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In this paper we introduce the basic methodology for analyzing and debugging programs. We first convert
programs into their loop-free equivalents and from this into the static single assignment form. From the
static single assignment form we derive a corresponding constraint satisfaction problem. The constraint
representation can be directly used for debugging. From the corresponding hyper-tree representation of
the constraint satisfaction problem we compute the hyper-tree width which characterizes the complexity
of finding a solution for the constraint satisfaction problem. Since constraint satisfaction can be effectively
used for diagnosis the conversion can be used for debugging and the obtained hyper-tree width is an indi-
cator of the debugging complexity.

Povzetek: Članek opisuje analiziranje programov in iskanje napak v njih.

Figure 1: Interaction between the control and the debug-
ging system

1 Introduction
Ideally intelligent systems should provide self-reasoning
and reflection capabilities in order to react on internal faults
as well as on unexpected interaction with their environ-
ment. Reflection capabilities are highly recommended for
systems with strong robustness constraints, like space ex-
ploration probes or even mobile robots. A scenario, for
example, is a robot that although having a broken engine,
should reach a certain position. Without self-reasoning or
reflection such a robot would simple fail to reach its goal.
Another example would be a robot where the software fails
because of a bug. In this situation a robot should recover
and ideally repair itself. Note that even exhaustive testing
does not prevent a program from containing bugs which
might cause an unexpected behavior in certain situations.

In this paper we do not focus on whole systems which
comprise hardware and software. Instead we are discussing
how to represent programs to allow for reflection which
can be used for enhancing the system with debugging func-
tionality. In the context of this paper debugging is defined
as fault localization given a certain test-case. We do not

take care of verification and test-case generation which is
used for fault detection and repair. In order to compute
the fault location we follow the model-based diagnosis ap-
proach (22) but do not rely on logical models but use con-
straints instead for representing programs. The obtained
constraint representation can be directly used for comput-
ing diagnosis, e.g., by using specialized diagnosis algo-
rithms like the one described in (12; 25; 26).

Although, reflection and debugging capabilities are a
desired functionality of a system they provoke additional
computational complexity which can hardly be handled by
the system directly because of lack of computational power.
Note that model-based diagnosis is NP complete. Hence, a
distributed architecture would be required which separates
the running control program from the debugging capabili-
ties. In Figure 1 we depict the proposed architecture. The
debugging module takes the source code of the original sys-
tem which is in this case a control system and a test-case
to localize and repair the fault. The changed source code is
compiled and transferred back to the original system.

In the proposed architecture there are several open is-
sues which have to be solved. The first is regarding the test
case. In particular one is interest in the origin of the test
case. One way would be to have a monitoring system which
checks the internal state of the control system. In case of a
faulty behavior, the given inputs coming from the sensors,
the internal state and the computed output together with the
information regarding the expected output is used as a test
case. The second issue is related to fault localization and
repair. There is literature explaining fault localization and
repair which can be used, e.g., (13; 24; 17; 23).

In this paper we focus on modeling for fault localiza-
tion, i.e., for identifying the root cause of a detected mis-
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behavior. This does not necessarily directly lead to good
repair suggestions. Repair definitely requires knowledge
about further specification details and incorporating differ-
ent test-cases should help a lot. A detailed discussion of
repair is outside the scope of this paper and still an impor-
tant topic of research. The third and last issue is a more
technical one. After recompiling the new program has to
replace the old one on the fly which might cause additional
problems because of ensuring integrity and consistency of
the system’s behavior.

Making systems self-aware and giving those self-healing
capabilities increases their autonomy, which is important
in missions like space exploration where the system can-
not be directly controlled for whatever reason. The paper
contributes to this research in providing a methodology for
fault localization in programs. The methodology requires
the availability of the source code and test cases. It com-
piles the program into their equivalent constraint represen-
tation and uses a failure-revealing test case to compute di-
agnosis candidates.

The paper is organized as follows. We first introduce
the basic ideas behind our approach by means of an ex-
ample. Afterwards, we go through all necessary steps of
the conversion process, which finally leads to the constraint
representation of programs. This section is followed by a
presentation of experimental results we obtained from our
implementation. The experiments focus on structural prop-
erties of the programs’ constraint representation because
the structural properties have an impact on the complex-
ity of debugging. Finally, we discuss related research and
conclude the paper.

2 Diagnosis/debugging
In this section we motivate the idea behind our approach
by means of an example program that is expected to com-
pute the area and circumference of a circle from a given
diameter.

1. r = d/2;
2. c = r*pi;
3. a = r*r*pi;

Obviously the statement in line 2 is faulty. A possible
repair would be c = 2*r*pi; or c = d*pi;. We
know this because of our knowledge in mathematics. How-
ever, in the more general case where large programs are
involved, we have to rely on a process in order to detect,
localize, and correct a fault. Such a process deals with
the question: ‘How can we find out what’s wrong in the
program’ and is a standard in today’s software engineering
processes. In software engineering we first have to detect
the fault. This is done in practice using test-cases or proper-
ties together with formal verification methods. In our case
we rely on test cases. One test case which allow to detect
the faulty behavior would be setting d to 2 and requiring c
to be 2π and a to be π. The program computes the value π
for both variables c and a which contradicts the test case.

This contradiction can be used to locate the fault. One
way would be to have a look at the first definition of vari-
able c which has assigned a wrong value and trace back
using the dependencies between variables. In this case r is
defined in line 1 and used in line 2. Hence, line 1 and 2 are
possible fault candidates. This approach uses only struc-
tural information coded in the program and might overes-
timate the number of diagnosis candidates. Another ap-
proach would be to assume some line of the program to be
faulty. In this case the statement corresponding to the line
does not provide any known functionality. For example,
when assuming line 2 to be faulty, we do not know how
to compute a value for c. Therefore, we do not get any
contradicting information and the assumption is consistent
with the given test-case. Unfortunately, this is also the case
when assuming line 1 to be faulty and only considering the
computation of values like specified in the semantics of the
programming language, i.e., from the begin of the program
to its end.

The situation changes when considering the statement as
equations where no direction of information flow is given.
An equation like r = d/2 is a constraint which specifies
a relationship between r and d. When we now assume the
constraint corresponding to line 1 to be faulty we can com-
pute a value for r using the given test-case. From the con-
straint corresponding to line 3 a = r2π and a = π we
derive r = 1 and finally using c = rπ leads to c = π
which contradicts the given expected value for c which is
2π. Hence, the assumption in this case contradicts the ob-
servations and cannot be a single-fault candidate. Only line
2 remains as single fault. The reason for this improvement
is that when using constraints we have the capabilities for
reasoning backwards.

Summarizing the above discussion, a solution to the de-
bugging problem would be to convert programs into their
constraint representation and use it for debugging. We
choose a constraint representation because equations as
well as logical sentences can be represented and integrated,
and because of the availability of tools. However, there are
still some challenges we have to solve.

First, variables might be defined more than once in a
program. Every definition has to be considered separately.
Programs comprise conditional and loop statements. How
to handle them? For the first problem and the conditionals
we propose the use of the static single assignment (SSA)
form of programs which is used in compiler construction.

Another challenge is how to handle loops and recursive
procedure calls? In order to represent loops we make use
of the following observation. Loops can be represented
by nested if-statements where the nesting depth is infi-
nite. When restricting the nesting depth to a finite value
the nested if-statements still behave the same as the loop
statement when considering only inputs which do not cause
the number of loop-iterations to exceed the nesting depth.
Hence, under this assumption the nested if-statements are
good enough to represent loops and we have reduced the
problem of handling loops to the problem of handling con-
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1. if x < y {
2. min = x;

} else {
3. min = y;
}

Figure 2: A program com-
puting the minimum of two
numbers

1. i = 0;
2. r = 0;
3. while (i < x) {
4. r = r + y;
5. i = i + 1;

}

Figure 3: A program for
computing the product of
two natural numbers

ditionals. A similar technique can be applied to solve the
recursive procedure calls challenge.

Finally, we have to handle arrays and other programming
language constructs like pointers or objects. In this paper,
we present an approach for handling arrays. The other as-
pects of programming languages are ignored. This is due
to the fact that our main application area is the embedded-
systems domain. Programs used in embedded-systems usu-
ally are restricted and do not use of features like dynamic
memory allocation because such features are error prone
and likely lead to problems during operation.

3 Conversion
In this section, we describe the conversion process of pro-
grams into their equivalent CSP representation in detail.
For more information regarding CSPs we refer the reader
to Dechter (11). We start with converting programs into
their loop-free equivalents which are used as basis for the
conversion into the SSA form. Finally, we show how to
extract the CSP from the SSA form. The complexity of the
proposed compilation approach is composed of the com-
plexity of each conversion step. While SSA construction
and CSP extraction can be both handled in polynomial time
computing a loop-free equivalent depends on the number
of necessary iterations. This number depends on the pro-
gram’s complexity. In this section we use the programs
given in Figure 2 and 3 as running examples. We further
assume without restricting generality of the approach that
the programs to be converted have a Java like syntax (ig-
noring object-oriented elements).

3.1 Loop-free programs
When executing while-statements they behave like a con-
ditional statement in one step. If the condition is fulfilled
the statements in the block are executed and the while-
statement is executed again afterwards. Otherwise, the
while-statement is not executed. Hence, it is semantically
correct to represent while-statements using an infinite num-
ber of nested if-statements, i.e., while ( C ) { B }
is equivalent to

if ( C ) {
B if ( C ) {

B if ( C ) {
B if ... } } }

C represents the condition, and B the statements in the
sub-block of the while statement.

Of course it is not possible in practice to compile while-
statements into an infinite number of conditionals. In-
stead we assume that the number of iterations of the while-
statement never exceeds a certain limit say n. We argue that
faults can be detected using test-cases which cause a small
number of iteration and that it is therefore – for the pur-
pose of debugging – not necessary to consider larger val-
ues of n. Moreover, we might introduce a procedure which
is called whenever the limit is reached. This information
would give us back additional information which we might
use for increasing n in a further step. To set a small bound
for the number of iterations is also used in a different con-
text. Jackson (18) uses a similar idea which he called small
scope hypothesis in his Alloy system for verification.

We formalize the bounded conversion from while-
statements into nested if-statements by introducing the
function Γ : PL × N 7→ PL where PL represents the
programming language.

Γ(while ( C ) { B }, n) =

=





if (C ) { BΓ(while (C ) { B}, n− 1)}
if n > 0

if ( C ) { too_many_iterations; }
otherwise

Considering the above discussion it is obvious that the
following theorem which states the equivalence of the pro-
gram and its loop-free variant with respect to their behavior
has to hold.

Theorem 3.1. Given a program Π ∈ PL written in a pro-
gramming language PL and a number n ∈ N. Π behaves
equivalent to Γ(Π, n) for an input I iff the execution of
Γ(Π, n) on I does not reach too_many_iterations.

We now use the program from Figure 3 and n = 2 to
show the application of Γ which leads to the following pro-
gram:

1. i = 0;
2. r = 0;
3. if (i < x) {
4. r = r + y;
5. i = i + 1;
6. if (i < x) {
7. r = r + y;
8. i = i + 1;
9. if (i < x) {
10. too_many_iterations;

} } }

The loop-free variant can be used in all cases where
x = 0 or x = 1 without causing a different behavior to
the original program. It is interesting to note that the time
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complexity of a program which is corresponds to the num-
ber of iterations depending on the size of the inputs is now
represented by the size of the converted program. Hence,
we easily can give an estimate for the size of the converted
programs (and also the number of iterations) when limiting
the size of the input.

3.2 Static single assignment form
The SSA form is an intermediate representation of a pro-
gram, which has the property that no two left-side vari-
ables share the same name, i.e., each left-side variable has
a unique name. Because of this reason the SSA form is of
great importance when building the CSP. Since all variables
are only defined once the SSA form allows for a clear repre-
sentation of the dependencies that are established between
different variables inside the corresponding program. The
SSA representation of a program is sometime also an in-
termediate step in the compiling process; basically before
compiling a java file, first a transformation is undertaken
and the SSA form is obtained. The obtained form will be
the form used as input for the compiler.

In order to compile loop-free programs into SSA we
have to analyze the program and rename all variables such
that each variable is only defined once without changing
the behavior of the program. Basically, this compilation is
done by adding an unique index to every variable, which
is defined in a statement. Every use of this variable in the
succeeding statement is indexed using the same value. This
is done until a new definition of the same variable occur.

For example, the following program fragment on the up-
per side can be converted into its SSA representation bel-
low.

1. x = a + b;
2. x = x - c;

The SSA representation:

1. x_1 = a_0 + b_0;
2. x_2 = x_1 - c_0;

Although, converting programs comprising only assign-
ment statements is easy, it is more difficult for programs
with loop or conditional statements. In our case we only
need to consider conditional statements. The idea behind
the conversion of conditional statement is as follows: The
value of the condition is stored in a new unique variable.
The if- and the else-block are converted separately. In both
cases the conversion starts using the indices of the variables
already computed. Both conversions deliver back new in-
dices of variables. In order to get a value for a variable we
have to select the last definition of a variable from the if-
and else-part depending on the condition. This selection is
done using a function Φ. Hence, for every variable which is
defined in the if- or the else-branch we have to introduce a
selecting assignment statement which calls the Φ function.

For example, corresponding SSA form of the program
fragment

if (C) {
.. x = ..

} else {
.. x = .. }

is given as follows:

var_C = C;
.. x_i = ..
.. x_j = ..
x_k = Φ(x_i,x_j,var_C);

The function Φ is defined as follows: Φ(x, y, b) ={
x if b
y otherwise
For algorithms for computing the SSA form and more

information regarding the Φ function we refer the reader
to (9; 7; 27). The SSA representation for the programs
from Figure 2 and 3 are depicted in Figure 4 and 5 respec-
tively. Note that we represent the Φ function as a function
call phi in the program. It is possible to write a function
body for phi that exactly represents the behavior of the Φ
function. Hence, the program and its SSA representation
can be executed on the same input even at the level of the
programming language.

It is easy to see that the SSA form of a program always
behaves equivalent to the original program, which we state
in the following theorem.

Theorem 3.2. Given a program Π ∈ PL. The SSA rep-
resentation Π′ ∈ PL of Π is equivalent to Π with respect
to the semantics of PL, i.e., for all inputs I both programs
return the same output.

For debugging purposes the input output equivalence,
which is similar to the input output conformance (IOCO)
used in testing, is sufficient. The SSA representation allows
us to map, with little effort, the diagnosis set of program Π′

to the original equivalent program Π.
In the following subsection we describe how arrays and

function calls can be handled. Afterwards we discuss the
compilation of programs into constraint systems.

3.3 Extensions

In the previously described conversion process we still face
two important challenges as they are the conversion of ar-
rays and procedure calls. In this section, we tackle both
challenges and present conversion rules that have to be ap-
plied before converting the resulting source code in a SSA
form.

We start with the array conversion. We assume that ar-
rays are defined over a data type (although we do not con-
sider this information in the conversion) and are of fixed
length. Because of simplicity, we assume that we can only
access one element of the array after the other. Note that in
some languages there are constructs, which allow access-
ing an array partially, e.g., element 3 to 5.
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1. var_1 = ( x_0 < y_0 );
2. min_1 = x_0;
3. min_2 = y_0;
4. min_3 = phi(min_1,min_2,var_1);

Figure 4: The SSA form of the program from Fig. 2

1. i_1 = 0;
2. r_1 = 0;
3. var_3 = (i_1 < x_0);
4. r_2 = r_1 + y_0;
5. i_2 = i_1 + 1;
6. var_6 = (i_2 < x_0);
7. r_3 = r_2 + y_0;
8. i_3 = i_2 + 1;
9. r_4 = phi(r_3,r_2,var_6);
10. i_4 = phi(i_3,i_2,var_6);
11. r_5 = phi(r_4,r_1,var_3);
12. i_5 = phi(i_4,i_1,var_3);

Figure 5: The SSA form of the loop-free variant of the pro-
gram from Fig. 3

Given an array A of length n > 0 with elements
〈a1...ai...an〉. The access to elements is assumed to be
done using the [] operator, which maps from A and a
given index i to the array element ai. For example, z =
A[1] gives you back the first element of array A. So far,
arrays seem not to be very difficult to handle in our conver-
sion process. If reaching a statement z = A[1] during
SSA conversion A has only be represented as A_k where
k is the currently given unique index k for A. But how to
handle statements like A[m] = A[n] + 3? In this case,
obviously A has to be assigned a new index, but how to
handle the following program fragment?

. . .
A[1] = 2;
A[2] = 4;
. . .

A SSA translation into

. . .
A_1[1] = 2;
A_2[2] = 4;
. . .

would be wrong because this transformation does not
respect previously done array changes in the appropriate
manner. In order to respect the underlying semantics, we
have a closer look at it. Assume a program fragment A[i]
= f(~x) where the i-th element of A is set to the outcome
of function f given parameters ~x. This statement only
changes the i-th element but not the others. Formally, we
define the semantics as follows:

{ A } // A before the statement
A[i] = f(~x)
{ A’ } // A after the statement

with A’[i] = f(~x) and ∀j ∈ {1, . . . , n}, i 6= j:
A’[j] = A[j]. As a consequence, we introduce a func-
tion Ψ that implements this semantics and replace the orig-
inal statement with A = Ψ(A,i,f(~x)). The function

Ψ is similar to Φ and can be implemented such that the
converted program is equivalent to the original one with
respect to its semantics.

For example, consider the following program fragment:
1. A[1] = 5;
2. A[2] = A[1] + 5;
Accordingly to our conversion rule we obtain the new

fragment:

1. A = psi(A,1,5);
2. A = psi(A,2,A[1] + 5);

The SSA representation is not based on the new fragment
and captures the semantic in the appropriate way.

1. A_1 = psi(A_0,1,5);
2. A_2 = psi(A_1,2,A_1[1] + 5);

Note that Ψ or psi can be implemented as a function in
order to ensure the equivalent behavior even in the context
of program execution. Assume that psi has the formal
arguments A, i, e and that the length of an array can be ac-
cessed via a function length, then the body of the function
is given as follows:

j = 1;
while (j < length(A)) {

if (j==i) {
B[j] = e;

} else {
B[j] = A[j];

}
j = j + 1;

}
return B;

The function psi returns a new array B of A’s size.
We now consider the last challenge we want to tackle,

the procedure calls and in particular recursive procedure
calls. Given a procedure M with its formal parameters
x1, . . . , xn, and the body δ(M), which itself is a program



364 Informatica 32 (2008) 359–371 F. Wotawa et al.

written in the same programming language. A proce-
dure call M(a1, . . . , an) with actual parameters a1, . . . , an

causes the execution of M’s body where the formal parame-
ters are assigned to their corresponding actual parameters,
i.e., xi = ai. Hence, a transformation is easy. We only
have to assign values to the formal parameter, which can
be done using assignments, and use the body of the proce-
dure instead of the procedure call.

In cases where the procedure returns a value, we have to
introduce a new variable M_return. We further replace
return e with M_return = e, and finally, we intro-
duce a new assignment, where M_return is used appro-
priately. The described transformation of the return state-
ment is only correct, whenever a procedure has only one of
those statements. This is not a restriction because we al-
ways can modify a program to fulfill this requirement. For
simplicity, we also assume that the variables used in bod-
ies of procedures and the one used in the main program are
different except in cases of global variables.

We now explain the idea behind the conversion using an
example program where a procedure foo is called

. . .
x = foo(2,y,z-1);
. . .

Now assume that foo has three formal parameters
x1,x2,x3 and the following body:

v = x1 + x2;
v = v - x3;
return v;

When applying the described conversion rule, we obtain
the following program fragment:

x1 = 2;
x2 = y;
x3 = z-1;
v = x1 + x2;
v = v - x3;
foo_return = v;
x = foo_return;

This program can be easily compiled into its SSA form:

x1_1 = 2;
x2_1 = y_0;
x3_1 = z_0-1;
v_1 = x1_1 + x2_1;
v_2 = v_1 - x3;
foo_return_1 = v_2;
x_1 = foo_return_1;

We now extend the above idea to the general case, where
we might face recursive procedure calls. The idea behind
the conversion is the same, but similar to the handling of
iterations of a while statement, we have to set a bound
on the maximum number of recursive replacements dur-
ing conversion. For this purpose we assume that there is

such a bound MC given for a procedure M in a calling con-
text. Similar to while statements we introduce a function
Γ̂ : PL × N 7→ PL that defines the bounded compilation
of a not necessarily recursive procedure call:

Γ̂([x = ]M( a1,...,an ), i) =

=





x1 = a1;...xn = an;
Γ̂(δ′(M), i− 1)
[x = M_return; ]

if i ≤ MC
too_many_recursions;

otherwise
Note that δ′ denotes the body of method M, where

the return statement return e has been changed to
M_return = e. Moreover, Γ̂ is assumed to be defined
for all other statements where the statement itself is re-
turned without any changes. Hence, when applying Γ̂ to
the body of a method, all statements are examined and left
as they are with the exception of a new method call. With
these additional assumptions the compilation function can
be generally applied.

We illustrate the conversion using a program only com-
prising the call x = foo(1,2); where the body of foo
is given as follows:

r = 0;
if (x1 > 0) {
r= foo(x1-1,x2);
r = r + x2;

}
return r;

The following program represents the recursion-free
variant of the program calling foowith 1 allowed iteration,
which is sufficient for specific procedure call foo(1,2)
in order to return the correct result.

x1 = 1;
x2 = 2;

// 1. recursive call
r = 0;
if (x1 > 0) {
x1 = x1 - 1;
x2 = x2;

// 2. recursive call
r = 0;
if (x1 > 0) {
too_many_iterations;

}
M_return = r;

// returning from 2. call
r = M_return;
r = r + x2;

M_return = r;
// returning from 1. call

x = M_return;

The converted program can be easily compiled in its
SSA form.
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3.4 Constraint representation
Constraint satisfaction problems (CSPs) have been intro-
duced and used in Artificial Intelligence as a general
knowledge representation paradigm of knowledge. A CSP
(V, D,CO) is characterized by a set of variables V , each
variable having a domain D, and a set of constraints CO
which define a relation between variables. The variables in
a relation r ∈ CO are called the scope of the relation. An
assignment of values from D to variables from V is called
an instantiation. An instantiation is a solution for a CSP,
iff it violates no constraint. A constraint is said to be vi-
olated by an instantiation, if the value assignment of the
variables in the scope of the constraint are not represented
in the relation of the constraint. There are many algorithms
available for computing valid instantiations, i.e., solutions
for a CSP. A straight-forward algorithm is backtrack search
where variable values are assigned and consistency checks
are performed until a valid solution is found. Moreover, it
is well known that CSPs can be solved in polynomial time
under some circumstances, i.e., the CSP must be acyclic,
which we discuss later. Yannakakis (30) proposed such an
algorithm. Based on this algorithm there are diagnosis al-
gorithms (12; 25) available, which can be used for debug-
ging directly providing there is a CSP representation for
programs. For more information and details on CSPs we
refer the reader to DechterŠs book (11).

The last step in the conversion process is to map pro-
grams in SSA form to their CSP representation. This ex-
traction of the constraints from the statements of the SSA
representation can be easily done. The algorithm is pretty
straight forward and only implies analyzing the SSA repre-
sentation line by line. In this conversion step, each line of
the SSA representation is mapped directly to a constraint.
Hence, all variables of a statement map directly to the scope
of the constraint. The constraint relation is given by the
statement itself by interpreting the assignment operator as
an equivalence operator. For example, the statement x_2
= x_1 + 2 is mapped to a constraint having 2 variables
x_2 and x_1 and where the relation is stated as an equa-
tion of the form x_2 = x_1 + 2. Note that the latter rep-
resentations is a more flexible one because it can also be
read, for example, as x_2− x_1 = 2.

The CSP representation of the program from Figure 2 is
given as follows:

Variables: V =
{ {var_1, x_0, y_0,

min_1,min_2,min_3}
}

Domains: D = {D(x) = N|x ∈ V }

Constraints: CO =





var_1 = (x_0 < y_0),
min_1 = x_0,
min_2 = y_0,

min_3 = phi(min_1,
min_2, var_1)





When comparing the CSP representation of the program
with its SSA form, which is depicted in Figure 4, we see
that both representations are very close to each other. It is

easy to prove that the SSA form of a program is equivalent
to its CSP representation with respect to the behavior.

Theorem 3.3. Given a program Π, its SSA representation
Π′, the corresponding CSP CΠ. The value assignments of
the variables in Π′, which are caused by executing Π′ on
an input I are a solution to the corresponding CSP CΠ and
vice versa.

From this theorem and the others we conclude that the
transformation is behavior neutral and in this way the CSP
representation captures the behavior of the program. As a
consequence, the CSP representation can be directly used
for debugging. As already mentioned there are circum-
stances under which the algorithm is more effectively and
there are situations where the computation of solutions is
hard. This holds now directly for debugging and we are in-
terested in classifying programs regarding their debugging
complexity. We define debugging complexity as a measure
that corresponds to the complexity of computing a solution
using CSP algorithms. In the following, we discuss struc-
tural properties of CSPs, which can be used for classifica-
tion and which are based on the hyper-graph representation
of programs.

In the hyper-graph representation of a CSP the variables
of the CSP represent vertices, and the constraint scopes the
hyper-edges. Thus hyper-edges connect possible more than
one vertex. Hyper-graphs can be used to classify CSPs re-
garding their complexity of computing a solution. As al-
ready mentioned, solutions for CSPs with corresponding
acyclic hyper-graphs can be computed in polynomial time
(see (30)). Such hyper-graphs can be directly represented
as hyper-trees. Unfortunately, not all CSPs are acyclic. But
the good story is that cyclic CSPs can be converted into an
equivalent CSP that is acyclic. What is needed is to join the
right constraints. Joining constraints, however, is a draw-
back because it is time and space consuming. In the worst
case all constraints have to be joined in order to finally re-
ceive the acyclic equivalent CSP representation, which is
of course intractable.

As a consequence, one only gains computational advan-
tages from the conversion of hyper-graphs into hyper-trees
if the number of constraints to be joined is as minimal as
possible. This number is referred to as hyper-tree width.
More information regarding hyper-graphs and hyper-tree
composition which allows to convert hyper-graphs into
hyper-trees can be found in (14; 15). The hyper-graph and
its corresponding hyper-tree for the CSP introduced above
is depicted in Figure 6. The hyper-tree width for this exam-
ple is 2.

Having a CSP representation of a program has the ad-
vantage of being able to use various algorithms for debug-
ging purposes. However, the performance of debugging
depends on the structure of the CSP. Hence, we are inter-
ested in the structural properties, i.e., the hyper-tree width,
of the CSPs for various example programs. If the hyper-
tree width for such examples is low, then computing diag-
noses can be done effectively. In the next section we focus
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Figure 6: Hyper-graph (left) and corresponding hyper-tree
(right) for the SSA form given in Fig. 4

therefore on the hyper-tree width of programs.

4 Experimental results on the
hyper-tree width

As explained in the previous section the hyper-tree width
has an impact on the complexity of debugging when using
constraints a means for intermediate representation formal-
ism. Gaining knowledge about the hyper-tree width of pro-
grams is therefore of importance. In this respect this sec-
tion reports on the hyper-tree width of several programs.
For this purpose, we implemented the conversion proce-
dure in Java and used a constraint system that was imple-
mented at out institute. For the hyper-tree decomposition
we used an implementation provided by the TU Wien (see
(16)). In particular, we made use of the Bucket Elimina-
tion algorithm based decomposition which is explained in
(29). All experiments were carried out on a PC (Pentium 4,
3 GHz, 1 GB Ram).

The experiments are based on small programs that vary
from 40 to 400 lines of code. The lines of code of the cor-
responding SSA forms and the size of constraint system in
terms of number of constraints and variables are higher due
to used while statement and their transformation to condi-
tional statements. In particular, we wanted to give an em-
pirical answer to the following research questions.

– Thorup (28) stated that there is limit of 6 for the hyper-
tree width of structured programs. The theorem is
based on using control dependence information and
does not consider data dependences. Because the lat-
ter is of importance for debugging and our compila-
tion respects those dependences, we wanted to know
whether given limit still applies.

– The compilation of while statements and recursive
procedure calls leads to an increase of statements and
to a nested if-then-else structure. The question is
how the nesting depth, i.e., the number of iterations
for unrolling the while statements or recursive proce-
dure calls, influences the hyper-tree width? Moreover,
one might be interested whether there is a maximum
bound on the hyper-tree with in such cases.

The environment for carrying out the empirical study is
not the optimal for answering the above research question
but the best one can expect today. The reason ist that the

ID LOC #W #I It HW T
1 70 1 6 3 5 1 s
1 70 1 6 50 5 364 s
2 110 0 11 - 5 1 s
3 70 4 5 3 5 11 s
3 70 4 5 20 6 2040 s
4 80 0 0 - 4 1 s
5 70 0 0 - 4 1 s
6 70 0 0 - 2 1 s
7 400 0 0 - 9 7 s
8 400 2 0 3 50 1000 s
8b 400 2 0 3 12 122 s
9 400 1 0 5 16 120 s
9 400 1 0 10 27 621 s
9 400 1 0 20 54 3959 s
9 400 1 0 35 51 16450 s
9 400 1 0 50 55 19245 s
10 400 1 0 10 20 80 s
10 400 1 0 20 23 274 s
10 400 1 0 50 25 2400 s
10 400 1 0 60 29 4120 s
10 400 1 0 70 25 4770 s
11 400 0 0 - 10 8 s
12 400 1 0 3 15 120 s
12 400 1 0 6 27 2580 s
12 400 1 0 10 43 3415 s
13 400 1 0 15 53 4010 s
14 60 0 0 - 2 1 s
15 50 1 4 3 6 1 s
15 50 1 4 10 6 5 s
15 50 1 4 100 6 456 s
16 40 7 0 1 2 1 s
16 40 7 0 10 3 600 s

Figure 7: Evolution of the hyper-tree width for different
complexity programs

Bucket Elimination based decomposition algorithm is only
an approximation algorithm and thus the solutions needs
not to be minimal once. However, because of the size of
the corresponding constraint systems other algorithms are
hardly of use because they would take too much time and
space.

The finally obtained results for the programs are de-
picted in Figure 7. There the programs are given a num-
ber (ID). The lines of codes (LOC) of the original program,
the number of while statements (#W), the number of if-
statements (#I), the number of iterations used to unroll the
while-statements (I), the hyper-tree width (HW) obtained,
and the time (T) required to compute the hyper-tree width
are given.

In the case of programs 1 to 6 and 14 to 16, the hyper-
tree width tends to be less influenced by the number of iter-
ation of the while-structure. Moreover, for these programs
the hyper-tree width reaches its maximal value after 2 to 3
iteration. This cannot be said for programs 7 to 13 were
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1. x = 10;
2. y = 20;
3. while (x<100){
4. x = x + y;
5. y = y + 2;

Figure 8: Small example program test

the hyper-tree width ranges from 9 to 55. Even in the case
where there is no unrolling of while statements (programs
7 and 11) the hyper-tree width ranges from 9 to 10. All
of these programs represent digital circuits including some
variants (like 8 and 8a) with a complex data flow.

Based on the obtained empirical results, we have to re-
tract Thorup’s theorem (28) because there are many pro-
grams that result in a constraint system of a larger hyper-
tree width than 6. Note that it is not very likely to find
a hyper-tree decomposition with a smaller width for the
given programs. Moreover, the approximation algorithm
seems to produce approximations, which are close to the
optimum.

The second research question is harder to answer. In all
experiments, we observed that after a certain number of it-
erations the hyper-tree width remains almost the same. For
example take a look at program 9 and 10. In both cases it
seems that the hyper-tree width reaches an upper bound. Of
course because of the used approximation algorithm there
is a variance in the obtained width. But it seems to be al-
ways around a certain value. More experiments have to be
carried out in order to justify these findings.

For the purpose of motivating why the hyper-tree width
stays constant after a certain number of considered iter-
ations of the while statement, we use a small program
test, which is given in Figure 8. For test we know
that the maximum hyper-tree width is 3. This upper bound
is reached after 2 times unrolling of the while statement,
i.e., replacements of the while statement with nested if-
statements.

In our example, we now compute the SSA form and the
corresponding constraint systems for program test using
3 nested if-statements. The resulting SSA form and the
constraint system are depicted in Figure 9 and Figure 10
respectively.

The hyper-graph corresponding to the constraint repre-
sentation of test is given in Figure 11. Note that for the
sake of clarity the graphical representation only comprises
the constraints from the while structure in which the vari-
able x is involved. From the hyper-graph it can be easily
seen that the edges follow a certain pattern, which is re-
peated in every unrolling of the while statements. Hence,
there is a possibility that the hyper-graph decomposition
can be applied to these subparts of the hyper-graph sepa-
rately and combined afterwards, which might lead to a con-
stant hyper-tree width after a certain amount of unrolling
steps.

In summary, we obtained the following results from the

experimental study:

– The hyper-tree width of programs might become very
large. Usually problems of hyper-tree width of 5 to 10
depending on the application domain are considered
hard problems.

– In case of unrolling while-statements or recursive
calls; it seems that the hyper-tree width reaches an
upper bound. This would be an indication that debug-
ging does not necessarily become more difficult, when
the number of iterations increases. Note that the num-
ber of unrolling steps of while statements does depend
on the considered test case, which is an independent
criteria.

– The time for computing the hyper-tree width can be
very large, which might be unacceptable in some cir-
cumstances. This can be for example the case when
interactive debugging is a requirement. For automated
debugging or off-line debugging the time for conver-
sions is not a limiting factor. However, decreasing the
overall analysis time is an open challenge.

What remains of interests is the question, why a certain
program has a larger hyper-tree width than another simi-
lar program? Obviously the data and control dependences
influence the overall hyper-tree width. But in case of sim-
ilar programs the differences regarding the dependencies
might not be large enough to justify high differences of the
obtained hyper-tree width. This holds especially in case
where a program comprises while statements. In the next
section, we focus on this aspect and discuss one cause that
leads to such an observation.

5 Discussion
In the performed experiments we observe that programs,
which have a high hyper-tree width and where the number
of iterations necessary to reach the maximum hyper-tree
width is large, have less data dependences in the sub-block
of the while statement. We illustrate these findings by
means of two example programs sum1 and sum2, which
are depicted in Figure 12 and Figure 13 respectively. Both
programs have about the same structure. In both programs
a variable i is increased in every iteration until it reaches
100. Moreover, the hyper-tree width of both programs is
about the same (2 and 1 for sum1 and sum2 respectively)
when the number of considered unrolling steps is 1.

However, the situation changes, when considering more
nested if-statements as a replacement for the while state-
ment. For sum1 the maximum hyper-tree width of 4 is
reached after 3 iterations. For sum2 the maximum hyper-
tree width of 8 is reached after 12 unrolling steps. If con-
sidering the difference between the minimum and the max-
imum hyper-tree width, we obtain another different out-
come. For sum1 the difference is only 1, whereas for
sum2 the difference is 7.
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1. x1_0 = 10;
2. y2_0 = 20;
3. cond_0=x1_0<100;
4. x1_1=x1_0+y2_0;
5. y2_1=y2_0+2;
6. cond_1=cond_0&&x1_1<100;
7. x1_2=x1_1+y2_1;
8. y2_2=y2_1+2;
9. cond_2=cond_1&&x1_2<100;
10. x1_3=x1_2+y2_2;
11. y2_3=y2_2+2;
12. x1_4=phi(x1_2,x1_3,cond_2);
13. y2_4=phi(y2_2,y2_3,cond_2);
14. x1_5=phi(x1_1,x1_4,cond_1);
15. y2_5=phi(y2_1,y2_4,cond_1);
16. x1_6=phi(x1_0,x1_5,cond_0);
17. y2_6=phi(y2_0,y2_5,cond_0);

Figure 9: The SSA form of program test (Fig. 8)

1. (x1_0 ),
2. (y2_0 ),
3. (X_cond_0 , x1_0 ),
4. (x1_1 , x1_0 , y2_0 ),
5. (y2_1 , y2_0 ),
6. (X_cond_1 , X_cond_0 , x1_1 ),
7. (x1_2 , x1_1 , y2_1 ),
8. (y2_2 , y2_1 ),
9. (X_cond_2 , X_cond_1 , x1_2 ),
10. (x1_3 , x1_2 , y2_2 ),
11. (y2_3 , y2_2 ),
12. (x1_4 , x1_2 , x1_3 , X_cond_2 ),
13. (y2_4 , y2_2 , y2_3 , X_cond_2 ),
14. (x1_5 , x1_1 , x1_4 , X_cond_1 ),
15. (y2_5 , y2_1 , y2_4 , X_cond_1 ),
16. (x1_6 , x1_0 , x1_5 , X_cond_0 ),
17. (y2_6 , y2_0 , y2_5 , X_cond_0 ).

Figure 10: The constraints for test (Fig. 8)

x1_6                               x1_5                                   x1_4

x1_0

y2_1

x1_1 x1_2 x1_3

x_cond_1x_cond_0 x_cond_2

y2_2y2_0

Figure 11: The hyper-graph of the constraint system from Fig. 10

1. a = f + i;
2. b = g + h;
3. while (i < 100) {
4. x = x + a + b;
5. i = x + i + 1;
6. }

Figure 12: Program sum1

1. a = f + i;
2. b = g + h;
3. while (i < 100) {
4. x = a + b;
5. i = i + 1;
6. y = c + d;
7. }

Figure 13: Program sum2
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By having a closer look at the programs we detect a ma-
jor difference in their structure, which might explain this
high difference in the hyper-tree width. For the variable
x that is used in the block of program sum1 a new value
is computed in each iteration of the while statement. The
outcome of variable x depends on the number of iterations
and therefore on variable i (and the condition of the while
statement). This is not the case for variable x and variable
y in program sum2. Both variables are assigned the same
value in each iteration step. For performance reason such
assignment statements should be always placed outside a
loop. In case of program sum2 the values of variables in an
iteration not necessarily depends on the previous iteration
but on a variables that have been computed before calling
the while statement. It seems that this difference makes the
structure of the hyper-graph more complex, which leads fi-
nally to a higher hyper-tree width.

The given example shows that hyper-tree width may in-
dicate an unwanted program structure. In program sum2
either there are variables missing at the right side of state-
ments 4 and 6, or both statements should be given outside
the while statement because of performance reasons. Obvi-
ously, such problems can be detected using some rules like
the following:

If a variable v is defined in the sub-block of a while state-
ment, then there should be at least one not necessarily dif-
ferent statement in the same block that uses v.

Hyper-tree width offers another way for detecting such
problematic cases occurring in programs.

6 Related research

Collavizza and Ruehner (8) discussed the conversion of
programs into constraint systems and their use in software
verification. Their work is very close to ours. The conver-
sion steps are about the same and they also use the SSA
form as an intermediate representation from which con-
straints can be obtained. However, there are some impor-
tant differences. In their work the focus is on verification
and not on debugging. They do not explain how to handle
arrays and procedure calls as we did in the paper. More-
over, the structural analysis of programs using the concept
of tree-decomposition methods and in particular hyper-tree
decomposition is new. This holds also for the findings de-
rived from the empirical analysis, which are of importance
for automated debugging.

The authors of (31) proposed to diagnose errors in pro-
grams using constraint programming. Their approach re-
quires that the programmer provides contracts, i.e., pre-
and post-conditions, for every function. However, the au-
thors do not investigate the complexity of solving the re-
sulting problem and the scalability to larger programs. In
particular, they do not consider structural decomposition
or other methods which could make the approach feasible.
Moreover, the practical applicability of their approach is
also limited because it requires that contracts are specified

for every function, which is very often not the case in real-
world programs. Furthermore, their work does not properly
handle recursive function calls.

Various authors, e.g., (13; 24; 20; 21), have described
models to be used for fault localization using model-based
diagnosis. Almost all of the work makes assumptions re-
garding the program’s structure, uses abstractions which
lead to the computation of too many diagnosis candidates,
or does not handle all possible behaviors at once. The latter
models, for example, consider one execution trace which
prevent the diagnosis engine of remove some diagnosis
candidates. In our representation we consider all possible
behaviors up to a given boundary. This should lead to a re-
duction of the number of diagnosis candidates. In (19) Köb
and Wotawa discussed the use of Hoare logic for model-
based debugging which requires a Hoare logic calculus for
computing diagnosis. Although, we share the same ideas
on automated debugging, the described approach, which
comprises the conversion to CSPs and their direct use, is
new. From our point of view the described approach gen-
eralizes previous research directions.

Other work on debugging include (4; 5; 6). All of them
are mainly based on program slicing (10). (6) integrates
slicing and algorithmic program debugging (2) and (5) does
the same for slicing and delta debugging (1). Critical slic-
ing (4) which is an extension of dynamic slicing that avoids
some of the pitfalls, can also be used in debugging. Be-
cause of the nature of slicing and the other techniques these
approaches require more or less user interaction and cannot
be used for really automated debugging. More information
regarding other approaches to debugging and a good clas-
sification of debugging system is provided in (3).

7 Conclusion

In this paper we introduced a methodology for compil-
ing programs into their equivalent CSP representation.
The methodology comprises the conversion of while state-
ment into their equivalent nested if-statement representa-
tion from which the SSA form is generated. From the SSA
form itself we finally obtain the CSP representation. In the
paper we argued that the CSP representation can be effec-
tively used for debugging and allows for computing a com-
plexity metrics for debugging, i.e., the hyper-tree width.
This is due the fact that the complexity of debugging based
on CSPs depends on the hyper-tree width. For the purpose
of debugging we assume the existence of the source code
and test cases, which reveal the fault. Another advantage
of the CSP representation is that the available algorithms
for constraint solving and in particular diagnosis can be di-
rectly used.

The presented empirical analysis showed that the hyper-
tree width of programs varies a lot and can be more than
50. For the purpose of debugging this finding is not good,
because usually constraint systems with a hyper-tree width
of 5 to 10 are considered as complex. However, this fact
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shows that debugging itself is a complex task. From the
empirical analysis we also obtain that previous work, which
was mainly based on control dependences, on an upper
bound of 6 for the hyper-tree width of programs cannot
be justified in case of debugging in general. For a specific
program there might be an upper bound even when compil-
ing while statements in their equivalent nested if-statement
representation.

Future research includes to solve the upper bound prob-
lem in the general case and to apply the debugging ap-
proach to smaller and medium size programs. The inte-
gration of the CSP representation and given program asser-
tions like pre- and post-conditions is also of interest.
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