UDKB21.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 32(2002)3, Ljubljana

HARDWARE IMPLEMENTATION OF LANGUAGE RESOURCES
FOR EMBEDDED SYSTEMS

Matej Rojc, Zdravko Kacic, Iztok Kramberger

Institute of Electronics, Faculty of Electrical Engineering and Computer Science,
Maribor, Slovenia

Key words: finite-state machines, finite-state transducers, phonetic and morphological lexicons, spoken dialogue applications, Atmel flash memory,
Atmel microcontroller

Abstract: A lot of external natural language resources are used in spoken dialogue systems. These resources present considerable problems because
of the needed space and slow lookup-time. Itis, therefore, very important that the presentation of external language resources is time and space efficient.
It is also very important that new language resources are easily incorporated into the system, without modifying the common algorithms developed for
multiple languages. This paper presents the method and resuits of compiling the large Slovenian phonetic and morphology lexicons (Slflex and Slmlex)
into corresponding finite-state transducers (FSTs). Representation of large lexicons using finite-state transducers is mainly motivated by considerations of
space and time efficiency. In addition the approach of hardware implementation for both large (Slovenian) lexicons is described. We will demonstrate that
the structure of the FST is very appropriate for storing in the Atmel AT49BV161 flash memory chip and the lookup algorithm for obtaining any desired
information from the FST structure can be efficiently implemented using the Atmel AT90S8515 microcontroller. The described hardware implementation
of both Slovenian lexicons can be connected directly to the PC using RS232 above all for development and test purposes and can be used especially in
embedded systems which use speech technology.

Strojna implementacija jezikovnih virov za uporabo v
vdelanih sistemih

Kljuéne besede: konéni stroji, konéni pretvorniki, foneti¢ni in morfoloski leksikoni, Atmel flash pomnilnik, Atmel mikrokrmilnik

1zvleéek: V govornih sistemih dialoga se uporablia mnogo jezikovnih virov. Uporaba obsezninh jezikovnih virov predstavlja velik problem tako zaradi pora-
blienega pomnilniskega prostora, kot tudi zaradi poCasnega dostopanja do Zeljene informacije. Zato je zelo pomembno, da je predstavitev uporablienih
virov éasovno in pomnilnisko optimalna. Pri vecjezicnih sistemih je pomembna tudi preprosta vkljucitev jezikovnih virov drugih jezikov v sam sistem, ne da
bi bilo pri tem potrebno spreminjati skupne algoritme razvite za ved jezikov. V ¢lanku predstavijamo metodo in rezultate prevajanja obseZnega slovenskega
foneticnega in morfoloskega leksikona (Slflex in Slmlex) v pripadajoca konéna pretvornika (FST). Taksna predstavitev je izredno udinkovita tako glede
porabe pomnilniskega prostora, kot tudi ¢asa, potrebnega za dostop do informacije. Podrobneje bo predstavijen tudi pristop strojne implementacije obeh
Slovenskih leksikonov. Struktura koncnih pretvornikov je zelo primerna za njihov zapis v "flash" pomnilnidko integrirano vezje (Atmel AT49BV161), algo-
ritem pridobivanja informacije iz strukture konénega pretvornika pa lahko enostavno implementiramo z uporabo mikrokrmilnika (Atmel AT90S8515). Opisano
strojno implementacijo obeh slovenskih leksikonov lahko priklopimeo direktno na PC racunalnik preko RS-232 serijskih vrat, predvsem za razvojne namene
in testiranje. Posebej zanimiva pa je uporaba predstavitve leksikonov s konénimi stroji in njihove v Elanku predlagane strojne implementacije. Oba leksiko-
na, predstavijena s konénimi stroji, lahko udinkovito uporabimo v poljubnih vdelanih sistemih, ki uporabljajo govorno tehnologijo.

given spoken language system, which uses fully inflected
word forms, performs much worse with highly inflected lan-
guages (e.g. Slovenian) than with non or purely inflected
languages (e.g. English), where the lexicons used can be

1. Introduction

When using voice, at least speech recognition and text-to-
speech synthesis technology should be integrated as sig-

nificant constituent part of an embedded mobility suite in
order to operate most of the common PDA (Personal digit-
al assistance) functions such as e-mail, tasks, calendar,
phone numbers and addresses. Both should allow natural
way of communication using such devices. On the other
hand the development of real models of human language
that support research and technology development in lan-
guage related fields requires a lot of linguistic data - lexi-
cons containing thousands of words. In order to achieve
the same language coverage, as in the case of e.g. the
English language, such lexicons need to be up to ten times
larger in the case of inflectional languages. Having a lot of
Slovenian root forms can result in up-to 200 different in-
flectional forms. The use of such resources can, there-
fore, represent substantial computational load especially
for embedded mobility systems, demanding low energy
consumption and the smallest possible implementation. A

much smaller. In general, external language resources
(phonetic, morphology lexicons etc.) present a problem
regarding memory usage and the time spent on lookup
processes.

Finite-state machines are already used in many areas of
natural language processing. Their use from the computa-
tional point of view is mainly motivated by considerations
of space and time efficiency. Linguistically, finite-state ma-
chines allow an easier description of most of the relevant
local phenomena in the language /1/. They also provide
compact representation of the specific external language
resources needed for knowledge representation in the au-
tomatic text-to-speech synthesis systems. These features
of finite-state machines are of major importance especial-
ly, when dealing with spoken dialogue systems.

199

Informacije MIDEM 32(2002)3, str. 199-203

M. Rojc, Z. Kagi¢, I. Kramberger: Hardware Implementation

of Language Resources for Embedded Systems

in the following sections an approach for compiling such
lexicons into finite-state transducers is first presented that
represent their time and space optimal representation. The
effect of using finite-state transducers for the representa-
tion of external natural language resources means a great-
er reduction in the memory usage required by the lexicons,
and an optimal access time (required for obtaining infor-
mation) which is independent of the lexicons' sizes. In the
following sections the whole compilation process into fi-
nite-state transducers is presented plus the results obtained
for the described Slovenian lexicons (Siflex and Simlex).
The lexicon representation appropriate for hardware im-
plementation is then discussed in more detail. In conclu-
sion the hardware implementation is presented of both lex-
icons (FST's) for use in embedded system.

2. Finite-state automata and finite-
state transducers

2.1. Finite-state automata (FSA)

Finite-state automata (FSA) /2/ can be seen simply as an
oriented graph with labels on each arc. Their fundamental
theoretical properties make FSAs very flexible, powerful
and efficient. FSAs can be seen as defining a class of
graphs and also as defining languages.

2.1.1. Definition

A finite-state automaton A is a 5-tuple (%, Q, /, F, E) where
2 is afinite set called the aiphabet, Qis a finite set of states,
ieQ is the initial state, FCQ is the set of final states, and
EcQx(2w {€})xQ is the set of edges.

FSAs have been shown to be closed under union, Kleen
star, concatenation, intersection and complementation,
thus allowing for natural and flexible descriptions. In addi-
tion to their flexibility due to their closure properties, FSAs
can also be turned into canonical forms that allow for opti-
mal time and space efficiency /3/.

2.2. Finite-state transducer (FST)

FSTs can be interpreted as defining a class of graphs, a
class of relations on strings, or a class of transductions on
strings /1/. Onthe firstinterpretation, an FST can be seen
as an FSA, in which each arc is labeled by a pair of sym-
bols rather than by a single symbol.

Definition

A finite-state transducer T is a 6-tuple (£4, 22, Q, i, F E)
such that:

- Ziis afinite alphabet, namely the input alphabet

- 22 s a finite alphabet, namely the output alphabet

- Qis afinite set of states

- ieQis the initial state

- FcQ is the set of final states

- EcOxZ"i1xZ%xQ is the set of edges

As with FSAs, FSTs are also powerful because of the vari-
ous closure and algorithmic properties.

200

3. Use of FSMs for time and space
optimal Lexicon representation

In general, when representing lexicons by automata, many
entries share the same codes (strings, representing some
piece of information). The number of codes is then small
compared to the number of entries. Newly developed lex-
icons are more and more accurate and the number of
codes can increase considerably. The increase in number
of codes also increases the smallest possible size of such
lexicons. During the construction of the automaton one
needs to distinguish different codes, therefore space re-
quired for an efficient hashing of the codes can also be-
come costly. Available lexicons that were used in this ex-
periment suggest that the representation by automata
would be less appropriate. Since morphological and pho-
netic lexicons can be viewed as a list of pairs of strings,
their representation using finite-state transducers seems
to be very appropriate. Representation of lexicons using
finite-state transducers on the other hand also provides
reverse look-up capability.

The methods used in the compilation of large scale lexi-
cons into finite-state transducers (FST) assume that the
lexicons are given as large list of strings and not as a set of
rules as considered by Kaplan and Kay for instance /1/.
In Fig. 1 some items from Slovenian phonetic (Slflex) and
morphology lexicon (Simlex) are shown. Both lexicons were
compiled into corresponding finite-state transducers, us-
ing proprietary toolkit fsmHAL. It consists of a large set of
various algorithms and tools for FSM manipulation and is
written is C++ program lanugage. During the compilation
process the following algorithms were used: union, deter-
minization, and minimization (Aho, 1974; Watson, 1995),
(Mohri,1995).

mod/el model
mO-d/e:l mod/el.N:cmsn:cmsa
mod/ela modela
mO-d/e:-la mod/el.N:cmsg:cmdn:.cmda
mod/elu mocelu
mO-d/e:-lu mod/el.N:cmsd:cmsl
mod/elom modelom
mO-d/e:-10Om mod/el.N:cmsi:cmpd
mod/eloma modeloma
mO-d/e:-10-ma mod/el.N:cmdd:cmdi
mod/elih modelih
mO-d/e:-lix mod/el.N:cmdl.cmpl
mod/eli modeli
mO-d/e:-Ii mod/el.N:cmpn:cmpi
mod/ele modele
mO-d/e -IE mod/el.N:cmpa

a) b)
Figure 1: Slovenian phonetic (a) and morphology

lexicons (b). Slovenian morphology lexicon
(SImliex) is coded according to Sampa /5/
and Multext specifications /6/.

M. Roje, Z. Kaci¢, |. Kramberger: Hardware Implementation

of Language Resources for Embedded Systems

Informacije MIDEM 32(2002)3, str. 199-203

Part of Slovenian phonetic lexicon (Siflex)
represented as FST.

Figure 2:

The representation using finite-state transducers was per-
formed for the Slflex and Simlex Slovenian lexicons. The
starting size for Slflex was 1.8 MB (60.000 items) and 1.4
MB for Simlex (40.000 items). The final size achieved us-
ing the presented algorithms was 352 kB for Siflex and
662 kB for Simlex (Table 1) /4/. Representation of large
lexicons using finite-state transducers is mainly motivated
by considerations of space and time efficiency. For both
lexicons a great reduction in size and optimal access time
was achieved. Using such representation the look-up time
is optimal, since it depends only on the length of the input
word and not on the size of the lexicon.

FST; FST,
Number of states 69.498 90.613
Number of transitions 90.801 130.839
Size of bin file 252 kB 662 kB

Table 1: The final finite-state transducers representing
Slovenian phonetic (FSTy) (60.000 jitems} and
Slovenian morphology lexicon (FST2) (40.000
items).

4. Lexicons FST byte representation

Finite-state transducers representing lexicons are actually
finite-state automata that have transitions labeled with two
symbols. One of the symbols represents input, the other
output. Therefore they translate strings. Since FST's of
large-scale lexicons can be quite huge (iots of states and
transitions) their implementation is not trivial. It is very im-
portant to use 'every bit' in their binary representation. The
information in the final FST binary file is organized into se-
quences of 6 bytes. Every such byte sequence describes
information of the one state transition (Fig. 3).

The information representing one transition is coded us-
ing 6 bytes. The choice depends on the maximum value of
a particular data type and final FST size of the lexicons.
The FST input and output alphabets for Slovenian lexicons
(Siflex and Simlex) (ortographic characters, SAMPA pho-
netic symbols, some punctuation symbols) can be coded
using eight bits (one octet) (first byte for input alphabet sym-
bol and the second byte for output alphabet symbol). The
third byte serves for flags (final bit, stop bit, next bit) and
other three bytes are used for calculation of the next state

byte byte 1 byie 2 byte 3 byte 4 byte 5

g naxtspsie

stof A auirel 1

Figure 3: Lexicons FST byte representation.

(jump to the next 6-byte sequence). Using such approach,
states are only indirectly marked and are actually defined
with transition sequences. All the transitions not having set
the stop bit belong to the same state. Next state transition
start from the byte sequence, that has a stop bit set.

5. Hardware implementation of the
FST Lexicons

The described FST representation of the lexicons is very
appropriate also for implementation using the flash memo-
ry chip (Atmel AT40BV161T). AT49BV161T isa 16-mega-
bit (1Mx16/2Mx8) 3 Volt Flash Memory and is organised
as 1.048.576 words of 16 bits each, or 2.097.152 bytes
of 8 bits each. The x16 data appears on |/0O0-1/15, the x8
data appears on I/00-1/07. This device can be read or
reprogrammed using a single 2.65V power supply, mak-
ing it ideally for in-system programming.

inthe AT49BV/LV161(T) configuration, the BYTE pin con-
trols wheather the device data 1/O pins operate in the byte
or word configuration. In our approach the BYTE pin is set

Coramand
Register
& -+

Write state
machine

4
¥

- VPP

Program/firase
Voltsge Switch

X-decoder

b

(SHlex& SImlex)
H rPEr Y it

Lexicons FST byte representation in flash
memory chip AT49BV161T.

Figure 4:

201

Informacije MIDEM 32(2002)3, str. 199-203

M. Rojc, Z. Kagi¢, I. Kramberger: Hardware Implementation

of Language Resources for Embedded Systems

at logic "0", and the device is in byte configuration. The
data 1/0O pins I/00-1/0O7 are active and controlled by CE
and OE. The data I/0 pins /08 -1/0O 14 are tri-stated, and
the I/015 pin is used as an input for the LSB (A-1) adress
function. All together with other address pins A0 - A19, we
are able to address (2°' bytes) 2097152 bytes, what is
enough for Slovenian FST lexicons (Fig. 4).

6. Using FST representing both
lexicons

As transducers translate a string into another string (string-
to-string transducers), the lookup algorithm is straightfor-
ward - it consists of following labels from one level in a
lexicon transducer.

procedure lookup (state, word, index, output)

if (state € F)
print(output)

foreacha € XU {& suchthat Ji.oS (state, ,a) =t
lookup(t, word, index+1, output . a)

for each a € 2 {&} such that o8

(state,word[index],a) =t
lookup(t,word,index+1, output . a)

The dot operator represents concatenation. The resuit of
concatenating string with an empty string is the same string:
word . € = word. The use of the empty string in transition
labels is necessary, as the lengths of the strings may not
match. It is also useful for the alignment of segments of
strings that represent the same features. Such alignment
may reduce the size of the transducer. The presented al-
gorithm was implemented on the Atmel Microcontroller AT
AT90S8515. Comparison of input symbols of the FST tran-
sitions with word characters and calculation of the next
state (next byte position) is performed using bit operations
{Fig. 5).

7. Hardware implementation of the
lookup algorithm

Atmel 8-bit microcontroller with 8kB downloadable flash
‘memory was used for the implementation of the lookup
algorithm. This microcontroiler provides a highly flexible
and cost effective solution to many embedded control ap-
plications. Raw Instruction Set architecture of used micro-
controller features execution of powerful instructions in a
single cycle that achieves enough throughput for high per-
formance functionality /8/. The standard asynchronous
serial interface UART of the microcontroller is mainly used
for the testing purposes and it's not intended to be used
for any data transmission in real-mode functionality as the
data transfer rates are too low. The presented hardware
architecture features in-system programming of both pro-
gram Flash memory of the microcontroller and the exter-
nal Flash memory used for FST Siflex and Simlex data stor-
age. For real-mode functionality another peripheral exten-

202

blagajn

Lookup procedure EST Siflex & Simlex

ATO0S8515 AT49BVLI6LIT

v v

blagrsa:in

Lookup algorithm implementation using
microcontroller AT90C8515.

Figure 5:

sion of the microcontroller called serial peripheral inter-
face SPI is used. SP! features high speed data transfers
up to 5 Mbit/s that gives the hardware structure enough
data bandwidth for efficient activity. In advance the SPI in-
terface is already present and used in most common PDAs
today as those are build around Intel's StrongARM SA-1110
microprocessor /7 /. This appliance simplifies interconnec-
tions between FSA hardware and present or future em-
bedded microcomputers.

Port A is 8-bit bidirectional I/0 port. Itis connected direct-
ly to flash memory over the data bus and is used as an
input/output. Output represents word character (input al-
phabet), and the input comes from FST in the flash memo-
ry as output symbol of the FST transition.

Data addressing of the external Flash memory is done by
the microcontroller lookup procedure. Due to the lack of
microcontroller programmable pins and used address mul-
tiplexing it's suitable to partially compute the complete ad-
dress pointer and update the separate address latches in-
time between computations of the next lookup addresses.
As an address output serves port C. Since we need 21
address lines to be able to address any byte in the flash
memory (2.057.152), the port C pins are connected to
three latches 74HC57 3. Thus the microcontroller method-
ically computes the exact address pointer in three steps
as each one of them updates appropriate address latch
after its computation. In this manner there is no execution
speed breakdown because of used addressing architec-
ture.

Port D is used for driving flash memory chip and Port B for
driving all three latches 74HC573. Port D is also 8 bit bidi-
rectional 1/0 port and is connected with MAX3232 level
shifter. The firmware of the microcontroller features two
separate fully operational program modes. First one is in-
tended for external flash programming and functionality test-
ing (port B). In this mode the firmware is featuring low speed
data transfers between personal computer and the FST.
The firmware build-in Flash programming procedure re-

M. Roje, Z. Kagi¢, 1. Kramberger: Hardware Implementation

of Language Resources for Embedded Systems

Informacije MIDEM 32(2002)3, str. 199-203

A EER
ZELEERSN
J =N ==
— ﬁg-‘ T m} s
=3 ZarEIE S = eEEE
foe E i ComEEn
N PO P S AT Y o vore b
S B e D
PN o ol
= O 1
- e g s
E70 e el it B e
o ol
o ,5,* IR >",
Figure 6: Hardware implementation of the system. 9. References
ceives or transmits data through asynchronous serial inter- 71/ Mehryar Mohri., (1995) On Some Applications of Finite-State
d d \ h . t | Flash | Automata Theory to Natural Language Processing, Natural Lan-
face an Irea s orwrites them in ex em‘a ashmemory. in guage Engineering 1, Cambridge University Press.
that fashion the complete FST algorithm can be,teSt?d /2/ Bruce William Watson, (1995) Taxonomies and Toolkits of Regu-
through the personal computer. In real-mode functionality lar Language Algorithms, PhD Thesis, Eindhoven University of
of FST the second part of the firmware is executed. In this Technology and Computing Science.
part of the firmware the high speed serial peripheral inter- /3/ Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Uliman, (1974)
face is used for data transmissions. Choosing between The design and analysis of computer algorithms. Addison Wes-
, , . .- K . Reading, MA.
those two modes is done simply with defining the logical ley .ea .mg .
state on the MODE pin of the microcontroller. As startup /4/ Matej Roje, Zdravko Kacic, (2001) Representation of Large Lex-
- . i ica Using Finite-State Transducers for the Multilingual Text-to-
or as a reset condition has been applied to the microcon- Speech Synthesis System, Eurospeech 2001, Scandinavia.
troller, the firmware checks the logical state on this pin /5/ SAMPA for Slovenian, (1998) http://www.phon.ucl.ac.uk/
and executes the appropriate functionality mode. In appli- home/sampa/slovenian.html
ance with existing PDAs there is no need to implement the /6/ MULTEXT project lexical specifications, (1996}

testing functionality of FST. The whole hardware implemen-
tation of the system is shown in Fig. 6.

8. Conclusion

Being able to operate most of the common PDA (Personal
Digital Assistance) functions such as e-mail, voice, calen-
dar, phone numbers and addresses, by using voice, the
speech recognition and text-to-speech synthesis technol-
ogy must be integrated into any embedded mobility suite.
Development of real models of human language requires
a lot of linguistic data. Finite-state machines were used for
Slovenian large-scale lexicons, since they are time and
space optimal solution. The effect of using finite-state trans-
ducers is great reduction of the memory usage required
and the optimal access time, independent from the size of
the lexicons. As showed the FST structure enable easy,
flexible and efficient hardware implementation that can be
used in embedded systems as significant part of the speech
embedded mobility devices.

http://www.lpl.univaix.fr/projects/multext/LEX/LEX. Specifications.htmi

17/ Intel. Intel StrongARM SA-1110 Microprocessor: Developer's
Manual. Intel, June 2000.
/8/ Atmel, 8-Bit AVR Microcontroller with 8K bytes Downloadable

Flash. Atmel, 1997.

mag. Matej Rojc

izr. prof. dr. Zdravko Kaci¢

mag. Iztok Kramberger

InStitut za elektroniko,

Fakulteta za elektrotehniko, racunalnistvo in
informatiko, Maribor, Slovenija

Institute of Electronics,

Faculty of Electrical Engineering and

Computer Science,

Smetanova 17, 2000 Maribor, Slovenia

Tel. +386 02 220 7000, Fax. +386 02 251 1178
e-mail: dsplab@uni-mb.si

Prispelo (Arrived): 10.05.2002 Sprejeto (Accepted): 28.06.2002

203

