
A SIMULATION APPROACH BEFORE USING THE INDUSTRIAL 
MICROCOMPUTER CONTROLLER 

INFORMATICA 3/1988 

UDK 681.326.06:519.876.5 

Anton Zorman 
Maksimiljan Gerkeš 

Viljem Žumer 
Krista Rizman 

Tehniška fakulteta Maribor 

In this paper we deabribe a simulation packet that enables the 
verification of the softvare portion of the controller before 
implementating the controller on a real object. This program 
is unlque of Its kind, as far as ne know, because it enables 
the exaniination of the controller's behavior in planner'3 
Morkplace and so conaiderablv reduces start expenses. The 
simulation packet enables controlled execution of the us©r's 
program, clearly arranged writing out of data on the screen or 
on the printer and gives a chance for data modification. 

SIMDLAGIJSKI PRISTOP PRED UPORABO INDDSTRIJSKKOA 
MIKRORACDNALHIfiEEOA KRMILNIKA. 
V članku opisani siBUlaciJski paket omogoča verif ikaci.lo 
"rffi^rf^skega dela krmil1a pred vgraditvijo krmilnika na objekt. 
Po nam znanih podatkih Je to edini tovrstni program, ki omogoča 
preizkus obnašanja krmilja na projektantovem delovnem mestu in 
s tem znatno znižanje zagonskih stroSkov objekta. SlBulaoiJski 
paket omogoisa. prikaz izva.1an.1a uporabniškega programa, ur&i^n 
In preglsden lapls vrednosti na zaslon ali na tiskalnik in 
možnost 3premlnJan.1a vrednosti podatkov. 

1 Initial oonsiderations about the industrial 
microcomputer oontroller and It's oinulation 

Requests for a system which upgrades standard 
progr.ammable controller functions came from 
industry. Initial efforts were made by 
Metalna, Maribor. After it's definition phase 
the project was supported by the Research 
Society of Slovenia (Raziskovalna Skupnost 
Slovenije) . 

Intentioa and praotical use of tha 
industrial microcomputer controller 

The controller is intended for control in 
capital equipment facilities plants, where 
heavy environment conditions and the immense 
equipment costs. do not allow any compromise. A 
number of unique functions wQre built in the 
controller to obtain the required 
functionality. Special attention wa3 dedicated 
to the user's program - control application 
development and verification tools. 

The paper decribes a unique part of the 
user development and verification software 
which allovs controlled application 
verification at the planner's workplace. This 
function reduces starting expenses when a 
capital object is put into work. 

With convenlent tools, software design methods 
and simulation, most of the mistakes, bugs and 
imperfections of the controller's software are 
dlscovered and removed before iraplementation on 
an object. 

Thus, the simulation of the controller's 
3oftware can be carried out in different way3. 
Module simulation is specially efficient. It 
allows that only verified software blocks are 
put together into larger structures. Typical 
software modules are functions and sobroutines 
like structures in high level language, and 
asserabler like macros. 

Simple use of the simulation packet is 
assured with it's hlerarchical tree atructurod 
menu. The user aelects from the menu on the 
screen the actions to be executed. Each action 
is determined with a function key on the 
keyboard. The user selects the desired action 
by pressing the adequate function key on the 
keyboard. Figure 1 show3 an example of this 
principle. 

N E T « L U • Rtrlbor 
I K O U 9 r n « I C O N T R O L L E R 

S 1 n U L « T I O N 

Fl 
SIHULATION 

F8 
EKD Of 81KU.«TI0II 

Fig. 1: The initial simulation menu. 

After selecting the adequate menu's windoH of a 
selected action, it lights up in yellow colour. 
This light is an advertiseraent for the user to 
notice which action he had selected. In the 
same way, the simulator advertises the user 

http://izva.1an.1a


17 
when he returns back over the menues. If there 
is no special, objective reasons, the selected 
action is executed inunediatel/. 

The user can present his program for the 
controller eitheir in a graphic form, the 
so-called coatact netHorks, or in textual, 
mnemonic form. 
The user must call the 
the simulation of his 
a kind of compiler. I 
special purpose: it 
program together with 
and pos3ibly wlth 
functions or subroutin 
which is 'understood 
simulation, when reque 

analyser before applying 
program. The analyser is 
t was designed for this 
translates the user's 

the declaration module 
some other files for 

es into the 'object form' 
and executed by the 

sted. 
The simulation can be executed only when the 
analyser does not find and report any errorCs) 
in the user'3 progrčun file, nor in the 
declaration module's file. A example of both 
files is on Figure 2a and Figure 2b. 

MAIN 
SET 
RESET 
BP 
ADD 
SUB 
MUL 
W17 = 
DIV 
BP 
AND 
CPL 
NEG 
BP 
RLC 
SLC 
TRANS 
TRANS 
Q = 
JPQ 
NOP 

33 L237 
M21 
BP 
NOP 
BP 

END. 

Ml 
M2 
5 
CB12, 
CW7, 
CL323, 
CW17 
CW111, 
9 
W16, 
CB12, 
CB12, 
10 
CL328, 
CB115. 
CB115. 
M300, 
Ml 
33 
= L236 
= N ( 
20 
25 

CB328, 
CW8, 
CL818, 
CW71, 
W17, 
B12 
B13 
65, 
5, 

3, 3, 
100, 

(Ml A M2) 

BI 
. W16 

L234 
W12( 

W19 

L235 
B235 
L236.7 
M250 

0 (W16 (W16 LT CW87) ) 

CL215 
CL287 
CL300 
CL328 
CL818 

ENDCONST 
lOSPEC 
MODI is 
M0D2 is 
M0D3 is 
M0D4 is 

BLOCK 
CS 

<- 215 
<- 287 
<- 3000000 
<- 328000 
<- 818000000 

TY31 
TY31 
TY31 
TY31 

C 
CS 
C 
CS 
C 
TS 
T 
TS 
T 
TS 
T 

11 
11 
12 
12 
13 
13 
12 
12 
11 
11 
13 
13 

TXS 23 
TX 23 
TXS 24 
TX 24 
TXS 
TX 
TXS 
TX 
MS 
M 
MS 
M 
MS 
M 
DS 
D 
DS 
D 
DS 
D 
RS 
R 
RS 
R 
RS 
R-

ENDBLOCK 
ENDIO 
END. 

YES, 
M6, 
NO, 
M6, 
VES, 
MIO, 
lOms, 
M2, 
lOOms, NO, 
Ml, M2, 

70 
M7, 
80 
M7, 
90 
Mil, M5, M6, M16, M17, M88 
VES, 999 

M8, M61,M62, M63, M64 
M8, M9, MIO, Mil,. M12 

M29, M3, 
50 
M3, 

Ims, 
M3, 
READ. 
M22, 

NO, 
M4, 

100 
M2, 

M4 
Ml 

2, "START' 
M3 

WRITE, 2, "CK." 
M21, M3 
NUMVRITE, 2, B333 
M20, M3 
NUMREAD, 2, L338 
M26, M3 
lOOms, NO, 333 
M2, M20 

VES, 238 
M27 
NO, 669 
M84 
11, 

lOms, 
M3, 
lOOms, 
M27, 
Is, 
M2, 
Is, 
M25, 
Is, 
M2, 
FIFO, 
M2, 
LIFO, 
M2, 
FIFO, 
M3, 

B 
W 

8, 
M32, M33 
18, 16, 
M26, M37 
13, 32, L 
M21, M30 
22, L 
M24, M32, M41, M52 
30, B 
M25. M35, M43. M63 
20, W 
M55. M55, M53, M57 

Fig. 2a: The user's program (file TEST.MPR) Fig. 2b: The declaration module (file D2.DCM) 

DECLAR 
CONST 

CBIO 
CB12 
CB115 
CB119 
CB123 
CB321 
CB328 
CB378 
CW17 
CW71 
CW73 
CW78 
CW87 
CW111 
CW200 
CW312 
CH419 
CW788 
CLO 
CL5 
CL46 
CL49 
CL64 
CL175 
CL200 

<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-

10 
12 
115 
119 
123 
30 -
32 
37 
17 
71 
7300 
78 
87 
111 
2000 
312 
8841 
788 
0 
5 
46 
49 
64 
175 
2000000 

NOTE 

The user does not need to Hrite the 
file type (MPR for user's (or main) 
program or DCM for declaration module), 
because special purpose editors do 
this. File types are alHays hidden 
from the users! 

Fig. 3a: Reading a name of the main progrsun. 

After ali neccessary files Here 
transiated, the simulation establishes the 
presenoe of error(3) very simply. If the 
analyser finds any error(s), then it does not 
produce the object file, which is a direct 
input to the simulation. In čase of an error 
the simulator Mrites a message on the screen. 
In this message it tells the user that he can 
not execute' the simulation because the error(s) 



18 
is(are) found and that the user can correct the 
error(s) in a corresponding editor. 
The program SIMULATION firfst of ali reada the 
name of user program's file (or main program's 
file) and the ncune of the declaration module. 
Figures 3a and 3b show the user's answers to 
both questlon3. 

Ci)t*r ittlirtUm todul'i un i «-

Fig. 3b: Reading the .name of the 
declaration module. 

After successful return from the analyser and 
before the simulation execution, the simulator 
writes a detailed report about constants and 
function blocks used in the declaration module 
(Figures 4a and 4b). 

C O N 8 T A K T S 

1$ 
1 

3 

ij 
BiaOMMi 

;ii78a 
2000 2 » 

4' 

Fig. 4a: The report about CONSTANTS. 
If the value of a constant is too large for 
it's data type, then the simulator assigns the 
largest positive or negative value to that 
constant, depended on its sign! 
The data type of a oonstant is appointod by the 
second letter of the constant's name: B, W or 
[> for byte (8 bits), word (16 bits) or a 
longword (32 bits). 

of an instruction operand 
many bits of storage should be 

is the 
be. The 
BCD and 

The data type 
identifies how 
considered as a unit and what 
interpretation of that unit to 
simulator only recognises the integer 
ASCII data. An integer can be stored in a bit, 
byte, word or in longvord. Some instructions 
interpret the integer data as a signed value, 
Hhile others as a bit strings. 

F U N C n O I I I L O C K S 

0J|6tTAH.E Ml ! S^^*^^ Sf 
ffiSISTU R 7 u mu 

Fig. 4b: The report about FUNCTION BLOCKS. 

1.1 Represent&tion of 
function blooka 

& types of data and 

The user can use the following types of data: 
(a) 

(b) 

CONSTANTS 
The user assigns initial values to 
constants in the declaration module. 
During the execution of. the simulation 
the simulator has read only access to 
it's value. The user can assign a new 
value to a constant in the later 
described menues SINGLE CBANOE and 
ADJOST EDITOR. 

The controller's system data are set 
up by the operating system. The 
simulator simulates this function by 

(C) 

assigning them values. It can read 
only 3ystem data. The same principle 
to modify the system data is in valid 
as for constants. 
INTERNAL DATA 
Internal data are general purpose 
data. The simulator can use them 
slmllarly as variablea in a high level 
language: their values can be 
modlfled by the simulator. 

(d) 

(e) 

INPPT DATA 
Input data are external 
inputs into the controHer. 

physical 

OUTPUT DATA 
Output data are physlcal 
from the controller. 

outputs out 

We use 'the sinAle aasisnaent rula' for ali 
type3 of data, because of the simulation of 
parallel execution mutualy exclusive events. 

OvorvioH of the controller'a data t)rpes 
The user can use almost ali combinations of 
types of data with data types in simulation. 
This survey is shown on Figure 5. 
TYPE TYPE*s TYPE's DATA DATA 
OF DATA DATA TYPE's TYPE's A 
DATA NAME MARK NAME MARK SAMPLE 
CONSTANT DATA: 
BYTE Constant 
WORD Constant 
LONGVORD Constant 

SYSTEM DATA: 
BIT Sy3tem 
BYTE System 
HORD System 
LONGWORD System 

INTERNAL DATA: 
BIT Internal 
BYTE Internal 
WORD Internal 
LONGWORD Internal 

OUTPUT DATA: 
BIT Output 
BYTE Output 
WORD Output 
LONGHORD Output 

INPUT DATA: 
BIT Input 
BYTE Input 
WORD Input 
LONGWORD Input 

C 
C 
C 

S 
S 
S 
S 

* 
* 
* 
* 

0 
0 
0 
0 

I 
I 
I 
I 

Byte 
Word 
Longword 

Bit 
Byte 
Word 
Longvjord 

Bit 
Byte 
Word 
LongHord 

Bit 
Byte 
Word 
Longword 

Bit 
Byte 
Word 
Longvord 

B 
W 
L 

* 
B 
W 
L 

M 
B 
W 
L 

* 
B 
W 
L 

* 
B 
W 
L 

CB18 
CW555 
CL234 

S12 
SB373 
SW383 
SL947 

M991 
B3 
W495 
L952 

012.13 
OB10.4 
OW4.10 
OL2.2 

15.13 
IB8.10 
IW10.0 
IL1.3 

NOTE 
Asterlsk "*" means that at this plače 
there is no mark! 

Fig. 5: Survey about types of data. 

The user has six type8 of function blooka 
besides the types of data mentloned above. 
The function blocks are: 

(a) nUEB 
The timer enables temporal control 
over events in an object. After a 
certain tirne delay something can 
happen, the value of Hhich is 
programmable. 



19 
(b) 

(C) 

(d) 

MONOSTABLE 
The monostable ehables temporal 
control, too. It generates a pulse of 
apeclfic duration, the value of which 
is programmable. 
The raain difference between the 
monostable and the timer is the 
folloHing: the user can programmabl/ 
control the timer through its inputs. 
After the user had enabled the 
monostable to start running, he can no 
longer programmabl/ influence the 
monostable. Only one exception is 
allowed: the user can repeatedl/ 
start the monostable from the 
baginning! 

The counter permits the upcounting and 
dovmcounting of events. These two 
operations can be performed 
simultaneous/ or not, as required. 
DRtJM CONTROLLER 
The drum controller enables temporal 
or event-driven (through its inputs) 
control: values of output bits of 
currerit drum step are asaigned to 
actual bits. The two mentioned modes 
of operation are mutually exclusive. 

The IHCL (Industrial Microcomputer Controller 
Language) Is a mnemonlg PrOfframmaMe language 
for our controller. The user can simulate ali 
of the instructions of the IMCL: 

(e) 
of data 

(f) 

REGISTER 
The register enables storage 
in tHO different ways: 
* FIFO staok or 
* LIFO queue. 

1EX1 
The text enables simple input/output 
operations (communication betveen the 
user and the controller). 

1.2 Simulation of a user's program execution 
The simulation receives the user's program 
merged together with other files in object code 
on a file. The file has seguential 
organizatlon. It conslsts of records arranged 
in the sequence in whtch they are written in 
the file (the first record written is the first 
record in the file, ... and so on). 

Particular instruction needs more records. 
Records of the same instruction are alHays 
arranged in this way: a first record contains 
an operand Hhich will have a result (one or two 
for division), a folloning record is a second 
operand, if it Indeed exists in syntax of an 
instruction. After operands, if the 
instruction has any, comes the operator. This 
is an instruction whlch will be executed. 
The simulator reads the records in the 
described regular sequence, too. Simulation of 
execution is based on the princlple of atack 
coaputer. The simulator reads a record from 
the object code's file. Records are already in 
correct sequence, in so-called reverse Polish 
notation. The content of a record is either 
an operator or an opcrand. 
If it is an operand then the ̂  simulator pushes 
it on the stack. 
If it is an operator then the simulator pulls 
the corresponding number of operands from the 
stack, executes the operator (instruction) and 
assigns a value to a result. 

(1) 
(2) 
(3) 

(4) 

(5) 
(6) 
(?) 
(8) 
(9) 
(10) 

(11) 
(12) 
(13) 
(14) 
(15) 

(16) 
tl7) 

(18) 
(19) 
(20) 
(21) 
(22) 

(23) 
(24) 
(25) 
(26) 
(27) 
(28) 

(29) 
(30) 

(31) 
(32) 
(33) 

ARITHMETIC OPERATIONS: 
ADD - arithmetic addition 
SOB - arithmetic substraction 
DIV - arithmetic division 
Divide bv zero: 
The simulator assigns the largest 
positive or negative value to the 
result, dependebly on the numerator 
sign, a zero to the remainder and 
reports the overflo« of the result. 
The simulator »rites the values of 
condition flags (Negative, Zero, 
oVerfloH and Carry) on the screen, 
then follow the messages about the 
mode of execution and about the 
current number of cycles 
reiterations of execution of the 
user's progreus. 
In čase of dividing by zero the 
simulator always breaks execution and 
writes a message. After the message 
the user can continue with the 
execution of his program. He must 
press the key RON - Figure 61 
MUL - arithmetic multiplication 
BIT OPERATIONS: 
A - logical AND operation over 

a bit's expressions 
O - logical OR operation over 

a bit's expressions 
N - negation of a bit's 

expre33ion 
SET - bit set 
RESET - reset bit 
P - protection and assignement 
BIT OPERATIONS BETVfEEN TERMS 
(8, 16 or 32 bit string'3 length): 
OR - logical OR operation 
XOR - logical XOR operation 
AND - logical AND operation 
NAND - logical NAND operation 
NOR - logical NOR operation 
COMPLEMENTS: 
NEG - one's complement 
CPL - two's complement 
TRANSFER OF BIT STRING: 
SLC - shift left 
SRC - shift right 
RLC - rotate left 
RRC - rotate right 
TRANS - general purpose transfer of 

bits betveen bit strings 
RELATIONAL OPERATORS: 
NE - operands are.not equal ? 
EQ - are both operands equal ? 
LT - first operauid is less than 

second one 
LTE - first operand ia less than 

or equals to the second one 
GT - first operand is greater 

than second one 
GTE - first operand is greater than 

or equals to the second one 
CONVERSIONS: 
CBIN - conversion from BCD 

to two's complement 
CBCD - conversion from two's 

complement to BCD 
CONTROL OPERATIONS: 
JPQ - jump if Q bit is equal 1 
JPnotQ - jump if Q bit is equal O 
JPX - jump if X bit is equal 1 



20 
(34) JPnotX - Jump if X bit is equal O 
(35) JP - unconditional jump 

The simulator write3 a message to the 
user that the next step will be to 
execute a labelled program statement 
corresponding to the label of the JUMP 
statement. Jump skips the statements 
between JUMP instruction and this 
statementI 
The simulator Krites this message only 
in step-wise mode of execution! 
CALL OPERATIONS: 

(36) CALLM - calling a module 
(37) CAIJLQ - conditional calling a module 

MISCELLANEOUS OPERATIONS: 
(38) BP - break point 

When the simulator reaches a break 
point that it is not cancelled out in 
the user's program, it breaks te 
execution of simulation. The 
simulator writes a message about the 
break point irrespective of the mode 
of execution: step-wise mode or 
continous mode. 

(39) EQUAL - assignement an operand's value 
to a result 

(40) NOP - no operation 
In the step-wise mode of execution the 
simulator writes only a message that 
it reached the NOP instruction and 
reassigns ali condition flags to zero. 

Instructions are orthogonal which means that 
the user can use the same instruction with 
dlfferent data types. For example: once with 
a byte, some other tirne with a longvord. 

Internal types of data, which are longer 
than one bit, we can address also in index mode 
and indirect (deferred mode); 
for example: ADD (W3), W4(W6), W3. 
In such cases the value of indirectly addressed 
internal variablo tells the simulator on whioh 
internal datum (variable) the instruction will 
be actually executed, or in index mode of 
addressing, (indexed variable is within round 
brackets) a sum of both internal variables' 
values gives index (addreaa) of actual internal 
datum. 

1.3 Representation 
execution 

ol program 

You can repeatedly execute the simulation of 
yours program as many times as you like. Every 
tirne you can choose one mode from the following 
modes of execution: 

(a) more cycles, 
(b) single cycle, 
(c) 3tep-wise mode, 
(d) continous mode, 
(e) with break point(s) or 
(f) without break point(s). 

operand names and values and values of 
conditional flags (Negative, Zero, oVerflov and 
Carry). 
The simulation can start with the following 
default modes of execution: a single cycle, 
continous mode and wath break pointsl If the 
user does not choose the step-wise mode then 
the entire user's program is executed at least 
once (depended on the number of cycles 
iterations of execution!) without the simulator 
writing out any message, except if there is a 
run tirne error or a break point instruction or 
a jump instruction! 

STEP NlSE I No 
Nuibtr Qt cvdt i I 1 
Citcution t i t i I 300 t i (of oni [ycli I) 

f o fi Qi t li I f 1 I I ! 
Thi progrit i i REAOV for iiicution ! 

If you »ish HSfiD COPV of thi icrfm priii <8HIfT> <Pr[k) ! 
fl 
m m M # 

F6 n EJIT 
Fig. 6: A fundamental menu of simi lation. 

The user selects elther the step-uise mode or 
the oposite continous mode, with the key STKP 
WISE (Figure 6). Ihfi gtep-vise mads and ih& 
contingus mcds are mutually exclusive. A new 
State is oposite to a previous state. At 
commencement of execution the default state is 
the continous mode, so if the user wishes the 
step-wise mode, he must press the key STEP VISE 
(Figure 6). 
The key MORE CTCLES permlts to Inscribe 
value of the number of cycles (Figure 7). 

Kiubjr of cyclii i 5 
It luit bi poiitivi ind 1(11 thin 32001 t 

t h e 

If you •Uh HAROtOPr o< thi K r i m prisi (SHIFT) <PrtSc> I 
Fl 
RUN m F3 cis F5 w n m 
Fig. 7: The user inscribes the value 

of the number of cycles. 
The user can cancel out ali of the used brealc 
polnts or Just some of them, or gives them 
active status, if hs chooses a menu of break 
polnts (the key BREAK POINT), whiGh is 3hown on 
Figure 8. 

Somž modes of execution are compatible Mith 
others. The user can, for example, execute the 
simulation in step-wise mode, with break points 
and has more cycles. One cycle is one 
iteration of the user's program execution. 
The key RUN (Figure 6) enables a commencement 
or a continuation of user's program execution. 
The 3tep-wi3e mode of execution enables the 
user's program execution step by step, one 
instruction after another. For particular 
instructions a message is Rritten on the 
screen. The message contains rudiraentary 
informations: which instruction is executed. 

BflE« - POIHTS 
8P5 m BPlO BPJO BP23 

COIOR M a n i 
B r i i k - p o i n t i i KOT CMCELED ! B r i i k - p o i n t i i UNCELEO I 

CANCEL 
ALL AU 

CANČCL 
ONE 

F« 
3ET 
O C 

F8 
EIIT 

Fig. 8: A menu of break points. 



21 

If break point (BP) is cancelled out, then the 
execution of•simulation is not broken! 

Before executing an instruction, the 
simulator verifies if the neccessary operands 
have values. If they do not have, the 
simulator calls the user's attention to this 
fact. The user can choose either to inscribe 
an initial value to a datum or to confirm a 
simulation's proposal to assign a zero value to 
that datum. 

The simulation enables ali inscriptions of 
digits (numerical data) in: 

(a) binary nurnber system, 
(b) octal nurnber system, 
(c) decimal nurnber systera and 
(d) hexadecimal nurnber system. 

The user indicates the desired nurnber system by 
inscribing the first character: B, O or H for 
bihary, octal or hexadecimal nurnber system. 
For decimal nurnber system he does not inscribe 
any letter before digits! 

During the inscription of an integer number, 
the simulator ignores the prohibited 
characters. For example: letters that do not 
have sense for the selected number svstem. or 
letters the values of which are larger than the 
basis of the number system decremented by one. 
Likewise, the simulator reports an error if the 
numerical value exceeds the allowed integer 
interval of datum's data type (a bit, a byte, a 
word or a longuord) . 

During execution 
selected modes of exec 
user can make hard-copy 
ADJUST MODE that perm 
adjustment of used data 
select different modes of 
or not cancel out break 
wishes, he can terminate 
function is enabled by 
alwavs brinaa ua iiii^ the 

(depending on the 
ution and menues) the 
of the screen, use 
its an overview and 
and function blocks, 
execution, cancel out 
point(s) and, if he 
the simulation. This 
the key EXIT, Ihat 
Er£YiQua meau. 

The simulation perraits the user to 
repeatedly execute different user's programs or 
combinations of the same user's program with 
different declaration modules. 

2 An instance of step-vise 
simple user'a program 

execution of 

Figure 9 shows an example of step-wise 
execution of a simple user's program, the 
source mnemonic form of which was presented on 
Figure 2a. We cut off the fundamental menu 
(presented on Figure 6) in order to spare 
space. Each message is Hritten above this 
menu. Temporal order of messages is from top 
to the bottom of a paper. 

STEP HtSE ! Vti 
Nuibir oi cyclii : 3 
E>(cutian tiic i 900 is (of ont cycl( !l 

Initruction : 5ET 

Fli9i 

Retult(i) 
Rl I 

STEP KISE 1 In 
Nutttr af tycl»i i S 
£xicution t ia i i 900 i i laf ont cycl> ! 

Instruction t RESET 

Rliult l ! ) i 
112 i 0 

Fligi : 

) 

Th( ixKution o' the projri i i t brtikid i t BPS 

STEP KISE 1 rei 
Nutbtr of cycltt i S 
EnKution t l u : SOC • ( (o) oni cycli ! 

Initroction i ACD 

OptrtniKtl : 
CBI2 1 12 

CB328 1 32 

f l t iu l td) : 
BI ! 44 

STEP KISE ! Vil 
Nuibir af tyc l i i i 3 
Emcution t i t t i 300 i i (of ont cycli 

Initructiod i GUB 

Opirinddl : 
an 1 H475 
cm 1 8214 

Riiult i t ) : 
HU 1 11239 

STEP KISE 1 Tl i 
Nuibtr of cy[ l i i i 3 
E«Kution t l i t 1 300 t i (of oni cycl> 

Initruction i MJL 

Optrindd) : 
CL323 1 ?3flS73 
CL818 1 8IB00OOO0 

Ri iu i td l : 
L234 1 2I474BU47 

STEP KISE 1 Vil 
Nuiber of c v d i i t 5 
Eifcution t l u 1 300 is lof oni cycli 

Initruction ! < 

Opirind(i) : 
«17 

Ri iul t l i ) 1 
»17 ; 17 

STEP mSE 1 T l i 
KuibK of c r d i i 1 3 . 
Eiicution t i M t 300 i i (of oni cyclt 

Initruction i DIV 

Opirtnddl 1 
CMllI : 111 
0(71 1 .71 

Ri tul td) 1 
»12(11171 1 1 ( -

FUgi ! 

1 

FUgi 1 

) 

FUgi 1 

1 

FUgi ! 

11 

FUgi 1 

!1 

-> »61 ) 
»20 1 40 ( rn i ind i r l 

N 
0 

1 

» 
0 

» 
0 

* 
0 

» 
0 

N 
0 

1 
1 

I 
0 

1 
0 

1 

1 
0 

I 
0 

v 
0 

v 
0 

v 
0 

v 
1 

v 
0 

v 
0 

C 
0 

C 
0 

C 
0 

C 
0 

C 
0 

1 



22 

Tht i i tci it ion of tht progru i t brtikid i t BP9 ! 

STEP KISE I Y i l 
Nvabir of Cfd t t i 9 
Eitciition t l M i SOC t t (of otii cycli !) 

Flig« : H 2 V C 
O » O O 

Dptrandlil 

Rttul t l i ) 

Initruction i AND 

m i i OOIOIOII 11111011 
HI? I 00000000 OOOIOOOI 

m; ! 00000000 oooioooi 

STEP KISE I rt i 
Nutbir of cvc i l i i 3 
EnKutlon t i H I 300 l i lof oni cjrdi !l 

Fligi I N i V C 
1 0 0 0 

Opirind(i) ! 

Rt iu l t ( i ) 

Initruction i CPL 

CBI2 I 00001100 

B12 : tUlOlOO 

STEP KISE I y t i 
Nuilitr ot tycli< i 3 
Eiecution t i i t : 300 i s (of ont cyclt !) 

Initruction i HES 

Optrinddl 

Flagi t N 

Ri iu l t l i ) 

CB12 i OOOOUDO 

BU I lUlOOU 

Tht » i c a t i c n of tht prograi i i brtiktd i t BPlO ! 

STEP VISE ! Ttf 
Nuibtr of Cfcl i i I S 
Eiicution t iM I SOO II (of 

Flaji 

oni cyc l i II 

Initruction i ALC 

Opiranddl s 
CU28 I OOOOOOOO 00000101 00000001 01000000 

RDtatt no. I iS ( >> 1 !!! I 

R i i u l t d l I 
L 2 U I OOOOOOOO OOOOIOIO OOOOOOIO lOOOOOOO 

STEP KISE I rti 
Nviibtr of cvdti i 3 
Etication tlH i 300 i i (of oni cjrdi !) 

Initruction ; SLC 

Optrand(i) t 
»113 : OIllOOlI 

Shift no. t 3 

Rtiult(i) : 
B233 i 01100000 

Fligt 

I I 

N 2 V C 
0 0 1 0 

I V 
O O 

Flagi i K 1 
STEP KISE 1 Vtl 0 0 
Nuibtr of cvdti 1 3 
Eitcution t i i i 1 300 i t lof ont cydi !l 

Initruction i TRANS 

Optrinddl i 
CBI13 i giUOOll 

No. of biti 1 3 

Rttultli) 1 
L23i : OOCOOOIO 00010101 01000111 00111011 

Fligi 1 II 1 
STEP VISE ! Ytt 0 0 
Nuibtr of cydtf i 3 
ExKution tlaa i 300 as (of ont cycli '.) 

Initruction : TRMS 

' • 11300 1 OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO 
No, of b i t i 1 100 

Riiultlil 1 
II2S0 1 OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO 

Fligt 1 II J 
STEP KISE 1 rti 0 0 
Nuabir of cydii : S 
Extcutioii t iM ! 300 i i lof oni cydi !l 

Initruction i • 

Optrinddl i 
HI 

Riiultli) : 
g 1 1 

Thi t>tcution of tht progru it brtiktd it LABEL 33 

Fligi 1 N 1 
STEP NIŠE I Yti 0 0 
Nuabir of cvdti i S 
Eitcution t i i i 1 300 i i lof ont cyclt !l 

Initruction i • 

Dptranddl i 
L2Ii 

RituUd) 1 
L237 I 34flBt23 

Fligi 1 N ! 
STEP mSE 1 Vti 0 1 
Nuibir of cydit i S 
Emcutlon t l i i i 300 i i lof ont cycli !l 

Initruction : A 

Optrinddl 1 
"̂  H2 1 0 

lil 1 1 

Riiultli) 1 
filiult i l 1 0 

Fligt ! N I 
STEP mSE I T « 0 1 
Nuibir of cydti I 3 
Eitcution tiai t 300 t i lof oni cyd> !l 

Initruction i LT 

Opirindd) 1 
Nli 1 11239 

CW7 1 87 

Riiultli) 1 
Rttult it 1 0 

V 
0 

v 
0 

•• 

v 
0 

v 
0 

v 
0 

v 
0 

r 
0 

C 
0 

r 
0 

r 
n 

C 
0 

r 
0 



23 

STEP mSE i t u 
Nutber of cvdei : 3 
CtKution tiM : iOO if Igf one cycU !l 

F l i s i ; M I V C 
0 1 0 0 

Instruction i O 

Op»rind(>l ! 
Stjck - TOP 
St«k - TOP 

Rt iu l t l i ) : 
Reiult i s 

SIEP KISE ! Tu 
HuibK of cyc]( i t i 
EiKution t i « i I SOD II (of oni cycle !) 

FUgs I K Z V C 
0 0 0 0 

[nitruction i N 

Opsrindtfl i 
StJck - TOP ! 

Riiultd) ; 
Rnult it 

STEP VISE ; Yn 
NuibK of cycle> i I 
Eiicution t i u : 300 i t lof oni cycl i I) 

F i i g i i H 2 V C 
0 0 0 0 

Initruction i « 

Optrtndd) I 
Stick - TOP 

Ritultlt) : 
. m 

Thi i iecution of the projrii i> brtikid at BP20 ! 

STEP KISE I Vti 
Nuiber of cyclet : 3 
Eutcution t i i t : SOO ai (of 

Fligi 

ont cyclt !l 
Initruction i NDP 

Thp iiecution of the progrit i! briaked at BP2S I 

STEP KISE t In 
Nutbtr of crdii : i 
EiKution t i M I 300 i s (of oni cycle !1 

S t a r t of t i e c u t i o n of THE FUKCTION BLOCKS. 

STEP NIŠE : Tit Nuabir of cvclei : 3 Eticution tIt« : 300 ii (of oni cycle !) 
E n d o f c y c l e : 

STEP NlSE : Ves 
Nuiber of cyclei : O 
EsKution t i M : 500 i i (of one cycle !) 

E n d o f t h I f i 1 I ! 

Eiecution of the prograi i s f in i ihid ! 

Fig. 9: A step-wise mode of execution 
of a simple user's program. 

3 Adjuatment and Hrlting out values 
In the fundamental simulation menu (Figure 6), 
the user must select ADJUST MODS (Figure 10). 
The simulator permlts two modes of adjusting 
and writing out data. 

I f you l i s t i HARD COPV of t h i t c r > n p r i i i < S H i n > <PrtSc> '. 

F l 
COMT 
VIEV 

Pli06 
VIEi 

F3 

ESIHOR 
Ft 

PRUT J« ČMME 
F8 

EIIT 

Fig. 10: A menu of ADJUST MODE. 
The flrst mode is directed to a particular 
datum or function block and so we call it 
SINGLK CHANGE (Figure 11). The second mode is 
directed to ali values of the same t/pe of data 
- ADJUST KDITOR (Figure 12). 

If you i l t h HARD. COPy of thi i cn i f l prtt i <SH1FT> (PrtSc) ! 

CONSUT 
R0NOSTAH.E 

SYSTEN 
VARIABLE 
REGISTER 

IKnRKAL 
PIABU 
COinTER 

F4 
IUPUT 

TIKR 

OUTPUT 
DRUH' 

EITT 

TEIT 

F i g . 1 1 : A m e n u o f SINGLE CHANGE. 

0 

\ 
3 4 
5 
i 
7 
8 
1 

10 . 

i l 

0 

.-

-

cm 
1 

000107 

000137 

2 

. 

. 

Radi« 8 
3 

0U20I 

-

4 

-

-

Conitant Vord 
3 i 

. 

- -

7 

000021 

0OC127 

¥ou can ai i~kiyi on <he Muitrtc Kiyp<dT Htlp? p r n s <Alt> H 

F l 

BDTTOII 

PASE 
UP 

DOVN 

F3 

RI6HT 

F4 

m 
BOTTOH 

F5 
LIKE 

DISII 

Fi 

i" 
F7 

CHMK m E5?T 
LIHE ? 

Fig. 12: A menu of ADJUST EDITOR. 

The way of selection is identical for both 
modes, because it runs through similar menues. 
The user selection starts on menu of types of 
data (Figure 13a). There are constants, 
internal data, sjrstem data, input and ouput 
data. The user chooses betveen a bit, a byte, 
a word and a longvord in the next menu of data 
types (Figure 13b). The user can choose ali 
data types for any selected type of data except 
a bit for constants, because the simulator does 
not have a constant bit! 



U rou >ish mi cm of Iht icntn presi <SHIF1> <PrtSc> 

F i g . 1 3 a : Menu o f t y p e s o f d a t a . 

H rou lish NMD COPT of thr icreen prcis (SHIFT) <PrtSc> ! 

24 

C0N3TAKT SVSTEH 
VAKIABLE 

I N T E m 
VARIABJ 

IRfUT OUTPUT E5!T 

E (KI) C (112) O 
O A 

T 11 
TB i PRESET WLUE I NODIF I CURBENT VALUE i 

0.100 SO »O O 
O (1131 R (n4l 

F l 

BIT5 

F2 

BYTES 

n 
UORDS 

F4 

LOHGNRIIS 

F8 

EJIT 

3. 1 

Fig. 1.3b: Menu of data types. 

Adjustment and writing out values of 
function blocks' data 

The menu SINGLE CHANGE (Figure 11) enables 
adjustment and writing out values of function 
blocks' data. 
After selecting the type of a function block, 
the user inscribes its successive number and 
then, if it actually exists, the simulator 
draws its picture on the screen. The simulator 
then Hrites important Information about it: 
type of function block, its successive number, 
names and values of its input and output bits 
and current values of its typical variables. 
In a menu, under each drawing, the user can 
read nhich variables he can adjust and Mhat 
actions he can use (Figures 14a, 14b, 14c, 14d, 
14e and 14f). 

S ( « ) - O 

N 13 

cmr 
VALUE 

I 0,100 
333 

. M 
ENT VALUE l O 

R III20) • O 

U rou n i ih HARD COPr of tht i c re in p r i i i <SHIFI> <PrtSc> ! 

Fl 

r inE BASE 

F2 

CURREKT VALUE 

F3 

PRESET VALUE 

FB 

EIIT 

F i g . 14d: A menu o f TIMER. 
D 32 

R (HJI « ( 
U mu • i - Ik, T VALUE 

;KT VALUE 
- - ITEP! 

CURi 
NUflBfiiOF 6TEPS STEP CURRENT STl. iti; loolc STATES 
OMI 

1.000 i li o 
32 
O 

00000000 OOOOOOOO 00100000 

F in30) • o 

I f p u >ish HARD COPV of t h i tcrttn p r t u <SH!FT) (PrtSc) ! 

F l 
TIHE 
BASE 

CURREMT 
VALUE 

F3 
PRESET 

VALUE 
MJUBER 

Of STEPS 
CUflKKT 

STEP 

f8 
EIIT 

F i g . 1 4 e : A menu of DRUM. 

S (R21I ' O 

TEH 2» 

IKPUT/OUTPUT I »RITE SIRIII6 D (fl3l 

Your le i t i jg l i O.K. 

If you »iih HARB COPV of th« »črten prcit <SHin> <PrtSc> ! 

If yoti iiith HARD CDPY if tht icrtin p r t u <SHIfI) <PrtSc> 

Fl 

TIflE BASE 

F2 

CURRENT VALUE 

F3 

PRESET VALUE 

FB 

EIIT 

F i g . 14a : A menu o f MONOSTABLE. 

R U 
R (Ml • O 
I («24) • O -
O (K32) « O -

U t t r t |pt i i FIFO - quiui. 
I O 

lATA I O 
LEII6TH I 22 

NUNBER OF DATA i O 
Oiti typt l i longaord 

ITPUT 6AT 
GliTER L. 
IMER OF 

F I M l ) ' O 
E IIIS2) • 1 

[f you »iih HARD COPy of tht scrcM priss <SHIfT> <PrtSc> I 

Fl 
IKPUT MTA 
OUTPUT DATA 

f 2 
RE6ISTER LENETH 
KUIBER OF DATA 

• 
»I I 

COKTENTS 

Fig. 14b: A menu of REGISTER. 

R (U) P m 
U M) 
D (d?) 

O -
O -
O -
O -

C 12 
PRESET VALUE i 
IIODIF ! 
CURRENT VALUE t 

- E (dlOI « O 
- D (1111) « 0 
- F tN12) « 0 

Fl 
IRTERNAL VARIABLE 

UNIT 1 

F2 
IESSA6E 
UIIT 2 

FB 
EIIT 

F i g . 1 4 f : A menu o f TEXT. 

3.2 Adjustment and Hrltlng out values of data 
'As mentioned above, the user can adjust and 
write out values of data in two places in our 
simulation. 

3.3 SINGLE CHANGE 
After selecting type of data and its data type, 
the user inscribes its successive number in 
menu SIKGLE CHANGE. If the entered name is 
correct in the context of Figure 5 and has a 
value, then the simulator writes out its value 
in binary, octal, decimal and hexadecimal 
number system. Now, the user can adjust the 
value or return to the menu of data types. An 
instance of choosing and adjusting of a datum 
CH200 in menu SINGLE CHANGE is shovrn on fugures 
15a and 15b. 

Conitint Hord NUIIBER i 200„ 

I t iutt bi ( r i i t t r thin - I tnd l i i i thin 1000 ! 

If you aiih HARD COPV of tlit tcritn p r i i i (SHIFT) (PrtSc) ! 

Fl 

CURRENT VAIUE 

F2 

PfiESET VALUE 

FB 

EIIT 

Fig. 14c: A menu of COUNTER. 

Fl 

BVTES 
F2 

NORDS 

FJ 

LONSUODDS 

FB 

EIIT 

Fig. 15a: Choosing a datum. 



25 

Cl(200 - - Coint in t »uril 
to a datum required by the user 
(the key LINS ? on Figure 16). 

01.0 VALUE 

ictil 
JlCill l 

om 0111 
(103720 
2000 
07D0 

1101 OOOO 
11» VALUE I 

§ i n j r y 
cti l 

Otcital 
Htx 

1111 1000 
774060 
-2000 
f830 

0011 0000 

! i niD nu«lier'E vilue correct ? 
Anmer iiith V or N ! 

Fl 

BVTES 

F2 

IIDflDS 

F3 

LOtieilOiiDS 

FS 

EIII 

Fig. 15b: Adjusting the same datum. 

.3.3.1 ADJUST EDITOR 

ADJUST EDITOR is a screen editor that enables 
overlooking of ali values of a selected type of 
•data. We oan not usually write ali the values 
on a screen at the same tirne. We can see those 
values which are not moraentary on the screen by 
moving the window through a table of values (we 
called it a file sometimes). Function keys of 
the menu of ADJUST EDITOR enable this moving 
(Figure 16). 

<Hoit> To left on l i n i 
<En(l> To r i jh t on line 
(PgUo) Pigt up 
<PqOn> Pi ; t dom 
(Up Arroii> Lini up 
(Doiin Arroa) Lini dom 
<Li<t Itrrai) Bit i i U 
(R oht ftrro«) Bit rioht 
(CTRL) <HDK> To too ol pige 
"~RL> <End> To bottoi of gigi 

" <foUp> 10 lop o( J i U RL> (fjUp) 
(CTRL) n> To bottoa of f i l t 

RL) ( L i h Arroi) Mord l i U 
(tL> <Rijht Arro«> or <Tib> , Hord r l g M 

Vou ctn u u l(iyi on tha Nuiiric Kiypad! Hiip; p r i i i <Alt> K 

BOTTOH 

mi. 
RISHT 

F* 

eoTTan 

F! 
LUE 

IP 
m I 

F7 
CHAHEI 

VAr 
PR LUE ? 

Fig. 16: The possibilities of ADJUST EDITOR. 

We can move 
* to top of a file and 
* to bottom of a file. 

We can move window 
* up, 
* down, 
* left and 
* right. 

Within a window we can move 
* to top of a page and 
* to bottom of a page. 

We can move a line 
* up and 
* down 

and inside of the line 
* to left on line (beginning of line), 
* to right on line (end of line) 

Besides these, function keys, we can also 
the keypad's keys for the same purpose. 

The key CHANGE VALUK permits adjustment of 
values and the key PRINT enables writing out 
ali values of the selected type of data, 
clearlV arranged on the printer. 

4 Concluaion 

The presented simulation packet is written in 
the programming language Turbo Pascal. The 
user can execute it on ali personal computers 
IBM XT/AT type, or compatible, eguiped with an 
operating sy3tem MSDOS. 

The simulation packet is a composition of 
twelve independenrt programs, which are 
connected with standard procedure Execute. The 
number of source program lines exceeds 50000, 
the object code is more than 360k. bytes of 
lenght. 

The SIMULATOR'is an integral part of the user's 
development tools. Consequently, the entire 
project offers the special purpose environments 
to the users. 

5 References: 

* The industrial microcoraputer 
controller's architecture (in 
slovene). Metalna Maribor, 1987, 

* V. Zumer et al., Workstation for 
softvjare development, Technical report 
- in slovene, 1986 

* V. 2umer et al., Workstation for 
software development, Technical report 
- in slovene, 1987 

* Programmable Controllers SIMATIC 85 
(different variants), SIMENS, 1984 

* Programmable Controllers TSX 
(different variants), Telemecanlque, 
1986 

and from one datum to another 
* a datum left and 
* a datum right. 

« R.E Fairley, Software Engineering 
Concepts, McGraw-Hill Book Company, 
1985 

We.can move out of a current window only 
by moving a window, because by moving within a 
window we can not come out of it. 

* VAX Architecture Handbook, Digital 
Equipment Corporation, 1981 

Such moving is often time-consuming and as we 
Kished to increase the efficincv of the ADJUST 
EDITOR, we added the above described 
possibilities stili another one: the movement 


