 shovvs controlled object-flow graphs for 

functions f and g . 

Let f : X , x . . . x X • 
1 n 

Figure 2 . 1 : Control led object-flow graphs for functions 

f and g 

To avoid confuslon Instead of g ( 0 , x , , . . . , x ) = undef 
I n 

we can deflne g ( 0 , x . , . . . , x ) = z , z e Y U { z ) . 

Object z has d i f ferent Interpretat ions in d i f ferent 

implementation situations. In electronic systems it can 

be used to represent a high impedance condit ion, for 

example. In genera l . I t represents no object or no 

act iv i ty situations. 

The notion of controlled function can be extended 

to more sophisticated cases of controlled execut ion. 

Examples can be found in section 5 . 2 . One fur ther 

example is provided below, 
g : A X X^ X . . . X X — • Y , A = { a . , . . . . a } 

g ( a . X X 1 = . ! . ' " ^ 

l^mt''! ''n5'« = V 

g : Bool X X ^ x . . . x X ^ »• Y , Bool = { 0 , 1 } 
r f ( x . . . X ) ; p = 1 

g ( p , x , , . . . , x ) = - ^ ' . 1 
^ *^' r n ' L undef ; p = 0. 

Hovvever, it can be shown that they are expressibie 

within the Initial definit ion of controlled funct ion. The 

notion of controlled function allows formal connection 

between controlled object-f Iow graph and control-flov» 

g r a p h . 

Def ini t ion: Control f1ow graph Is labelled bipart l te 

directed g raph G = ( Q U A , E ) , vvhere Q = { q . , . . . . q ^ } 

Is a set of States, and A = { a . , . . . , a V Is a set of 

function nodes. E £ ( ( Q x A ) U ( A x Q ) ) is a set of 

branches. 

System's behaviour expressed through control 

flow graph is based on state concept. Particular state, 

vvhen recognized active, f i res corresponding functions. 

Th is situation is ef fect ively modelled vvith a pair, consisting 

of decision function and controlled funct ion, vvhich Is 

f i red vvith decision funct ion 's va lue . Section 5 gives 

more detail about this tople. 

To allovv change of representation dur ing the 

synthesls process conversions betvveen the above 

representations are de f ined . To Increase synthesls 

f lexibl l i ty they are of one - to - many t y p e . 

Conversions betvveen resource s t ructure and 

controlled object - fIow graph a ^ based on g raph 

Isomorphism vvith delet lng or Insert ing l lnk nodes. 

Hovvever, those conversions are usually applied vvIth 



s t ruc tur ing , what makes correspondence between struc-

tures less expl ic i t . 

Conversions between controlled object - flow graph 

and control - fIow graph are less evident. Figure 2.2 

gives an example of controlled object - flow graph to 

control - flow graph conversion. Formal basis for those 

conversions Is given in section 5. 

Figure 2.2: Example of controlled object - flow graph 

to control - flow graph conversion 

Nodes of control - flow graph marked with Xare inserted 

to increase readabll i ty. From the formal point of view 

they are not necessary. 

To describe system's behavlour production rules 

expressed wlth if then ciauses can be used. We will 

show that such system descriptions can be converted 

to controlled object - flow graph descriptions and vice 

versa. 

Origlnally conditlonal statements are used to 

represent if then ciauses. 

Take R ( x . , . . . , x ) Q ( y i , y^ ) as an 

example. Define characteristic functions for R and Q, 

h ^ ( x T ••• ' V = { 
1 ; R (x^ x^) 

"-•' Q(vi yJ r = h Q ( y , , . . 

Implement h_ with controlled function g _ , 

q = 9 Q ( P . r, Y^) 
^ 1*^0'Vi Yj; P = i 

•• 1 ; p = 0. 

It can easy be veri f ied that p, r, and q determine 

t r u th table for conditlonal. Corresponding controlled 

ob ject - flow graph is shown on f igure 2.3. 

controlled identical 
function 

Figure 2.3: Controlled object - flow graph representing 

conditlonal ciause 

Thls representation allovvs inference processes' 

modelling in functional Way. 

Model of condition - action rule can be developed 

vvith slight modification of the above construction. 

Let R(x^, . . . , x^) — • Q ( x ^ , . . . , x ^ , y ) , and 

Q(x, x^. y) < = * (y = f ( x , , . . . , x ^ ) ) . 

Define characteristic function h for R, which defmes 

doma in of f . 

P = h(x 
1 ; R ( x ^ , . . . , X ) 

U ; R(x, x j 

and implement f with controlled function g 

f f(x, 
9(p. ^•^ x^) = I 

f(x,, . . . , x„) ; p = 1 

undef p = 0. 

Controlled object - flow graph that corresponds to the 

above construction is shovvn on f igure 2.4. 

R {X, .T7T^7 



Figure 2.H: Controiled object - flow graph representing 
condition - action rule 

It is Interesting to note that observing beiiaviour onIy 
on input and output links of a graph we are not able 
to ldenti fy whietlier function f is implemented direct iy 
or with function g . 

VVhen dealing vvith systems it is usually presupposed 
tliat resources behave functionally. For systems described 
wlth reiational connectives the above assumption may 
not be t r ue . A tninor modification allovvs that resources, 
wh!ch express reiationai behaviour can be treated in 
functional or reiational way depending on point of view 
used. Since the completetreatment for arbi t rary relations 
is relatively extensive, we wlll limit this presentation to 
binary relation R(x ,y ) , which is part lal ly closed wlth 
object a, R(a ,y ) , 

i * (x ,y) 

a b| 
a b. i+1 

a b, +i 

a b, 
i+n 

Applying object a to a resource, which behaves corres-
ponding to R, its response will be nondeterministic 
since i t can delivers any object from b., b.^., . . . ,b j^ 
to its output position to satisfy R. 

The behaviour of a such resource can be represen-
ted in functional way, i f resource response is determined 
with a sequence function replacing R. Sequence function 
determines the order in which resource reacts with 
output objects to the same input determined with object 
a. Figure 2.5 gives tabular definit ion of sequence 
function and correspondlng controlled object - flow 
graph for this čase. 

k 
X 

a 

a 

• 
a 

y^-' 

•̂ i 

V i 
• • 

" i .n 

V^ 

V i 
•"1+2 
. . . 

' ' i 

Figure 2.5: Tabular definit ion of sequence function 
and correspondlng controlled object - flow 
graph 

Identif iers 1 through 5 stand to identify functions fork, 
decision Boolean functions, controlled identical functions, 
function join, and memory funct ion. Functions fork 
replicate input objects, decision Boolean functions 
control correspondlng identical functions to deliver 
particular object b.^. to function jo in, which is a t res-
hold function and delivers object b. . to output l ink . 
Memory function assures necessary delay. Assumption 

k-1 IS made that y has allways a value from b , , . . . , b . . 
Two notes are necessary about the above presentation. 
First, i t Is simpllfied to serve conception presentation 
only, and second, sequence function can be defined in a 
number of di f ferent ways. 

3. REFINEMENT AND INTERPRETATION 

Using abstraction representatlon complexity can be 
reduced to a manageabie level. During the synthesls 
process the situation is reversed, complexity grows, 
since this process Is baslcally opposite to abstraction. 

Assume a solution system represented with resource 
structure and resource behaviour. Using a substructu-
re relation to determine an arb i t rary substructure 
observe that its behaviour can be described vvith 
collectlon of objects which correspond to its Input and 



output positions. This enables that substructure is 
replaced vvitli a resource having input and output 
positions that correspond to substructure input and 
output positions. The replacement causes lower system 
structure complexity-

Representing the systeni in each possible way with 
replacing substructures with resources while preserving 
thelr input output behaviour results in a class of 
systems with different structures and the same input 
output behaviour. 

An important hypothesis can be made at this point. 
Systeni structure abstraction has sense only if the sub­
structure behaviour can be expressed with its input 
output behaviour . Represent collections of objects 
vvhich determine resources' behaviour with tables and 
assume they are of f inite leught. Resource behaviour is 
represented with single table, while resource substruc­
ture behaviour is represented with a structure of inter-
dependent tables. Select a pair resource, resource 
substructure wlth identical behaviour. The question 
arises vvhether the structure of interdependent tables 
can be devetoped based on the Information obtained 
from single table. 

Results of empirical study show that this is 
possible. However, for a formal prpof of the above claim 
additional research is needed. 

Results of mentioned study show that refinement 
based on the above concept is generally NP - complete 
problem since lower complexity bound grovvs exponentially 
with the number of table entries in non - t r iv ial cases. 
Refinement is nondeterministic process that can be 
automated. Automatic algorlthm development is possible. 
Controlled functlons are necessary to obtain ali possible 
refined versions of part icular funct ion. Refinement can 
be done on uncompleteIy specified tables. I f this causes 
a lose of significant Information, obtained algorlthm will 
not be optimal. 

Example 3.1 gives tabular refinement for selected 
čase of b!nary addition and corresponding controlled 
object - flow graphs, which have no control links for 
this čase. Only one path of the whole refinement 
process is presented. 

Loops and clrcles in resource substructure can 
introduce additional substructure inputs and outputs 
whlch are local to i t . 

Example 3.1 
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Table T represents binary addition decompose to tables 
T . , T j , and T , , what results in the folIowing controlled 
object - flow graph. 
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T . becomes T^. after 
deleting redundant entries. 



Corresponding controlled object - flow subgraph Is 

reduced as represented belovv. 
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T , is decomposed to T , , and T . . . 

Corresponding controlled object - flow subgrapli is 

refined as represented belovv. 
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Controlled object - flow grapli obtained after refinement 

of T . , T - , and T , is given belovv. 

Because of close relation between tabular and expres-

sional function representation, tlie former can t>e 

thought of as tabular structure abstraction. Refinement 

procedures are generally developed for express!onal 

function representation. Since this type of refinement 

is widely known its presentatlon will be avoided. 

3.1 Function refinement 

This subsectlon states conditions that have to be 

satisfied wlth function refinement. Figure 3.1 shows 

graph of relations and controlled object - flow graphs 

for functions f and g, vvhich is composition of functions 

T 
g obtained through refinement. Refined 

function g and initial function f have to satisfy the 

relation f = h 

functions. 

o g o h, = g, and h-, h, are identical 

Refinement of T j Is analogous to the refinement of T , . 

The result is. 

^31 " ^21 ' 



A-X . . . X A » B,x . . . X B 
1 m 1 n 

A X . . . X A „ B,x . . . X B 
I m g 1 n 

Figure 3 . 1 : Function refinement 

Dependent of actual representation defined in section 2 

function refinement is completed with corresponding 

graph ref inement. Procedures for them can be found 

in [ 2 ] , [ 3 ] . 

Refinement can be thought of as a čase of in ter -

pretat ion. However, we will give onIy basic definition 

and neglect this possibi l i ty. 

Figure 3.2 shovvs graphs of relations and corres­

ponding controlled object - flovv graphs when In te rpre -

ting function f with function g . 

f 
A.x 

^ 

C,x 

. . X A — 
m 

. 

. . X C 
m 

— • B X . . 

. 

" D,x . . 

. X B 

1 

. X D 

VVhen in terpret ing function f with function g the 

relation f = h , o g o h - , where h . and h , are surjec-

t ive and poss ib i / part ial functions must be sat isf ied. 

Functions h. and h - assure compatibiIity with the 

environment. They can be 5tepwise removed with 

interpretat ion of environmental funct ions. 

Since h~ is general ly relation thts can cause 

formal inconsistency wlth controlled object - flow graph 

behaviour. Since h- can be represented with sequence 

function as l l lustrated In section 2 this čan cause no 

serious problems. On the other hand h . and h . can 

be stepvvise removed as mentioned above. The inconve-

nience can be avoided vvhen h. is bi ject ive. 

3.2 Object interpretat ion and refinement 

Unti l now objects were considered as integral 

uni ts . However, for the reason of eff iciency such 

observation is too res t r ic t ive . To avoid th is , object 

representation can be adapted to problem representation 

level , 

ln tu l t ive ly , an a r b i t r a r y object composed of several 

objects can be viewed as integral unit or as a s t ructure 
2 

of objects positionally determined. In f i rs t čase the 

fact that object is composed is neglected. Several 

objects must satlsfy some known relation which determine 

their mutual positions to be recogntzed as integral unit . 

To represent such structures n - tuples are used. 

Object refinement and interpretat ion are defined 

in connection with corresponding system's functions. 

Figure 3.3 shows a g raph of relations and correspon­

ding controlled object - flow graphs when ref ining 

objects of function f wlth objects of function g . 

A 

1 

B 

A-X X A . B,x . . X B. 

Figure 3.2: I n t e r p r e t a t i o n of f wilh g 

a O 

a o - -<D- --Ob 

Figure 3.3: Object refinement and interpretation 

The notlon of posltion Is not resCricted to physical 
posltion only. 

Difference between refinement and interpretation is 
semantlcal. Refinement is restricted to common 
semantic domain, vhile interpretation is not. 
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Object refinement and interpretat ion must satisfy, 

f = hT o g o h , , where h^ and h , are surjective and 

posslbly partial functions. Wilh fur ther refinement 

functions h . and h- can be stepvvise removed from the 

system. 

Object refinement and Interpretat ion can be 

extended to objects from A - , . . . , A , B . , . . . / B . 

Stepwise refinement of an object results in a tree 

s t ruc ture , an example of vvhich is shown on f igure 3 . 4 . 

Figure 3 . 4 : An example of object representation 

h ierarchy 

Refinement and interpretat ion have an interesting 

proper ty , they preserve structure of previous higher 

represantation levels. 

For i l lustration and appiication of this property 

assume an abstract system S. and a physical system S-

and imagine both systems' beliaviour in state spaces. 

Select an a r b i t r a r y state of S^ and vvitli Interpretat ion 

and refinement determine corresponding state of S - . 

This state vvill cause In S , a sequence of state changes. 

Assume a state from the sequence that has a correspon­

ding state In S. and assume that this state is next 

state of initially selected state of S . . The impression 

an observer seeing only the states of S^ will have. Is 

that S. changes states altough in reality state changes 

of S. are consequence of state changes in system S - . 

F igure 3.5 i l lustrates the above explanat ion. 

initiaj_ 
state 

initial 
state 
abstraction 

l i c II 
^1 

Q: 

next 
state 
abstraction 

sequence of 
state changes 

Refinement and interpretat ion were defined for ali 

representations given in section 2 . More details about 

them can be found in C 2 ] and C3D . 

4 . S T R U C T U R I N C 

Assume a r b i t r a r y system represented wlth resource 

s t ruc tu re . Select a resource and denote it vvith r. 

Since system representation level can v a r y such resource 

can represent resource substructure of lower represen­

tation level . 

Determine those positions of system resource 

st ructure vvhich carry objects from system input positions 

to resource r input positions. In the resource structure 

positions determine resource substructure which input 

positions are par t of system resource s t r u c t u r e Input 

positions, while its output positions comprise resource 

r input positions. 

For a subsystem, vvhich belongs to the resource 

substructure determine composed relational expression 

denoted vvIth E, which is satisfied when objects' state 

on resource r input positions enable resource activation. 

tnstead with resource r function f determine its behaviour 

with relation corresponding to f and denote corresponding 

expression wlth Q. Form conditional E - * - Q , vvhich is 

satisfied after resource r del ivers objects on its output 

positions. In the context of s t ructur ing it will be called 

control condit ion, since it allovvs uniform determination 

of each subsystem'5 state which causes resource r 

act ion. 

Control condition can be revvrltten as E — ^ R 6 

R —»• Q, where R denotes relational expression descr l -

blng states on resource r input positions, vvhich cause 

its act ion. This form of control expression enables 

associative approach to control . 

Determine characteristic function f^ for E, 

fp (a) = { ^ 

Bool 

; E 

o ; E, 

where A stands for subsystem's states and Bool 

determines (O, 1} . 

Characterist ic function fp vvill be in terpreted as 

decision function since its value decides about resource 

r act ivat ion. Implement resource r function f vvith 

controlled function g as described in section 2 . Join 

functions f_ and g into a pair . Collection of such pairs 

determined for each system's resource enables system 

behaviour and its s t ructure reconstruction. 

Figure 4 .1 i l lustrates a distinction betvveen the 

initial system and the system determined with collection 

of pairs decision funct ion, controlled funct ion. 

F igure 3 . 5 : Implementatlon of S . vvith S . 
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subsystem 

resource r 

copy of 
subsystem states 

Figure 4 . 1 : Distinction between systems 

Define in A equivalence relation such that ali states 

which activate the same subsystem's resource and 

resource r belong to the same equivalence class. Actually, 

more than one resource can correspond to particular 

equivalence class. Denote the set of equivalence classes 

with A/R and define bljective function from A/R to Q, 

where Q stands for the set of states. Based on each 

State q from Q it can be unlformly determined which 

resource(s) have to be activated as a consequence of 

this State, because bijective connection betvveen A/R 

and Q. 

Assume q from Q corresponds to equivalence class 

of states vvhich causes resource r activation. Decision 

function corresponding to r can now be defined on set 

Q. To identl fy, when state q is active, what means that 

corresponding subsystem is in state vvhich activates 

resource r, state transit ion function f : Q-»Q is 

defined. It imitates subsystem state transitions from 

initial state to state corresponding to state q . 

This model of control can now be expressed with 

the relations, 

fg (s )=q . f g ( q ) = 1 , 9 ( 1 , X , , x j = f(x,. 'V' 
vvhere s is the state preceeding state q , f_ is decision 

funct ion, and g is controlled function corresponding 

to resource r function f. 

Process of control as described above, can be 

defined for arb i t rary system resources. There are no 

restrictions to limit it to a single state transition function. 

Extension of the model that state transit ion function 

enables n-way branching including loop control is 

relatively simple and vvill not be considered here. State 

approach to control is not the only one that can be 

developed based on decision funct ion. In fact, as far 

as recognized ali popular control strategies and 

combinations of them can be developed on that base. 

One can easy recognize that if parts of control 

conditions are not necessary str ict ly dist inct . This allows 

their logic composition, what results in decision function 

of the form. 

Bool k > 1. 

More than simple resource can be controlled with 

a decision function and consequently more resources 

can be controlled with state transit ion function as 

mentioned earlier. 

A pair decision funct ion, controlled function 

enables s t ruc tur ing . A set of such pairs whlch determines 

the system can be partit ioned to disjunctive subsets. 

The same effect can result from system part i t ion on the 

set of disjunctive subsystems. 

System integration based on its arb i t rary partit ion 

can be realized in more different ways. Before do this 

we have to develop object transfer functions and memory 

functions. Transfer functions realize object transfer 

betvveen positions, while memory functions assure that 

objects retain particular positions so long as determined 

vvith control s t ructure. 

1.1 Transfer functions 

Flovv of objects betvveen two arb i t rary subsystems 

separated with a part i t ion can be implemented with 

selecting and distr ibut ive functions. 

Assume a subsystem vvhich has to be connected to 

another subsystem over positions p . , 

sets of objects corresponding to positions vvith 

, p . Denote 

X̂  X^, and let X = X, U . . . U X^ . 

Selecting function IT is defined as. 

N X X , X X X . 

11(1, x^, . . . 
r X,, 

" I- undef. 

1 < i < n 

othervvise. 

The set of natural numbers N above can be replaced 

vvith arbl t rary Iinearly ordered set. Indexes of 

X. , . . . , X become objects of such set. Linear ordering 

can be avoided i f selecting function is defined in tabular 

form. Both approaches to define selecting operation can 

be mixed. Levels of indirection can be bui l t to the at>ove 

definition to determine particular position of n- tuple. 

Figure 4.2 shovvs controlled object - flovv graph of 

selecting funct ion. 
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subsystem 

sufficient to implement a rb i t ra ry connection between 

two subsystems. They can be decomposed and expressed 

with controlled function def ined in section 2 . 

4.2 Object representation in recursive domain 

Let X be a set of objects to be represented in 

recursive domain. Ti i is representation is achived wi th 

funct ion, 

f : N X X • X 

Figure 4 . 2 : Controlled object - flow graph of 

selecting operation 

Distr ibut ive function delivers objects obtained from 

selecting function to prespeclfied positlons of a sub-

systenn. 

Distr ibut ive function is defined as , 

5 : N X X Y , X X Ym 

( y i ., y j = 5 ( j , x ) = 
r ( u n d e f , . . . , x , . . . , u n d e f ) , y j = x . 

1 undef, othenvise. 
Ki<m 

Variables y., ..., y correspond to subsystem input 

positlons. Pair ( i , j ) determines a patii from output 

position of one subsystem to input position of another 

subsystem. Composition of TT and 5 can then realize 

a rb i t ra ry connenction betiveen subsystems. 

F igure 4 .3 shows controlled object - flovv graph of 

d is t r ibut ive funct ion. 

subsystem 

Figure 4 . 3 : Controlled object - flovv graph of 

d istr ibut ive function 

f ( i , X) = y 

Pair ( i , x) is represented with the notation x . 

X, n . < i < n - , n . , n , from N 

undef , otherwise. 
f (x') = { 

The value of x is represented in domain which is 

l ineariy ordered set . Because o f simple notation the 

set of natural numbers was selected, othervvise a set 

of States can be used, since it is l inearly ordered with 

the State transit ion funct ion. 

In the real systems objects may have the abi l i ty 

to retain part icular position - objects in mechanical 

systems for example have such property. However, since 

this is generally not t rue memory proper ty have to be 

assured for objects not having this p roper ty . 

It is defined in recursive domain with the function, 

f : N X X • N X X 

= f {x ' ) = x ' , n,< I < n j 

I n the language of state transitions it has the abi l i ty 

to assure object position from cur rent state to next 

State. 

This limitation can be removed with memory function 

control . Let p be the value from Bool of decision 

function at I from N . T h e n , 

y'*' = 9(p', x', y') = { 
X , p = 1 , n,< i < H j 

y ' . p'=0, n ,< i < n j . 

i i-fk 

For k > 1 and p = 1 for part icular i only , y will 

have the value of x , i f i+k < n , . 

Extension to represent an object in time domain Is 

straightforvvard and will not be considered here . 

Selecting and distr ibut ive functions can be composed 

to realize a r b i t r a r y complex networks, vvhich are capable 

of t ransfer ing specified amount of objects in time and 

space. 

More requests for t ransfer than transfer paths 

available can exist simultaneously. Such requests are 

paid with appropriate time - space part i t ion of t ransfer . 

Selecting and dist r ibut ive functions are not the 

only t ransfer functions possible. Hovvever, they are 

Recall a no object situatlon descrlbed in section 2. 

4.3 Function representation in recursive domain 

System' s behaviour can be represented in recursive 

domain vvhen its functions are transformed to thls domain. 

Simijar extension in representation can be developed for 

time domain, continous or discrete. Th ls allows synthesis 

in time domain. 
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Let f : X . x . . . X X *• Y be a function to be 
I m 

represented in recursive domain. 
Define object Interpretat ion functions. 

h, : N X X , X . . . X X ^ -
1 1 m 

X , X . . . X X „ 
1 m 

h, ( i - " i "n^ = t ^ l ' ' • • • ' ^ m ' -

Represent [ i , x ^ , . . . , x ^ ) vvith ( x ^ , . . . , x ^ ) , and 

define 
( x , , . . . , x ^ ) ; n^< i < n^ 

h , ( x ^ , , m undef ; othervvise. 

h j : N X Y 

h j ( i . y) = y ' 

Represent pair ( i , y ) with y' and def ine, 

y 

undef ; otherwise. 

i f y ' 
*• i inr ip 

Function f can now be represented in recursive domain 

with function g , 

g : N X X , x . . . X X • N x V 
^ I m 
g (i, X, x^) = (i+1, y) or, 

^^A ''In) =V'^ ' 
, i i , / ^ ' ' ' l '^m' ' " , < i < " 2 

g (''i V 
>• undef ; othervvise. 

Function value is determined with i+1 , while domain 

values are-determined vvith i . This assures memory 

p r o p e r t y . In fact , function g is a composition based 

on function f and memory funct ion. I f defined as 

controlled function its value can be retained a rb i t ra ry 

long. Figure H.H shows controlled object - flow graph 

for such čase. 

• O / ' 

Figure "». I : Controlled object - flow graph for 

controlled implementation of g 

With the above developments we have minimal tools to 

define basic structur ing concepts. 

4.4 Distr ibut ive s t ructur ing 

Assume a system determined with the pairs decision 

funct ion, controlled function at an a r b i t r a r y level of 

representat ion. Define a part i t ion of pair set . Each 

subset of the pair set determines a 5ubsystem, u n -

connected in genera l . Define a t least one input and at 

least one output position for each subsystein. Select 

two a rb i t ra ry subsystems and determine ali connections 

betvveen them with regard to unpart i t ioned system. 

Betvveen subsystems define t ransfer functions to 

reconstruct connections determined with unpart i t ioned 

system. A t this polnt representation should be changed 

to recursive domain In genera l , since resource sharing 

is introduced. A sketch of the above development is 

shovvn on flgure 4 . 5 . 

subsystem 1 subsystem 2 

connections to be Implemented 
between subsystems 

copy of 
subsystem's 
State 

Figure 4 . 5 : A sketch for subsystem connectlon 

The process of developing connections is repeated for 

ali subsystems. Analogous approach Is used to develop 

connections with the system environment. With the 

insertion of t ransfer functions vvhich are compositions of 

selecting, d ist r ibut ive and memory fuctions additlonal 

system States are In t roduced. Decision function which 

Controls part icular resource should take this into 

abcount to retain compatibi l i ty. 

Distr ibut ive s t ructur ing results in a system 

organized around more or less t ight ly connected s u b -

systems and preserves the behaviour of the initial 

system. Figure 4.6 shovvs a simpllfied example of a 

system distr ibut ively s t r u c t u r e d . 
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copied 
positions 

structuring , 

Note; Control structure i5 not shown. 

Figure 1.6: Example of distr ibut ive structur ing 

1.5 Hierarchical st ructur ing 

Assume a system represented with a set of palrs 

decislon funct lon, controlled funct ion. Define a part i t ion, 

such that each subsystem determined wlth it is connected. 

Determine a copy of aH tliose positions, which with tine 

system part i t ion decay to input and output positions. 

Those positions are actually subsystems' input and 

output positions. Each copied position will be dur ing 

st ructur ing process connected to corresponding sub-

systems' input and output positions. 

For each pair consisting of Input and output 

positions determined with the parti t ion and corresponding 

copied position define transfer funct lon, whlch enables 

object transfer from output position over copied position 

to input position. To connect two subsystems over 

corresponding copied positions a composition of selecting, 

memory, and distr ibut ive functions is generally needed. 

Since objects on copied positions represent system's 

State at higher leve! of representation than the Initial 

representation level the behaviour of hierarchically 

structured system can be interpreted in the context 

f igure 3.5. Transfer functions can namely be completed 

with object abstraction and interpretation functions. 

This assures compatibility in representation levels. 

The approach to hierarchical s t ructur ing can be 

upgraded to state hlerarchy, which Is similar to memory 

hierarchy in contemporary systems. 

Similar as with distr ibut ive structur ing transfer 

functions introduce additional system's states. Because 

of this decislon functions, vvhich control the executlon 

must be appropriately modified. 

Figure •».? shovvs a simplified example of 

hlerarchically structured system. 

States 

Figure 1.7: Example of hierarchical s t ructur ing 

Both structur ing technlques can aiso be appiled on 

system's control , t ransfer, and mem6ry structures. 

DIstrIbuted and hierarchical st ructur ing can be combined 

and appiled at arb i t rary system representation level. 

As far as recognized, the proposed structur ing 

techniques are sufficient to model arb i t rary system 

architecture. They were developed for ali representations 

given in section 2. To structure a system In particular 

representation this can be done vvithout representation 

change. Since s t ructur ing allovvs resource sharing, 

system's synthesls can respect cost and performance 

requlrements. Based on the given approach to st ructur ing 

system's synthesl5 and softvvare development cannot be 

separated since they are t lght ly connected wlth 

s t ructur ing. This glves at least theoretical possibillty 

for automatic software development. On the other hand 

highly structured systems can be developed without 

any control code or software in the usual meaning. 

5. CONCLUSION 

Review of system's synthesis process Is g iven, 

Since this topic Is very extensive this presentatlon Is 

focused on these domains estimated as signif icant. 

However, domains determined with real - tirne, fault 

tolerance, and Intelllgent behaviour paradigms vvere 

completely avoided in the presentatlon. This does not 

mean that systems from these domains cannot be 

developed withln the proposed context. In contrary. 
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some significant practical results were obtained in the 

synthesis of hard real - tirne systems and fault tolerance 

in the domain of industrial process control systems. At 

the same time it wa5 shown that s t ructur ing is stili very 

controverse notion with diverse span of significance, 

although it is more or less clear that hard real - time 

and fault tolerance paradigms ' a r e of l itt le use in lousy 

structured domains. Similarly, fault tolerance cannot be 

a compensation for poor system design. Those were 

some of the reasons why s t ructur ing was given such 

attention in the presentat ion. 

Since it becomes more clear, that differences 

caused with separate development of software systems, 

softvvare engineer ing, art i f icial intell igence, knovvledge 

engineer ing, e t c , are caused mainly because of diverse 

views to problems and that their solution can only be 

achieved with multidisciplinary approoch, latest efforts 

to avoid such situation result in systems engineering 

approach. 

Based on this approach, systems which are capable 

to learn part icular behaviour, analyse it and construct 

systems that behave equivalent can be synthes!zed, 

based on the proposed approach to the synthesis process. 
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