A SIMULATION APPROACH BEFORE USING THE INDUSTRIAL

MICROCOMPUTER CONTROLLER

UDK 681.326.06:519.876.5

INFORMATICA 3/1988

Anton Zorman

Maksimiljan Gerke$

Viljem Zumer

Krista Rizman

Tehniska fakulteta Maribor

i

In this paper we describe a simulation packet that enables the
verification of +the software portion of the controller before
implementating the controller on a real object. This program
is unigque of 1its kind, as far as we know, because it enables
the examination of +the controller’s behavior in planner’s

workplace and so considerably

reduces start expenses. The

simulation packet enables controlled execution of +the user’s
program, clearly arranged writing out of data on the screen or
on the printer and gives a chance for data modification.

SIMULACIJSKI

PRISTOP PRED
MIKRORACUNALNISKEGA KRMILNIKA. '

UPORABO INDUSTRIJSKEGA

V ¢élanku oplsani simulacijski paket omogola verifikacido
programskega dela krmilja pred vgraditvijo krmilnika na objekt.
Po nam znanih podatkih je to edini tovrstni program, ki omogoéa
prreizkus obna&anja krmilja na projektantovem delovnem mestu in

s tem znatno zniZanje zagonskih stroskov objekta.

paket omogoda

in vregleden lzpls vredpnosti na

Simulaci jski
ama .,

B8 _DPrOLr ureien
zaslon ali na +tiskalnik in

moZneoat spreminiania vrednosti podatkov.

1 1Initial considerations about the industrial
microcomputer controller and it's simulation

Requests for a system which upgrades standard
programmable controller functions came from
industry. Initial efforts were made by
Metalna, Maribor. After it's definition phase
the project was supported by the Research
Society of ‘Slovenia (Raziskovalna Skupnost
Slovenije).

Intention and practical use of the
industrial microcomputer controller

The controller 4is 4intended for control in
capital equipment facilities plants, where
heavy environment conditions and the immense
equipment costs. do not allow any compromise. A
number of unique functions were built in the
controller to obtain the required
functionality. Special attention was dedicated
to the wuser’s program - control application
development and verification tools.

The paper decribes a unique part of the
user development and verification software
which allows controlled application
verification at the planner’s workplace. This
function reduces starting expenses when a
capital object is put into work.

With convenient tools, software design methods
and simulation, most of the mistakes, bugs and
imperfections of the controller’s software are
discovered and removed before implementation on
an object.

Thus, the simulation of the controller’s
software can be carried out in different ways.
Module simulation is specially efficient. It
allows that only verified software blocks are
put together into larger structures. Typical
software modules are functions and sobroutines
like structures in high 1level 1language, and
assembler like macros.

Simple use of the simulation packet 1is
assured with it’'s hierarchical tree structured
menu. The user selects from the menu on the
screen the actions to be executed. Each action
is determined with a function key on the
keyboard. The user selects the desired action
by pressing the adequate function Lkey on the
keyboard. Figure 1 shows an example of this
principle.

NETALNA Naribor
INDUSTRIAL CONTROLLER
S I NULAT L ON

F1 2]
BIMULATION END OF BINULATION

Fig. 1: The initial simulation menu.

After selecting the adequate menu’s window of a
selected action, it lights up in yellow colour.
This light is an advertisement for the user to
notice which action he had selected. In the
same way, the simulator advertises the user

http://izva.1an.1a

when he returns back over the menues.
is no special, objective reasons, the
action is executed immediately.

If there
selected

for the
form, the
textual,

The user can present his program
controller eitheir 4in a graphic
so-called contact networka, or in
mnemonic form.

The user must call the analyser before applying
the simulation of his program. The analyser is

a kind of compiler. It was designed for this
special purpose: it +translates the user’s
program together with the declaration module
and possibly with some other files for
functions or subroutines into the 'object form’
which 1is ’understood’ and executed by the

simulation, when requested.

The simulation can be executed
analyser does not find and report any error(s)
in the wuser's program file, nor in the
declaration module’'s file. A example of both
files is on Figure 2a and Figure 2b.

only when the

MAIN
SET M1
RESET M2
BP 5
ADD CBizZ, CB32s, Bl
SUB Cw7, .CWs, Wié
MUL CL323, cLs1s, L234
W17 = CW17
DIV Cwi1l, CwW71, W12(W17), W20
BP 9
AND wise, W17, Wig
CPL cBi2, B12
NEG. CB12, B13
BP 10
RLC CL3zs, 65, L235
SLC CB115, 5, B235
TRANS CB115.3, 3, L236.7
TRANS M300, 100, M250
Q@ = Ml
JPQ 33
NOP

33 L237 = L236
M21 = N ((M1 A M2) O (W16 LT CW87))
BP 20
NOP .
BP 25

END.

Fig. 2a: The user’slprosram (file TEST.MPR)

.

DECLAR

CONST
CB10 <- 10
CBl12 <- 12

CB115 <- 115
CB119 <- 118
CB123 <- 123

CB3z21 <~ 30 -
CB328 <- 32
CB378 <- 37
CW17 <= 17
CW71 <= 171
CH73 <= 7300
CW178 <~ 78
cwe1 <- 87

CW11l1 <- 111
Cw200 <- 2000
CWaiz <- 312
CW419 <- B841
CWT788 <- 78
CLO <- 0
CLS <- 5

CL46 <- 486
CL48 <- 49
CL64 - <~ 64
CL175 <- 175
CL.200 <= 2000000

17

CL215 <~ 215
CL287 <~ 287
CL300 <~ 3000000
CL328 <- 328000
CL818 <- 818000000
ENDCONST
I0SPEC
MOD1 is TY31
MOD2 is TY31
MOD3 is TY31
MOD4 is TY31
BLOCK
cs 11, YES, 70 '
C 11, M6, M7, M8, M61,M62, M63, M64
cs 12, NO, 80
C 12, M6, M7, M8, M9, M0, Mil, Mi2
CcS 13, YES, 90
C 13, M10, M1l, M5, MG, M16, M17, M88
TS ‘12, 10ms, YES, 998
T 12, M2, M29, M3, -
TS 11, 100ms, NO, 50
T 11, M1, M2, M3, M4
TS 13, ims, NO, 100
T 13, M3, M4, M2, M1
TXS 23, READ, 2, "START"
TX 23, M22, M3
TXS 24, WRITE, 2, "0.K."
TX 24, M21, M3
TXS 25, NUMWRITE, 2, B333
TX 25, M20, - M3
TXS .26, NUMREAD, 2, L338
TX 26, M26, M3
MS 13, 100ms, NO, 333
M 13, M2, M20
MS 14, 10ms, YES, 238
M 14, M3, M27
MS 15, 100ms, NO, 669
M 15, M27, M84
DS 8, 1s, 11, 8,
D 8, M2, M32, M33
DS 16, 1s, 18, 16, W
D 16, M25, M26, M37
DS 32, 1s, 13, 32,
D 32, M2, M21, M30
RS 16, FIFO, 22, L
R 16, M2, M24, M32, M41, M52
RS 17, LIFO, 30, B
R 17, M2, M25, M35, M43, M53
RS 18, FIFO, 20,
R° 18, M3, M55, M55, M53, M57
ENDBLOCK
ENDIO
END.

Fig. 2b: The declaration module (file D2.DCM)

. NOTE

The user does not need to write the
file type (MPR for wuser’s (or main)
program or DCM for declaration module),
because special purpose editors do
this. File types are always hidden
- from the users!

Enter sain progran’s nass 1 TEBT____

Fig. 3a: Reading a name of the main program.

After files were
establishes the
simply. - If +the
then it does not

all neccessary
translated, the simulation

presence of error(s) very

analyser finds any error(s),
produce the object file, which is a direct
input to the simulation. 1In case of an error
the simulator writes a message on the screen.

'In this message it tells the user that he can

not execute the simulation because the error(s)

is(are) found and that the user can correct the
error(s) in a corresponding editor.

The program SIMULATION first of all reads the
name of user program's file (or main program’'s
file) and the name of the declaration module.
Figures 3a and 3b show the user’s answers to
both questions.

Enter declaration sodul’s nase ¢ p2__

Fig. 3b: Reading the .name of the
declaration module.

After successful return from the analyser and
before the simulation execution, the simulator
writes a detailed report about constants and

the declaration module

El
i .

The report about CONSTANTS.

function blocks used in
(Figures 4a and 4b).

v
Eﬁ‘ta |

Fig.

3
|
}

—
27

?

ferreow

-t n ma———— OO

£Bs 3w

4a:

If the value of a constant
it’'s data type, then the simulator assigns the
largest positive or negative wvalue +to that
constant, depended on its sign!

The data type of a constant is appointed by the

is too 1large for

second letter of the constant's name: B, W or
L for byte (8 bits), word (16 bits) or a
longword (32 bits).

The data +type of an instruction operand
identifies how many bits of storage should be
considered as a unit and what is the
interpretation of that wunit +to be. The

simulator only recognises the integer, BCD and
ASCII data. An integer can be stored in a bit,
byte, word or in longword. Some instructions
interpret +the 1integer data as a signed value,
while others as a bit strings.

FUKCTION BLOCKS

TABLE ﬁ;’ ST:I.E Hgb

18TER k! {BTER
Fig. 4b: The report about FUNCTION BLOCKS.

TABLE Hg

1.1 Representation of a types of data and

function blocks
The user can use the following types of data:

(a}

The user assigns initial values to
constants in the declaration module.
During the execution of the simulation
the simulator has read only access to
it’s value. The user can assign a new
value to a constant in the later
described menues SINGLE CHANGE and
ADJUST EDITOR.

(b)
The controller’'s system data
up by +the operating
simulator simulates this

set
The
by

are
system.
function

18

assigning them values. It can read
only system data. The same principle
to modify the system data is in wvalid
as for constants.

(c)

Internal data are general purpose
data. The simulator can use then
similarly as variables in a high level
language: their values can be
modified by the simulator.
(d)
Input data are external physical
inputs into the controller.
(e) OQUIPUT DATA
Qutput data are physical outputs out
from the controller,
We use 'the single assignment rule’ for all
types of data, because of the simulation of

parallel execution mutualy exclusive events.

Overview of the controller’s data types

The user can use almost all combinations of

types of data with data types in simulation.
This survey is shown on Figure 5.
TYPE TYPE's TYPE's DATA DATA
OF DATA DATA TYPE’'s TYPE's A
DATA NAME MARK NAME MARK SAMPLE
CONSTANT DATA:
BYTE Constant C Byte B CB18
WORD Constant C Word W CW555
LONGWORD Constant C Longword L CL234
SYSTEM DATA:
BIT System S Bit * S12
BYTE Systen S Byte B SB373
WORD System S Word W SwW383
LONGWORD System S Longword L SL947
INTERNAL DATA:
BIT Internal * Bit M M991
BYTE Internal * Byte B B3
WORD Internal * Word W w495
LONGWORD 1Internal ¥ Longword L L952
OUTPUT DATA:
BIT Output O Bit * 012.13
BYTE Output 0 Byte B 0B10.4
WORD Output 0O Word W OW4.10
LONGWORD Output O Longword L oL2.2
INPUT DATA:
BIT Input I Bit x 15.13
BYTE Input I Byte B 1B8.10
WORD Input I Word W IW10.0
LONGWORD Input I Longword L IL1.3
NOTE
Asterisk "*" means that at +this place

there is no mark!
Fig. 5: Sur&ey about types of data.
The user has six types of <function blocks

besides the types of data mentioned above.
The function blocks are:

(a) TIMER
The timer enables +temporal control
over events 1in an object. After a
certain time delay something can
happen, the value of which |is

programmable.

{(b)

The monostable enables temporal
control, too. It generates a pulse of
apecific duration, the value of which
is programmable.

The main difference between the
monostable and the timer is the
following: the user can programmably
control the timer through its inputs.
After the user had enabled the
monostable to start running, he can no
longer programmably influence the
monostable. Only one exception 1is
allowed: the wuser can repeatedly
start the monostable from the
beginning!

(c)
The counter permits the upcounting and

downcounting of events. These two
operations can be performed
simultaneousy or not, as required.
(d)

The drum controller enables temporal
or event-driven (through its inputs)
control: values of output bits of
current drum step are assigned to

actual bits. The two mentioned modes
of operation are mutually exclusive.

(e) REGISTER

The register enables storage of data
in two different ways: ’
* -FIFO stack or
¥ LIFO queue.
(£) TIEXT
‘The text enables simple input/output

operations (communication between the
user and the controller).

1.2 Simulation of a user’'s program execution

The simulation receives the user’'s program
merged together with other files in object code
on a file, The file has sequential
organization. It consists of records arranged
in the sequence in which they are written in
the file (the first record written is the first
record in the file, and so on).

Particular instruction needs more records.
Records of the same instruction are always
arranged in this way: a first record contains
an operand which will have a result (one or two
for division), a following record is a second

operand, 1if it indeed exists in syntax of an
instruction. After operands, if the
instruction has any, comes the operator. This
is an instruction which will be executed.

The simulator reads the records in the
described regular sequence, too. Simulation of

execution 1s based on the principle of stack
comaputer. The simulator reads a record from
the object code's file. Records are already in
correct sequence, in so-called reverse
notation. The content of a record is
an_operator or an operand.

Bolish
either

If it is an operand then the simulator
it on the stack.

If it is an operator then the simulator pulls
the corresponding number of operands from the
stack, -executes the operator (instruction) and
assigns a value to a result. :

pushes

18

The IMCL (Industrial Microcomputer Controller
Language) is a mnemonic

for our controller. The user can simulate all
of the instructions of the IMCL:
ARITHMETIC OPERATIONS:
(1) ADD - arithmetic addition
(2) SUB - arithmetic substraction
(3) DIV - arithmetic division
The simulator assigns the largest
positive or negative value to the
result, dependebly on the numerator
sign, a =zero %o the remainder and

reports the overflow of the result.

The simulator writes +the ~values of
condition flags (Negative, Zero,
"oVerflow and Carry) on the screen,
then follow the messages about the
mode of execution and about the
current number of cycles -
reiterations of execution of the
user’s program. i
In case of dividing by =zero the

simulator always breaks execution and
writes a message. After +the message
the user can continue with the
execution of his program. He must
press the key RUN - Figure 6!

MUL - arithmetic multiplication

BIT OPERATIONS:
A - logical AND operation over
a bit’'s expressions

(6) © - logical OR operation over
: a bit’s expressions
(7) N - negation of a bit’s
expression
(8) SET ~ bit set
{(9) RESET - reset bit
(10) P - protection and assignement

BIT OPERATIONS BETWEEN TERMS

) (8, 16 or 32 bit string’s length):
(11) OR - logical OR operation
(12) XOR - 1logical XOR operation
(13) AND - 1logical AND operation
(14) NAND - logical NAND operation
(15) NOR - 1logical NOR operation

COMPLEMENTS:
(16) NEG - one’'s complement
{17) CPL - two's complement
TRANSFER OF BIT STRING:
(18) SLC - shift left
(19) SRC - shift right
(20) RLC - rotate left
(21) RRC - rotate right , .
(22) TRANS -~ general purpose transfer of
bits between bit strings
RELATIONAL OPERATORS:
(23) NE - operands are.not equal ?
(24) EQ - are both operands equal ?
(25) LT - first operand is less than
second one .
(26) LTE - first operand is less than
or equals to the second one
(27) GT - first operand is greater
than second one
(28) GTE - first operand is greater than
or equals to the second one
CONVERSIONS:
(28) CBIN - conversion from BCD
to two’s complement
(30) CBCD - conversion from two'’s
complement to BCD
CONTROL OPERATIONS:
(31) JPQ - Jump if Q bit is equal 1
. (32) JPnotQ ~ jump if Q bit is equal 0
(33) JEX

- Jump if X bit is equal 1

(34) JPnotX - jump if X bit is equal O

(35) JP - unconditional Jjump
The simulator writes a message to the
user that the next step will be to
execute a labelled program statement
corresponding to the label of the JUMP
statement. Jump skips the statements
between JUMP instruction and this
statement!
The simulator writes this message only
in step-wise mode of execution!
CALL OPERATIONS:

(36) CALLM - calling a module

(37) CALLQ - conditional calling a module
MISCELLANEOUS OPERATIONS:

(38) BP - break point
When the simulator reaches a break
point that it is not cancelled out in
the wuser's program, it Dbreaks te
execution of simulation. The
simulator writes a message about the
break point irrespective of the mode
of execution: step-wise mode or
continous mode. :

(39) EQUAL - assignement an operand’'s value

to a result
(40) NOP - no operation

In the step-wise mode of execution the
simulator writes only a message that
it reached the NOP instruction and
reassigns all condition flags to zero.

Instructions are orthogonal which means that
the user can use the same instruction with
different data types. For example: once with

a byte, some other time with a longword.

Internal types of data, which are longer

than one bit, we can address also in index mode
and indirect (deferred mode};
for example: ADD (W3), WA(WE), W3.
In such cases the value of indirectly addressed
internal variable tells the simulator on which
internal datum (variable) the instruction will
be actually executed, or in index mode of
addressing, (indexed variable is within round
brackets) a sum of both internal variables’
values gives index (address) of actual internal
datum.

1.3 Representation of a user'’'s

execution

program

You can repeatedly execute the simulation of
yours program as many times as you like. Every
time you can choose one mode from the following
modes of execution:

(a) more cycles,

(b) single cycle,

(c) step-wise mode,

(d) continous mode,

(e) with break point(s) or

(f) without break point(s).

Som& modes of execution are compatible with
others. The user can, for example, execute the
simulation in step-wise mode, with break points

and has more cycles. One c¢ycle is one
iteration of the user’'s program execution.
The key RUN (Figure 6) enables a commencement

or a continuation of user’s program execution.

enables the
step by step, one

The step-wise mode of execution
user’s program execution
instruction after another. For particular
instructions a message 1is written on the
screen. The message contains rudimentary

informations: which instruction is executed,

20

step-wise mode,

operand names and values
conditional flags (Negative,
Carry).

values of
oVerflow and

and
Zero,

The simulation can start with +the following
default modes of execution: a single cycle,
continous mode and with break points! If the
user does not choose the step-wise mode then
the entire user’s program is executed at least
once (depended on the number of cycles -
iterations of execution!) without the simulator

writing out any message, except if there is a
run time error or a break point instruction or
a jump instruction!
STEP IlSi r Ne
Nusber o tlclc: t g
Exscution tiae 1 300 as (of one cycle !}
Top o4 the file !
The progras is READY for exstution !
1f you wish HARD COPY of the screen press (BHIFT) (PrtSe) !
1 f F Fi i F 124 F
RUN § h g
gl | | Rl | | e | o | b

Fig. 6: A fundamental menu of sim lation.

The user selects either the step-wise
the oposite continous mode,
WISE (Figure 6).

mode or
with tne key STEP
The step-wise mode and the
continous mode are mutually exclusive. A new
state 'is oposite to a previous state. At
commencement of execution the default atate is
the continous mode, so if the user wishes the
he must press the key STEP WISE
(Figure 6).

The key MORE CYCLES permits to inscribe
value of the number of cycles (Figure 7).

the

Nusber of cycles 1 5___|
It aust be positive and less than 32001 !

[f yau wish HARD COPY of the screen gress (SHIFT) (PrtSc) !

F2 SFJ Fi FS AFb F7

I I A

Fig. 7: The user inscribes the value
of the number of cyqles.

fl

Fe
RUN £Xr

The user can cancel out all of the used break
points or Just some of them, or gives them
active status, if he chooses a menu of break
points (the key BREAK POINT)}, which is shown on
Figure 8.

BREAK -
BP20 BP2S

POINTS

8PS BP9 BPIO

. CELOR aeans @
Break-point is NOT CANCELED ! Break-point is CANCELED

F f f Fy F8
CANEEL 531 CAN%[L 9eT 3444
ALL AL 0N e

Fig. 8: A menu of break points.

If break point (BP) is cancelled out, then

execution of ‘simulation is not broken!

the

an instruction, the
if the neccessary operands
have values. If they do not have, the
simulator calls: the ' user’s attention to this
fact. The user can choose either 1o inscribe
an initial value to a datum or to confirm a
simulation’s proposal to assign a zero value to
that datum.

Before
simulator verifies

executing

The simulation enables all inscriptions of
digits (numerical data) in:

(a) binary number system,

{b) octal number system,

(c¢) decimal number system and

(d) Thexadecimal number system.

The user indicates the desired number system by
inscribing +the first character: B, O or H for
binary, octal or hexadecimal number system.
For decimal number system he does not inscribe
any letter before digits!

During the inscription of an
the simulator ignores the prohibited
characters. For example: letters that do not
have sense for the selected number sysiem, or
letters the values of which are larger than the
basis of the number system decremented by one.
Likewise, the simulator reports an error if the
numerical value exceeds the allowed integer
interval of datum’s data type (a bit, a byte, a
word or a longword). ’

integer number,

During execution (depending on the
selected modes of execution and menues) the
user can make hard-copy of the screen, use
ADJUST MODE that permits an overview and

adjustment of used data and function blocks,
select different modes of execution, cancel out
or not cancel out break point(s) and, if he
wishes, he can terminate the simulation. This
function is enabled by the key EXIT, that
alvways brings us into the previous menu.

The simulation permits the user to
repeatedly execute different user’s programs or
combinations of the same user’s program with
different declaration modules. ’

2 An instance of step-wise
simple user’s program

execution of a

Figure‘ 9 step-wise

shows an example of
execution of a simple wuser’s program, the
source mnemonic form of which was presented on
Figure 2a. We cut off the fundamental menu
(presented on Figure 6) in order to spare
space. Each message 1is written above this
menu. Temporal order of messages is from top
to the bottom of a paper.
STEP WISE " Flaga s % 1 S

Nuaber of cycles

i
. 3
Exrcution tise §

00 as (of one cycle)
Instruction o SET

Result(s}
L] {

21

Nusber of cycles
Execution \Y..

|¥|
; 00 as (of one cycle !)
Inateuction 3 DIV

L1

Operandis] ¢
CHISL ¢ 111
71 -
Result{s) ¢ =
w20¥17) ¢ I (===)
N20 ¢ 40 (resainder)

.] v
STEP WISE 'Y a8 1§
Nusber of cycles 1 §
Execution tiae 1 500 as {of one cycle)
Instruction ¢ RESET
Result(s) 1
21 0
The execution of the program is breaked at BPY !
STEP WISE ' Yes Pas: ¥4 LV
Nuasber of cycles 1 g :
Execution tise : 300 as (of one cycle 1)
Instruction ¢+ ADD
Operand(s)
CB12 ¢ 12
CB3Z8 ¢ 32
Result(s}
9] H
F N
STEP WISE ! Yos o 3 1§
Wuaber of cycles 3 g
Execution tise 1 300 as (of one cycle V)
instruction : GUB
Operand(s) :
N7 1 19473
g 1 8214
Result(s)
Wié 3 11259
Fi N -y
STEP NISE Yoy we it
Nusber of cycles 1 g
Execution tiae 1 300 as (of one cycle !}
Instruction ¢ ML
Operand(s) :
CL323 ! 9391573
CL8I8 + 81B00000D
Resultis)
L234 1 2147483647
Flags t N 1 ¥
STEP WISE b Yes b 6 0 0 g
Nusber af cycles t g
Execution tlll 1 300 as lof one cycle !}
Instruction ¢ =
Operand(s) 1
txt7
Result(s)
W7 17
Flags ¢ N 1 ¥ %
STEP WiSE 0 0 0

Flags : & 1 ¢ ¢
STEP NISE t Yos 00 0 0
Nusber of :(dn 19
Execution tise t 300 as lof one cycle !}
The execution of the progras is breaked at BP9 ! Instruction : TRANS
erandis} 1
Operandlsl 1 e, gutonn1
No. of bits
Result (s}
R 234 1 00000010 00010101 05000111 0011101
' Flags s ¥ 1 Vv ¢
STEP WISE ! Yos Flape N T 4 ¢ STEP WISE e LR I I
Nusber of cycles : g Nuaber of cycles ¢ g ,
Execution tise 00 as {of one cycle ') Execution tise 1 300 as {of one rycle !)
Instruction 1 AND Instruction : TRANS
H ds)
Dperandsl 1 oot 1O Tpeeandlsl & 1 00000000 00000000 00000000 0000000 ..
3 00000000 80001 Mo, of bits : 100
H . Result (s}
Resultlsd & 10 00000000 odotoet P s 1 00000000 ooeannoo eoanoooo camaooco ..
Flags : & 1 Vv C Flagst ¥ 7 Vv C
STEP NISE ! m 1t 0 0 0 STEP MISE t Yes ¢ 0 0 0
Nusber of :rclu Nuaber of cycles : : g
Execution t 1 500 as {of one cycle !l Execution tiee 00 as {of one cycle)
{astruction 1 CPL Instruction ¢ =
Dperand(s) : Operand(s)
CB12 1 00001100 M
Resultis) Resultin)
e B12 & 11110100 v ' |
Fl N ¥
STEP WISE ¢ Yes LR S T
Nusher of cycles g
Execution tiee 00 as (of one cycle ')
Instruction t NEE The execution of the prograe is breaked at LABEL 33 !
Ogerandis)
CB12 & 00001100
Resultis) :
B13 + 11110011
Flags e N 1 VvV ¢
NISE 1 Yes g o 0 0 O
Hulblr of t cles 1 g
Execution t a1 300 as lof one cycle !)
The sxecution of the program is breaked at BPLO ! Instruction 1 =
Dperand(s}
L2368
Result{s) ¢
L237 ¢ 34948923
Flgs : N 1 VvV Flagst B 1 Vv C
SPISE e R I S SRS i S T T
uaber of cycles c tles ¢
Execution t!u t goo us (of one cycle !) E:uc:t'lgn tine ioo as (of one cycle !)
Instruction ¢ RLC Instruction ¢ &
Operand(s) @ 0 dls)
4 CLI28 1 00000000 40000141 00000001 01000000 perantial 1 0
Rotate no, 1 &5 Al 1
Resultts) o Resultiy)
L2385 ¢ 00000000 00001010 00000010 10000000 A Rt g 0
Flags: N ! V ¢ Flags : P v
STEP WISE 1 ges L T R STEP WISE ' we by g
Nusber of : cles 3 Nuaber of cycles ¢
Execation \ t 300 as (of one cycle V) Execution ty 1 300 as {of one cycle !)
Iastruction : SLC Instruction ¢ L7
Operand(s) ¢ Operand(s) 1
Cal1s : 01110011
Shiftt no. ¢t 3 c‘ég: 125
Resultin)
8233 1 01100000 R“"mi’mﬁ is ¢ 0

Flags : A
STEP NISE 1Y 0
Nusber of cycles : §
Execution tise ¢ §

es

Q0 as {af one cycle !}
Instruction 1+ 0

Operand{s) t

o<
<o

Stack - TQP : ¢
Stack - TOP @ 0
Resultls) |
Result is 4
Flags ¢ N v C
STEP WISE 1 Yes 0 0 0
Rusber of cycles ¢ 3
Exrcution time 1 500 a3 fof one cycle !}
[nstruction t K
Operand(s) ¢
P Stack - T0f @]
Resultis) ¢ |
Result is : 1
Fi i N vy C
STEP WISE ' Yes e 1

Husber of tycles ¢t |
Execution tise : 500 us lof one cycle !)

) Instruction 1 =
Qperang(s) 1
’ ghcl - T0P

Resultis)}
. N2l 1

The execution of the program is breaked at BP20 !

Flags ¢ N
STEP NISE 0
Nuaber of ty:lu
Execution tine

Yes
goo as (of one cycle)
[nstruction 1 NOP

o<
oo

The Executinn of the grograa is breaked at BP25 !

STEP NISE t Yos
Musber of :{cln t
Execution tise 1 500 as {of one cycle 1)

Start of execution of THE FUNCTION BLOCKS.

STEP WISE 1 Y
Nuaber of cycles 1)
Execution Jn 1§

[
00 as (of one cycle ¢}
End of cycle :§

STEP WISE t Yes
Nusber of cycles 5 0
Execution tise : 500 as (of one cycle })
End of the File !

Execution of the progras is finished !

Fig. 9: A step-wise mode of execution
of a simple user’s program.

3 AdJjustment and writing out values

In the fundamental simulation menu (Figure §6),
the user must select ADJUST MODE (Figure 10).
The simulator permits two modes of adjusting
and writing out data.

I¥ you wish HARD COPY of the scresn press (SHIFT) (PriSc) !

Fi F2 F3 Fi F3 F F8
W | | e | | | |

Fig. 10: A menu of ADJUST MODE.

The first mode is directed to a particular
datum or function block and so we call it
SINGLE CHANGE (Figure 11). The second mode 1is
directed to all values of the samé type of data
~ ADJUST EDITOR (Figure 12).

¢ you wish HARD COPY of the screen press <SHIFT) (PrtSc) !

F* F? Fg Fé Fg F?
CONSTANT VR} AEH lngE& INPUT ouTPLT EXlT
RONCSTABLE RSGIS?EE gOUIT R TIER DRUM Text

Fig. 11: A menu of SINGLE CHANGE.

%] Radix 8 Constant ¥ord
, 0 ! 2 g ' S 7
R L
3 - - : - p : N N
4 N - - z - N : -
1 - 000107 Too0le200 - N - -
g - - - . - i ooo000127
10 N . - : R : : :
H - 000137 : - - : : :
Yol can use’keys on the Nuseric Keypad? Help? press ALY K ~
F1 25 -F3 Fé F3 Fb £1 F?
F} PUPE Phg? P?% LINE %ﬁ' CHAN% EXIT
BOTTON | DOWN k%BHT BoTTON D& xglhl LINE ?

Fig. 12: A menu of ADJUST EDITOR.

The way of selection 1is identical for both
modes, because it runs through similar menues.
The user selection starts on menu of types of
data (Figure 13a). There are constants,
internal data, system data, input and ouput

data. The user chooses between a bit, a byte,
a word and a longword in the next menu of data
types (Figure 13b). The user can choose all

data types for any selected type of data except
a bit for constants, because the simulator does

not have a constant bit!

14 you wish KARD COPY of Lhe screen press ¢SHIFT) (PrtSc) !

SYF¥EH

aifer | b

CDN;’!ANT II;GT OU;gUT £§71

Fig. 13a: Menu of types of data.
If you wish HRRD COPY of the screen press (SHIFTY (PriSc) !

f1 f2 £l fi 1)
BITS BYTES WORDS. LONGWORDS EXIT
Fig. 13b: Menu of data types.

3.1 Adjustment and writing out values of
function blocks’ data

The menu SINGLE CHANGE (Figure 11) enables
adjustment and writing out values of function
blocks’ data.

After selecting the type of a function block,
the wuser inscribes 1its successive number and
then, if it actually exists, the simulator
draws its picture on the screen. The simulator
then writes important information about it:
type of function block, its successive number,
names and values of its input and ocutput bits
and current values of its typical variables,
In a menu, under each drawing, the wuser can
read which variables he can adjust and what
actions he can use (Figures 1l4a, 14b, l4c, 1l4d,
l4e and 14f).

]

—

3
S M) =0

—

v 0,100 4 LR 2o =0
PﬂﬁT VALUE
1

d
wilF

0,

33

Ll
CURRENT VALUE : 0

It you wish HARD COPY of the screen press (SHIFT) (PriSc) !

13 F2 F3 FB
TIAE BASE CURRENT VALUE PRESET VALUE (330)

Fig. 1l4a: A menu of MONOSTABLE.
R 16

=0 ter type is FIFD ~ Queut, - F sy =90

) =0 hﬁg* Aw q - E (N52) =1
) =0 AT
L
F
]

Al

[t you wish HARD COPY of the screen press (SHIFT> (Prtfc) !

F2 F
R 1 v I

Fig. 14b: A menu of REGISTER.

c 12
R(M) =0 PRESET VALUE : B0 - E (10} =0
P (AN =0 : ~D (RIL} =0
My =0 CURRENT VALUE ¢ O - F (N12) =0
D =0

14 you wish HARD COPY of the screen prass (SHIFT) (PriSc) !

Fi F2 F8
CURRENT VALUE PRESET VALUE EXIv

Fig. l1l4c: A menu of COUNTER.

T —
E (M =0 -J 18 t 0,100 % -0 (R} = 8
C (M2 =0 PRESET VALUE : 30 IR (M) =
?OD‘F t N0
CURRENT VALUE ¢ 0

If you wish HARD COPY of the screen press (SHIFI) (PrtSc) !

Fl F2 £l FB
TINE BASE CURREXT YALUE PRESET VALLE EXIT

Fig. 14d: A menu of TIMER.

b2 —
H 000 F (H30) =0

Egh ; T VALUE
mmgn:

0000000 00100000

¥ you wish HARD COPY of the screen praas (SHIFT) (PriSc) !

3] E% F3 FA F F8
TIRE CURRENT PRESET IJH?ER CUREPU
BASE VALUE VALLUE OF STEPS H EXIT
Fig. l4e: A menu of DRUM.
TEXT 2
5 (M21) =0 INPUT/QUTPUT ¢ MRITE STRING - D (83 a9

Your aessage s 0.K, .

14 you wish HARD COPY of the screen press (SHIFT) (PrtSc) !

Fl 2 g
INTERNAL VARIABLE MESSAE EXT
INIT 1 144

Fig. 14f: A menu of TEXT.

3.2 Adjustment and writing out values of data

‘As mentioned above, the user can adjust and

write out values of data in two places in our
simulation.

3.3 SINGLE CHANGE

After selecting type of data and its data type,
the user inscribes 1its successive number in
menu SINGLE CHANGE. If +the entered name is
correct in the context of Figure 5 and has a
value, then the simulator writes out its wvalue
in binary, octal, decimal and hexadecimal
number system. Now, the user can adjust the
value or return to the menu of data types. An
instance of choosing and adjusting of a datum
CW200 in menu SINGLE CHANGE is shown on fugures
15a and 15b.

Constant Word NUMBER : 200__
1t aust Be greater than <) and less than 1000 !

F1 F2 F3 8
BYTES KORDS LONGNORDS 348

Fig. 15a: Choosing a datum.

C¥200 -~ Constant Morg

OLD VALUE NEN VALUE ¢

inary @ 0000 0111 1101 0000 ginary ¢ 1111 1000 0011 0000
ctal” 3 003720 ctal ¢ 774060
eciszl ¢ 2000 Decisal : -2000
Hex 1 0700 Hex : FB30

Is new nusber’s value :orrect ?

Answer with Yor

Ft F2 F3 3]

BYTES ¥0RDS LONEWORDS EXIT

Fig.

15b: Adjusting the same datum.

3.3.1 ADJUST EDITOR

ADJUST EDITOR is a screen editor that enables
overlooking of all values of a selected type of
.data. We can not usually write all the values
on a screen at the same time. We can see those
values which are not momentary on the screen by
moving the window through a table of values (we
called it a file sometimes). Function keys of
the menu of ADJUST EDITOR enable this moving
(Figure 16).

left on line

< e T

Egn e ;o right on line
c e e e e .. Pagey

(ngg). A ngu dgnn

CUp Arrowde o v v v v 0w o0 v o Line up

CDawn Arromd. o . o v 0 v o o o Line down

LLaft Arrowd, o o .. o0 . o Bit e

(k‘ft Rerow) it left

4 1aht frrow) it right

(CIRLY (Home> J0 tng of page

(E}RL) (Snd). e e o0 o Jo botton a ga?e

CCTRLY CPollgd o v v v« v v v v To do of tife

(C{RL) (Pg?n) v e v u e s Tobottos of file

CCIRLY <Left Acrowd . . o ., . Nord left

(CTRLY (Right Arrow> or (Tabd . Nord right

You can use kays on the Nuaeric Keypad! Help: press <Alt> H

F1 3 F Fé £ £b £ F?
Fi PAGE PA%E P4 LIXE k N CHANGI e
BIN | VALU

1 1 1 P
BOTION | 00WN ﬁsm BoTToN ‘bgun PR&N LINE ?
Fig. 16: The possibilities of ADJUST EDITOR.
We can move
* to top of a file and
¥ to bottom of a file.

We can move window

* up,
* down,
* left and
* right.
Within a window we can move
* to top of a page and

* to bottom of a page.

We can move a line
* up and
* down

and inside of the line

to left on line (beginning of line),
, % to right on line (end of line)
and from one datum to another
¥ a datum left and
*. a datum right.
We can move out of a current window only

by moving a window, because by moving within a
window we can not come out of it.

Such moving is often time-consuming and

as we
wished to increase the efficincy of the ADJUST
EDITOR, we added the above described

possibilities still another one: the movement

25

to a datum required by the user

(the key LINE ? on Figure 16).

Besides these, function'keys. we can also use
the keypad’s keys for the same purpose.

The key CHANGE VALUE permits
values and +the key PRINT enables writing ocut
all values of +the selected type of data,
clearly arranged on the printer.

adjustment of

4 Conclusion

The presented simulation packet is written in
the programming language Turbo Pascal. The
user can execute it on all personal computers
IBM XT/AT type, or compatible, equiped with an
operating system MSDOS.

The simulation packet is a composition of
twelve independent programs, which are
connected with standard procedure Execute. The
number of source program lines exceeds 50000,
the object code is more than 360k bytes of
lenght.

The SIMULATOR is an integral part of the user’s
development tools. Consequently, the entire
project offers the special purpose environments
to the users.

5 References:

x The . industrial microcomputer
controller's architecture {(in
slovene), Metalna Maribor, 1887,

x Vv, Zumer et al., Workstation for

software development,
- in slovene, 1986

Technical report

*x V. Zumer et al.,
software development,

Workstation for
Technical report

- in slovene, 1887

*x Programmable Contréllers SIMATIC S5
(different variants), SIMENS, 1984

* Programmable Controllers TSX
(different variants), Telemecanique,
1986

* R.E Fairley, Software Engineering

Concepts, McGraw-Hill

1985

Book Company,

* VAX Architecture Handbook,
Egquipment Corporation, 1981

Digital

