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Abstract UDC: 551.435.8:551.3.053

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Condensation corrosion: A theoretical ap-
proach
 
Condensation of water from warm, humid air to cold rock walls in caves is regarded to play a significant role in
speleogenesis. The water condensing to the cave walls quickly attains equilibrium with the carbon dioxide in the 
surrounding air, and consequently dissolves limestone or gypsum forming various types of macro- ,meso-, and 
micromorphologies. In this paper we present the basic physical principles of condensation and give equations, 
which allow a satisfactory estimation of condensation rates. Water condensing to a cooler wall releases heat of 
condensation, which raises the temperature of the wall thus reducing the temperature difference ΔT between 
the warm air and the cave wall. Furthermore one has to take into account the heat flux from the air to the cave
wall. This defines the boundary conditions for the equation of heat conduction. For a constant temperature of
the air initial condensation rates are high but then drop down rapidly by orders of magnitude during the first
few days. Finally constant condensation rates are attained, when the heat flux into the rock is fully transmitted
to the surface of the karst plateau.  For spherical and cylindrical conduits these can be obtained as a function 
of the depth Z below the surface. When diurnal or seasonal variations of the air temperature  are active  as is 
the case close to cave entrances, condensation rates can become quite significant,  up to about 10-6 m/year.  The 
theoretical results are applied also  to corrosion of speleothems and the formation of »röhrenkarren« as described 
by Simms (2003). To convert condensation rates into retreat of bedrock the saturation state of the solution must 
be known. In the appendix we present experiments, which prove that in any case the solution flowing off the
rock is saturated with respect to limestone or gypsum, respectively..
Key words:  condensation, corrosion, speleogenesis, heat transfer. 

Izvleček UDK: 551.435.8:551.3.053

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Kondenzacijska korozija: teoretični pristop
 
O speleogenetskem pomenu vode, ki iz toplega vlažnega  zraka kondenzira na hladne jamske stene je napisanega 
veliko. Kondenzirana voda  se hitro uravnoteži z ogljikovem dioksidom v  jamski atmosferi, zato raztaplja apnenec  
in pri tem tvori različne skalne oblike. V članku predstavimo fizikalne osnove in podamo enačbe, ki omogočajo
približno oceno hitrosti kondenzacije v različnih pogojih. Zaradi kondenzacijske toplote in prenosa toplote iz 
zraka na steno, se temperatura stene viša, pri čemer se zmanjšuje razlika temperature med zrakom in steno. To 
predstavlja robni pogoj za prevajanje toplote iz jame. Pri konstantni temperaturi zraka, hitrost kondenzacije 
v nekaj dneh pade za več velikostnih redov, dokler ne doseže končne vrednosti, pri kateri se ves toplotni tok 
prenese na površje. Slednjo za primer krogelnih in valjastih prostorov opišemo kot funkcijo globine rova Z. Pri 
dnevnih in sezonskih spemembah temperature, značilnih v bližini jamskih vhodov, je hitrost kondenzacije in 
posledično korozije do 1μm na leto. Teoretične rezultate uporabimo tudi za izračun korozije  kapnikov in tipa 
škrapelj (röhrenkarren), ki jih opisuje Simms (2003).  Za pretvorbo hitrosti kondenzacije v  hitrost korozije, 
potrebujemo podatek o stopnji nasičenja vode. V dodatku  predstavimo  poskus, ki dokazuje, da se voda, ki 
kondenzira na jamske stene, hitro nasiti tako v primeru apnenca kot v primeru sadre.
Ključne besede: kondenzacija, korozija, speleogeneza, prevajanje toplote.



319

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Condensation corrosion: A theoretical approach

INTRODUCTION
Water vapor from a cave atmosphere condensing to the walls of a cave creates a water film in

equilibrium with the partial pressure pCO2 of the cave atmosphere. This solution is therefore aggressive 
to limestone and the dissolution process based on it has been termed condensation corrosion.

The most recent and comprehensive review on condensation in karst and its role on hydrology 
and speleogenesis has been published by Dublyansky and Dublyansky (2000) and Klimchouk et al. 
(1996). They report that in summer condensation supplies a significant amount of water (up to 20%
of the total dry reason run-off) to karst systems.

They also discuss the role, condensation corrosion plays in sculpturing cupolas in limestone 
and in gypsum caves, when evaporation from open water surfaces at elevated temperature, above 
that of the cave wall, produces warm cave air saturated with water vapor. Condensation of water to 
the cave walls supplies an aggressive solution, which runs down the cave wall and is replaced by 
fresh, condensing water. Cigna and Forti (1986) and Calafora at al. (1993) have reported  on field
measurements of condensation. Large cupolas in limestone and gypsum caves are explained by this 
mechanism which schematically is shown in Fig. 1 (Audra et al. 2002) .

Fig.  1: Water evaporates from an open surface of elevated temperature Ta to the cave air in thermal 
equilibrium with the water. Vapor pressure at temperature Ta is given by pa. The partial pressure 

 in the air is in equilibrium with  in the water. The vapor condenses at the cave wall with 
temperature Tf < Ta and flows back as a thin film, designated by arrows. These water films become
saturated with respect to the mineral composing the rock (limestone or gypsum).
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The free surface of water at elevated temperature Ta could be a lake of hydrothermal water. Water 
condenses at the cave walls if their temperature Tf is below the dew point of the air. The condensed 
water flows back in a thin film covering the cave walls. As long as the temperatures Ta and Tf are 
constant in time this is a continuous, everlasting process.

To estimate the dissolution rate one has to know the wall temperature Tf. If initially the cave 
wall and the surrounding rock is at temperature Tfi, water from the air with temperature Ta≥Tfi starts 
to condense to the wall. This causes a continuous flow of heat into the rock. A small part of it is due
to heat transfer from the warmer air into the cold rock. The major part stems from release of heat 
of condensation from the condensing water. This heat transfer increases the temperature of the cave 
wall, causing reduction of the rate of condensing water. Eventually a stationary state is reached and 
the temperature of the cave wall, Tf

stat becomes independent of time. 
It is also possible that the temperature of the open surface changes diurnally or seasonally, e.g. a 

river flowing into the cave at elevated temperature during day time (summer) and at low temperature
during night (winter).

In this paper, we address the question, what are the rates of condensation and what average an-
nual retreat of bedrock follows as consequence.

The first part of this paper presents a theory of condensation rates for the stationary state of
condensation for time independent temperature of the cave air, fully saturated with water vapor. Then 
we will turn to situations where the air temperature in the cave changes diurnally or seasonally. These 
results will be also applied to corrosion of speleothems, which is an important topic in conservation 
of tourist caves (Avramidis et al. 2001). A recently observed form of small scale cupolas of a few 
cm diameter and a length of about 10 cm, growing upwards from bedding planes of limestone at a 
lake shore (Simms 2003) is also explained by our theoretical findings.

To translate rates of condensation into bedrock retreat in m/year one has to know the saturation 
state of the water, when it flows off the rock. In the appendix we present laboratory experiments on
limestone and gypsum, which prove that those waters are saturated with respect to limestone and 
gypsum, respectively, in all relevant situations.

This work shall provide a theoretical basis to the interpretation of field data. Therefore we as-
sume two scenarios of boundary conditions: a) stable, time independent temperature of the cave 
air or b) periodic variations in temperature, diurnally or seasonally. We do not ask the question, 
how these conditions arise in detail. This question deals with cave climate and is a complex subject 
(Badino 1995; Wigley & Brown 1976). Our question to be answered is: How effective under given 
boundary conditions is water condensation to the cave walls or to speleothems, and what are the 
rates of condensation corrosion?

BASIC THEORY
The amount of water condensing to an exposed rock surface per unit of time and surface area 

determines the retreat of rock by dissolution. Therefore, it is of utmost importance to give a reliable 
estimation. We assume that the exposed surface of the rock is covered by a thin film of condensed
water, about 10-2 cm deep. Such a thin film will quickly come to thermal equilibrium with the
temperature Tf of the cave wall. It keeps its constant depth since there is flow from the rock surface
down to the cave floor, which compensates for condensing water.
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Water condenses to the film, if the partial pressure Pa of vapor in the cave air exceeds the vapor 
pressure Pf at the temperature Tf of the water film. In the following, we assume that the cave air is
saturated, i.e. relative humidity is 100%.

For condensation, water molecules must be transported to the cave wall, where they attach to 
the water film. We assume that the cave air is well mixed, but close to the rock a diffusion boundary
of thickness εD [m] exists. Transport of water molecules is effected through this layer by molecular 
diffusion. The flux of vapor Fv to the surface of the film is given by Fick’s law as

 
 

 
1

where Dm is the constant of molecular diffusion of water molecules in air (Dm = 2.5 · 10-5 m2/s), ca 
and cf are the concentrations in g/m3 of water vapor at temperatures Ta and Tf respectively. By use 
of the equation for ideal gases this can be written as 

  
2

Pa and Pf are the vapor pressures measured in Pa, Ta is the temperature of the cave air in K. In all 
following calculations we use Ta=300 K.  M = 18 g/mol is the molecular weight of water and  R is 
the universal gas constant R = 8.314 J mol-1K-1. Pa-Pf can be approximated  by 

  
3

where ∆P/ ∆T = 100 Pa/K for the temperatures of interest.
The vapor condensing to the water film releases heat of condensation qc = 2450 J/g. This is a 

very high amount of energy. A condensation rate of 1 mm/day = 1 kg/(m2day) causes a heat flux of
28 W/m2, equivalent to the heat produced by lightening the cave by electrical bulbs of 28 W, with 
one bulb on each square meter of the cave walls.

The flux of heat Fq released by condensation is given by 

 
 

 4 

An additional flux from the warm cave air to the cooler water film is given by

 
 

 5

ka is the thermal conductivity of air ( 2.6·10-2 Wm-1K-1)  and εT is the thickness of the thermal boundary 
layer, which is related to εD by εD = εT(Sc/Pr)1/3. Sc is the Schmidt number for diffusion and  Pr the 
Prandtl number for heat convection(Beek & Muttzall 1975). For air, Sc=Pr=1. Therefore εD= εT=ε.

The total heat flux to the water film is the sum of Eqs. 4 and 5 

  
6

This heat flux causes an increase of the temperature of the water film, until the heat flux transported
into the rock equals the heat flux from the cave air into the water film.

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Condensation corrosion: A theoretical approach
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If one knows the temperature Tf of the water film, equal to that of the rock surface the amount
of condensing water can be obtained by inserting Eq. 3 into Eq. 2, as

  
7

In a first approach, we reduce the problem to a simple one-dimensional setting. Fig. 2 shows
this. An extended large cave is located  at depth Z below the surface. We regard only the vertical 
heat flux towards the surface, thus reducing the problem to one dimension in z-direction. This gives
the following situation. 

At z = 0 the temperature T0 is kept constant for t > 0. The cave roof at depth Z experiences a 
heat flow Ftot given by Eq. 6. 

A solution to this problem is given in Carslaw & Jaeger (1959, p.125). We will not give the 
complete solution here. We extract what we need for further discussion:

The solution has a stationary part and the surface temperature of the rock at the cave wall 
becomes

  8

Fig. 2: A large extended hall at depth Z below ground is filled with air of 100% humidity at constant
temperature Ta. Due to heating from below Ta is independent of time. Initially the temperature of 
the covering rock is the average annual temperature T0 of the surface. As soon as heating by the 
cave air starts the wall temperature Tf increases. Steady state is reached when the heat flow (gray
arrows) to the cave ceiling equals  that at the surface. 
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where A is given by

 , 
9

kr is the termal conductivity of the rock. kr=1.3 W/(m·K) for limestone and 0.5 W/(m·K) for 
gypsum. The stationary temperature Tf

stat is reached after an exponential approach of the wall tem-
perature with time constant τS = Z2/(β2κ), where κ is the thermal diffusivity of the rock, 5.6·10-7m2/s 
for limestone and 3.6·10-7m2/s for gypsum. The value of β is a function of A by the relation βcotβ-A 
= 0, and is listed by Carslaw and Jaeger (1959). Its value ranges between π/2 and π from A = 0 to 
A = ∞. Initially, for times t<0.5 years, however, the rise of surface temperature is much faster. It 
can be approximated by the solution, where Z is infinite, or in other words, where the rock in the
cave is limited by a semi-infinite region of rock. In this case the surface temperature can be written
(Carslaw & Jaeger 1959).

  
10

Tfi is the initial temperature of the rock. For our case with finite Z, this solution is valid for κt << Z2, 
when the temperature front migrating into the rock has penetrated only a distance , very 
small against its thickness Z.

Fig. 3 shows the exact temperature dependence for limestone with  Z = 10 m, 30 m, and ∞. It is 
of utmost importance to note that the initial rise of temperature is independent of Z and controlled

by the quantity . For times ,   Eq. 10 can be approximated by 

  11

The rates of condensing water for the  the fast initial rise of temperature can now be obtained from 
Eqns. 7, 10  and 11 

  12

For times , a slow decline of the temperature difference Ta-Tf(t) towards  
 
stationary state yields rates

           13

It is important to note that this is independent of ε. The minimum rate of condensation is reached 
at stationary state after time 5τs.

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Condensation corrosion: A theoretical approach
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Fig. 3: Time dependence of the temperature difference Ta-Tf(t) normalized to initial temperature difference 
Ta-Tfi. a) Results for the first 24 hours. b) Results for  long times. Until time τf normalised temperature 
difference rise  to 0.84. After this time it rises according to Eq.11 until finally it approaches a stationary
state after time 5τs. The black curve is calculated with ε=10-3m and Z=10 m and the blue one for Z=30 
m. The red curve is calculated for Z=∞, a semi infinite medium. Note the coincidence of the curves in
early evolution. The normalized temperature difference in the stationary state is given by A/(A+1). 
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14

Note that for Z >> krε/k the condensation rate becomes independent of ε. This is true for  Z 
≥10 m and ε<10-3

 m.
The decay time towards this stationary state is given by 

  
15

At a depth of 100 m this is about 127 years, a short time with respect to the time scales of cave 
evolution.

Fig. 4a shows the rates of condensation for Z = 100 m and various values of ε. Fig. 4b depicts the 
amount of condensed water after time t, which is obtained by integration of the curves in Fig. 4a. 

In summary, the following picture emerges. For times smaller than 0.5τS, the temperature increase 
of the cave wall can be well approximated by Eqns.10  and 11. Later, for times t > 5τs  the stationary 
state is reached by an exponential approach and the temperature becomes constant.

Fig. 3 shows this for ε  =  0.001 m. The black line shows (Tf - Tfi)/(Ta - Tfi) for a depth of Z = 10 
m, the blue line gives the temperature rise for Z = 30 m. The red curve shows the temperature for 
the semi-infinite plane with Z=∞. 

CONDENSATION IN STATIONARY BOUNDARY CONDITIONS
Our one-dimensional model is idealistic because it requires a cave chamber with horizontal 

dimension, one order of magnitude larger than its height.
Other geometries are more suitable, e.g. a spherical room with diameter Ds or a cylindrical 

conduit of diameter Dc and length L, both buried at  depth Z. These are shown in Fig. 5a-c. For such 
situations analytical results are not available. But the general behavior is similar to the idealistic 
one-dimensional case, and it is possible to obtain the temperature at stationary state, reached after 
t > 5 τs,  by the theory of conduction shape factors (Incropera & DeWitt 2002). At stationary state, 
the wall of the rock is at temperature Tf

stat
 and the surface temperature at z = 0 is To. See Fig. 2. The 

total amount of heat flowing from the conduit to the surface is then given by

  16
where S [m] is the shape factor. The expressions for some shape factors are given in Table 1. 

System Restriction Shape factor
Sphere in a semi infinite

medium (Fig. 5a) z > D/2

Cylinder  in a semi infinite
medium (Fig. 5b)

L >> D  
z > 3D/2

Slab (Fig. 5c) σ/Z
Table 1: Shape factors for some typical geometries as shown in Figs. 5a-c.
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Fig. 4: a) Rates of condensation and retreat of bedrock as function of time divided by the initial tempera-
ture difference Ta-Tfi. Values of ε are written at the curves. Note that for large times all curves coincide, 
i.e the rates become independent of ε. b) Amount of condensed water per m2 and K of temperature 
difference and total retreat of bedrock for the cases of Fig. 4a. Note that although the variation of ε 
covers two orders of magnitude, the amount of condensed water only weakly depends on ε.
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The total heat transferred to the wall of the cave is

  17

where σ is the  surface area of the cave.
Conservation of energy requires Qw = Qr. Therefore one finds

  
18

From this the rate of condensed water can be calculated by use of Eq. 7.
Fig. 5d shows these rates per degree K for circular cave rooms and cylindrical conduits, buried 

at depth Z. Note that for ε  << 0.038σ/S the rates are independent of ε, which is true for all practical 
applications.

Fig. 5: a-c) Geometrical configurations for the shape factors in Table 1. d) Condensation rates and
retreat of bedrock in the stationary state in dependence on depth Z for spheres and cylindrical con-
duits with various diameters. D(0) is the initial diameter. The blue curve represents one dimensional 
scenario (slab with thickness Z) of Fig. 5c. See also Fig. 2.

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Condensation corrosion: A theoretical approach
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Spheres show the highest condensation rates, almost independent of their depth Z below ground, 
but dependent on their diameter DS. As we will show in the appendix, films of water running down
rock-walls of gypsum or limestone can be regarded as saturated with respect to gypsum or limestone. 
Therefore at a pCO2 = 0.00035 atm, for limestone with saturation concentration of 60 mg/L,  1 g/m-

2s-1 of condensed water corresponds to retreat of rock by 7.5·10-4 m/year using ρ   
as density of a slightly porous limestone. For gypsum with a saturation concentration of 2.5 g/L 
(independent on pCO2) and density 2300 kg/m3, the retreat of rock can be approximately obtained by 
multiplying the values for limestone (pCO2 = 0.00035 atm) by a factor of 50.

Now we assume the following situation. A spherical cave of initial diameter Ds(0) is invaded by 
geothermal waters with  temperature Ta, higher than the initial rock temperature Tfi. Water evaporates 
from a lake, stable for long times. We assume the cave 100 m below ground. Then after about 100 
years the stationary state is attained.

The change of diameter Ds is then approximated quite accurately by 

  

[m/year]

 
19

For limestone one gets

  
20

Note that growth rates decrease with 1/DS.
Integration of Eq. 20  yields

       21
where t is in years.  A cave with initial diameter of  1 m evolves into a cupola of 10 m diameter 
independent of its depth Z for D/(4Z)>10 in   5 ·107 years for Ta - Tfi = 1 K.

A sphere with initial diameter of 0.1 m needs, however, only 530000 years to reach a diameter 
of 1 m for Ta-Tfi= 1 K.

For a cylindrical conduit buried at depth Z,

   
    

 
22

which can be integrated

  23

For Z = 100 m growth from initially 1 m to 10 m takes 2·108 years for Ta - Tfi = 1 K, and cor-
respondingly 2·107 years if the temperature difference is 10 K.

Fig. 6 shows growth times for spheres and cylindrical conduits at various depths nd with vari-
ous diameters.

 A final statement must be given. In this section we have assumed that temperature difference
between the cave and the surface and 100% relative humidity of the cave air are independent of time. 
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This may be the case when hydrothermal waters form open surfaces, from which evaporating waters 
condense at cave walls, delivering a constant flow of water in equilibrium with the pCO2 of the cave 
atmosphere. These waters attain equilibrium with respect to the soluble rock, either limestone or gyp-
sum (see appendix). The saturation concentration for limestone is  
mg/L, where pCO2 is the partial pressure of CO2 in the cave atmosphere, measured in atm. 

Our findings of Eq. 21 explain the existence of spherical niches and cupola in caves of Hun-
gary (Muller, 1974) in Italy, (Cigna & Forti 1986), and in hypogenetic caves in France (Audra et 
al. 2002). Sarbu & Lascu (1997) report on the measurements of active condensation corrosion in 
Movile Cave, Romania.

Mostly in nature external boundary conditions are not constant in time. Annual fluctuations in the
temperature of the cave air might occur when a river flows into a cave, with warm water in summer,
which evaporates and condenses at the cave walls. In the winter time, however, the water is colder 
than the temperature at the cave walls and condensation stops. In view, that to attain stationary state 
under time independent boundary conditions takes several years, such cases cannot be described by 
the considerations above.

Fig. 6: Diameters of spheres and cylindrical conduits with initial diameter of 0.1, 0.5 and 1 m at depth 
of 25 m as a function of time. The curves are calculated from equations 21 and 23, respectively.

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Condensation corrosion: A theoretical approach
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CONDENSATION AT PERIODIC BOUNDARY CONDITIONS
As already shown Fig. 4a presents the time dependence of the rate of condensing water. A first

rapid decline until time t=τf  (see Eq.12)

  24

is followed by a slow decline (see Eq. 13) exhibiting a t-1/2- time dependence.
After the time t = 5τS  stationary state is attained (see Eq. 15). Note that the time to reach sta-

tionary state is controlled by the depth Z of the cave below ground and the thermal diffusivity κ, 
whereas the  decline toward stationary state depends solely on the thermal properties κ ,  k, and kr 
and is independent of the depth Z. (See Eq.13).

Variations of the cave temperature can be caused by diurnal fluctuations when warm humid air
flows through the cave during day time, but during the night cold dry air enters. If the initial tem-
perature of the rock is Tfi and the temperature of the cave air with a humidity of 100%, is Ta within 
the time  t = 9(krε/k)2/κ  the temperature Tf of the rock has increased such that Ta-Tf =  0.18(Ta-Tfi ). 
From then on Ta-Tf  is given by Eq. 13. Note that for ε = 0.001 m, t = 9(krε/k)2/κ  = 5.5·103 s   whereas 
the equilibration time 5τs= 9·105 s for Z = 1 m. Therefore at depths  Z > 1m daily variations in Ta 
cause temperature changes of the rock, which are governed by the entity (kr/k).

When cold air, at temperature Tn colder than the actual temperature Tf  at the cave walls enters 
into the cave during the night, condensation stops.

Two possibilities can be envisaged. The water, which has condensed during day time evaporates 
during the night. In this case, in a first approximation, the temperature of the cave wall drops towards
the temperature of the cold air in about the same time as is needed to approach to the temperature 
of the warm air during day time. This is shown by Fig. 7a. As a result calcium carbonate dissolved 
during the day, will be precipitated during the night, and this process disintegrates the texture of the 
rock, leaving a weathered rind of corroded material (Auler & Smart 2004). For ε = 0.001 m,  the 
amount of water condensing within 10 hours is about 100 g/(m2K) as can be obtained by integrat-
ing Eqs. 12 and 13. See Fig. 4b, which shows the amount of condensed water per square meter as a 
function of time for various values of ε and a temperature difference Ta-Tfi of 1 K.

 In the other extreme, when the condensed water flows sufficiently fast from the rock, evapora-
tion is excluded. Heat transfer from the rock through the boundary layer is affected only by thermal 
conduction. The heat transfer coefficient ka/εT (see Eq.5)  is therefore lower by a factor of 2.7 com-
pared to that, when condensation is present (see Eq. 6).

The time dependence of cooling or heating is given by the dimensionless variable k·(κt)1/2 /(krε). 
With k lower by a factor of 2.7 cooling takes a time, longer by a factor of 7 than heating. Therefore 
during the cooling period the wall of the rock cools down slower. This way, after several cycles 
a stationary amplitude is established with constant temperature differences of the rock wall, and 
condensation rates are reduced. Fig. 7b shows this  schematic concept. These two scenarios are 
extremes. Depending on the relative humidity of the air during the day and during the night, rates 
will be between these two extreme limits. We will discuss this latter in detail.

Seasonal variations can be caused when warm water from the surface enters into the cave in 
summer time and condensation takes place, whereas in winter time, when cold water flows into the
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Fig. 7: Wall temperature for diurnal temperature variations of Ta in the cave. For simplicity an abrupt change 
between day temperature Tday and lower night temperature Tnight is assumed. The initial temperature of the 
cave wall Tfi<Tnight. a) Water accumulated at the surface by condensation during day time evaporates during 
night time. Rates of heating during the day and cooling during the night are almost equal. Average rates of 
condensation are high. b) Condensation during day time, but evaporation during the night is absent. Therefore 
the of cooling rate is only about 15% of the heating rate during daytime. A steady state with less average 
condensation is reached after several cycles. Note that the shaded areas give a measure of condensed water. 
The two parallel dotted lines present upper and lower temperatures at steady state.

Wolfgang Dreybrodt, Franci Gabrovšek & Matija Perne: Condensation corrosion: A theoretical approach
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cave, condensation stops. For most cases of interest, with caves deeper than 5 m, the time to reach 
a stationary state is longer than 2 years. The amount of water condensing during the summer period 
can be obtained by integration of  Eqs. 11, 12. See also Fig. 4. It can be approximated by

      25

for tc ≥ 4·104 s, where tc is the period of condensation in seconds. For tc = 8.4·106 s �100 days this 
corresponds to about 1500 g/(m2K), equivalent to a retreat of cave wall by 3.5·10-8 m/(yK). During 
winter time condensation stops and the cave walls have sufficient time to cool to low temperatures.
Then in summer condensation starts again. Note that so far all calculations of retreat of rock are 
based on the assumption that pCO2 in the cave is at atmospheric level with 3.5·10-4 atm, and that 
the solution flowing off the wall has attained saturation with respect to calcite. For elevated values
of pCO2 in the cave all numbers given so far must be multiplied by (pCO2/0.00035)1/3 to account for 
elevated pressure pCO2 in the cave. 

CONDENSATION CORROSION ON SPELEOTHEMS
Many researchers have observed features of surface corrosion on speleothems, which they  

interpret as a results of condensation corrosion (Auler & Smart 2004; Dublyansky & Dublyansky 
2000; Tarhule-Lips & Ford 1998). In this section the physical background is discussed.

Fig. 8 depicts the thermal boundary conditions for a stalagmite. At the outer surface heat flux
is given by the action of condensation. At the base heat is transferred into the colder base rock. As 
can be calculated from  Fig. 8 this heat flow is negligible. The decay time which is needed in such
a case to approach thermal equilibrium  (Luikov 1968), page 217) is τStal  =  D/(4µ1

2κ), where µ1 is 
the first root of the equation  . For D = 1 m, µ1 is π2/4 and  τStal = 2 days. 

When thermal equilibrium is reached after 5τs condensation stops. Therefore to keep condensa-
tion active, diurnal variations in cave temperature are necessary. When the equilibration time 5τStal 
is longer than a day, and when during the night evaporation takes place a stationary state with high 
average rates is reached after some days.  Lower rates are effective when evaporation is excluded 
during the night.

We restrict to a more simple approximation. We assume stalagmites with diameters less than 
0.3 m corresponding to τStal  = 0.2 day. In this case the stalagmite practically reaches temperature Ta 
during day time. Even, if no evaporation is present during the night, the time to cool down is  longer 
only a factor of 2. This results from the dependence of the root µ on the heat transfer coefficient k
(Luikov 1968, page 217). 

The maximal amount of condensing water during one day can be estimated from conservation of 
energy. The total heat transferred to the stalagmite must be equal to the increase of internal energy 
due to heating from the initial temperature Ti at t = 0 to the stationary temperature Ta.

According to Eqs. 4 and 5 about 70% of the total heat transfer results from condensation. There-
fore to a sufficiently good approximation one has

  26
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where Mc is the mass of condensed water during 1 day, cp is the specific heat of limestone (0.88
kJ/kg K) and ∆T is the change of temperature until the end of heating. It is close to ∆T = (Tday-Tnight). 
Ms is the mass of the stalagmite with diameter D and length L. 

From Eq. 26 one finds the amount of water which condenses during one period of heating.
Dividing this by the surface area of the stalagmite gives  the amount of water condensed per m2 
during the heating period as

 
    

 
27

this corresponds to retreat of surface by

  
28

for D < 0.3 m.  Note that for compact stalagmites we use the density of 2700 kg/m3.

Fig. 8: Heat rates transferred via corresponding surface of a stalagmite with length L and radius r. 
k=0.07 Wm-1K-1, kr=1.3 Wm-1K-1. Even at a temperature gradient of 10K/m at the base, F3<<F1+F2, 
as long (Ta-T)>0.1K. T is the surface temperature of the stalagmite.
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For larger diameter D > 1 m the equilibration times for heating and cooling are longer than 5 
days. If such a stalagmite experiences condensational heating with equilibration time τ1= τStal during 
the time t1 and cooling with equilibration time τ2, during the time t2 after several cycles the maximum 
temperature and the minimum temperature become independent on time.

The temperature difference Tmax - Tmin can be estimated in the following way. During heating the 
temperature Th(t) of stalagmite to an acceptable approximation is given by

  29

where Tmin is the minimum temperature at the end of prior cooling, and Th is the temperature of the 
cave air during heating. For the cooling period t2 with equilibration time τ2 the temperature Tc of the 
stalagmite is given by

  30

where Tc is the  air temperature in  cave during cooling and Tmax the temperature of the stalagmite 
at the end of prior heating. From 29 and 30 we get

  
31

Solving this equation one finds

  
32

To estimate the amount of condensation corrosion, this value of ∆T must be used in Eq. 28.
∆T in Eq. 32 becomes   for   and   

for  .
 
For τ1>>t1 expansion of the exponents and regarding τ1 = τStal yields

  
33

Therefore one finds from Eq. 28

    

34

It should be noted that this number is valid for D > l m and presents an upper limit, because 
we have assumed tacitly that the temperature inside the stalagmite is homogenous and equal to the 
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surface temperature.
Eqs. 28 and 34 show that for stalagmites with diameters D between 0.1 m to several meters 

and temperature differences during night and day of 10˚C, corrosion rates are on the order of  10-4  
to 10-5 cm/year. 

Auler and Smart (2004) have estimated rates of corrosion on stalagmites by measuring the 
depth of the weathered rind and determining the age of the unaltered speleothem calcite below. The 
highest values they observed was 4·10-5 cm/year. In most cases the rates were lower by one to two 
orders of magnitude.

FIELD EXPERIMENTS TO MEASURE CONDENSATION CORROSION 
Tarhule-Lips and Ford (1998)  suspended gypsum plates of about 1 cm in thickness on nylon 

strings for about one year in flank-margin caves of the Caribbean. From the measured weight loss
they report corrosion rates of 2.4 · 10-2 cm/year. 

The thermal behavior of such isolated plates is very similar to that of stalagmites with diurnal 
variation of temperature and Eq. 28 remains valid if one replaces the diameter D by the thickness 
of the plate. From this one obtains δ  cm/year, assuming ∆T=10 K. This is three orders 
of magnitude lower than the experimental findings. It should be noted that these gypsum plates
reach thermal equilibrium after a time of only a few minutes. After this time condensation stops and 
renewed cooling and subsequent heating are necessary to revive it.

Sarbu and Lascu (1997) report condensation rates of water in Movile-Cave, Romania, where 
they collected water from a 10 cm by 10 cm glass plate suspended at a distance of 10 cm from the 
cave wall. Movile cave is heated by a hydrothermal lake with water temperature of 21˚C. In its up-
per level, where the glass plate was suspended air temperature is 21˚C, but the temperature of the 
cave walls is between 19.4˚ and 15.7˚C. In this case the glass plate achieves thermal equilibrium 
after a few minutes. The observed high run-off rates of about 20 g/month cannot be explained by 
condensation. From Eq. 27 one obtains only 2.5 g/month for a plate of 1 cm thickness.

Summarizing, we state that condensation to small scale objects (0.1-1 cm) is subject to diurnal 
variations of temperature. In thermal stable cave environments, or where variations of temperature 
change seasonally, it can be excluded.

RÖHRENKARREN, A SMALL SCALE EXAMPLE  
OF CONDENSATION CORROSION

Recently Simms (2003) reported on vertical, upward tapering tubes in limestone exposed in 
the epiphreatic zone at the shores of several lakes in Ireland. The dimensions of these solutional 
features comprising almost perfect circular tubes are between 1 to 5 cm in diameter and up to 30 
cm in length.

Simms suggests that these “Röhrenkarren” originate from condensation corrosion within air 
pockets trapped by seasonal high stands of the lake. During March 2000 water temperature TW 
stayed nearly constant, whereas the temperature of the overlying rock showed diurnal variations, 
fluctuating around the water temperature with amplitude of about 5˚C. In winter time, when surface
temperatures become low extended periods of rock temperatures TR below water temperature are 
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likely. Therefore conditions for condensation corrosion to operate are valid.
The lake water is saturated with respect to calcite such that dissolution of the rock in contact with 

water is excluded. Since the region of the lakes was glaciated about 15 ky ago, rates of dissolution 
were estimated about 2.10-3 cm/year, if one assumes continuous dissolution to present. With this 
information it is possible to test our theoretical predictions. The distance between the surface of the 
rock to the apex of the Röhrenkarren is on the order of meters. Therefore thermal equilibrium is at-
tained in a few days. During winter time an extended period of rock temperatures TR several degrees 
below that of the lake water supports condensation in a steady state. To estimate the rates we use Eq. 
19. In the initial state of the evolution of the Röhrenkarren air is entrapped on irregularities of the 
rock. The geometry of this bubble could be approximated by a half-sphere with radius R as depicted 
in Fig. 9. The air entrapped is stagnant, due to the closed conditions. Therefore,  diffusion of vapor 
from the water surface to the rock wall is through this stagnant air. ε in Eq. 19  must therefore be 
replaced by the length L of the tube.

The retreat of bedrock is focused to the apex, because heat flow is highest there, whereas the
walls exhibit lower heat flow. This way, a circular tube can propagate upwards into the bedrock.

Using Eq. 19 one finds

  35

Initially L = R, therefore to a good approximation

  36

Initially with L = 0.01 m the growth rate is 1.3·10-4 cm/year K. Since condensation is active only 
during cold weather this must be reduced by a factor of 0.3 or so, to about 5·10-5 cm/(year K). When 
the length increases the growth rate drops with 1/L.

During the growth of the tube the entrapped air is in contact with the lake water and consequently 
pCO2 in this air is in equilibrium with the pCO2 in the water, which can enhance dissolution rates by a 
factor of two for pCO2=2·10-3 atm, likely in lake water. Therefore with a temperature difference of 10 
K maximal rates are 10-3 cm/year, dropping to 10-4

 cm/year when a depth L of 10 cm is reached.

Fig. 9: Röhrenkarren: A slab of rock with a depth of a few meters is exposed to the surface. Its bottom is 
flooded by the water from the lake. This way air is entrapped. An initial irregularity of radius R (dotted
line) grows into a cylindrical shape of length L. The temperature of the air inside is close to the water 
temperature. In winter time the surface temperature is lower than that of the lake water and condensa-
tion is active.
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DISCUSSION
To illustrate our theoretical results we give a numerical solution of a representative example. 
Fig. 10 represents a rectangular cave conduit parallel to the surface of a limestone plateau. It is 

located at a depth 25 m below ground and its cross section is 10 m x 10 m. Inside this cave the air 
temperature is 10˚C and relative humidity is 100%. The temperature at the surface is 0˚C. Note that 
only the temperature difference is significant. The other boundaries are assumed to be adiabatic, and
cannot transmit heat. This is an approximation, which is valid for t < y2/κ, where y is the distance of 
the cave to the outer limit. t = y2/κ is the time when the thermal front reaches the adiabatic boundaries. 
We solve the differential heat conduction equation

  
37

with the boundary conditions, as discussed above by a finite difference program.
Fig. 11 illustrates the results. It shows isotherms as they evolve in time. At the beginning (1·106 

s, Fig. 11a) an almost circular temperature field has developed, symmetrical around the conduit.
The temperature has changed only in the vicinity of the cave. After 107 s  (Fig. 11b) the distance the 
temperature front has propagated is about, (107κ)1/2

 = 2.4 m, close to what we see in Fig. 11a. After 
2·108 s (Fig. 11c).  After 1·109 s (Fig. 11e) a thermal gradient develops, directed from ceiling of the 
cave toward the surface. Most of the heat from the ceiling flows vertically to the surface. This can
be seen from the flow lines depicted in Fig. 11. In this region the temperature distribution becomes
stable in time, as can be visualized in Figs. 11d, e, f. Keeping in mind that τ  
(confer Eq. 15)  this is a reasonable result. 

Fig. 10: Modeling domain of a rectangular conduit. Only the right half is shown, because of the mirror 
symmetry. The surface temperature is T=To. All other boundaries are impermeable for  heat flow.
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Fig. 11: Evolution of isotherms and heat flow, represented by  gray arrows in the domain of Fig. 10
at various times. The dotted lines in Fig. 11d separate the regions of  heat flow from the ceiling, the
side walls, and the bottom surface of the cave.
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Fig. 12: Time dependence of condensation rates and retreat of bedrock  for the ceiling, the side wall 
and bottom wall of the conduit for times smaller than 100 hours (a) and for long times (b). Note that 
initial rates (up to 10 y) are equal. 
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The dotted lines in Fig. 11f border  the regions of heat flow from the ceiling, the side wall
and the floor towards the surface. The average distance of the heat flow from the side wall to the
surface is larger by about a factor of 2 compared to that of the ceiling. Therefore the time until the 
temperature field becomes stationary there, is longer by a factor of 4. Finally the heat flow from the
floor  exhibits still longer effective flow paths towards the surface. Consequently the time until a 
stationary temperature distribution is established there, becomes also longer by a factor of about 4, 
compared to its neighboring region.

This behavior is  shown in Fig. 12. Its left hand ordinate shows the rates of condensing water in 
g/m2s as a function of time and the right hand ordinate the retreat of the cave walls for a temperature 
difference of 1 K. For times t ≤  all curves are identical because as shown by Figs. 11a-d the 
boundaries do not yet influence the temperature distribution. Initially, as predicted, a sharp decline
is seen which is followed by an intermediate and a slow region of decreasing rates. Compare to 
Figs. 3 and 4.

First, after 20 years the curve for the ceiling becomes constant, whereas the curve for the side 
wall shows still a slow decline and becomes constant after 40 years. A similar behavior is also seen 
for the rates from the floor. From the rate of condensation  to the ceiling one finds a retreat of bedrock
by 2.3·10-8 m/(year·K). From the approximation expressed by Eq. 22 one finds 2.4·10-8m/(year·K). 
In view of the approximations used, this proves our general concept.

Summarizing, the general properties of heat flow and condensation rates estimated from the ideal-
ized one-dimensional model is confirmed by numerical calculations on 2D-models, approximating
reality more accurately. This shows that the simple analytical expressions of Eqs.7, 10, 14 and 18  
are sufficiently accurate to estimate rates of condensations in relevant geological situations.

We now turn to periodic variations of the temperature of  the  cave air. To this end we assume 
Ta=15˚C during the first 12 hours of the day and Ta=5˚C during the 12h of the “night”. Fig. 13a shows 
the results if one assumes that  the water, which accumulates during the day, evaporates during the 
night. If no evaporation takes place during the night, cooling becomes slower than heating during 
the day. Fig.13b shows the variations of wall temperature in this case. It takes about 20 days until 
the temperature amplitudes become constant. 

Fig. 14 shows the total amount of water which has condensed to one square meter of the cave 
wall as a function of time for both cases. The stationary rates depend only on the difference between 
day and night temperatures, and are independent on the surface temperature at z=0. Independently on 
that temperature, in the heating period the temperature of the rock approaches Th closely. Then during 
cooling is  cannot drop below Tc. Finally a stationary state is reached when this minimum temperature 
at the cave wall determines the initial conditions at each heating period, and  is 
independent on the surface temperature at z = 0.

One has to consider that such diurnal variations are operative only during the summer season, 
about one third of a year. Therefore the retreat of bedrock must be reduced correspondingly. 

This result is independent on the depth Z, as can be visualized from Fig. 3. During first 24
hours and up to 180 days the rise of temperature and condensation rates are independent of depth 
Z. When stationary state is reached one obtains a retreat of bedrock by 10.4 µm/year for the case 
with nocturnal evaporation and , and 2.7 µm/year if evaporation is absent. See Fig. 
14. This is higher by one order of magnitude than retreat of bed rock of 0.2 µm/year for stationary 
temperature with  (see Fig. 5) 2.7 µm/year. This is an important result, which shows 



341

Fig. 13: a) Variation of temperature for diurnal temperature changes in the domain of Fig.10. The 
dotted line shows the temperature Ta of the air in the cave, varying between 5°C and 15°C. Surface 
temperature is 0°C. Condensation during day, evaporation during night. b) Accumulated total amount 
of condensed water and total retreat of bedrock as a function of time.
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that significant retreat of rock by condensation corrosion is possible at locations, where wet warm
air with a dew point temperature above that of the cave wall enters during the day. But during the 
night cool air with  dew point above the actual wall temperature must enter. Such locations are 
favorable only close to the entrance.

Finally we consider seasonal variations with the same thermal boundary conditions as in the 
previous case but with changes of temperature every six months. The results are shown in Fig. 15. 

Steady state amplitudes of temperature are obtained after about 10 years. They are about 50% of 
the initial amplitudes. The corresponding amount of condensed water is given in Fig. 15b  For the 
linear region a retreat of bedrock 0.33 · 10-6 m/(year K) is obtained. This is about one tenth of the 
maximal value calculated  by the initial condensation by using Eq. 25. These results are independent 
on the depth Z  for the same reasons as discussed above.

A final comment must be given. In all our considerations we have assumed that the relative
humidity of the cave air is 100 %. Therefore our results give maximal values of bedrock retreat. 
Furthermore all values given relate to limestone. These values can be approximately  converted to 
gypsum by multiplication by a factor 50, which takes into consideration the higher solubility and 
lower density of gypsum.

Fig. 14: Boundary conditions as in previous Fig. 13. Accumulated total amount of condensed water  
and total retreat of bedrock as a function of time.
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Fig. 15: a) Variation of temperatures for seasonal changes in temperature between 5°C and 15°C. 
Condensation during the warm season, no evaporation during the cold season. b) Accumulated total 
amount of condensed water and total retreat of bedrock as a function of time.
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CONCLUSION
Condensation of vapor from warm humid air to the colder walls of a cave is controlled by transport 

of  heat from the warmer air and the heat of condensation into the surrounding rock. At the onset of 
condensation to the initially cold cave wall, the wall temperature rapidly increases and then slowly 
approaches a stationary state. Therefore initial condensation rates are high, but at stationary state 
they are lower by several orders of magnitude.

We have shown that a one dimensional heat transfer model is suitable to estimate the condensation 
rates within the order of magnitude. From these  rates the retreat of bedrock can be calculated.

For constant air temperature Ta in the cave, rates are proportional to the temperature difference 
Ta-To, where To is the average annual temperature at the surface of rock massive hosting the cave. 
Retreat of bedrock in this case is in the order of tenths of a micrometer per year  is Ta-To=10˚C.

When the cave temperature varies diurnally or seasonally, the driving force for condensation is 
the amplitude of temperature variations. For diurnal variations, retreat of bedrock is about 3 µm/year 
for amplitude of 10˚C, whereas seasonal variations with the same amplitudes cause a retreat of 
bedrock by 0.3 µm/year .

APPENDIX
In our theoretical considerations we have assumed that in any case the water flowing down from

the cave walls has become saturated with respect to limestone or gypsum, respectively. This crucial 
assumption needs experimental proof. We therefore have set up an experiment, with condensation 
rates similar to those in nature.

 Fig. A1 shows the experiment schematically. A closed vessel contains water at the bottom, which 
can be heated by a heating wire, controlled by a contact thermometer (4). It is stirred by a magnetic 
stirrer (5). A conductometer (6) is used to measure the conductivity. At the top we have a limestone 
or gypsum cupola (2) which is cooled by water with temperature of 20 ± 0.2˚C entering at inlet 
(3). Inlet (7) provides the possibility for exchanging the interior atmosphere. Thus it is possible to 
establish a partial pressure of CO2 up to 1 atm. At the upper part of the vessel there is a ring, which 
collects the condensed water flowing down from the cupola and guides it to the collection bottle (8).
The temperature difference between the water and the cooler rock cupola can be maintained between 
3˚C up to 8˚C. The experiments were performed with a temperature difference of 5˚C.

It should be noted that this set up does not simulate the situation in nature, since the water film
will attain a steady temperature in a very short time due to cooling of the cupola. Nevertheless it 
will answer the question about saturation of the condensed water flowing down from the rock. Two
kinds of experiments have been performed.

In the first experiment we collected the water flowing down from the rock and analyzed it by
standard titration methods for Ca. We first performed the experiment with a cupola made of plaster of
Paris. In this case the amount of condensed water flowing into bottles was about 15 g/day, equivalent
to 1.7 kg/(m2day). The result of the analysis for Ca showed saturation with respect to gypsum.

Similar experiments were performed using a limestone cupola. Here because of a different ge-
ometry the amount of condensing water was reduced to 3 g/day equivalent to 0.69 kg/(m2 day). The 
experiments were performed with an atmosphere of different CO2-partial pressures (1·10-3, 5·10-3, 
1·10-2, 2·10-1, 1 atm). In all cases the collected water was saturated with respect to calcite.
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In a second kind of experiment the ring was removed and the condensed water flows down to
the reservoir, thus increasing its conductivity. In all experiments we observed a linear increase of 
conductivity with time for several days. For limestone at pCO2 = 1 ·10-3 atm the rise was 2 µS/day 
which increased up to 20 µS/day for pCO2 =1 atm. If the down flowing water is saturated, then in these
experiments the increase ∆σ in conductivity must be proportional to the saturation concentration Cs. 
From the equilibrium chemistry of the system H2O-CO2-CaCO3 it is known that Cs is given  by

  
A1

C1 and C2 are constants.
We have plotted the experimental data logarithmically versus pCO2 as depicted in Fig. A2. Clearly 

we obtain a straight line with slope of 0.33 ± 0.02. This proves the underlying assumption of satura-
tion with respect to calcite.

We have furthermore estimated the thickness of the film by removing the condensed water from
the rock surface with a tissue and weighting its weight increase. We found a thickness δ=5·10-3 cm. 

Fig. A1: Experimental set up. See text.
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Using this value it is possible to confirm the experimental results by the following arguments. The
dissolution kinetics of calcite covered by thin films of water is given by the rate equation (Buhmann
& Dreybrodt 1985)

  A2
C is the actual calcite concentration in the film covering the calcite surface. Values of α are tabulated  
and range from 0.3· 10-5 up to 3 ·10-5 cm/s for natural environments increasing with increasing pCO2. 
The time necessary until such a film achieves 95% saturation is given  by

  A3
This gives a maximum value of about 1 hour. From the total amount of water constituting the film
(0.22 cm3), and the amount condensing per day (3 cm3) the average time water spends at the surface 
before flowing back is about 1.5 hours, sufficient to come close to saturation.

In the case of gypsum dissolution proceeds by molecular diffusion. Therefore α is given by D/δ, 
where D � 1·10-5 cm2s-1 is the diffusivity of the Ca-ion. Thus α � 3 · 10-3 cm/s and T ~ 2s.

Thus the achievement of saturation can be taken for granted in both gypsum and limestone 
caves.

Fig. A2: Increase of conductivity for condensation corrosion on the limestone cupola as a function 
of CO2-pressure.
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