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The constituent quark as a soliton in chiral quark
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Abstract. We discuss the possibility that the soliton carrying the baryon number 1/3, ob-
tained in the linear o-model and in the Nambu - Jona-Lasinio model can be identified
with the constituent quark. In the linear o-model we have derived meson exchange poten-
tials between two solitons which turn out to resemble potentials used in constituent quark
models.

The mechanism in which a nonstrange constituent quark acquires its mass ~
350—400 MeV is phenomenologically described via spontaneous breaking of chi-
ral symmetry. Yet, such a structureless particle does not agree with a picture of
the constituent quark as an extended object in which the quark is surrounded
by a cloud of quark-antiquark (meson) and gluon excitations. The fact that the
scale for chiral symmetry breaking appears at lower energies than the confine-
ment scale supports a model in which the constituent quark is represented by a
current quark surrounded by a chiral field rather than a gluon field, as first sug-
gested by Georgi and Manohar [1], and further elaborated by Cheng and Li [2],
and by Baumgartner, Pirner, Kénigsmann and Povh [3] (see also the contribution
of M. Rosina in these Proceedings [4]).

One of the simplest models describing the spontaneous breaking of chiral
symmetry is the linear o-model (LSM). In the non-strange sector it involves u
and d quarks, a triplet of pions and the o-meson [5-8]. The model possesses, for
sufficiently strong pion-quark coupling constant g, soliton solutions obtained by
putting three quarks in the lowest 1s orbit and allowing for nonzero pion field
around the quark source. Below the critical coupling constant only free Dirac
particles of mass M = gf,; exist, f; being the pion decay constant. We found [9]
another type of non-trivial solutions by putting only one quark in the lowest orbit
which we identified with the constituent quark.

In figure 1a) the energy of such a quark soliton is displayed as a function of
M = gf. For comparison, the energy of the three quark soliton (the nucleon soli-
ton) divided by 3 is also shown. The three quarks in the nucleon soliton generate
a stronger chiral field than in the single quark soliton and the resulting attractive
potential lowers more substantially the energy of the valence orbit (gy,1) produc-
ing a large gap between the two solutions. The energy of the quark soliton is
higher than the popular value of the constituent quark mass. In our calculation
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Fig. 1. (a) (b)

we do project the solution onto the subspace of good angular momentum and
isospin, but we do not perform the projection onto the states with good linear
momentum. The solution is thus interpreted as a wave packet of states with good
linear momenta; projecting out the zero-momentum state would further lower
the energy of the soliton. Let us notice that for both solutions the valence or-
bit sinks into the Dirac sea at a sufficiently large coupling constant producing a
topological soliton (Skyrmion).

From our solution it is possible to derive a potential between two quark soli-
tons in the framework of the Born Oppenheimer approximation. The interesting
part of the interaction is the pion exchange potential. The pion field around the
quark soliton with good angular momentum and isospin can be written in the
form: :

To(r) = 37(r) ¥ Zo To (1)
where £ and T act on spin and isospin of the quark soliton, respectively. To obtain
the potential between two such solitons, one at the origin and the other one at
position 1, we evaluate the quark-meson and the meson-meson interaction for
such a configuration. For the quark-pion interaction we obtain

Valr) = 2?9<Q|00T0|Q> stf’u(r’)\)(r’) allr =) Ea (r— 1)y TaTo, ()

where 0 and 1o now act on current quark spin and isospin. A similar expression
is obtained from the meson self-interaction (“Mexican hat”). The potential (2) con-
tains the scalar as well the tensor part. The scalar part is displayed in figure 2 and
compared to a typical one-pion exchange potentials used in the constituent quark
model calculations. The potential satisfies [ dr 12V, (r) = 0, a constraint that has
to be fulfilled for any pseudo-scalar exchange potentials. It has the correct asymp-
totic behavior leading to the appropriate form of the pion-exchange potential be-
tween two nucleons. The attractive part is too shallow and has a too large range
which could be attributed to the spurious center-of-mass motion. We expect that
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Fig. 2. The pion exchange effective potential (multiplied by r*) between two quark solitons
for M = 560 MeV (solid line) compared to a typical OPEP.

linear momentum projection would reduce its range and through the above in-
tegral constraint lower the depth of the attractive part, which could finally bring
our prediction closer to a realistic OPEP.

Our model of the constituent quark is further supported by our finding that
similar quark solitons exist also in a more fundamental chiral model, the Nambu
- Jona-Lasinio (NJL) model. In this model the sigma and pion fields are related to
the quark-antiquark excitations of the Dirac sea by

o)=Y @qR, wr)=) GiystqR

£j<0 £j<0

where R denotes a regulator which is needed to regularize the ultraviolet diver-
gences, and introduces a new parameter, the cut-off. In our calculation [10, 11]
we used a version of the model in which the interaction between quarks is in-
duced by the instantons [12] and has a finite range. The mass of the “bare” con-
stituent quark M which is equal to gf, in the linear o-model is now substituted
by the 4-momentum-dependent mass M — MR (k?), k* = k? — E%; M remains
in the model as a (free) parameter measuring the strength of the o-field in the
vacuum. The pole of the quark propagator is obtained by solving the condition
k? + M?R(k?) = 0. The solution exists only below a certain value of M. Using
R(k?) = e **/A* and fixing the cut-off parameter A to reproduce the pion de-
cay constant, the critical value of M is around 300 MeV. Above this value only
solutions with non-trivial values of chiral fields exist. Similarly as in the linear
o-model, putting three quarks in the valence orbit a soliton corresponding to the
nucleon emerges; if we put only one quark in the valence orbit, we obtain a soli-
tonic solution which we identify with the constituent quark.

The energies of both solutions as functions of M are displayed in figure 1b)
in the same way as the analogous solutions in the linear o-model. The energy
of the “ bare” constituent quark is denoted by My; in contrast to the LSM this
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solution smoothly continues into the soliton solution. Interestingly, the solutions
of both models have similar energies, however, the energies in the NJL model
raise with M while those in the LSM lower. This is a consequence of the regular-
ization of the valence orbit which is not performed in the LSM as well in other
versions of the NJL model. The regularization used in our approach prevents the
orbit to shrink below a certain size and thus makes the soliton absolutely stable
without any further ad hoc constraint. The energy of the valence orbit remains
almost constant with M and does not sink into the Dirac sea. The presence of the
time variable in the regulator does not allow us to perform the exact angular and
linear momentum projection which would lower the soliton energy further, and
eventually bring it in the ball park of values used in the constituent quark model
calculations.
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Izbrani spektroskopski rezultati kolaboracije Belle
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V prispevku smo porocali o izbranih rezultatih iz spektroskopskih eksperimentov, pred
kratkim izvedenih s spektrometrom Belle, ki deluje na energijsko asimetri¢nem trkalniku
elektronov in pozitronov KEKB v laboratoriju KEK, Tsukuba, Japonska.

Konstituentni kvark kot soliton v kiralnih kvarkovskih modelih

Bojan Golli
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Obravnavamo mozZnost, da lahko soliton z barionskim Stevilom 1/3, dobljenim v lin-
earnem modelu sigma in v modelu Nambuja in Jona-Lasinija, identificiramo s konstituent-
nim kvarkom. V linearnem modelu sigma smo izpeljali potencial med dvema solitonoma,
ki je podoben potencialom, ki se uporabljajo v modelih s konstituentnimi kvarki.

Mezoni D; s pozitivno parnostjo in Z! v kromodinamiki na
mreZi

Luka Leskovec
Institut Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenija

Predstavljena sta dva Se posebej zanimiva kanala: Ds mezoni s pozitivno parnostjo ter ek-
soti¢ni hadron Z{. V kanalu z Dy je bilo nekaj napetosti med eksperimentom ter teorijo,
saj je eksperiment nasel stanji D5, (2317) in D1(2460) pod pragom za sipanje mezonov
DK in D*K, medtem ko je teorija napovedala mase teh mezonov nad tem istim pragom.
V kromodinamiki na mreZi smo simulirali doti¢ni kanal tako, da smo uporabili operatorje
¢s ter tudi D*K. Upostevajo¢ pojave na pragu sipanja smo izlo¢ili mase mezonov Dy s
pozitivno parnostjo, ki se nahajajo pod pragom za sipanje in se v okviru napak ujemajo z
eksperimentalnimi. Simulirali pa smo tudi eksoti¢ni kanal v katerem se nahaja Z;. Upora-
bili smo vse relevantne dvomezonske sipalne operatorje J/\pmncp, DD, {(2S)m, D*D*,
P(3770)7, P53, kot tudi dodatne operatorje tipa dikvark anti-dikvark. Identificirali smo
vse diskretne energijske nivoje, a nismo nasli prepoznavnega kandidata za ZF.



