Elektrotehniski vestnik 73(4): 207-214, 2006
Electrotechnical Review, Ljubljana, Slovenija

E-LOTOS-Based Compositional Service-Based
Synthesis of Multi-Party Time-Sharing-Based Protocols

Monika Kapus-Kolar

JoZef Stefan Institute, Department of Communication Systems, Jamova 39, 1111 Ljubljana, Slovenia

E-mail: monika.kapus-kolar@ijs.si

Abstract. In an earlier paper, we proposed a LOTOS/T+-based method for compositional service-based
construction of multi-party time-sharing-based protocols. In the present paper, we generalize the method to
services with data, real-time constraints, iteration, exception handling, multi-process synchronization and process
suspension/resumption, and adapt it to work with the standard specification language E-LOTOS enhanced with
weak sequencing. We also report a minor error in the earlier method and propose a more flexible event-reporting

scheme.

Key words: distributed service implementation, protocol synthesis, E-LOTOS

Kompozicionalno snovanje ve¢partnerskih protokolov z delitvijo
¢asa na osnovi opisov pricakovanih storitev v jeziku E-LOTOS

Povzetek. V preteklosti smo predlagali metodo za kompozi-
cionalno sintezo vecpartnerskih protokolov z delitvijo ¢asa na
osnovi opisov pri¢akovanih storitev v jeziku LOTOS/T+. V
pricujoCem Clanku to metodo posploSimo na storitve s po-
datki, ¢asovnimi omejitvami, ponavljanjem, obravnavanjem iz-
jem, vecprocesno sinhronizacijo in zacasnimi prekinitvami pro-
cesov ter jo prilagodimo za delo s standardnim specifikacijskim
jezikom E-LOTOS obogatenim s $ibkim vrstenjem. Poro¢amo
tudi 0 manj$i napaki v originalni metodi in predlagamo bolj pri-
lagodljivo shemo porocanja o dogodkih.

Kljucne besede: porazdeljena implementacija storitev, sinteza
protokolov, E-LOTOS

1 Introduction

For its users, a distributed server is a black box interact-
ing with its environment through a set of service access
points (SAPs). The behaviour of a server at its SAPs is
the service it offers. The atomic instantaneous interac-
tions constituting a service are its primitives (SPs).

In a more detailed view, each SAP belongs to a par-
ticular place and is there supported by a particular proto-
col entity (PE). If necessary, the PEs communicate over
a medium, i.e. execute a protocol implementing the ser-
vice. We limit our discussion to protocols operating over
reliable media.

In [1], we proposed a method for compositional
service-based construction of multi-party protocols. The
method accepts and generates specifications written in

Received 23 August 2005
Accepted 10 October 2006

LOTOS/T+ [2], a non-standard successor of LOTOS [3],
a standard process-algebraic language for formal speci-
fication of concurrent and reactive systems. Unlike [2],
another LOTOS/T+-based method, [1] does not address
implementation of real-time service constraints, but can
handle distributed conflicts. Unlike other protocol deriva-
tion methods based on LOTOS-like languages (see [1]
for a list), the method of [1] generates protocols that re-
solve distributed conflicts between SPs through time shar-
ing. If the transit delay of the underlying communication
medium is short, this is often the optimal approach to con-
flict resolution [1].

In the present paper, we generalize the method of [1]
to services with data, real-time constraints, iteration, ex-
ception handling, multi-process synchronization and pro-
cess suspension/resumption, and adapt it to work with E-
LOTOS [4, 5], a standard successor of LOTOS for spec-
ification of real-time systems. The only non-standard E-
LOTOS feature we have not been able to avoid in the de-
rived protocol specifications is weak sequencing [6]. We
also report an error in [1] and propose a more flexible
event-reporting scheme with plenty of space for protocol
optimization.

The paper is organized as follows. There is no mo-
tivation section, for a thorough discussion on the appli-
cability of time-sharing-based protocols can be found in
[1]. Sect. 2 more precisely defines the adopted specifi-
cation language, the server model, the concept of a well-
formed service specification and the protocol derivation
problem. Sects. 3 and 4, respectively, describe the syn-
tactic and the semantic aspects of the proposed protocol

208 Kapus-Kolar

derivation method. Sect. 5 discusses the protocol deriva-
tion process. Sect. 6 concludes the paper by summarizing
the proposed optimizations over [1] and [2].

2 Formalization of the Protocol Derivation
Problem

2.1 The Basic Kinds of E-LOTOS Processes

An E-LOTOS process B executes a series of zero or more
events. For each event, its relative execution time (RET)
is measured relatively to the moment when it became log-
ically enabled, while its absolute execution time (AET) is
measured relatively to the start of the considered system.
Let absolute time range over non-negative integers, with
t denoting a time instant.

“block” denotes time block, and “stop” inaction.

“null” denotes immediate successful termination, i.e.
a special urgent event §. In its generalization “P := E”,
the event matches pattern P with the value of expression
E (if its computation is successful), thereby updating the
variables bound by the pattern. The simplest E' is a con-
stant . Another generalization of “null” is “wait(E)”,
denoting a § with RET FE.

An “1” specifies an anonymous urgent internal process
action i followed by a §.

A “GP,QP,[E]” specifies an interaction of the spec-
ified process at gate GG, i.e. an observable action o, fol-
lowed by successful termination. Patterns P; and P, re-
spectively, denote the data associated with the action and
its RET. E is an additional constraint on the data and the
RET. In E-LOTOS, an o is by definition non-urgent, i.e.
always has passing of time as a legal alternative. In LO-
TOS/T+, an o becomes urgent as soon as it reaches its
deadline. This is an important semantic difference be-
tween the two languages.

Urgent issuing of a signal X carrying data E can be
specified as exception raising “raise X (E)” or, if fol-
lowed by a 4, by “signal X (E)”.

A “trap exception X (/PL;) is B; endexn...
exception X, (IPL,) is B, endexn exit P is B, 11
endexit in B, 2 endtrap” denotes process B, 2 pos-
sibly followed by handling of a particular event trapped
in it. Each X; denotes a signal trapped as an exception
and transferring control and data IPL; from B, 4o to
B;, while “exit P is B, ;1 endexit” specifies that § in
B, 42 transfers control and data P to B,, 1. A shorthand
for the case where only § is trapped and all the output data
of B2 is passed to By 1 is “Bp42; Brt1”.

A “loop B endloop” basically denotes an infinite
sequence “B; B;...”, but if an exception “inner” occurs
in a B, this is successful termination of the loop.

A “B4[|Bs” denotes a process behaving as Bj or as
B>, where the choice is made upon the first event.

A “choice P[] B endch” denotes the choice between
multiple processes B, with an instance of B for every
value matching the pattern P.

A “B;1[X > By” denotes process B; repeatedly sus-
pended upon the start of Bo. Whenever signal X occurs
in Bs, By is resumed and B reset to its initial state.
A B of the form “B1[X > By” contains a family of
implicit trapping operators, because whenever Bo exe-
cutes its first event and becomes a Bj, B is reduced to
“trap exception X is B1[X > Bs in Bj endtrap”.
“Bj[> By” is a shorthand for the case with no X in Bs.
Note that the (n + 1)-th instance of Bs is enabled when
B is resumed after being suspended by the n-th instance
of BQ.

A “par Gl#Kl, . ,Gn#Kn in [Fl] — B1|| cee ||
[')n] — By, endpar” denotes parallel composition of
processes Bj to B,,. Each B; is associated with a I'; list-
ing the gates on which B; synchronizes with its peers. If
the gate G on which a synchronization occurs has its syn-
chronization degree K defined in the list “G1#Kq, .. .,
Gr#K,”, the event is a synchronization of exactly K
processes B; with G in I';, otherwise it is a synchro-
nization of all such processes. The composite process
successfully terminates when all its constituents do. A
shorthand for processes B and Bs synchronized on gates
G1 to Gy, is “B1][Gh, . .., Gp]|B2”, with “Bq]||B2” and
“B1||Bg” shorthands for the minimal and the maximal
synchronization, respectively.

A “par P in N|||B endpar” denotes independent
parallel composition of multiple processes B. There is an
instance of B for every value which matches the pattern
P and is in the list V.

A “rename gate Gi(IPL;) is G| P;...gate
Gn(IPLy,) is G, P, signal X (IPL}) is X{E;
...signal X,,(IPL!)is X E, in B endren” denotes
process B with some of its events renamed as specified.

A “hide G, : T4,...,G, : T}, in B endhide” de-
notes process B with all its actions on gates G to G, of
the respective types 17 to 13, changed into i.

A“var Vy : Ty = Ey,...,V, : T, := E, in B
endvar” denotes process B with some variables V;, re-
spectively of type T; and initialized to E;.

A “case (Ey,...,E,) is Pi[E}] — Bi|...|P,[E}]
— B, endcase” denotes the first B; in the list of pro-
cesses By to By, for which “(E1, ..., E,,)” matches pat-
tern P; and satisfies constraint F. A shorthand for a se-
ries of binary decisions is “if F; then B; elseif FEs
then Bs...elseif E, then B, else B,, ;1 endif”.

In the above constructs, many parts are just optional,
with defaults defined in [4]. Parentheses may be used to
direct parsing. We will typically refer to individual speci-
fication parts by their generic syntactic form, although in
examples, we will also use shorthands or omit parts irrel-
evant for the discussion.

For a process B, let G(B) denote its visible gates. Two

E-LOTOS-Based Compositional Service-Based Synthesis of Multi-Party Time-Sharing-Based Protocols

processes are considered equivalent if they have the same
influence on every environment synchronized on their vis-
ible gates and trapping their signals and 6.

2.2 Weak Sequencing

When successful termination or an exception of a Bj is
trapped and handled by a Bs, the standard E-LOTOS se-
mantics prescribes that By starts strictly after the termi-
nation of Bj. In a real-time protocol, however, it might
be crucial that a particular o in Bs is enabled as soon as
B becomes able to proceed towards the particular kind
of termination executing exclusively actions which o is
allowed to overtake. In other words, weak sequencing
might be necessary, and can indeed be introduced into E-
LOTOS in a consistent and efficient way [6]. An acceler-
ated o might resolve a choice.

Example 1 Suppose that in “(a[]b);c”, cis allowed to over-
take a, but not b. Hence, c may occur as the first event of the
process, but that resolves the choice in favour of a, for other-
wise the illegal “c; b” would be a possible run.

Whenever we want weak sequencing for the trappings
introduced with a particular process composition opera-
tor, we will decorate the operator with a C'listing the pairs
(G1, G2) such that actions on G are allowed to overtake
actions on G, e.g. “trap...exception X (IPL)|C is
Bs endexn...in B; endtrap”, “B;;C| By”, “loop
C|B endloop”, “B;[X|C' > By”.

2.3 Server Model

‘We assume that a distributed server interacts with its users
through a set of service gates S from a universe S, re-
spectively of type T's. Every action on a service gate is
considered to be an SP, even if it is dummy and thus hid-
den from service users. The hidden SPs are urgent, i.e.
executed as soon as possible, the others are not.

Each S is located at a particular place. There are at
least two places. Let p and p’ denote two different places.
At each place p, there is a process PE,, the protocol en-
tity of the place. The remaining process of the server is
the communication medium.

Each PE, has three kinds of gates: 1) It controls the
local service gates. 2) For every local S and remote p/,
there is a transmission gate s'” " of type (T's, TS), where
Té has the same structure as Ts, except that all items in
it are boolean. 3) For every S at a remote p’, there is a
reception gate r%,, of type T’s.

For a local S, a PE), can transmit a type 1's message
Msgtoa PE,, by executing an “s’}’:/ (Msg, Sel)” where
every item in M sg has a corresponding selector in Sel.
Only the items whose selector is true are transferred to p/,
together with information on 7T’s.

The medium delivers the message to p’ after a transit
delay not greater than a known dvv’ negligibly short from

209

the point of the expected service users, where (dP? = 0)
and (dP?" < dP?" + d"?") for every p”. Once received
by p’, the message waits in a local buffer, that is formally
also a part of the medium, until claimed by PE,, on gate

r’:’pls. However, M sg is not delivered to PE,, in its orig-
inal form, as the medium replaces all its non-transferred
parts with wildcards.

Actions involving the medium are hidden from ser-
vice users and as such executed as soon as possible. The
medium issues no signals. Messages in input buffers can
be claimed in any order.

2.4 Well-Formed Service Specifications

To simplify protocol synthesis, we restrict our focus to
well-formed service specifications (WFSS), i.e. to un-
ambiguously parsable specifications in the language from
Sect. 2.1 complying to the restrictions below. A WESS is
supposed to describe a non-parameterized non-blocking
process Srv in which every event is a (possibly hidden)
SP.

Restriction 1 1) Every expression E in Srv must be such that
its evaluation always successfully terminates. 2) Srv must be a
non-parameterized “rename R in hide H in Srv’ endhide
endren” where R specifies the desired local renamings of SPs
into SPs, H specifies the desired hidings of SPs, and Srv’ refers
exclusively to service gates. 3) No B in Srv’ may be able to
block without previously successfully terminating or raising an
exception. 4) “rename...” is not allowed in Srv’. 5) Ev-
ery “loop...” in Srv' must be such that it never successfully
terminates. 6) Every “case...Bj ... B, endcase” in Srv’
must be such that it never fails to select a B;. 7) Every event in
Srv’ must be a visible SP, hence

Restriction 2 In Srv’, 1) “signal...”, “i” and “hide...”
are forbidden, 2) for every & or exception specified, there must
be a trap, 3) in every “Bi[|B2”, the starting events of B1 and
Ba must be SPs, 4) in every “choice P[|B: endch”, the start-
ing events of B1 must be SPs, 5) in every “B1[X > B2”, the
events of B1 and the starting events of B2 must be SPs, and 6)
inevery “par...B;...”, every event of B; must be an SP or a
6, where 3) to 6) preclude implicit i [4].

A process is aware of time if upon every action, it is
aware of its AET. In E-LOTOS, timing constraints can
directly refer only to RETS, therefore we need

Restriction 3 Srv’ must be a “Cl||Mn” where 1) every Ts
denotes a record with the first field of type time, 2) in Mn, there
isno “QP” or “wait...”, and 3) Cl is just a constraint [7]
securing that whenever Mn executes an SP, its first data item is
its AET.

Example 2 Suppose that G(Mn) is {a,b} where T, is a
“(time, bool) ” and Ty is a “(time, nat)”. Cl can be
“var oldt : time := 0, ret : time, newt : time in

loop (a(?newt, any : bool)@?ret[newt = (oldt + ret)] (]

b(Tnewt, any : nat)Q@?ret[newt = (oldt + ret)]);
70ldt := newt endloop endvar”.

Instead of an “alfalse; b!11@!3” in Mmn, one would write
“a(?z;Malse); b({(xz + 3),!1)”, thereby achieving that in the
presence of Cl, b is executed 3 time units after a.
Restriction 4 Let in Mn every 1) “trap...” be a “trap
...endexn in...”, though “Bi;B2” is also allowed, 2)
“exception X(IPL)” be an “exception X(?Vi : Ti,
co s Vi i T)”, and 3) “SP[E]” belong to a “var Vi : time

210 Kapus-Kolar

in SP[E] endvar” and be an “S(?V1,?Va,...,7V)[(Vi =
V2) AE']” of type Ts with Va of type time and E' not referring
to V1.

2.5 Protocol Derivation Problem

We are looking for a mapping M,, which would take a
WESS and generate such PE, that with the resulting pro-
tocol M(Srv), the server would be equivalent to Srv. We
want that M,, maps a specification by mapping its parts,
while noting that for an efficient protocol, the mapping
has to be context-dependent.

3 Syntactic Aspects of Protocol Derivation

For a place, it might be convenient to pretend that reports
on SPs belonging to different gates of Mn are exchanged

through different gates. Internally, such a p would use

gates s% and rg instead of s " and r’.., respectively.

Let R denote the universe of gates rs.

Hiding and renaming of SPs without changing their
location are a local matter, hence
Mapping 1 For every p, Mp(rename R in hide H in
Srv’ endhide endren) is “rename R U R, in hide H

1n M, (Srv’") endhide endren”, where R, renames gates

PyP

p .
sP S and rg into s and T respectively.

Assuming that time progresses at all places with the
same speed, time awareness is a local matter, hence
Mapping 2 For every p, M, (Srv’) is “Clp|[G(Mp(Mn))N
(S UR)]IMp(Mn)”, where Cly, is just a constraint securing
that whenever M, (Mn) executes an SP or a reception, its first
data item is its AET.

A place might refer to service variables, not necessar-
ily initializing their local copies precisely, hence

Mapping 3 For every p, ifa B in Mn is a “var Vi : T1 =

Ei,...,Vy : Ty = En 1n B1 endvar”, MP(B) is “var
Vi:Th = El,p(B) Ty = Enp(B) in M, (B1)
endvar

Rule 1 If for a B in Mn, an My(B) refers to a non-local
variable, it must be a variable visible and not local to B in Mn.

Rule 2 For every p and B in Mn, every E in M, (B) must be
unable to fail to successfully produce a result of the type implied
by the surrounding context.

Mapping 4 For every p, ifa B in Mn is a “(B1)
is (M, (B1))”"

Mapping 5 For every p, if a B in Mn is a “stop” or a
“null”, M,(B) is B.

", My(B)

A local counterpart of an update of service variables
might not have to be precise, hence
Mapping 6 For every p, ifa B in Mn isa “P := E”,
M, (B)is “P := Ep(B)”.

A local counterpart of an exception might not have to
carry precisely the specified data, hence
Mapping 7 For every p, ifa B in Mn is a “raise X (F)”,

M, (B) is “raise X(Ep(B))”, where Ep(B) is of the same
type as .

The only protocol messages will be reports on indi-
vidual SPs. For a report, it might be acceptable that it
does not contain precise information on the SP or that the
recipient does not make a precise assumption on the mes-
sage contents and its arrival time. For an SP, it might
be acceptable that a local counterpart not participating in
its execution does not receive a message on it, but rather
makes an assumption on whether or not the SP has been
or will be executed and what its data and AET could be.
Hence
Mapping 8 If a B in Mn is an “S(?Vi,...,?Vn)[E]”
with S at a p, Mp(B) is “(B; (|||vp if E1, (B) then var
V3 : bool,...,Vy. : bool in s¥ ((IVA, ..., !V,), (false, ?V4,

., ?V))[E2, (B)] endvar else null endif))” and for
every p', My (B) is “if F3,(B) then rs(?Vi,...,
Vo) [Ea, (B)] elseif Ej,(B) then (?Va,...,7V,) =
Eg ,(B) else stop endif”, where the identifiers Vy to V;,
differ from those of the variables visible to B in Mn.
Example 3 In the following services, a, b and c belong to
three different places p, p' and p”, respectively. “alz[r =
1]; ¢; bla; stop” does not require that a is reported to P,
but My (a?z[z = 1]) must set the value of x at p', by an
“?x = 17. “a?x;c;blx;stop” requires that p' receives x in
a report on a, because its value is not predetermined. “(a?x
[x = 1]; B1)[|(a?z[x = 2]; B2)” with both a reported to p'
requires that x is included in the reports and that p' checks the
received value, so that it can choose the same alternative as
p. For “(a?:c[gc?a:[[:c = falseg); if z then b; stop else stop
endif”, M,/ (c?z[z = false]) should be equivalent to “stop”.

If two cases are equivalent for a place, it need not dis-
tinguish between them, hence
Mapping 9 For every p, if a B in Mn is a “case (F,

.., Ep) is Pi[E]] — Bil|...|P.|E,] — Bn endcase,
M,(B) is “case (E1,p(B),...,Emp(B)) is Pi[E] ,(B)]
— My(B1)|...|PnlE; »(B)] — My(B,) endcase.
Example 4 For “a?z : bool; b;if x then (c;stop) else
(d;stop) endif” with a, c and d at a p and b at a P,
M, (¢c;stop) and M, (d; stop) may both be equivalent to
inaction. Hence, M, (if . .. endif) could be “if true then
stop else stop endif”, with = not needed at p’.

If two subprotocols synchronize on an SP, it might be
desirable that they co-operate on its reporting, hence
Mapping 10 For every p, if a B in Mn is a “par D in
[1] — Bil|...||[lm] — Bm endpar”, M,(B) 1s “par
Din [ULy p(B)] = My(By)| - [|[Tm UTom o B)] —
M, (Bm) endpar”, where for everyiin {1,...,m}, there is
such a set Us(B) ofpazrs (S,p) with S in T, not at p and not

mentioned in D, that for every p, I'; ,(B) consists of gates sg
with (S,p’) in U;(B) and of gates rs with (S, p) in U;(B).

Mapping 11 For every p, if a B in Mn is a “par P
in N|||B1 endpar”, My(B) is “par P in N|||M,(B1)
endpar”.

Example 5 For “(a;b)|[a]|(a;c)” with a at a p and b and ¢

at a p', a must be reported to p’ both in subprotocol M(a;b)
and in subprotocol M (a;c), but if Mp(a;b) and My(a;c) are

synchronized on sﬁ/, and My, (a; b) and M,y (a; c) on ra, there
is only one protocol message.

At every place, receptions must be allowed to over-
take any non-SP action, for otherwise a message might be
received with a non-zero local delay. In [1], we were not

E-LOTOS-Based Compositional Service-Based Synthesis of Multi-Party Time-Sharing-Based Protocols 211

aware of that and so the method, unless corrected as in
[8], generates incorrect protocols. Hence

Mapping 12 For every p, if a B in Mn is a “B1; B2”,
M, (B) is “(Mp(B1); Cp(B)|Mp(B2))”, where Cp(B) lists
all the pairs (G1,G2) of G1 in (G(Mp(B1))\S) and G2 in
(G(Mp(B2)) NR).

Mapping 13 For every p, if a B in Mn is a “loop B
endloop”, M,(B) is “loop Cp(B)|M,(B1) endloop”,
where C’;,SB) lists all the pairs 8G1,G2) of Gi1 in
(G(Mp(B1))\S) and G2 in (G(Mp(B1)) N R).

Mapping 14 For every p, if a B in Mn is a “trap
exception X (IPL;) is B: endexn...exception
X,.(IPL,) is B, endexn in B,y1 endtrap”, M,(B
is “trap exception X;(I/PL1)|C1,(B) is M,(B:
endexn...exception X,(IPLy)|Cpnp(B) is My(Bn
endexn in M, (By41) endtrap”, where a C; ,(B) lists all
the pairs (G17G2§ of G1 in (G(Mp(Bn+1))\ S) and Gz in
(G(Mp(B:)) NR).

Example 6 For “a@!0; (bQ!2[]cQ?z[x > 4])” with a, b and
cat three different places p, p’ and p”, respectively, suppose that
a report on a arrives to p’ and p” at times 1 and 5, respectively,
and a report on b arrives to p” at 3. If p” implements “;” as
strong sequencing, it enables My (b.. . [|c...) at 5, when it
suddenly becomes ready not only for reception of the report on
b, but also for an illegal c. If the sequencing at p'’ is adequately
weakened, p'’ receives the report on b already at 3, in time to
prevent c.

In the distributed implementation of choice, there are
cases where it is necessary that a place a priori abandons
all but one of the alternatives, hence
Mapping 15 For every p, if a B in Mn is a “B1[|B2”,

M, (B) is “if E1,(B) then M, (B)) elseif E; ,(B) then
M, (B2) else M, (B1)[]M,(B2) endif”.

Mapping 16 For every p, ifa B in Mn is a “choice P[] B
endch”, with P of a type T, M,(B) is “case Ei,(B) is
P[E>,(B)] — My(Bi1)lany : T — choice P[|My(B1)
endch endcase”, with F1,,(B) of type T.

Example 7 For “(a[]b); c;d” with a, b and ¢ at a p and d at
ap', a and b need not be reported to p', hence M, (a) and
M,/ (b) can both be a “null”, but then (M, (a)[]M, (b)) is
“null[[null”, i.e. a process unable to execute the required &
[4]. Keeping only one of the equivalent alternatives yields a
correct M, (a[]b).

Rule 3 For every p and B of the form “B1[|Bz”, “BgJ]Bl ”
“choice P[|B; endch” or “B2[X|C > B1” in Mp(Mn),
every starting event of B1 must be an o, except in the last case
where it may also be an X.

No place may ever suspend transmission or reception
of an SP report, for the recipient of the report might oth-
erwise fail to detect the SP in time. Hence transmissions
and receptions in an interrupted process must be allowed
to overtake actions in the interrupting process. In the case
of multiple consecutive instances of an interrupting pro-
cess, receptions in each of them must be allowed to over-
take non-SP actions in the preceding ones. In the dis-
tributed implementation of a “By[> Bs”, there are cases
where it is necessary that a place a priori abandons exe-
cution of By. Hence
Mapping 17 For every p, ifa B in Mn isa “B1[X > Bx”,
M, (B) is “if E,(B) then M,(B>) else rename R, ,(B)

in rename R3,(B) in M,(B1) endren [X|(Cy(B) U
C2,»(B)) > M,(B2) endren endif”, where Rz, renames

every G in G(M,(Bh)) into a different G’ not in G(M,(Bz)),
R1,,(B) restores the original names of the gates, C1,,(B) lists
all the pairs (G1,G2) with G1 in (G(Mp(B2))\S) and G5 in
(G(M,(B2)) N'R), and Cs ,(B) lists all the pairs (G1, G%)
with G in G(Mp(Bz2)) and G2 in (G(Mp(B1))\S).

Example 8 For “((a;stop)[> b);c;d” with a, b and c at a
pand d at a p', it is appropriate that My, (b) is equivalent
to “null”. Within an “My (a;stop)[> M,/ (b)”, such an
M, (b) would be unable to execute the required § [4]. Keep-
ing just M, (b) yields a correct M, ((a; stop)[>b).

4 Semantic Aspects of Protocol Derivation

Let I denote an instance of a B in Mn. An I of a B
of the form “SP[E]” is an A. For an I, let M(I) de-
note the corresponding subprotocol of M(Srv), i.e. the
corresponding instance of M(B), with each M,(I) de-
noting the corresponding instance of M,,(B). In the par-
ticular case of an I of the form “loop B endloop”
or “I1[X > B”, B has an infinite series of instances,
where in a corresponding “loop M,,(B) endloop” or
“M,(11)[X > M,(B)”, the instance of M,(B) corre-
sponding to the n-th instance of B is the n-th one, while
in the case of an M,(I;[X > B) reduced to M,(B), the
process corresponds to the first instance of B.

Let s and s denote two different SPs in Mn. For an
s, let Prt(s) list the participating A. An s is uniquely de-
termined by Prt(s) and by the data it carries (including,
thanks to Cl, its AET). For an I, let Prt(s,I) list the A
in Prt(s) which are subprocesses of I.

With such detailed characterization of SPs, Srv is
completely deterministic, so that the problem of its dis-
tributed implementation reduces to proper implemen-
tation of its individual runs p, prevention of non-
determinism in individual M,(S7rv), and securing that
time constraints of individual M, (Srv) and the medium
suffice for proper resolution of global conflicts. The more
urgent the SPs of Srv’ are, the smaller is the number of
the possible runs, i.e. the easier it is to satisfy the rules
below, i.e. the lesser is the need for inter-place communi-
cation.

Example 9 Tuke “a@!0;6Q!1” witha atap andbata p’. If
a at time O is not urgent, its invocation is not mandatory, so that,
to satisfy the empty p, p’ must refrain from executing b at time

1 before receiving a report on a. If a is urgent, the empty p is
impossible, and hence the report not necessary.

To prevent local non-determinism, we must prevent
ambiguous transitions, hence
Rule 4 For every p, M, (Srv) is forbidden to have a state in
which two or more outgoing transitions would represent recep-
tions with identical gate and data.

For a p, let Exc” list, in the order of occurrence, the
executed SPs. For an I, let Exc?(I) be the projection of
Exc” onto the SPs s with a non-empty Prt(s, I).

For a p, let EnbP list the I enabled during the run. For
an I in an Enb®, let At”(I) denote the time when it gets
enabled in p.

212 Kapus-Kolar

For an I, let Viar(I) list the variables visible and not
local to the process. For an I in an Enb?, let In?(I) for
every V in Var(I) provide its value upon enabling of I
in p, if not undefined. For a p, let M/ (I) denote M,,(I)
started with the data in In”(I).

For each particular p, the expected actions of M(Mn)
are the following: For every s ata p at a ¢t in ExcP, it
is expected that MIf(A) with A in Prt(s) execute s and
promptly report it as specified, while for every p/, it is
expected that M7, (A) with A in Prt(s) receive the in-

coming reports on s at ¢’ with (¢t <t/ <t + dp’p/), i.e.
immediately upon arrival, in a manner maintaining com-
munication closedness of individual M (A).

For every p and p, we expect and will secure that
M,,(Srv) proceeds as follows: 1) Whenever it enables an
M, (I) with I in Enb” of the form “case. .. endcase”,
“I[]I2” or “choice P[|B endch” with an I’ the alter-
native selected in I in p, M (I) is, at least virtually, ex-
ecuted as MA(I’). 2) M,(Mn) executes exclusively the
actions it is supposed to execute for p, taking care that its
SPs are executed in the order specified in Exzc’.

To be able to ignore the fact that for a p, an M, (Srv)
proceeding as expected might enable an M, (I) with I not
in Enb”?, we introduce

Rule 5 For every p and p, it must be impossible that M,,(STv)
proceeding as expected for p reaches a state in which it could
allow Mp(Mn) to execute an s with an A in Pri(s) not in
Enb”.

Rule 6 For every p, p, I of the form “I1[X > B” and the sec-
ond or a later instance 12 of B in I, if I> is not in Enb®, it must
be impossible that M,(Srv) proceeding as expected for p en-
ables M (12) and subsequently reaches a state in which it could
allow My (Mn) to execute an s with a non-empty Pri(s, I).
Example 10 Take “a;b;c” withaandbatapandcatap'. It
is appropriate that p' receives from p a report on b, while report-
ing of a is not necessary. As a is non-urgent, service users might
decide not to invoke it. Executing the empty p, M, (a;b;c)
operating as described enables M,y (b) in spite of “b” not in
Enbf, but correctly refrains from enabling M, (c).

For a p and a p, let Enbz list the I in Enb® with
M,,(I) enabled while M,,(Srv) proceeds as expected for
p.

Every expectedly enabled M,,(I) must be supplied
with the expected input data, hence
Rule 7 For every p, p, I in Enb, and V in Var(l), if V is
an input variable of My (1), it must have a value K defined in
In?(I) and when M(Srv) proceeding as expected for p en-
ables M,,(I), the value of its input V must be K.

For a p, let Acty list the A which are in Prt(s) of an s
in Exc? such that s is at p or that it is at a p’ with E4 ,,(A)
true in M7, (A) after s. For an I, let Acty([) list the A in
Actl which are subprocesses of I.

To be able to pretend that in every local decision, the
place selects exactly the alternative intended for the par-
ticular p, we introduce
Rule 8 For every p, p and I in Enbj, of the form “case. ..

endcase”, M&(I) must be equivalent to My(I') with I' the
alternative in I selected in p.

Rule 9 For every p, p, I in Enb of the form “I1[|I2” or
“choice P[|B endch”, and two alternatives I' and 1" of I, if
M5 (1) allows only My (1"), 1" must be the alternative of I se-
lected in p, or Actf(I") must be empty and Mf(I') equivalent
fo MA(I").

Rule 10 For every p, p and I in Enbf, of the form “I,[X >
B, if My(I) omits Mp(I1), Actf(I1) must be empty and
MY (B) unable to raise X.

If an M,,(A) is supposed to perform an action, it must
be timely enabled and while the action is still pending, not
suspended permanently or too long, hence
Rule 11 For every p, p, s at a t in Exc” and A in Pri(s),
if Ais in Actf, it must be in Enby, and if s is at p, it must be
impossible that M,,(Srv) proceeding as expected for p fails to
enable M,(A) at t or earlier.

Rule 12 Forevery p, p, I of the form “I,|X > B”, consecutive
instances Iz and I3 of Bin I, satpatatin Exc’(I1) and s' in
Exc(I2) executed before s, if Actl(I2) is non-empty, it must
be impossible that M, (Srv) proceeding as expected for p fails
to enable M (13) at t or earlier.

Rule 13 For every p, p, I of the form “I1[X > B”, consec-
utive instances I and I3 of B in I, s in Exc’(I1), s’ ata t'
in ExcP(I2) with a non-empty (Pri(s")N Acth(12)), and A in
Prt(s,I1), if sis at p at t' with an E , (A) true in M5(A)
after s, orifitisatap atatwith (t-+d” P > t') and F1 p(A)
true in M?, (A) after s, I3 must be in Enbj.

Example 11 Take “B1[X > By” with B1 an “(a;stop)”,
Bz a “(b; ((¢; raise X)[|(d; e;stop)))” and a to d at a p and
reported to a p', the executor of e. If first p executes a, b and
d and reports them to p’, the next event might be reception of
the report on b. Upon the event, p' suspends M, (B1), but

remains ready to receive the report on a. If its reception is the
next event, it erroneously resolves the choice in Mp/(Bz) in

favour of M, (c; raise X)), because the reception is legal only
if M, (Bx) is actually resumed later on. Consequently, p' fails
to receive the report on d and execute e.

Subprotocols synchronized on a transmission gate
must properly co-operate on it, hence
Rule 14 For every p, s on a gate S at a p in Exc”, non-empty
subset o of Prt(s) and destination p', if M5(A) with A in o
are synchronized on gate sg,, the value of Er v (A) after s in
M5 (A) must be the same for every A in o and if it is true, there
mustbe a “Vy, ..., Vy” simultaneously satisfying E , (A) af-
ter s in all MIp(A) with A in c.

Places must not be too selective about the messages
they want to receive, hence
Rule 15 Forevery p, satapatatin Exc’ and Ain Pri(s),
ifan B,y (A) is true in Mp(A) after s, M7, (A) must be ready
fo receive the report on s sent by Mf(A) at any t' with (t <
t' <t+dPP /), setting no restrictions on those among the fields
Vi to Vi, which the medium might pass as a wildcard.

The above rules secure that for every p, each
M,,(Srv) can proceed as expected. It remains to secure
that no unexpected SP occurs and that the expected SPs
are executed in the expected global order.

The first measure against unexpected SPs are Rules 5
to 7. If an M,(A) is enabled or resumed unexpectedly
early, that might also result in an unexpected SP, hence

E-LOTOS-Based Compositional Service-Based Synthesis of Multi-Party Time-Sharing-Based Protocols

Rule 16 For every p and p, it must be impossible that
M, (Srv) proceeding as expected for p reaches a state in which
it could allow M, (Mn) to execute an s at a t less than the latest
AtP(A) of Ain Pri(s).

Rule 17 For every p, p, I of the form “I1[X > B” and con-
secutive instances I> and Iz of B in I, it must be impossible
that M, (Srv) proceeding as expected for p suspends M (I1)
by M, (I2) and subsequently reaches a state in which it could
allow Mp(Mn) to execute an s with a non-empty Pri(s,I1)
earlier than at At?(I3).

Example 12 Take “(a@!2;b)|[b]|bQ!1” with urgent a at a p
andbatayp'. Inits only run “a”, “b” in “a@!2;b” is enabled
at 2. If My (a!2) immediately terminates, M, (b) is enabled
already at time 0 and can, without violating Rule 5, erroneously
execute b in co-operation with M, (bQ!1).

Example 13 Tuke “((a@!2[]b@!5); stop)[X > (c@!0; dQ!3;
raise X)” witha atap, btodatap', and d urgent. After c, d

must also be reported to p, because otherwise M§(a@Q!2) might
be, without violating Rule 6, resumed in time to execute a.

Timely detection of remote decisions is also important
for prevention of unexpected SPs, hence

Rule 18 For every p, I in Enb® of the form “I1[]I2” or
“choice P[|B endch”, and two different alternatives I' and
1" of I, if Exc?(I") is non-empty, with the first SP in it at a p
at a t, then for every p', it must be impossible that M, (Srv)
proceeding as expected for p reaches a state in which it could
allow M, (Mn) to execute an s with a non-empty Prt(s,1")
at t or later.

Rule 19 For every p, I in Enb® of the form “I,[X > B” and
consecutive instances I and I3 of B in I, if Exc”(I2) is non-
empty, with the first SP in it at a p at a t, then for every p', it
must be impossible that M, (Srv) proceeding as expected for
p without executing an o in My, (I2) reaches a state in which it
could allow My, (Mn) to execute an s at a t’ with a non-empty
Prt(s,I1) and (t' > t), unless I5 is in Enb® with (At*(I3) <
t').

Example 14 In the run “c;a;b;e” of “(cQ!0; dQ!3; stop)[>
(a@!1; b7x; elz@!2)” with a and urgent b at a p, c to e at a

o, and dP*" equal to 1, a must be detected by p'. However,
reporting of a is not necessary, because it is sufficiently early
if p' detects the disabling upon receiving a report on b, that is
unavoidable because p’ must receive .

For a p, s and s’ in Exec?, A in Prt(s) and A’ in
Prt(s’), let Grd?(A, A’) be true if s’ is executed af-
ter s and for a superprocess Iy of A and a superprocess
I> of A’, there is an I of the form 1) “trap...is I
endexn...in [; endtrap”, 2) “I;; 15", 3) “loop B
endloop” or “I'[X > B” with I} and I> two different
instances of B, or 4) “I;[X > B” with I; an instance
of B. For a p and s and s’ in Exc”, let GrdP(s,s’) be
true, i.e. s guards s, if GrdP(A, A’) is true for an A in
Pri(s) and an A’ in Prt(s’), or if Exc? contains an s”
with GrdP (s, s”) and GrdrP(s”, s').

For a p, s and s’ in Exec’, A in Prt(s) and A’ in
Pri(s'),let Chn?(A, A") be true if GrdP (A, A’) and A is
in Actf) with p the place of . Fora p and an s and an s in
ExcP, let ChnP (s, s’) be true, i.e. there is a causal chain
implemented from s to §', if Chn?(A, A’) is true for an
Ain Prt(s) and an A" in Prt(s"), or if Exc” contains an
s"” with Chn?(s, s") and Chn*(s",s").

213

Time constraints might not be sufficient for ordering a
pair of SPs, hence

Rule 20 For every p and s and s' in Exc’ with the same AFET,
Grd® (s, s') requires Chn” (s, s’).

Example 15 To implement for the run “a; b; c” of “(a; b)|[b]|
(b;c)” with a and c at a p and b at a p’ a chain from a to ¢, a
must be reported to p' and b must be reported to p. If a and b
are urgent, the chain serves exclusively for ordering of SPs with

the same AET, otherwise also for informing that the immediate
guard has actually occurred.

Example 16 Tuke “Bi|[b, e]| B2 with B1 an “((a@!0; bQ!1;
stop)[X > (cQ!1;e@!0;raise X))”, B an “(e;b;d;e)”, a
todatapandeatap. Inthe run “a;c;e;b;d”, proper se-
quencing of e and b at time 1 requires a chain. We are free to

decide whether p' should report e to p in M(By), in M(B2) or
in both.

5 The Protocol Derivation Process

In [9], we prove that given a WFSS and satisfying all the
above rules, one obtains a correct implementation of the
specified service. However, unlike most of the earlier pa-
pers on protocol derivation, we propose no mechanical
procedure for translating a WESS into a protocol, i.e. for
choosing the parameters of M.

The reason is two-fold. As first, it is often the case
that for a given service, a given partition of its SPs and
a given communication medium, the given constraints,
i.e. the restrictions on the service structure and the rules
on the protocol parameters, cannot be satisfied simultane-
ously, particularly if there are many distributed conflicts
and strong time constraints. The necessary compromises
on the service, the partition and the medium require in-
tervention of a designer. As second, the given constraints
can typically be satisfied in many different ways, with no
one indisputably better than the others. Hence it is advis-
able to have the constraints handled by a general-purpose
constraint solver able to accept additional specific optimi-
sation criteria.

Besides in the quality of the derived protocol, one is
typically interested also in the complexity of the deriva-
tion process. For that reason, we have carefully avoided
constraints referring to the global state space of the dis-
tributed server, referring exclusively to properties of Srv,
of individual sequences of selectively reported SPs, and of
individual M,,(Srv) executing their local counterparts.

Another measure for decreasing the complexity would
be to intentionally reason in a highly compositional way,
i.e. to take care not only that M(Srv) correctly imple-
ments Srv, but also that individual M(I) in isolation
properly implement I. This is the usual approach in pro-
tocol derivation, but as such reasoning is less context-
conscious, it might result in a less optimal protocol or
even in an erroneous conclusion that no feasible protocol
exists for the given setting.

An important step towards an efficient protocol can

be restructuring of Srv without changing its external be-
haviour, for example

e changing the degree to which an inherent parallelism
is made explicit,

e changing the location of a hidden SP (e.g. to localize
a causal relation or a conflict),

e enhancing an SP with hidden parameters more accu-
rately reflecting its identity (the information might
be needed in a report on the SP),

e making a process use a copy of a variable instead of
its original, with the copy generated at a carefully
chosen point (one can thereby control the point of
sending the data to a place needing it),

e introducing a dummy SP marking completion of a
group of SPs at a particular place, so that comple-
tion of the group can be reported by reporting the
dummy (facilitates the protocol optimization pro-
posed in [10]), or

e changing termination of a process into a dummy
SP indicating that the process is ready for dis-
abling, with an auxiliary process detecting the SP
and performing the disabling (facilitates the proto-
col optimization proposed in [11], helpful particu-
larly for processes comprising terminating and non-
terminating alternatives or alternatives with different
termination events).

Ideally, the constraint solver would co-operate with an ex-
pert system optimizing the structure of Srv.

6 Concluding Remarks

The proposed method generates protocols securing that
any SP legal during a particular time interval is available
to service users through the entire interval, while [2] and
[1] strive only for occasional availability. The method ac-
cepts a much wider class of service processes. Another
contribution is a flexible SP-reporting scheme with plenty
of space for protocol optimization, particularly for mes-
sage re-use and prevention of duplicate causal chains and
unnecessary reports on urgent SPs and remote decisions.

7 References

[1] M. Kapus-Kolar, “Compositional service-based construc-
tion of multi-party time-sharing-based protocols,” IEICE
Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, vol. E§86-A, no. 9, pp.
2405-2412, 2003.

[2] A. Nakata, T. Higashino, and K. Taniguchi, “Protocol
synthesis from timed and structured specifications,” Proc.
ICNP’95, pp. 74-81, IEEE Computer Society, 1995.

[3] T. Bolognesi and E. Brinksma, “Introduction to the ISO
specification language LOTOS,” Computer Networks and
ISDN Systems, vol. 14, no. 1, pp. 25-59, 1987.

[4] ISO/IEC, Enhancements to LOTOS (E-LOTOS), ISO/IEC
15437, ISO — Information Technology, 2001.

[5]1 A. Verdejo, E-LOTOS: Tutorial and Semantics, M.S. the-
sis, Universidad Complutense de Madrid, 1999.

[6] M. Kapus-Kolar, “Towards weak sequencing for E-
LOTOS,” Computer Standards & Interfaces, vol. 28, no.
1, pp. 59-73, 2005.

[7]1 C. A. Vissers, G. Scollo, M. van Sinderen, and H.
Brinksma, “Specification styles in distributed systems de-
sign and verification,” Theoretical Computer Science, vol.
89, pp. 179-206, 1991.

[81 M. Kapus-Kolar, A Correction to Compositional Service-
Based Construction of Multi-Party Time-Sharing-Based
Protocols, Jozef Stefan Institute tech. rept. #8896, 2003.

[91 M. Kapus-Kolar, E-LOTOS-Based Compositional
Service-Based Synthesis of Multi-Party Time-Sharing-
Based Protocols, Jozef Stefan Institute tech. rept. #9200,
2006.

[10] FE. Khendek, G. von Bochmann, and C. Kant, “New results
on deriving protocol specifications from service specifica-
tions,” Proc. SIGCOMM’89, pp. 136-145, ACM, 1989.

[11] M. Kapus-Kolar, “More efficient functionality decompo-
sition in LOTOS,” Informatica, vol. 23, no. 3, pp. 259-
273, 1999.

Monika Kapus-Kolar received her B.Sc. degree in electrical
engineering from the University of Maribor, Slovenia, and the
M.Sc. and Ph.D. degrees in computer science from the Uni-
versity of Ljubljana, Slovenia. Since 1981 she has been with
the Jozef Stefan Institute in Ljubljana. Her current research in-
terests include formal specification techniques and methods for
distributed systems development.

