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Abstract

A new simple algorithm for optimal embedding of complete binary trees into hypercubes as well as a

node-by-node algorithm for embedding of nearly complete binary trees into hypercubes are presented.

Keywords: embedding; complete binary tree; hypercube; algorithm

1. Introduction and preliminaries

Hypercubes and binary trees are omnipresent in computer science. In particular, hypercubes are very

popular model for parallel computation, because of their regularity, recursive structure and the ease of

routing. On the other hand, the binary tree can represent the basic computational structure of divide-and

conquer or branch-and-bound algorithms. In many cases however, it is more suitable that the internal

structure of an algorithm is modeled by a more general structure - a nearly complete binary tree.

In this paper we consider the problem of embedding the (nearly) complete binary tree in the hypercube.

This problem develops in the implementation of divide-and conquer algorithms in a hypercube network,

e.g. see [2, 4]. An embedding is a mapping from the guest graph, representing the communication

structure of the processes, into the the host graph, representing the communication network of the

processors. Therefore, the problem of allocating processes to processors in a multiprocessor system is

also known as the mapping problem.

A tree is a connected acyclic graph. One vertex is distinguished and called the root. A vertex of

degree one is called a leaf of the tree if it is not the root. The level of a vertex v in a tree is the number

of vertices on the simple path from the root to v. Note that the level of the root is one. The height of a

tree T is the largest level of a vertex in T . A vertex u is called a child of v if u is adjacent to v and the

level of u is bigger then the level of v. If u is a child of v then v is called the parent of u.

A full binary tree is a tree in which every node other than the leaves has two children. A full binary

tree is ordered, i.e. we distinguish between left and right children. A complete binary tree is a full binary

tree in which all leaves are at the same level. A nearly complete binary tree of height h is composed of a

complete binary tree of height h− 1 and with some nodes at level h.

The hypercube of order d and denoted Qd is the graph G = (V,E) where the vertex set V (G) is the
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set of all binary strings u(1)u(2) . . . u(d), u(i) ∈ {0, 1}. Two vertices x, y ∈ V (G) are adjacent in Qd if and

only if x and y differ in precisely one place.

An isomorphic embedding (or just an embedding ) of a graph G(V,E) into a graph H(V ′, E′) is an

injection f : V → V ′ such that if (u, v) is an edge in E(G) then (f(u), f(v)) is an edge in E′(H).

For binary vectors s, t ∈ {0, 1}n let s ⊕ t denote the coordinate wise addition modulo two, e.g.

100011 ⊕ 000001 = 100010. Let eni be the binary vector (u1, u2, . . . , un) with xi = 1 and xj = 0, j 6= i.

If s is a binary vector of length n, then we will call the operation eni ⊕ s a reflection. We will also use

the ”+” symbol as the concatenation operator, i.e. s+ t joins two binary vectors s and t end to end. If

we concatenate a binary vector with a single bit (0 or 1), than we call this operation a projection. For a

binary vector s of length n, s + 0 and s + 1 are projections of s into two disjoint hypercubes of order n

which compose Qn+1.

It is a natural question to ask for an embedding into a hypercube with the least order. The minimum

h required for an embedding from a graph G into Qh is called the cubical dimension of G. Deciding

whether there exists an embedding of a given tree into a hypercube of a given dimension is known to

be NP-complete [3]. Moreover, even in case of trees with bounded degrees, their cubical dimensions are

unknown in most cases.

Obviously, if G is a graph such that 2h ≥ |V (G)| > 2h−1, then the cubical dimension of G is at least

h. However, it is well known that the complete binary tree on 2h − 1 vertices cannot be embedded into

Qh, i.e. into its ”optimal” hypercube.

Havel in 1984 conjectured that every binary tree T with 2h ≥ |V (T )| > 2h−1 vertices has an embedding

into Qh+1. The conjecture is still open, but there are many partial results supporting this assertion. It has

been showed, for example, that a complete binary tree of height h can be embedded into the hypercube

of order h+ 1, e.g. [2, 4].

This paper present a new simple algorithm which embeds a complete binary tree of height h into the

hypercube of order h+ 1. This algorithm is presented in Section 2. Moreover, the algorithm is the basis

for the embedding of nearly complete binary trees of height h into Qh+1, which is presented in Section 3.

2. Complete binary tree

Let Ch denote the complete binary tree of height h.

Let also rh denote the root of Ch and let Cl
h and Cr

h denote the left and the right subtree of Ch,

respectively. Obviously, Cl
h and Cr

h are both complete binary trees of height h− 1.

Let also define the mapping σl : V (Cl
h) → V (Ch−1), where for a vertex v ∈ Cl

h its image σl(v)

denote the corresponding vertex of Ch−1 in a natural way, e.g. if v is the root of Cl
h, then σl(v) = rh−1.

Analogously we define the mapping σr : V (Cl
r)→ V (Ch−1).
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Figure 1: β3 - the mapping of C3

Let βh be a mapping that determines a binary string of length h+ 1 to every vertex of the complete

binary tree of height h ≥ 3. Formally, βh : V (Ch) → {0, 1}h+1 is the mapping, such that β3 maps the

vertices of C3 as depicted in Fig. 1, while for h > 3 the mapping is given by

βh(v) =



0h+1, v = rh

βh−1(σr(v)) + 1, v ∈ V (Cr
h)

βh−1(σl(v))⊕ 10h−1 + 0, v ∈ V (Cl
h) and h is even

βh−1(σl(v))⊕ 0h−3100 + 0, v ∈ V (Cl
h) and h is odd .

For any v of Ch, the string βh(v) will be also called a codeword defined by βh in the sequel.

Theorem 1. Let h ≥ 3. Then βh makes an embedding of the complete binary tree of height h in the

hypercube of order h+ 1.
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10 00 01100 0 000 01101

10 0010 1

10 0010 11

10 0010 1110 0 1100 001

10 0 10 1 10

1 110 000

1 110 001 0 1 110 000 1

1 110 000 1100 000 1011

0 0000 10

0 0000 101

0 0000 101110 1010000

0 000 1100

10 1000 00 1010

i

i

i
i

i

i

i

i

i i i i

i i i

i

i

i i i i

i

i i i i

i

Figure 2: Codewords derived from 00i0 when i is even

The basis of the proof is the following lemma.

Lemma 1. Let h ≥ 3. Then βh(v) = 0h+1 if and only if v is the root of Ch.

Proof. If v is the root of Ch, then by the definition βh(v) = 0h+1. Therefore we only have to show that if

v is not the root of Ch, then βh(v) 6= 0h+1. Note first, that the recursive definition of βh implies, that if
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v is not the root of Ch, then any βh(v) is derived as a sequence of projections and reflections either from

the root of the Ci+1, i.e. βi+1(ri+1) = 00i0, h > i ≥ 3, or from a codeword defined by β3.

Suppose first that βh(v) derives from 00i0. Suppose also that i is even. Some of the codewords derived

from 00i0 can be seen in the tree depicted in Fig. 2. The root of the tree is 00i0, while the left and the

right child of 00i0 is obtained as a codeword derived from it in the left and the right subtree of Ci+2,

respectively. Analogously, the left and the right children of 10i000 and 00i001 are codewords in Ci+3,

etc.

Note that the definition of βj for j ≥ 4 implies that βj(v) is derived from a codeword s of Cj−1 such

that either the first or the (j−3)-th bit of s is reversed. It follows that from a codeword s of Cj−1 with 1

on at least one of the places: 2, 3, . . . , j − 4, a codeword of the form 0h+1 cannot be derived. Since every

leaf of the tree from Fig. 2 in at least one of those places possesses entry 1, it follows that 0h+1 cannot

derive from 00i0 if i is even. It is not difficult to see that a similar tree (having leaves of length j with 1

on at least one of the places 2, 3, . . . , j − 4) can be derived for 00i0, where i is odd.

For βh(v), which derives from a codeword defined by β3, observe first that all codewords of the left

subtree of C3 depicted in Fig. 1 posses 1 at the second place, which implies that 0h+1 cannot be derived

from any of them. For βh(v) derived from a codeword of the left subtree of β3, observe the trees depicted

in Fig. 3. From the same arguments as above we now conclude that 0h+1 cannot derive from any

codeword defined by β3 and the proof is complete.

0001
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000111

00011111 111000

001110

1 0100

1 01010

1 0101100001010

1 11000

1001

1 1001
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1 1110010001110

1 1 100 1

00010

000101

00010111 010001

00 11 00

0011

00111

001111000110

00011011001100

10110

101101100100

10010010001000

Figure 3: Some codewords derived from β3

Proof (of Theorem 1). The proof is by induction on h. The claim obviously holds for β3. Suppose also

that the claim holds for h. Note first that projections maps the vertices of Cl
h+1 and Cr

h+1 into two

disjoint hypercubes. Moreover, reflections of an embedding in a hypercube preserve Hamming distance.

Therefore βh+1 is an embedding of Cl
h+1 and Cr

h+1 in the hypercube of order h + 1. Finally, since the

root of Ch+1 and the root of Cl
h+1 (as well as Cr

h+1) differ in precisely one bit, we conclude that βh+1

embeds Ch+1 into Qh+1 and the proof is complete.
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Theorem 1 is the basis for the algorithm to compute the optimal embedding of the complete binary

tree of height h in Qh+1.

We first present the algorithm to calculate the embedding of the complete binary tree of height h

from the embedding of the complete binary tree of height h − 1. It is assumed in the algorithm, that if

v is an arbitrary node of a complete binary tree T , then b(v) is the codeword of v and p(v) a parent of

v in T . Furthermore, r denote the root of T and Tl and Td denote the left and the right subtree of T ,

respectively.

Procedure NEW TREE

input: h, T , b {T is a complete binary tree of height h > 3, b is the embedding of the complete binary

tree of height h− 1 }

output: b { The embedding of the complete binary tree of height h }

begin

traverse Tr from level h to level 2 and for every v ∈ Tr do

b(v) := b(p(v))) + 1;

if h mod 2 = 0 then

traverse Tl from level h to level 2 and for every v ∈ Tl do

b(v) := b(p(v))⊕ 10h−1 + 0;

else

traverse Tl from level h to level 2 and for every v ∈ Tl do

b(v) := b(p(v)))⊕ 0h−3100 + 0;

r := 0h+1; { The new root of T }

end.

We next describe the algorithm to compute the optimal embedding of the complete binary tree of

height h in a hypercube.

Procedure CODES

input: h {height of a tree, h ≥ 3}

output: T , b { T is a complete binary tree of height h with the embedding b }

begin

1. T := complete binary tree of height 3.

2. Determine b(v) for every node of v ∈ T as in Fig. 1;

3. for i := 4 to h do begin

Augment T with new level of nodes to obtain the complete binary tree of height i;
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NEW TREE(i, T , b);

end.

Theorem 2. Let h ≥ 3. Then CODES embeds a complete binary tree of height h into Qh+1 in linear

time and space.

Proof. The correctness of the algorithm is by induction on h. If h = 3, then the embedding is given in

Step 2, the correctness of which can be verified by Fig. 1.

Assume now that for i = h − 1 the algorithm correctly compute the embedding of T . In other

words, when NEW TREE is called in Step 3 for i = h, the vector b corresponds to the embedding βh−1.

Moreover, for a node v ∈ Tl (v ∈ Tr), the old value of b(p(v))) corresponds to βh−1(σr(v)) (βh−1(σl(v))).

Therefore, since the nodes of T are traversed from the last level to the roots of the subtrees and since

NEW TREE accurately follows the definition of βh, we can conclude that the embedding is correct.

T , p, and b can be obviously represented in linear space, therefore we only consider the time complexity.

Let then n = 2h − 1 denote the number of nodes of a complete binary tree of height h. Note first that

NEW TREE computes the embedding b in time which is linear in the size of T . Since the number of

vertices of T in i-th iteration of the for loop equals 2i − 1, the total number of steps of the algorithm is

given by

h∑
i=4

2i − 1 = 2h+1 − 12 = O(n) .

This argument completes the proof.

3. Near complete binary tree

In this section we present a simple node-by-node algorithm for constructing an embedding of a nearly

complete binary tree into a hypercube. We assume that in each time step a nearly complete binary tree

can grow for one node, which is inserted at the last level of a tree. Note, that in [1] a somewhat similar

approach has been studied, where the complete binary tree grows by a complete level of its leaves.

The algorithm presented herein compute the map of the nodes of a new tree using the map of their

parent node. Moreover, if a new node does not change the height of a tree, the old nodes need not to be

remapped.

The algorithm of the previous section implies, that the embedding of a complete complete binary tree

of height h can be performed by using the embedding of the complete complete binary tree of height

h− 1, such that the embedding of a node v is computed from the ”old” embedding of its parent node.
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This observation leads to a node-by-node algorithm for embedding of nearly complete binary trees

into hypercubes. The algorithm augments a given nearly complete binary tree with one node, which

is inserted at the level h and computes the mapping of the augmented tree. We will show that in the

majority of cases the algorithm is able to determine the embedding of the augmented tree by simply

expanding the embedding with the map of the new node. Moreover, the map of the new node can be

computed with ease from the map of its parent node.

If a nearly complete binary tree T of height h with embedding into Qh+1 is augmented with one new

node, then for the resulting nearly complete binary tree T ′ the embedding into Qh+1 (or Qh+2, if the

height of T ′ is h+ 1) is computed. The new node can be

(i) a leaf at level h, if T is not complete or

(ii) a leaf at level h+ 1, if T is complete.

Let βh be a mapping that determines a binary string of length h+ 1 to every vertex of the complete

binary tree of height h ≥ 3 as defined in Section 2. In order to obtain the embedding for T ′ we first show

the following lemma.

Lemma 2. Let for h ≥ 3, v be a leaf of Ch and u the parent of v in Ch. Then

βh(v) =

 βh(u)⊕ 10h, v is the left child of u

βh(u)⊕ 001h−30, v is the right child of u.

Proof. The proof is by induction with respect to h. The claim obviously holds if h = 3 as can be seen in

Fig 1. Let us denote v a leaf of Ch+1 and u the parent of v. If v (and u) is in the right subtree of Ch+1,

then by inductive hypothesis βh(σr(v)) and βh(σr(u)) differ either in the first bit, if v is the left child of u,

or in the third bit, if v is the right child of u. It is straightforward to see now that βh+1(v) = βh(σr(v))+1

and βh+1(u) = βh(σr(u)) + 1 differ either in the first or in the third bit.

If v is in the left subtree of Ch+1, the proof is analogous.

In the following algorithm, let for an arbitrary vertex u of a nearly complete binary tree T , b(u) and

p(u) denote the codeword of u and the parent of u in T , respectively.

Procedure NEW NODE

input: h, T , b, v { b is the embedding of T , h ≥ 3, v is a new node }

output: T , h, b { An augmented tree of height h with the embedding b }

begin

1. if T is complete then begin

NEW TREE (h, T , b);
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h := h + 1;

end;

2. Insert v at the level h in T ;

3. if v is the left child of p(v) then

b(v) := b(p(v)))⊕ 10h;

else b(v) := b(p(v)))⊕ 0010h−2;

end.

In order to obtain the embedding of a nearly complete binary tree with NEW NODE, before the

algorithms is first called, Step 1 and Step 2 of CODES have to be executed. T is then the complete

binary tree of height 3 with the embedding b.

Theorem 3. If T is C3 or a nearly complete binary tree of height h > 3 and b the embedding of T into

Qh+1, then NEW NODE correctly embeds T ′ either

(i) into Qh+2, if T is complete or

(ii) into Qh+1, if T is not complete.

Proof. Assume that T is either C3 or an arbitrary near complete binary tree of height h > 3 and b its

embedding into Qh+1. If T is not complete, then the correctness of the algorithm follows from Lemma 2.

Let then T be a complete binary tree. When NEW TREE is called in Step 1, the value of h is not

yet incremented, i.e. the output of the procedure is the complete tree of height h with the embedding

into Qh+2. However, in Steps 2 and 3, T is first augmented with a new node at level h+ 1 and then the

embedding into Qh+2 of the resulting nearly complete tree of height h+ 1 is computed.

The following concluding comment concerning the time complexity of the algorithm is on order. The

algorithm remaps the nodes of T only if T is a complete binary tree. In other cases a remapping is not

performed. Clearly, the embedding of a new node depends only on the map of its parent node and can

be performed in constant time. However, even in the case when remapping is needed, the computation of

the new embedding can be done independently in each node v such that only the codeword of a parent

node of v is used. It follows that the remapping can be computed on the hypercube in parallel in constant

time.

References

[1] V. Heun and E.W. Mayr, Optimal dynamic embeddings of complete binary trees into hypercubes, J. Parallel

Distrib. Comput. 6 (2001) 11110–1125.

8

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
11

5,
 M

ar
ch

 1
2,

 2
01

0



[2] A.S. Wagner, Embedding the complete tree in the hypercube, J. Parallel Distrib. Comput. 20 (1994) 241–

247.

[3] A.S. Wagner, D.G. Corneil, Embedding trees in a hypercube is NP-complete, SIAM J. Comput. 7 (1990)

570–590.

[4] A. Y. Wu, Embedding of Tree Networks into Hypercubes, J. Parallel Distrib. Comput. 2 (1985) 238–249.

9

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
11

5,
 M

ar
ch

 1
2,

 2
01

0




