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A simplified technique for aligning radiation fields in portal 
imaging 

Hui Wang and B. Gino Fallone 

Medica! Physics Unit and Department of Physics, McGill University, Montreal General 
Hospital, Montreal, Quebec, Canada 

A simplification of the chamfer matching technique is proposed far aligning radiation fields in portal 

imaging. In this application, the shaped treatment field is first aligned to the prescribed field by 

using low order geometric moments. Then the alignment is fine tuned with a simplified chamfer 

matching technique in which the cost function is successively minimized along coordinate directions. 

The viability of this minimization approach far the detection of radiation beam shaping errors in 

portal imaging is demonstrated through comparison with the downhill simplex method. When used 

in combination with lower geometric moments, this minimization method appears to offer advantages 

over the standard downhill simplex method in terms of precision and computation speed. Effects of 

two types of cost functions and edge distance maps in this application are also discussed. 
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Introduction 

With the ongoing improvement in treatment 
planning accuracy, there is greater demand on 
the accurate implementation of a treatment 
plan. A significant amount of research has been 
carried out on every aspect in portal image 
verification, from image acquisition systems1

-
7 

to post processing algorithmsS-10 and registra­
tion procedures.11

-
16 Current progress in this 
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relatively new field and its impact on clinical 
practice of radiation therapy have been syste­
matically reviewed.17• 18 

To set up a radiation therapy treatment, one 
needs to register portal images to a reference 
image in order to visualise the coverage of the 
target by the radiation beam. Because of the 
radiation required for portal image acquisition, 
it is not feasible to perform beam shaping and 
localization at the same tirne. The common 
practice is to shape the radiation beam by 
following the prescription before setting the 
patient up, then to direct the shaped beam to 
the desired target by positioning the patient. 
Accurate beam shaping is not only a factor 
determining the precision of beam coverage but 
is also beneficial for the interactive beam loca­
lization in this two step procedure. Extracting 
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anatomical landmarks for image registration is 
tirne consuming. On the other hand, the radia­
tion field is a prominent feature in a portal 
image. A correctly shaped field can be automa­
tically extracted and used as a registration land­
mark. Computer programs that can automati­
cally align the portal and reference image to 
the field and show the relative position of the 
target in the field can serve as a tool for beam 
localization with an on-line imager. In this 
paper, we propose a simplified method for 
aligning radiation fields. 

A natura! way to detect shaping errors is to 
align the prescribed field with the treatment 
field, and to evaluate the visual match. Among 
ali the techniques that have been employed in 
this task, chamfer matching is probably the 
most successful one due to its insensitivity to 
noise and to discrepancies in shapes. t9 A techni­
cal issue in chamfer matching is the minimiza­
tion of a cost function of the geometric transfor­
mation parameters (translation offsets, rotation 
angle and scaling factor). Since there is no 
analytical expression for a cost function, the 
minimization has to rely on iterative searching 
techniques among which the downhill simplex 
method20

• 
21 and the Powell's method21 have 

been applied. In a recent study on multileaf 
collimator configuration verification, Zhou and 
Verhey reported that the downhill simplex met­
hod is not very sensitive to rotation and requires 
starting points close to the globa) minimum.22 

To overcome these shortcomings, they used 
Hough transform and geometric properties of 
two contours to determine the starting point of 
chamfer matching. The downhill simplex met­
hod is straightforward and easy to implement 
but not very efficient in terms of the number 
of function evaluations that it requires. Powell's 
method is almost surely faster in ali likely 
applications.21 If chamfer matching is used in 
combination with lower order geometric mo­
ments, the minimization process will start very 
close to the global minimum.23 Because of this, 
standard minimization techniques which are de­
signed for general purposes could be simplified 
to suit specific applications. In this paper, we 
propose a simplified adaptation of the chamfer 

technique for matching treatment and prescrip­
tion field pairs. 

Materials and method 

Thirty pairs of simulation and double-exposure 
portal films randomly selected from our patient 
archives were digitized to 512 x 512 digital ima­
ges with 8 bit contrast. The prescribed field 
contours were drawn with a mouse by following 
the prescription on the simulation images. The 
treatment field contours were obtained by using 
a "contour" operation on the field masks auto­
matically extracted from the portal images. 15 

The "contour" operation peels the mask ( an 
object in a binary image) at the depth of one 
pixel with an "erosion" operation and then 
subtract the eroded mask from the original one 
to acquire the field contour. 

Edge distance map generation 

An edge distance map image E(i,j) (Figure le) 
was generated from a binary image containing 
a prescribed field contour (Figure la). The 
value of a pixel in the edge map image is the 
distance from that pixel to the closest feature 
(contour) pixel. The higher the value of a pixel, 
the farther away it is from the contour points. 
This edge map image, resembling a landscape 
model with a valley along the prescribed field 
contour, will be used as a mould onto which 
the treatment field contour (Figure lb) will be 
fit. By analogy, the treatment field contour will 
have different gravitational potential energy at 
different locations and with different orienta­
tions (Figure ld). Registration will be achieved 
when the treatment field contour slides down 
into the valley under the action of gravity. 

Ideally, the value of a pixel in an edge map 
image should be the Euclidean distance from 
that pixel to the closest contour point. However 
calculating Euclidean distances is computatio­
nally intensive and yet may not be worthwhile 
because of digitization effect on the contours. 
The common approach to generate an edge 
map is to use distance transformation which 
approximates globa! distances by propagating 
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Figure l. Illustration of procedure for chamfcr match­
ing: (a) Simulator image; (b) Portal image; (c) Prescri­
bed field contour obtained from (a); (d) Treatment 
field contour extracted from (a); (e) Edge distance
map generated from (c); (f) After (d) is transformed 
with a tria! set of parameters, it is overlaid on top of
(e). 

local distances. 24 By analogy, local distance 
propagation is similar to using a ruler of unit 
length for measuring long distances. As the 
ruler is being passed in steps, the number of 
passes is counted and the total number of 
counts is used as the distance from the starting 
point. A distance transformation passes a kernel 
which carries distances between a pixel and its 
neighbors over an image and assigns the accu­
mulated distances to the pixels it passes by. 

Our edge distance maps were generated with 
the "chessboard" distance transformation25 

which employes the 3 x 3 kernel 

[
1 1 1

] 1 O 1 
1 1 1 

(1) 

for representing the local distances and propa­
gates the local distances in two steps. In the 

first step, the upper-left half of the "chess­
board" kernel 

[� 
1 
o 

1] (2) 

was passed over the contour image (in which 
ali the contour pixels were assigned the value 
of O and ali the non-contour pixels were as­
signed the value of co) from left to right and 
from top to bottom. At each pixel, this half 
kernel was added to that pixel and its four 
neighbors and the minimum value among the 
five was assigned to the corresponding pixel in 
an intermediate image. In the second step, the 
lower-right half of the "chessboard" kernel 

[1 o
1 �] 

(3)

was passed over the intermediate image from 
right to left and from bottom to top. The 
minimum value among the five was assigned to 
the corresponding pixel in the distance image. 

Cost jimction minimization 

After the edge map (Figure le) was generated 
from the prescribed field contour (Figure la), 
a geometric transformation with a set of tria! 
parameters, where (a, b) is the translation vec­
tor, 0 is the rotation angle around the center 
of mass of the prescribed field, (X

1„ 
Y

p
), and 

m is the scaling factor, was applied to 
the treatment field contour { (xi, y); 
i= 1, 2, ... N} (Figure lb). The transformed 
contour {(x;, y1); i = 1, 2, ... N} where 

[ 1 y .r: - , p 
1 

1 -

y� }'�) 

cos0 -msinO] [·'• Xp] + [a] (4)
sin O m cos O !Ji r'

p 
b 

was overlaid on the edge map (Figure ld), and 
the sum of the values of the pixels in the edge 
map along the transformed treatment field con­
tour was used as the cost function 

N 

F(a,h,0,m) = LE(x'..y:). (5) 
i=I 

F (a, b, 0, m) is a function of the transformation 
parameters and has its minimum value when 
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the correct transformation parameters relating 
treatment field contour to the prescribed one 
are used. Minimization of this cost function is 
usually achieved with iterative searching algo­
rithms which start with a set of the initial tria! 
parameters (a0, b0, B0, m0

), navigate in the 4 
dimensional space formed by ali the possible 
transformation parameters, and check some cri­
terion at each step until convergence is reached. 

We used a method similar to that used by 
Zhou and Verhey to obtain the starting point. 
Except for the rotation angle (which is set as 
O), the initial tria! transformation parameters 
are obtained from the center of mass and the 
area of the fields: 

(ao.hu.Oo.mo) (-\'p .'X:t, \-� - \-i.O. /Ii-;) (6)

where (X
p
, Y

p
) and A

p 
are the center of mass 

and area of the prescribed field, (X,, Y1) and 
A1 are those of the treatment field. B0 is set to 
O because the angle between the two contours 
is always very small before matching in our 
case. 

After this preliminary matching, the starting 
point is very close to the globa! minimum of 
the cost function. We minimize the cost fun­
ction with respect to one variable at a tirne, 
one after another and cycle after cycle. One 
dimensional minimization is achieved by brac­
keting (Appendix). 

The cost function is minimized with respect 
to B first. The initial bracket is set to 
( B0, B0 + 0.1). The bracketing stops when 

F{ao,bo,tJ,., m0)-F(a0,b0,tJ,,+i-rno)/ < 10-·I F(ao.bo.0,,.mo) ' -

where n is the number of iteration. Similar 
procedures are then carried out to a, b and 111

sequentially with initial brackets (a0, a0 + 5), 
(bo, b0 + 5) and (m0 , m0 + 5), respectively. All 
the procedures are stopped at the same preci­
sion. Once a bracketing procedure stops, the 
corresponding variable is kept at the convergent 
value. Since our stopping criterion is set very 
low, one cycle is sufficient to reach convergence 
for ali the variables. 

Results and discussion 

Chamfer matching is a technique of pattern 
recognition type. The goodness of a match is 
characterized by a similarity measure. The mea­
sure we used is the average edge distance which 
is the minimum cost. It is defined as the average 
pixel value along the registered treatment field 
contour in the edge map image, which can be 
expressed as k F (am, bm, Bm, 111111), where N is 
the number of pixels along the treatment field 
contour and (a,m b

11
1, B

11„ m
111

) is the fina! trans­
formation parameters reached by the minimiza­
tion. If the two feature being matched are 
perfectly similar to each other, thc minimum 
cost should be zero. Otherwise, it will take on 
a positive value. When matching simple features 
like closed field contours, unless the shaping 
errors are extremely large, a smaller minimum 
cost should correspond to a better match. 

Mini111ization approach 

To test the viability of successive minimizations 
along coordinate directions in chamfer matching 
when combined with geometric moments, we 
compared the average edge distance obtained 
with !?_Uccessive @inimization �long �oordinate 
_g_irections, Ds.M.A.C.D. to that obtained with the 
downhill simplex method Dsimplex· A flowchart 
of the comparison test is shown in Figure 2. 

Treatment Fie!d Prescrihed Ficki 

Centrnid(X,Y,), An'.i A, Centroid ( Xr
, X

1
), Are.1 

Average Edge Distance 

D D,,-,,rin 

( D,w, + D,,�,p/n)/2 
100 

Figure 2. Flowchart of thc comparison test bctwccn 
thc simplcx mcthod and succcssivc minimization along 
coordinatc dircctions (S.M.A.C.D). 
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Throughout the comparison tests, both minimi­

zation procedures are started after the first step 

match obtained with geometric moments in Eq. 

( 6). The vertices of the initial simplex are set 

to (a0, b0, B0, m0), (a0 + 5, b0, B0, m0), 

(ao, bo + 5, Bo, mo), (ao, bo, Bo + 0.1, mo) and 

(ao, bo, Bo, mo + 0.1), where a0, b0, Bo and m0 
are given in Eq. (6). The absolute values of the 

minimum costs obtained with the two methods 

are very close. In order to see the difference 

clearly, we calculated the relative difference in 

percentage 
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(a) S.M.A.C.D. 
vs 

Sirnplex 

avg.=-9.215 % 
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(b) Arithmetic avg.=-2.271 % 

vs 
RMS 
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(C) "Chcssboard" avg.=-5.640 % 

VS 

"5-7-11" 
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Percentage Difference 

Figure 3. Comparison of fina! average edge distances 
achieved with different approaches. (a) successive line 
minimization versus the simplex method with "chess­
board" edge distance maps and arithmetie average 
edge distance as cost function. (b) arithmctic vcrsus 
root of mean squarc average edge distance as cost 
function when "chessboard" edge maps and successive 
line minimization were used. (c) "chessboard" versus 
"5-7-11" cdge maps when arithmetic averagc edgc 
distance as cost function was minimized successive line 
minimization. 

a histogram of which obtained from the 30 

cases is plotted in Figure 3a. It can be seen 

that, on the average, successive line minimiza­

tion along coordinate directions can achieve 

a smaller residual value of the cost function 

therefore has better precision than the simplex 

algorithm in this matching scheme. 

Successive minimization along coordinate di­

rections is actually the first step of the Powell's 

method.26 Starting from the coordinate direc­

tion set, Powell's method successively mini­

mizes a function in each direction in the set 

and adjusts the direction set after each cycle of 

line minimization through ali the variables. The 

adjustment of searching directions is to handle 

functions which can not be well approximated 

by quadratic forms because Powell's method is 

based on Taylor expansion. For example, a 
function having a long narrow valley will make 

successive minimization along coordinate di­

rections very inefficient. However, when simple 

geometric objects like the field contours, are 

being matched, it is very unlikely that the cost 

function will have such erratic behavior. More­

over, after preliminary matching has been done 

with geometric moments, the starting point is 

very close to the globa! minimum of the cost 

function. In this neighborhood, the cost funct­

ion can be well approximated by a quadratic 

form which can be exactly minimized by one 
pass of line minimization through all the vari­

ables. 

Computation speed 

The two algorithms are also compared in term 

of computation speed. Table l lists the numbers 

of iterations to reach convergence. Conver­

gence is defined in the following manner: for 

successive line minimization, either the preci­

sion criterion is satisfied or the values of the 

cost function at the two ends of the bracket no 

longer change; for simplex algorithm, either 

the precision criterion is satisfied or the values 

of the cost function at the vertices of the 

simplex no long change. It should be noticed 
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Table l. Numbers of iterations for reaching conver-
gence in successive line minimization along eoordinate 
directions (Ns.M.A.C.D.) and the downhill simplex met-
hod (Nsimplcx)- The average difference (Ns.M.A.C.D. -
Nsimplcx) -3.2

case number Ns.M.A.C.D. N_\'implcx Ns.M.A.C.D.-N..simplex 

1 32 31 1 

2 31 24 7 

3 33 41 -8

4 32 40 -8

5 25 24 1

6 30 38 -8

7 35 47 -12

8 34 47 -13 

9 24 33 -9

10 32 31 1

l1 29 44 -15

12 29 19 10 

13 34 34 o

14 32 35 -3

15 34 42 -8

16 28 25 3

17 36 44 -8

18 36 37 -1

19 32 34 -2

20 30 32 -2

21 33 33 o

22 23 33 -10

23 29 32 -3

24 26 23 3

25 31 37 -6

26 32 38 -6

27 30 31 -1

28 26 26 o

29 31 29 2

30 31 32 -1

that not only less number of iterations are 
required for sequential bracketing (3.2 on the 
average), but the number of calculations in­
volved in a single iteration in bracketing is also 
much less than that in the simplex algorithm. 
The reason we used the numbers of iterations 
to measure computation speed is that the abso­
lute computation tirne for either algorithm on 
our computer (Indigo, Silicon Graphics Inc., 
Mountain View, Calif. 94043) is actually very 
short since the search starts from close to the 
minimum cost. This comparison is to show that 
the better accuracy of successive minimization 
along coordinate directions as discussed pre­
viously is achieved without sacrificing computa­
tion speed. 

Effects of cost functions 

According to the investigation by Borgefors,27 

the cost function based on the root of mean 
square average edge distance (summing up the 

• square of the pixel value along the contour that
is being matched when it is fitted into the edge
map) has fewer local minima than does the cost
function based on the arithmetic average edge
distance. It can, therefore, reduce the chance
for minimization being trapped by false conver­
gence. Local minima are not a problem within
our approach since they are bypassed by the
first approximation [Eq. ( 6)]. To investigate
the effect of the two types of cost function in
this application, we calculated the average edge
distance, and observed a slight advantage of
the arithmetic average type cost function over
the one of root of mean square average type
(Figure 2b). In chamfer matching every point
on the treatment field contour contributes to
the cost function. The root of mean square
average type cost function increases faster
around the minimum and therefore assigns
more weight to the distorted parts of the treat­
ment field contour making the minimum of the
cost function not correspond as well to the
actual match as does the arithmetic average
type cost fu�ction.

Effects of distance transf ormations

The accuracy of chamfer matching also depends
on the distance transformation used to generate
the edge distance map. The difference in the
edge distance map will be carried into the cost
function. The "chessboard" distance transfor­
mation is one of the simplest approximations
of the Euclidean distance transformation be­
cause it assigns the same distance from a pixel
to ali its 8 immediate neighbors while the
Euclidean distance from a pixel to its diagonal
neighbor is Closer approximations can be
achieved by (a) assigning different numbers to
the orthogonal and the diagonal neighbors that
better represent the 1 : ff ratio, e.g. the 3 x 3
kernel in the "3-4" distance transformation24 

[4 3 4] 

3 O 3 

4 3 4 
(8)
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or by (b) using a larger kernel to take more 
neighbors into account, such as the "5-7-11" 
kernel24 

14 11 10 11 14 

11 7 5 7 11 

10 5 O 5 10 

11 7 5 7 11 

14 11 10 11 14 

(9) 

The deviation from the true Euclidean gauge 
may also result in local minima of the cost 
function when minimization starts far from the 
globa! minimum. Except far orientation, the 
treatment field contour in our case has been 
brought very close to the matched position by 
the first approximation [Eq. ( 6)]. To de termine 
whether a closer approximation to the Eucli­
dean distance transfarmation would have an 
advantage in our case, we compared the effect 
of the "5-7-11" kernel with that of the "chess­
board" kernel. The average edge distance obtai­
ned with the "5-7-11" kernel has been divided 
by 5 to normalize the unit distance to one. 
Figure 3c shows that the "chessboard" kernel 
has a slightly better perfarmance than the "5-7-
11" one. This can be explained rather simply. 
An edge distance map generated by a distance 
transfarmation ("chessboard" or "5-7-11") is 
very accurate in specifying the orientation of a 
feature. When the minimization with respect to 
the rotation angle is completed, the treatment 
field contour is very close to the fina! registra­
tion. The advantage of the "5-7-11" kernel 
only occurs when the searching process starts 
at a point which is far from registration. This 
situation does not occur in our case because we 
start with a relatively close approximation. On 
the other band, the slopes in the edge map 
generated with the "5-7-11" kernel are steeper 
so that shaping eITors and noise on the treat­
ment field contour will have more weight in the 
cost function weakening the correspondence of 
the minimum of the cost function to the actual 
match. 

In conclusion, our results show that incorpo­
rating additional geometric infarmation into 
chamfer technique may improve performance 

without sacrificing computation speed when 
matching simple features. In this kind of tasks, 
successive line minimization of the cost function 
along coordinate directions is viable when 
chamfer matching fallows a preliminary align­
ment. 

Appendix: Minimization by bracketing 

Given a continuous unimodal functionf(x) (Fig. 
5) in the region (a, b), the minimum can be
reached by simple bracketing with a pair of
points a < x\0 < b and a < x\"l < b, where
f (x}I)) < f (x\")). Here the superscripts at l and 
h denote "low" and "high", respectively, and 
the subscript i is the iteration number. Starting 
from an initial pair of points xb') and xbh), the 
function is evaluated at the reflection point of 
xb"l about xbl), which is 
x* = ·xb") + 2 (xb') xb"l), 
and the value of the function at this point f (x*) 
is compared with f(xbl)) and f(xb")). Then the 
fallowing assignments are made: 

III • J (hi .!II ·r1·· ') f( (II) .r 1 = .r anc .r 1 = .10 , 1 p· < .r0 : 

and .r 

,ind 

·( (/)) 1·( • ·( ("') ./ .rn ::; .r ) < J .r0 : 

+ :, 
. lhi) ·r 1·( . [ hi) < 1·1 .• 1 .10 . 1 -lo _ . .1 -

A precision value e is preset at 104 far our 
calculations, and if !(r'.'')-f(,:'") l :o,./( r;") 

the process stops; otherwise the process conti­
nues with another iteration. The programing 
syntax is shown below: 
1 lh iteration 

. lf(,:'')-/(r:") 
1 

III . 1f 
1 f( r'.n) 

::; t. thcn .r111111 .r1 and termmatc; 

clsc, i + 1 th itcr�Hion 

r' = .r;h) + :z(.r;l) .r;h)); 

· · · , · ( 111) J !II lh 1 it J(.r ) < .f .r, . t 1en .r1 +1 = . .i- 1_1 

1 .• ·( (/)) / 1· • f( Jhl) J 1/J (1) ,,., csc it .f .r, :::::. \.r) < . .r
1 

, t1cn .r1 +1 = .r1 • .r, ..... 1 

(/J ({) (h) (h) 1 (' ti) ('1)) clsc, thcn .r1+i -= .1 •. r1+1 .r1 + 7 .r1 - .r1 ; 

. '
1
1 (<', l-1 ( ,:';', l l . "' . 

it 
1
.
(
· .,, 

) 1 2: <, thcn .r,,1111 .r anJ tcmrnwtc: 
r, i-1 

clsc. 1 + :!th itcration. 
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f(x) 

• 

L 1 

a x* x<O x(/1) b 

Figure 4. Illustration of the bracketing 
minimizing a one dimensional function. 
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