
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 10 (2016) 349–357

Petrie polygons, Fibonacci sequences and
Farey maps

David Singerman , James Strudwick ∗

Received 5 June 2015, accepted 21 September 2015, published online 5 February 2016

Abstract

We consider the regular triangular maps corresponding to the principal congruence
subgroups Γ(n) of the classical modular group. We relate the sizes of the Petrie polygons
on these maps to the periods of reduced Fibonacci sequences.
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1 Introduction
An interesting number theoretic problem is to determine the period of the Fibonacci sequence
mod n. Here we look at the period σ(n) of the Fibonacci sequence mod n up to sign. A
Petrie polygon on a regular map is a zig-zag path through the map and an important invariant
of a regular map is the length of a Petrie polygon. The maps we consider here are those that
arise out of principal congruence subgroups Γ(n) of the classical modular group Γ. In this
case It is shown that these lengths are equal to σ(n). A particularly nice example is when
n = 7. Here the regular map is the famous map on the Klein quartic and we find σ(7) = 8
giving the title “The Eightfold Way” to the sculpture by Helaman Ferguson that represents
Klein’s Riemann surface of genus 3 derived from the Klein quartic. This is described in the
book “The eightfold way: the beauty of Klein’s quartic curve”, a collection of papers related
to the Klein quartic edited by Silvio Levy [5].

Let X be a compact orientable surface. By a map (or clean dessin d’enfant) on X we
mean an embedding of a graph G into X such that X \ G is a union of simply-connected
polygonal regions, called faces. A map thus has vertices, edges and faces. A directed edge
is called a dart and a map is called regular if its automorphism group acts transitively on its
darts. The platonic solids are the most well-known examples of regular maps. These are the
regular maps on the Riemann sphere. We recall how we study maps using triangle groups.
The universal map of type (m,n)is the tessellation of one of the three simply connected
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Riemann surfaces, that is the Riemann sphere Σ, the Euclidean plane C, or the hyperbolic
plane, H (depending on whether the genus of X is 0,1, or > 1) by regular m-gons with n
meeting at each vertex. This map is denoted by M̂(m,n). The automorphism group, and
also the conformal automorphism group, of M̂(m,n) is the triangle group Γ[2,m, n]. In
general, a map is of type (m,n) if m is the least common multiple of the face sizes and n
is the least common multiple of the vertex valencies. As shown in [3] every map of type
(m,n) is a quotient of M̂(m,n) by a subgroup M of the triangle group Γ[2,m, n]. Then
M is called a map subgroup of M̂(m,n) or sometimes a fundamental group of M̂(m,n),
inside Γ[2,m, n]. A platonic surface is one that underlies a regular map. The map is regular
if and only if M is a normal subgroup of Γ[2,m, n]. Thus a platonic surface is one of the
form U/M where M is a normal subgroup of a triangle group and U is a simply connected
Riemann surface.

It is permissible to letm or n, or both to be∞. In this paper we are particularly interested
in the case where m = 3, n =∞. This means that the corresponding maps are triangular
though in general we are not concerned with the vertex valencies. However, if the map is
regular then we must have all vertex valencies equal. For example, the icosahedron is a
triangular map with all vertices of valency 5.

To study triangular maps we use the triangle group [2, 3,∞] which is known to be
the modular group Γ =PSL(2,Z) one of the most significant groups in mathematics.
The regular maps correspond to normal subgroups of Γ. The most well-known normal
subgroups of Γ are the principal congruence subgroups Γ(n) defined in section 5. We let
M3(n) = M̂3(3,∞)/Γ(n). We call these maps principal congruence maps or PC maps.

For low values of n these maps are well-known. For n = 2, 3, 4, 5 we get the triangle,
tetrahedron, octahedron and icosahedron respectively. These are the only PC maps of genus
0. For n = 6 we get the regular map {3, 6}2.2 on the torus and for n = 7 we get the Klein
map on Klein’s Riemann surface of genus 3. (See [2, 1]).

2 Petrie polygons
A Petrie polygon in a mapM is defined as a zig-zag path in the map. More precisely, we
start at a vertex, then go along an edge to an adjacent vertex, the turn left and go to the next
vertex and then turn right, etc., (or interchange left and right.) We have a path in which
two consecutive edges belong to the same face but no three consecutive edges belong to the
same face, [1, p. 54]. Eventually, in a finite regular map, we will come back to the original
vertex.This path is called a Petrie path or Petrie polygon. The number of edges of this Petrie
polygon is called the Petrie length of the map.

We now relate the Petrie polygons to triangle groups. From the triangle group Γ[2,m, n],
we can form the extended triangle group Γ(2,m, n) which is the group generated by the
reflections R1, R2, R3 in the edges of a triangle with angles π/2, π/m, π/n where we
choose our ordering so that Γ(2,m, n) has a presentation

〈R1, R2, R3|R2
1 = R2

2 = R2
3 = (R1R2)2 = (R2R3)m = (R3R1)n = 1〉.

If we letX = R1R2, Y = R2R3, Z = R3R1, then we find that Γ[2,m, n] has a presentation

〈X,Y, Z|X2 = Y m = Zn = XY Z = 1〉.

In section 5.2 of [1, p. 54], it is shown that R1R2R3 is a transformation that goes one
step around a Petrie polygon. Now
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(R1R2R3)2 = R1R2R3R1R2R3 = R1R2R3R2R2R1R2R3 = XY −1X−1Y

showing that Petrie length is twice the order of this commutator which implies that the Petrie
length is independent of the Petrie polygon chosen; it is just a property of the map.

3 The Farey map
This is basically the map M̂(3,∞), which we abbreviate toM3. We construct it as follows.
The vertices are the extended rationals Q ∪ {∞} and two rationals a

b and c
d are joined by an

edge if and only if ad− bc = ±1.
This map has the following properties.
(a) There is a triangle with vertices 1

0 ,
1
1 ,

0
1 called the principal triangle.

(b) The modular group Γ acts as a group of automorphisms ofM3.
(c) The general triangle has vertices a

c ,
a+b
c+d ,

b
d .

Thus the Farey map (Figure 1) is a triangular map with triangular faces given by (c). In
[7] it is shown that this is the universal triangular map in the sense that any other triangular
map on an orientable surface is a quotient ofM3 by a subgroup Λ of the modular group Γ.
AsM3 has vertices the extended rationals this means that every triangular map the vertices
can be given coordinates which are Λ orbits of points in Q ∪ {∞}. We shall denote the
orbit of a

b by [ab ]. This is illustrated in [2] where there are many examples, in particular
coordinates for the triangular platonic solids are given. Also see Figure 2.

Figure 1: Farey map

4 The Petrie polygons of the Farey map
We consider a Petrie path inM3. By transitivity we may assume it’s first edge goes from
W1 = 1

0 to W2 = 0
1 . A left turn then takes us to W3 = 1

1 Now a right turn takes us to

W4 = 1
2 . By applying a modular transformation

(
a b
c d

)
to the vertices∞, 0 and 1 to the
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principal triangle we find that three consecutive vertices of the Petrie polygon are a
c ,

b
d ,

a+b
c+d ,

that is the third vertex is the Farey median of the previous two. As the first two vertices of
the Petrie polygon are 1

0 and 1
1 the kth vertex of the Petrie polygon is equal to fk−1

fk
where fk

is the kth element of the Fibonacci sequence defined by f0 = 0, f1 = 1, fk+1 = fk + fk−1.
for k ≥ 1. Thus the Petrie polygon is

1

0
,

0

1
,

1

1
,

1

2
,

2

3
,

3

5
· · ·

Lemma 4.1. The matrix P =

(
0 1
1 1

)
maps each vertex of the Petrie polygon ofM3 to

the next one and also P k =

(
fk−1 fk
fk fk+1

)
The proof follows immediately from the definition of the Fibonacci sequence, and

induction.

Note that P having determinant -1 is not an element of Γ but T = P 2 =

(
1 1
1 2

)
is an

element of Γ.
In the following sections we will consider the Petrie polygon modulo n. As a

b = −a
−b ,

we introduce the following concept.

Definition 4.2. We call the least positive integer m with the property that fm−1 ≡ ±1,
modn, fm ≡ 0 modn the semi-period σ(n) of the Fibonacci sequence modn. The period
π(n) is the least positive integer m such that fm−1 ≡ 1 modn, fm ≡ 0 modn.

For example if m = 7, the Fibonacci sequence mod 7 is 0,1,1,2,3,5,1,6,0, so that
σ(7) = 8 and π(7) = 16. The function π has been quite well-studied in the literature and is
often called the Pisano period. See [8].

5 The principal congruence subgroups
The most well-known normal subgroup of the modular group are the principal congruence
subgroups. Let n ∈ Z, Then the principal congruence subgroup of level n in Γ is the
subgroup

Γ(n) =
{(a b

c d

)
∈ Γ :

(
a b
c d

)
≡ ±

(
1 0
0 1

)
mod n

}
Now Γ(n) is a normal subgroup of Γ and so corresponds to a regular mapM3(n) which

lies on the surface H∗/Γ(n) where H∗ = H ∪Q ∪ {∞}.
Another important group for us is Γ1(n). This is defined as

Γ1(n) =
{(a b

c d

)
∈ Γ :

(
a b
c d

)
≡ ±

(
1 b
0 1

)
mod n

}
where 0 ≤ b < n.
We will not make use of this subgroup but in [2] it was shown that the left cosets of

Γ1(n) in Γ are in one-to-one correspondence with the vertices ofM3(n).
Γ(n) is a normal subgroup of Γ of index

n3

2
Πp|n(1− 1

p2
). (1)
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6 The Petrie polygons of M3(n)

Our principle object of study are the Petrie polygons of the PC-mapsM3(n). We can regard
M3(n) as M̂3(3,∞)/Γ(n), that is as a quotient of the Farey map. We illustrate our study
with the classical regular mapM3(7). This is known as the Klein map and is a map of type
{3, 7}. This lies on Klein’s Riemann surface of genus 3, known as the Klein quartic. Petrie
polygons for this map appear on page 320 in the classic paper [4], although they were not
called Petrie polygons there. In fact, Petrie polygons are named after John Flinders Petrie
(1907-1972), and Klein’s paper [4] was written in 1878. Three of the Petrie polygons are
drawn on page 320 of “The Eightfold Way” [5]. The eight in the title comes from the fact
that the size of the Petrie polygons is 8. This will be a special case of results in this paper
where we determine the sizes of of the Petrie polygons in PC maps.

In general we observe that the group Γ/Γ(n) has a transitive action on the Petrie
polygons of M3(n). For Γ clearly has a transitive action on the darts of M3(∞), and
so Γ/Γ(n) has an induced action on the darts ofM3(n). Clearly, this action will give a
transitive action on the set of Petrie polygons ofM3(n).

The vertices ofM3(n) are equivalence classes of vertices of M̂3(3,∞). We let [ab ]
denote the equivalence class of ab inM3(n) and [ab ] is joined by an edge to [ cd ] inM3(n) if
and only if ad− bc ≡ 1 mod n.

The points [ 10 ], [ 01 ], · · · [ fr−1

fr
] · · · form the vertices of a Petrie polygon which we call

Pe(n).
Recall the definition of the semiperiod σ(n) in section 4.

Theorem 6.1. The Petrie length of Pe(n) is equal to σ(n).

Proof. fσ(n)−1 = fσ(n)+1 = ±1, fσ(n) = 0, so the result follows.

Note that Pe(n) is a Petrie polygon onM3(n).
The Fibonacci sequence mod 7 is 0,1,1,2,3,5,1,6,0 and the Petrie polygon Pe(7) has

vertices [ 10 ], [ 01 ], [ 11 ], [ 12 ][ 23 ], [ 35 ], [ 51 ], [ 16 ]. The next vertex is [−10 ] which is equal to [ 10 ] so we
have closed up our polygon, which has 8 vertices. This polygon is illustrated in Figure 2,
where we denote [ab ] by (a, b). This picture of the Klein surface comes from [2]. The same
picture also appears in at the paper [6]. We can apply the same idea for other values of n.
For exampleM5 is the icosahedron and σ(5) = 10 which is the known Petrie length for the
icosahedron.

7 The universal Petrie polygon
To determine the stabiliser of a Petrie polygon it is useful to introduce a new idea. We first
extend the standard Fibonacci sequence to include negative numbers. We still want the basic
recurrence relation ft−1 + ft = ft+1 to hold, so this extended Fibonacci sequence is

· · · − 3, 2,−1, 1, 0, 1, 1, 2, 3, · · ·

so that f−k = (−1)k−1fk. The universal Petrie polygon Pe(∞) is the infinite polygon
with vertices fk

fk+1
where k ∈ Z and edges the closed intervals [ fk−1

fk
, fk
fk+1

]. Note that
f−k

f−k+1
= (−1)k−1fk

(−1)kfk−1
= − fk

fk−1
and hence the transformation R : t 7→ − 1

t represented

by the matrix
(

0 1
−1 0

)
is an automorphism of Pe(∞). Also T = P 2 =

(
1 1
1 2

)
is an
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Figure 2: Petrie Polygon

automorphism of Pe(∞) that belongs to Γ. Note that R2 = (TR)2 = I so that T and R
generate an infinite dihedral group of automorphisms of Pe(∞).

Theorem 7.1. The automorphism group of Pe(∞) in Γ is equal to 〈T,R〉 ∼= D∞.

Proof. The group 〈T,R〉 is a group of automorphisms of Pe(∞). We show that it acts
transitively on Pe(∞). First of all, P maps each Farey fraction two steps along the Farey
sequence as

T (
fk−1
fk

) =
fk−1 + fk
fk−1 + 2fk

=
fk+1

fk+1 + fk
=
fk+1

fk+2

Thus the union of the orbits of 0
1 and 1

0 under 〈T 〉 is the whole of Pe(∞), and as R( 1
0 ) = 0

1 ,
〈T,R〉 acts transitively on Pe(∞). We note that the stabiliser of 1

0 = ∞ in Aut Pe(∞) is
trivial. For the stabilizer of ∞ in Γ consists of the transformations z 7→ z + m, where
m ∈ Z, and the only translation that preserves Pe(∞) is the identity, Now suppose that
A ∈ AutPe(∞). Then A(∞) = fk−1

fk
. By transitivity, there exists B ∈ 〈T,R〉such that

B(∞) = fk−1

fk
. Thus A−1B fixes∞ and thus A = B.

We now search for the automorphism group of Pe(n).

Theorem 7.2. The automorphism group of Pe(n) is isomorphic to Dσ(n)/2.
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Proof. We have an epimorphism θ : Γ −→ PSL(2,Zn) and θ(T ) = P =

(
1 1
1 2

)
, where

we think of this matrix as lying in PSL(2,Zn).

Now Pσ(n) =

(
fσ(n)−1 fσ(n)
fσ(n) fσ(n)+1

)
.

Now fσ(n) ≡ 0 mod n and fσ(n)−1 = fσ(n)+1 = ±1, by the definition of σ(n).
Thus Pσ(n) = ±I and so Tσ(n)/2 = ±I . which is the identity in PSL (2,Zn) Thus the
automorphism group of Pe(n) is generated by R and T with R2 = (RT )2 = Tσ(n)/2 = 1
and hence 〈R, T 〉 ∼= Dσ(n)/2 of order σ(n).

It is interesting to see how this theorem works in practice, so let us go back to our
example of n = 7 as illustrated in Figure 2. As σ(7) = 8 we have an action of D4 on Pe(7)
an 8-sided polygon . The element T has two cycles of length 4, namely

(1, 0) −→ (1, 1) −→ (2, 3) −→ (5, 1) −→ (1, 0)
(0, 1) −→ (1, 2) −→ (3, 5) −→ (1, 6) −→ (0, 1)
and for the involution R we have (1, 0)↔ (0, 1), (1, 1)↔ (6, 1), (1, 2)↔ (5, 1), (2, 3)

↔ (4, 2).
(Note that [ 35 ] = [−4−2 ] = [ 42 ] so that (3, 5) = (4, 2), etc.)
As Γ/Γ(n) acts transitively on the darts ofM3(n) we use equation (1) in section 5 to

obtain

Corollary 7.3. The number of Petrie polygons onM3(n) is equal to

n3

2σ(n)
Πp|n(1− 1

p2
).

Example. Let n = 7. Then σ(7) = 8. The number of Petrie polygons ofM3(7) is equal
to 21. Klein drew three of them in [5]. The others can be found by rotating these through
2πk/7, for k = 1, · · · 6.

8 More about σ(n)
Theorem 8.1. For all positive integers m > 2, σ(m) is even.

Proof. Pσ(m) =

(
fσ(m)−1 fσ(m)

fσ(m) fσ(m)+1

)
≡ ±1 mod m

Thus (detP )σ(m) ≡ 1 mod m, so (−1)σ(m) ≡ 1 modm and thus σ(m) is even.

Exactly the same proof shows that π(m) is even for m > 2. A much easier proof than
that given in [8].

Let ρ = 1+
√
5

2 (the golden ratio) and ρ∗ = 1−
√
5

2 . Note that ρρ∗ = −1 and ρ+ ρ∗ = 1.
Let Zn[ρ] = {a + bρ|a, b ∈ Z/(n)} and if α = a + bρ, define α∗ = a + bρ∗. Then

(αβ)∗ = α∗β∗.
We define the norm N on Zn[ρ] by N(α) = αα∗. Then N(αβ) = N(α)N(β). We call

α a unit if N(α) = ±1, so that ρ is a unit. The units of Zn[ρ] form a group Z∗n[ρ] under
multiplication.

Theorem 8.2. σ(n) is the order of ρ in Z∗n[ρ], if fσ(n)−1 = 1 and is equal to half the order
of ρ if fσ(n)−1 = −1. In all cases π(n) is equal to the order of ρ in Z∗n[ρ].
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Proof. From ρ2 = ρ + 1 we can use induction to prove that ρm = fmρ + fm−1 Thus if
m = σ(n), fm = 0 and fm−1 = ±1. Thus ρσ(n) = 1 if fσ(n)−1 = 1 and is equal to -1 if
fσ(n)−1 = −1 and in the latter case the order of ρ is 2n.

The proof for π is similar.

9 The Pisano period and the semiperiod
There is a lot about the Pisano period π(m) in the literature . For example, see [8], where
the Pisano period is calculated for all primes less than 2000. Very little is known about the
semiperiod σ(m). We end with a few results comparing the two.

Lemma 9.1. π(m) = σ(m) if and only if fσ(m)−1 = 1. π(m) = 2σ(m) if and only if
fσ(m)−1 = −1.

Proof. Let k be the least integer such that, modulo m, fk−1 = −1, fk = 0. Then k = σ(m)
and fσ(m)+r = −fσ(r), so that f2σ(m)−1 = −fσ(m)−1 = 1, f2σ(m) = 0 and π(m) =
2σ(m).

Alternatively, fk−1 = +1 and then π(m) = σ(m).

We want to determine which of these occur. We give some partial answers. From
Theorem 9.2 we see that σ(m) = π(m) if and only if ρm−1 = 1 and σ(m) = 2π(m) if and
only if ρm−1 = +1.

Theorem 9.2. Let p ≡ ±2 mod 5 be an odd prime. Then π(p) = 2σ(p).

Proof. The point is that 5 is a quadratic residue mod p if and only if p ≡ ±1 mod 5.
Otherwise 5 is a non-residue and by adjoining

√
5 to Fp, the finite field of p elements which

we can take to be Z/pZ, we get a finite fieldK of characteristic p with p2 elements. This
field can be considered to be Fp/I , Where I is the ideal generated by x2 − x− 1, which
we can identify with all elements of the form a + bρ, where a, b ∈ Fp the field with p
elements. The polynomial x2− x− 1 has no roots in Fp but two roots in K interchanged by
the Frobenius automorphism φ : a −→ ap. If α is a root of this polynomial then the other
root is ap = 1 − α and hence so that ap+1 = α − α2 = −1. Thus, by Theorem 8.2 and
Lemma 9.1, π(p) = 2σ(p).

Theorem 9.3. Let p ≡ 11, 19 mod 20. Then π(p) = σ(p).

Proof. We have p ≡ ±1 mod 5 and so 5 has a square root in Fp the finite field with p
elements and hence ρ ∈ Fp. Its multiplicative group has order p− 1. Now

ρπ(p) = fπ(p)ρ+ fπ(p)−1 ≡ 1mod p

Therefore π(p) is a divisor of p − 1. Now p ≡ 3 mod 4 so that p = 4k + 3 for some
integer k. This p− 1 = 4k + 2. If π(p) = 2σ(p), then σ(p) is a divisor of 2k + 1 and thus
σ(p) is odd contradicting Theorem 8.1. Therefore σ(p) = π(p).

We would like to thank Tom Harris for helping us with the results in section 9 and the
referee for his careful reading of the manuscript.
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