
55

Original scientific paper

 MIDEM Society

Journal of Microelectronics,
Electronic Components and Materials
Vol. 44, No. 1 (2014), 53 – 68

On Self-Avoiding Walks across n-Dimensional
Dice and Combinatorial Optimization:
An Introduction
Franc Brglez

Computer Science, NC State University, Raleigh, NC 27695, USA

Abstract: Self-avoiding walks (SAWs) were introduced in chemistry to model the reallife behavior of chain-like entities such as solvents
and polymers, whose physical volume prohibits multiple occupation of the same spatial point. In mathematics, a SAW lives in the
n-dimensional lattice Zn which consists of the points in Rn whose components are integers.

In this paper, SAWs are a metaphor for walks across faces of n-dimensional dice, or more formally, a hyperhedron family),,(nbΘΗ . Each
face is assigned a label)}(:{ ςς Θ ; ς represents a unique n-dimensional coordinate string,)(ςΘ is the value of the function Θ for ς . The
walk searches)(ςΘ for optima by following five simple rules: (1) select a random coordinate and mark it as the ‘initial pivot’; (2) probe
all unmarked adjacent coordinates, then select and mark the coordinate with the ’best value’ as the new pivot; (3) continue the walk
until either the ’best value’ <= ‘target value’ or the walk is being blocked by adjacent coordinates that are already pivots; (4) if the walk
is trapped, restart the walk from a randomly selected ‘new initial pivot’; (5) if needed, manage the memory overflow with a streaming-
like buffer of appropriate size. Hard instances from a number of problem domains, including the 2D protein folding problem, with up
to (225) * (324) coordinates, have been solved with SAWs in less than 1,000,000 steps – while also exceeding the quality of best known
solutions to date.

Keywords: combinatorial optimization, algorithms, self-avoiding walks

Kombinatorična optimizacija in sprehodi brez
ciklov v n-dimenzionalni kocki

Izvleček: Sprehodi brez ciklov (Self-avoiding walks, SAWs) so bili uvedeni v kemiji kot realistični model obnašanja dolgih verig, kot so
topila in polimeri. V matematiki sprehodi brez ciklov obstojajo v n-dimensionalni rešetki Zn, ki vsebuje točke v Rn katerih elementi so
cela števila.

V tem članku predstavimo sprehode brez ciklov kot metaforo za sprehode preko ploskev n-dimenzionalne kocke, formalno v hyperhe-
dron družini),,(nbΘΗ . Ploskev predstavimo kot par)}(:{ ςς Θ , kjer ς predstavlja unikatno n-dimenzionalno koordinato in)(ςΘ pred-
stavlja vrednost funkcije Θ za ς . S sprehodom iščemo optimalne vrednosti funkcije)(ςΘ , pri tem pa uporabimo pet enostavnih pravil:
(1) izberi naključno koordinato in jo označi kot ‘prvi pivot’; (2) obišči vse še ne obiskane sosedne koordinate, nato koordinata z ’najboljšo
vrednostjo’ postane novi pivot; (3) nadaljuj sprehod, dokler ’najboljša vrednost’ ne doseže oz. preseže ‘ciljne vrednosti’ ali dokler sprehod
ne postane blokiran od sosednjih koordinat, ki so že ’pivoti’; (4) če je sprehod blokiran, začni novi sprehod z naključno izbranim ‘novim
prvim pivotom’; (5) če je meja pomnilnika presežena, vključi ustrezno velik medpomnilnik podatkovnega toka.

Zahtevni problemi iz različnih področij, vključno 2D zvijanje proteinov s številom koordinat kot n.pr. (225) * (324), se uspešno rešujejo s
sprehodi, ki se končajo z manj kot 1.000.000 koraki – dobljene rešitve pa presegajo kvaliteto do sedaj znanih najboljših rešitev.

Ključne besede: kombinatorična optimizacija, algoritmi, sprehodi brez ciklov

* Corresponding Author’s e-mail: brglez@ncsu.edu

56

1 Introduction

Instances of combinatorial problems arise in many
contexts such as operations research, computer-aided
design, machine learning, robotics, data mining, bio-
informatics, etc. An exhaustive search for an optimum
solution is not possible for most instances of practical
size due to the huge number of feasible solutions. The
question arises about the choice of heuristic algorithms
to be deployed by the solver. To date, stochastic search
methods offer the best compromise, including Me-
tropolis-Hastings algorithm [1, 2], simulated annealing
[3, 4], Gibbs sampling [5], tabu search [6, 7], and many
others. New heuristics are emerging on Wikipedia and
in journals under metaphors such as ant colonies, bird
flocks, natural disasters, biological processes, etc.

Our approach is simple; we only take a few liberties
with rigorous mathematical notation. When we refer to
a function f (xi

1, xi
2, . . . xi

n), we imply an objective func-
tion, which in general is a multivalued function, return-
ing a value for a specific coordinate (xi

1, xi
2, . . . xi

n). The
support set of the function is defined in terms of such
coordinates. A combinatorial problem is defined by its
function and its coordinate type. Coordinates are repre-
sented as a set of strings, such as 01011... for a binary
coordinate, 210210... for a ternary coordinate, 4, 2, 5, 3,
... for a permutation coordinate, etc. A combinatorial
problem can also be stated in terms of concatenated
coordinates of different types. For example, we define
the 2D protein folding problem on a square lattice by
computing its function values with coordinates repre-
sented as a concatenation of binary and ternary coordi-
nates.

We define a walk as a sequence of steps that chain a
set of pivot coordinates, adjacent coordinates as the lo-
cal neighborhood of the pivot coordinate, and probing
as evaluating the function for values in this neighbor-
hood. A feasible solution of the combinatorial problem
is a pair (coordinatePivot:valuePivot). Once we capture
the description of the combinatorial problem in these
terms, the search procedure is as simple and as generic
as the five rules outlined in the abstract – for any com-
binatorial problem. For more about this notation and
examples of various problem instances, see [8].

We have a number of on-going projects with the goal
to prototype SAWs as a powerful generalpurpose
search procedure that, unlike alternatives, does not
require knobs and dials to set-up. These projects in-
clude instances of problems defined for Golomb rulers,
integer partitioning, maximum independent set, mini-
mum vertex cover and maximum clique, graph linear
arrangement, job scheduling, etc. A nearly completed
project demonstrates significant improvements in so-

lutions of the notoriously hard labs problem [9]: here
we compare, side-by-side, the performance of state-of-
the-art memetic/tabu and SAW solvers. In the present
paper we apply SAW to solve the 2D protein folding
problem on a square lattice [10]. Since this implementa-
tion is based on a scripting language, it is not suitable
for solving very large problems. However, the solver
does achieve a number of state-of-the art solutions on
a significant subset of problem instances from the lit-
erature and an asymptotic performance that may well
dominate alternative solvers when fully implemented.

The paper is organized as follows. To motivate the ap-
proach taken in this paper, Section II starts with a fable
about Gretel and Hansel who devise distinctive meth-
ods to search for a pass-key. Section III formulates the
problem and concludes with pseudo code, describing
global search with self-avoiding walk. Section IV sum-
marizes a number of performance experiments in 2D
protein folding problem defined on a square lattice.
With some 1000 independent solutions for each mem-
ber of 10 instance classes of increasing size (with at
least 3 instances in each class), these experiments not
only replicate the earlier work of others, but also reveal
new and improved folding conformations. The paper
concludes with directions for future work.

2 Motivation

We introduce a fable to motivate our approach. It in-
volves Gretel and Hansel, living in two adjacent apart-
ments, and a Joker whose omnipresence is never re-
vealed directly. Gretel and Hansel are returning from
a party. They discover not only that locks have been
changed on both apartment doors with punch-key
locks but also that mats that hid the keys were replaced
with two urns, each containing a set 36 tickets. Each
ticket has a printed label with five digits in the format
xx.yy:z; only one label opens Gretel’s door, and only
one opens Hansel’s door. The two sets are identical.

Who gets in first? Watching Gretel, she takes the ticket
from the urn and if she does not succeed in opening
the door, she puts the ticket into her handbag and re-
trieves another ticket. Hansel, who had a few drinks at
the party, takes the ticket and if he does not succeed in
opening the door, returns the ticket to the urn. We say
that Gretel is sampling contents of the urn without re-
placement, while Hansel is sampling with replacement.
The probability of Gretel finding the correct ticket on
trial k follows uniform distribution, given n tickets:
the probability is 1/n, the mean value is (n + 1)/2, and
the variance is (n2 - 1)/12. However, the probability of
Hansel finding the correct ticket on trial k follows geo-

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

57

metric distribution: the probability is (1/n)(1 - (1/n))k-1,
the mean value is n, and the variance is n2(1 - (1/n)).
The point of the fable so far: we learn that in a search
scenarios such as described here, one can improve the
chance of first success by dynamically reducing the
search space after each trial. In the best case for Gretel,
the capacity of her handbag must match the capacity
of the urn. If the capacity of the handbag is less than
the capacity of the urn, and the handbag gets full be-
fore finding the key, she needs to return the unsuccess-
ful ticket to the urn before proceeding with the next
trial. In the average case, Gretel’s search, even with
handbag of limited capacity, always requires fewer tri-
als than Hansel’s.

Another surprise awaits after Gretel and Hansel man-
age to make an entry. Neither has stepped into their
apartment’s vestibule; instead, each is now standing on
a four-sided platform (in their own apartment) and can
see, besides the platform on which they are standing,
only the surfaces of the four adjacent platforms slop-
ing downwards. Each of them believes that she/he is
standing on a face of a huge platonic solid, such as the
polyhedron with 36 faces and 72 edges between the
faces shown in in Figure 1. Neither realizes that they
stepped into a virtual world where not everything is as
it seems. The face on which they are standing belongs
to a virtual combinatorial object hyperhedron, also with
36 faces, but as they will walk from face to face, they
will discover that some faces have five adjacent faces,
some have even six.

Joker has replaced the two urns with two hyperhe-
drons and pasted the tickets from each urn into the
center of the face in each the hyperhedron, with labels
showing. He also hid Gretel’s pass-key under one ticket,
and Hansel’s key under another ticket.

Only Joker has the global view of the hyperhedron. He
interprets it as follows. He moves inside the hyperhe-
dron, finds the center of the face, and attaches one end
of a string to the center and attaches the other string to
the center of the adjacent face. He repeats the process
for all faces and thus creates a graph; a graph with 36
face-centered vertices and 84 edges. To represent this
graph in the plane, he defines a distance between the
coordinates assigned to each label and makes a projec-
tion of the graph as a layered graph shown in the bot-
tom of Figure 1. This graph is not visible to Gretel and
Hansel, however, the graph enables Joker to trace each
step they would make during their search. Joker also
assigned function values to each coordinate: his choice
of values is expected to confound Gretel and Hansel
in their search. He gives both one, and only one, hint
about the pass-key: the ticket most likely hiding the
pass-key is the one where value on the label is 1 or less

than 1. If Gretel find Hansel’s key first, the key would
not fit and she needs to continue the search – and vice
versa for Hansel.

Who will find the pass-key to the apartment first? Each
is standing on the face with the label 00.00:2 (at the
bottom of Figure 1). From this face, Gretel and Hansel
can see only the four adjacent faces: 00.10:9, 01.00:6,
10.00:5, 00.01:2. Their task is to walk from face to face
until they find the pass-key to their old apartment.

Gretel is a computer science major and remembers a
lecture about Hamiltonian walks in graphs. She knows
that she is standing on one of 36 faces and that if she
associates each face with a vertex in a graph and the
edges between adjacent faces with edges in this graph,
she can compute and remember the path that visits each
face only once. In the worst case, she will take 35 steps
to find the key. The procedure she uses to compute the
coordinates for each step in the Hamiltonian walk is
not as simple to explain as the procedure used by Han-
sel and explained next. Suffice it to say that function
values associated with each coordinate have no role
in determining the Hamiltonian path in the graph.An
example of Gretel’s walk, as traced by Joker, is shown
in 2-a. She takes 5 steps to find Hansel’s key and needs
to continue for a total of 23 steps before finding her
key. The first step, from 00.00:2 to 00.00:6, is a deliber-
ate step in this Hamiltonian walk – a step that Hansel
would never have taken from this starting position, for
reasons we explain next.

Hansel’s major is land surveying and he takes the hint
about function values associated with each coordinate
very seriously. He devises a few rules before starting
the walk: (1) mark the face from where the walk starts
with an easy-to-spot token; later on in the paper, we
call this face the initial pivot. (2) probe each adjacent
face that has not yet been marked and write its value
on a list. (3) select the adjacent face with the smallest
value, step on this face, call it a current pivot, and mark
it with a new token. If there are several faces with the
same value, make a random selection. (4) repeat step
(2) from the current pivot until reaching the target val-
ue. The process of marking the pivots during the walk
with tokens makes this walk self-avoiding. Hansel can
run into a problem with these rules in two cases: (1) he
runs out of tokens and can no longer mark the walk; (2)
he steps onto a face where all adjacent faces have been
marked already, i.e. the walk is trapped. In either of
these cases, Hansel has to collect all tokens and restart
the walk from a new face, now selected by a random
jump. An example of Hansel’s walk, as traced by Joker,
is shown in Figure 2-b. While Hansel can find the ticket
that hides his pass-key in 3 steps or less from many ini-
tial positions, it takes 10 steps to find his key if he starts

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

58

Figure 1: A polyhedron solid and a hyperhedron projection: each has 36 faces, but face-to-face adjacencies are dif-
ferent.

http://dmccooey.com/polyhedra/JoinedTruncatedOctahedron.html

The item on the left is a polyhedron with 36 faces and 72
edges [11]. Each face has 4 adjoining faces. This polyhedron
is an approximation of the a virtual combinatorial object, a hy-
perhedron introduced next. By assigning to each face a unique
coordinate as a concatenation of a binary strings o­ ength 2
and a ternary string o­ ength 2, we create a hyperhedron with
22 × 32 = 36 faces, the same as polyhedron. However, this
hyperhedron has 84 edges compared to 72 in the polyhedron.
We count the edges by creating a Hasse graph [8]: each face is
assigned a vertex with a unique label and the edges between
vertices represent adjacencies between faces. We find that the
number of edges between vertices varies from 4 to 6.

The label always contains a unique coordinate string, and
in most cases, the label is extended with a value returned by
the function evaluated with the coordinate. The Hasse graph
is drawn as an undirectedlayered graph on a grid such as the
one below: it has 36 vertices and 84 edges with labels such as
00:00:2, 00.10:9, and 01:21:9; the string following ’:’ represents
the value. We say that vertices 00.00:2 and 00.10:9 are adjacent
since the distance between coordinates is 1, while coordinates
00.10:9 and 01:21:9 are not adjacent since the distance is 3.

2 4 6 8 10

0
1

2
3

4
5

6

vertices and labels are ordered L -> R by function values
 (for coordType=BT, vertex distribution at each rank may depend on coordInit)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

in
iti

al
 c

oo
rd

in
at

e
(th

e
bo

tto
m

 v
er

te
x)

00.00:2

00.10:9 01.00:6 10.00:5 00.01:2

10.01:9 00.20:9 00.02:9 01.10:7 10.10:4 11.00:2 01.01:2 00.11:2

11.10:9 00.21:9 00.12:9 10.02:8 01.20:8 10.20:3 01.02:3 11.01:2 10.11:1 01.11:1

11.20:9 11.02:9 01.21:9 00.22:9 10.12:7 01.12:4 11.11:2 10.21:2

11.21:9 11.12:9 10.22:6 01.22:5

11.22:9

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

59

from 10.10:9 and takes the third step to 10.21:2 instead
of 00.11:2 (both of these choice are equally likely).

What have we learned from the second part of the fa-
ble is this: (1) A Hamiltonian walk, while self-avoiding
by definition, should not be the first choice under the
search scenarios described in this paper. Moreover, the
approach would not scale to large problem instances.
(2) On the other hand, rules devised by Hansel seem to
be highly effective. The good news is that these rules
are now enabling effective combinatorial searches
not only in the cases of protein folding investigated in
this paper but also on hard combinatorial problems in
other domains, notably the low autocorrelation binary
sequence problem, where the self-avoiding walks solve
large problems that could not be solved with state-of-
the art memetic/tabu search methods [9]. Moreover,
problem of self-avoiding walks getting trapped has not
presented itself neither in the case of protein folding
nor the case of the labs problem [9].

We used to call these walks Hansel’s walks until we
learned about polymer and protein chain folding and
self-avoiding walks [12]. In our context, the self-avoid-
ing walks are walks in hyperhedra, a virtual world, not
in a space of real-world constraints imposed by vari-
ous lattice formulations in two or three dimensions
[13]. In our formulation we deal with real-world folding
constraints by way of computing the function values
in terms of our coordinate system which foremost de-

fines positions and distances between face-centered
vertices in hyperhedra. For problems such as protein
folding, some coordinates may induce a penalty value
when a conflict is detected during folding; the penalty
value assigned may depend on the perceived level of
conflict. Hansel’s strategy, of always selecting the best
available value in the local neighborhood for the next
step, keeps the walk going, across faces of a specific hy-
perhedron, for as long as required.

3 Notation and Definitions

Self-avoiding walks (SAWs) were first introduced by the
chemist Paul Flory in order to model the real-life behav-
ior of chain-like entities such as solvents and polymers,
whose physical volume prohibits multiple occupation
of the same spatial point [12]. In mathematics, a SAW
lives in the n-dimensional lattice Zn which consists of
the points in Rn whose components are all integers [14].

In Section II, we illustrated a grid of a finite dimension
that was created by projecting face-centered vertices
in a hyperhedron, onto a plane as a Hasse graph. This
section illustrates: (1) projections of vertices in Hasse
graphs that have 1-to-1 relationship to lattices defined
by unit cells; (2) example of a SAW-in-a-hyperhedron
search for best folding of a protein chain of size n on
a specific 2D lattice ; (3) formalized definitions of walks

2 4 6 8 10

0
1

2
3

4
5

6

vertices and labels are ordered L -> R by function values
 (for coordType=BT, vertex distribution at each rank may depend on coordInit)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

in
iti

al
 c

oo
rd

in
at

e
(th

e
bo

tto
m

 v
er

te
x)

00.00:2

00.10:9 01.00:6 10.00:5 00.01:2

10.01:9 00.20:9 00.02:9 01.10:7 10.10:4 11.00:2 01.01:2 00.11:2

11.10:9 00.21:9 00.12:9 10.02:8 01.20:8 10.20:3 01.02:3 11.01:2 10.11:1 01.11:1

11.20:9 11.02:9 01.21:9 00.22:9 10.12:7 01.12:4 11.11:2 10.21:2

11.21:9 11.12:9 10.22:6 01.22:5

11.22:9

Walk Chains
chain 0 = solid blue
chain 1 = dotted red
chain 2 = solid green
chain ? = etc...

Under Hamiltonian walk,
Gretel takes 5 steps to
find Hansel's key and
23 steps her own key.

(a)

Serial number for
Gretel's key:
10.11:1

Serial number for
Hansel's key:
01.11:1

2 4 6 8 10

0
1

2
3

4
5

6

vertices and labels are ordered L -> R by function values
 (for coordType=BT, vertex distribution at each rank may depend on coordInit)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

in
iti

al
 c

oo
rd

in
at

e
(th

e
bo

tto
m

 v
er

te
x)

00.00:2

00.10:9 01.00:6 10.00:5 00.01:2

10.01:9 00.20:9 00.02:9 01.10:7 10.10:4 11.00:2 01.01:2 00.11:2

11.10:9 00.21:9 00.12:9 10.02:8 01.20:8 10.20:3 01.02:3 11.01:2 10.11:1 01.11:1

11.20:9 11.02:9 01.21:9 00.22:9 10.12:7 01.12:4 11.11:2 10.21:2

11.21:9 11.12:9 10.22:6 01.22:5

11.22:9

function = BT.index.2
|V | = 36, |E | = 84

(b)

From 11.20:9,
Hansel finds Gretel's key
in 2 steps and needs 8
more steps to find his key

From 00.00:2,
Hansel finds his key
in 3 steps

Figure 2: A Hamiltonian walk in the Hasse graph taken by Gretel and a self-avoiding walk taken Hansel. Vertices
traversed during the walk are in two categories: (1) only binary coordinate is changing, ternary coordinate is fixed;
(2) binary coordinate is fixed, only ternary coordinate is changing. At each pivot, before Hansel decides on the next
step, he probes the function values at all adjacent coordinates (that are not yet pivots in the walk) and chooses the
coordinate with ’valueBest’. If there are multiple adjacent coordinates with the same ’valueBest’, the choice is random.
Gretel’s walk, self-avoiding by definition, continues until ’valueBest = valueTarget = 1’ and the key found fits her lock,
Hansel’s walk terminates when the key found fits his lock.

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

60

and a generic SAW pseudo-code as a principal compo-
nent of a global stochastic search solver.

Lattices, unit cells, and graphs. A lattice is a periodic
array of points on a grid in space. A unit cell is a subset
of |V| points on a grid in a lattice [15]. A self-avoiding
walk in a unit cell and a Hamiltonian walk in a Hasse
graph with |V| vertices [8] can be considered as two fac-
es of the same coin1. We illustrate this premise with the
three examples in Figure 3. In Figure 3-a on the left, the
primitive cell is a square, forming a unit cell of 9 squares
with 16 grid points. On the right, we have a Hasse
graph with 16 vertices with binary coordinate labels;
this graph is regular since the degree of each vertex is 4
– i.e. each vertex has 4 immediate neighbors. Given the
starting point in the unit cell, we can express the walk
in terms of directional encoding (North, South, East,
West): for the first six steps we would write NWSSSE.
Given the starting point in the graph, we express the
walk as a sequence of its pivot coordinates (2): 0110,
0111, 0101, 0100, ... etc. However, there is a significant
difference in the two data structures: in the unit cell,
neighborhood size, depending on the location in the
grid, varies from 2, 3, to 4, whereas in the graph, each
vertex has 4 neighbors.

The crux in drawing the Hasse graph into its distinct
layers is the notion of Hasse rank distance between
the vertices with respect to the reference vertex (or the
origin vertex) placed at the very bottom of the graph
[8]. When coordinates are binary strings, the rank dis-
tance is the familiar Hamming distance, for coordinate
that represent permutations, the rank distance is the
permutation inversion distance, the rank distance be-
tween the ternary and quaternary coordinates in Fig-
ure 3 is defined as an arithmetic addition of modulo-3
or modulo-4 distances between coordinate compo-
nents. For example, the distance between 2101 and
0201 is 2+1+0+0=3, the distance between 3210 and
0123 is 3+1+1+3=8, etc. The distance between two
coordinates that have been concatenated, shown in
the Hasse graph in Figure 1, is an arithmetic addition
of distances between the corresponding concatenated
segments, for example the distance between 00.10 and
01.21 is (0+1)+(1+1)=3.

Function values assigned to coordinates in Figure 3 are
shown for completeness. They represent a special case
of index function related to each coordinate. Typically,
they exhibit 1, 2, or 4 minima and have been designed
for performance testing of combinatorial algorithms
[8]. However, these values have no particular signifi-
cance in Figure 3 .

In Figure 3-b on the left, the primitive cell is a cube,
forming a unit cell as a stack of 3 cubes with 16 grid
points. On the right, we have a Hasse graph with 16 ver-
tices with quarternary coordinate labels; this graph is
not regular since the degree of each vertex varies from
2, 3, to 4. In Figure 3-c on the left, the primitive cell is a
cube, forming a unit cell as a large cube that contains
8 primitive cubes with 27 grid points. On the right, we
have a Hasse graph with 27 vertices with ternary coor-
dinate labels; this graph is not regular since the degree
of each vertex varies from 3, 4, 5, to 6.

In the context of this paper, it is important to also study
advances in self-avoiding walks being made in physics
and elsewhere, for example on the progression of im-
provements in the walk lengths of self-avoiding walks
on 2-, 3-, and 4-dimensional lattices [16].

Protein folding examples. There are numerous arti-
cles that cover many more details about protein fold-
ing than we can present here, from very technical [10]
to tutorial [17]. Our presentation attempts to be gener-
ic and aims to make the problem accessible as a com-
plex puzzle.

Let us take n beads in k colors, arrange them into a lin-
ear chain of length n and register the position and the
color of each bead, then allow the chain to fold onto
a predefined grid in a space of 2 or 3 dimensions. The
most popular model is the 2-color HP (hydrophobic and
polar, black and white, ’1’ and ’0’) model, where any pair
of H-type beads that are adjacent on the grid after fold-
ing forms a bond. We measure the quality of the fold-
ing by counting the number of such bonds in a given
arrangement, called a conformation. Once we subtract
this number from 0, we call the value energy of the
folding and the objective of any folding optimization
algorithm is to minimize the value of this energy. In Fig-
ure 4 we display a number of chains, each of length 10,
where the number of black beads varies from 2 to 10
and the energy from -1 to -4 (the maximum possible).
An additional characteristic of the chain is denoted as
weight: it is simply the number of black beads in the
chain.

On a 2-dimensional square lattice, each step of a SAW
has a choice of at most 3 adjacent points of the grid:
left, right, and forward, encoded as 0, 1, and 2. With the
binary encoding of the colors and the ternary encoding
of the self-avoiding walk to control the folding, we en-
code the coordinate for the folding problem for a chain
of black and white beads of length n as a concatenation
of n binary and n - 1 ternary coordinates, defining a hy-

1 We are making this point metaphorically: a unit cell is a specific subset of grid points in a lattice [15] and details about
crystal structure arrangements and unit cells are a far beyond the scope of this paper.

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

61

Figure 3: Two sides of the same coin: instances of three self-avoiding walks of lengths 24 - 1, 42 - 1, and 33 - 1 in 2-D
and 3-D in unit cells, subsets of points on a grid in a lattice [15], versus instances of three Hamiltonian walks of the
same length in Hasse graphs [8] defined by dimensions 4 (wrt to base 2), 2 (wrt to base 4), and 3 (wrt to base 3). The
walks in unit cells are contiguous only with respect to coordinates defined in lattices. Similarly, the walks in Hasse
graphs are contiguous only with respect to coordinates defined in Hasse graphs.

x
--->

y

--
->

(a)

0000:7

-2 -1 0 1

-2

-1

0

1

0100:11 1000:15 1100:3

0001:8 0101:12 1001:0 1101:4

0010:9 0110:13 1010:1 1110:5

0011:10 0111:14 1011:2 1111:6

1 2 3 4 5 6

0
1

2
3

4
vertices and labels are ordered L > R by function values

 (for coordType=B, vertex distribution at each rank is binomial)

H
as

se
 ra

nk
 d

is
ta

nc
e

fr
om

 th
e

bo
tt

om
 fa

ce
 o

f t
he

 d
ic

e

0110:13

0111:14 0100:11 0010:9 1110:5

0101:12 0011:10 0000:7 1111:6 1100:3 1010:1

1000:15 0001:8 1101:4 1011:2

1001:0

Walk Chains
chain 0 = solid blue
chain 1 = dotted red
chain 2 = solid green
chain ? = etc...

(b)
L

R

U

D
R

RU

D

U

R

U

R

RU

L

L = left
R = right
U = up
D = down

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
1

2
3

4
5

6

vertices and labels are ordered L > R by function values
 (for coordType=Q, vertex distribution at each rank depends on coordInit)

H
as

se
 ra

nk
 d

is
ta

nc
e

fr
om

 th
e

bo
tt

om
 fa

ce
 o

f t
he

 d
ic

e

00:11

10:15 01:12

02:13 20:3 11:0

03:14 30:7 21:4 12:1

31:8 22:5 13:2

32:9 23:6

33:10

Walk Chains
chain 0 = solid blue
chain 1 = dotted red
chain 2 = solid green
chain ? = etc...

(c)

C C

C

L

LC
L

L
U

C

L

L

C

L

C

L

C
U

C

L

L

LC C

L
L

C

C = continue
L = left
U = up

1 2 3 4 5 6 7

0
1

2
3

4
5

6

vertices and labels are ordered L > R by function values
 (for coordType=T, vertex distribution at each rank depends on coordInit)

H
as

se
 ra

nk
 d

is
ta

nc
e

fr
om

 th
e

bo
tt

om
 fa

ce
 o

f t
he

 d
ic

e

000:17

100:26 010:20 001:18

020:23 011:21 002:19 200:8 110:2 101:0

021:24 012:22 210:11 201:9 120:5 111:3 102:1

022:25 220:14 211:12 202:10 121:6 112:4

221:15 212:13 122:7

222:16

Walk Chains
chain 0 = solid blue
chain 1 = dotted red
chain 2 = solid green
chain ? = etc...

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

62

perhedron with a total of (2n) x (3n-1) face-centered ver-
tices. As an alternative, we may also choose a more effi-
cient hexagonal lattice which, when the chain is folded,
will produce more bonds (the bees have done it!). In
this case, there are 5 adjacent points on the grid; now
the string of length n is represented as a concatenation
of n binary and n - 1 quinary coordinates, defining a
hyperhedron with a total of (2n) x (5n-1) face-centered
vertices.

In this paper, we experiment with foldings on a 2-di-
mensional square lattice. We have grouped our experi-
ments under three plans:
Plan A Stretch a chain of length n with weight w and

assign the k black beads into fixed positions. Rep-
resent this chain as a binary coordinate of length
n and weight k. Search for folding of this chain on
a square lattice in 2D that will minimize its energy.
Represent the solution as a ternary coordinate of
length n - 1.

Plan B Fold a chain of length n with weight k = n into
a preferred conformation. Typically, the preferred
conformation is the one where the energy, with
all beads being black, is the global minimum. Two
such conformations, with all beads being black
and the energy of -4, are shown in Figure 4. Now,
represent this conformation as ternary coordi-
nate of length n. Search for a binary coordinate
of weight k < n that either retains the minimum
energy under all beads being black or is as close
as possible to this value.

Plan C Select the length of the chain n, its weight k<= n,
and the target energy value that can be satisfied
with at least one feasible folding conformation.
Assign a random binary string of length n and
weight k as the initial binary coordinate. Assign
a random ternary ternary string of length n - 1 as
the initial ternary coordinate. Chances are that
some initial ternary coordinates do not represent
a feasible folding – this is not an issue since in our
formulation, the search escapes the unfeasible
regions effectively. The search now proceeds by
probing simultaneously segments of each con-
catenated coordinate: the binary segment and
the ternary segment before returning a feasible
solution with the given weight and the energy
target value.

Plan A represents the traditional formulation of the
folding problem and many experimental results are
reported under this plan. Plan B is also known as the
inverse folding problem formulation and experimental
results are also reported under this plan. A number of
experiments that rely on exhaustive enumeration have
similarities with Plan C. However, we are not aware of
any publication of experimental results as described

under Plan C in this paper; if brought to our attention,
we shall report on them in our future publication.

The summary of statistical experiments in Figure 4 re-
veals a number of interesting properties. All have been
performed under Plan C, with 1000 randomly selected
initial configurations for each of the six weight and en-
ergy input pairs:
- 	 As the tabulated binary weight increases and the

energy target value decreases, the number of
unique solution decrease from 813 (out of 1000
trials) to 2 (for weight = 4 and energy = -4), but
then increase to 197 (for weight = 10 and energy
= 4). The walkLength statistics varies significantly
for each case – as does the distribution, which is
bimodal, heavy-tailed, and clearly geometric for
the case of only 2 unique solutions with weight =
4 and energy = -4.

- 	 The beneficial side-effect our testing strategy is
revealed for the case of weight = 4 and energy
target = -3. Out of 1000 trials, there are 95 confor-
mations with energy = -4, i.e. the returned solu-
tion is better than the target solution of -3. These
solutions are in the class of ’rare solutions’ where
only two unique solutions have been reported af-
ter 1000 trials for weight = 4 and energy = -4. We
shall take advantage of this strategy also when
performing experiments on longer chains which
are summarized in Section IV.

We complete this subsection with the summary of re-
sults under Plan A, Plan B, and Plan C, shown in Table
1. Notably, the search with SAW under the plan B (the
inverse folding formulation) is significantly easier than
the search under Plan A (the traditional folding formu-
lation). However, the search with SAW under Plan C re-
quires significantly more steps than the Plan A and Plan
B combined. The experiment under Plan C in Table 1 is a
replication, under a different initial seed, of the experi-
ment in Figure 4 in the row weight = 4, energy = -4.

Global stochastic search under SAW. We now briefly
formalize coordinate neighborhoods, walks, and self-
avoiding walks, concluding with a concise pseudo code
that is the basis for our prototype solver on stochastic
search under SAW.

Coordinate neighborhood. Formally, a neighborhood of
a coordinate j

ς is a set of coordinates





 ==



= j

i
jj

i
jj

LidN ,...,2,1 ,1, |)(ςςςς (1)

where d(i
jj

ςς ,) is the rank distance between coordi-
nates. The coordinate

j
ς is also called a pivot coordi-

nate, has Lj neighbors, each a distance of 1 from the

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

63

Figure 4: Empirical observations about the HP model of protein foldings in 2D with a chain of size 10 and SAWs: (1)
lower bound on energy in rectangular grid is -4 (probes are made in 3 directions); (2) lower bound on energy in hex-
agonal grid is -9 (probes are made in 5 directions); (3) instances of 6 folding conformations in rectangular grid, each
for a distinct pair of weight and energy target, define 6 classes of solutions; (4) walk length statistics and distributions,
with a sample size of 1000 for each experiment. In order to find the postulated energy targets, an exhaustive enu-
meration or a Hamiltonian walk would visit, on the average, a total of 0.5 * (210 * 39 - 1) = 10, 077, 696 coordinates under
the rectangular grid formulation (compare with the maximum of 7433 in the table) and a total of 0.5 * (210*59 - 1) = 999,
999, 999 coordinates under the hexagonal grid formulation. Our hypothesis: compared to the results shown here, the
hexagonal grid may exhibit an energy landscape where SAWs will find energy minima in less steps on the average.

weight = 4: 1001001001
energy = -4: 211011011

weight = 4: 0011001001
energy = -3: 222211011

weight = 3: 0010001001
energy = -2: 222211011

weight = 2: 0000010010
energy = -1: 222212110

weight = 5: 1100101001
energy = -4: 221101211

weight = 10: 1111111111
energy = -4: 222121102

minimum energy
hexagonal snake spiral

weight = 10: 1111111111
energy = -9: 204444244

2
0

4

1
3

before each step:
probe in 5 directions

2
0

1

before each step:
probe in 3 directions

weight = 10: 1111111111
energy = -4: 200202022

minimum energy
rectangular snake spiral

Six folding experiments under the weight and energy target shown, with 1000 seeds each

binary energy beyond unique walkLength probesPerStep
weight target target solutions median mean stdev max median mean stdev

2 -1 0 813 1000 843.6 695.5 2336 10.8 11.3 2.12
3 -2 0 511 39 338.0 580.7 2353 13 13.1 1.61
4 -3 95 204 26 104.1 290.7 2017 14.6 14.7 1.47
4 -4 0 2 797.5 1074.3 965.7 7433 13.9 14.0 0.82
5 -4 0 51 37.5 73.1 131.0 1755 15.8 16.0 1.27
10 -4 0 197 2 4.3 24.6 689 22 21.2 4.47

Histogram of x

x

Fr
eq

ue
nc

y

0 500 1000 1500 2000

0
20

0
40

0
60

0

Fr
eq

ue
nc

y

0
20

0
40

0
60

0

Histogram of x

x

Fr
eq

ue
nc

y

0 500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Histogram of x

x

Fr
eq

ue
nc

y

0 500 1000 1500 2000

0
20

0
40

0
60

0
80

0

Histogram of x

x

Fr
eq

ue
nc

y

0 2000 4000 6000

0
50

10
0

15
0

20
0

25
0

30
0

Histogram of x

x

Fr
eq

ue
nc

y

0 500 1000 1500

0
20

0
40

0
60

0
80

0

Histogram of x

x

Fr
eq

ue
nc

y

0 100 200 300 400 500 600 700

0
20

0
40

0
60

0
80

0
10

00weight = 2
energy = -1

weight = 3
energy = -2

weight = 4
energy = -3

weight = 4
energy = -4

weight = 5
energy = -4

weight = 10
energy = -4

walkLengthwalkLengthwalkLength walkLength walkLength walkLength

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

64

pivot coordinate. In Figure 5-a we illustrate a Hasse
graph that highlights three neighborhoods. Coordi-
nates in this graph are a concatenation of binary coor-
dinates of length 2 and ternary coordinates of length
2. Each binary coordinate always has a neighborhood
of 2 (dotted edges) while the neighborhood of ternary
coordinate can vary from 2 to 4 (solid edges). For exam-
ple, the coordinate 00.00 has 2 binary and two ternary
neighbors; the coordinate 10.11 has 2 binary and 4 ter-
nary neighbors.

In Figure 5-b we illustrate the dynamics of neighbor-
hood evaluations for an instance shown in Figure 4. We
could not possibly have drawn a Hasse graph for this
instance, however the principle of binary and ternary
neighborhoods illustrated in Figure 5-a are the same.

What we can show is the trace of the entire neigh-
borhood evaluation that takes place: starting with
the pivot coordinate 1100101001.21101111, the best
coordinate of the next pivot in this neighborhood is

1100101001.21101211 since it has the best energy
conformation of -4. The trace also shows values of the
objective function for various conformations – all val-
ues that are > 0 represent conformations that would
lead to a conflict during folding; penalties values are
assigned at different levels: +8 (initial pivot), +9, +8,
+4, etc. Not all binary coordinates have been evaluated
due to an input requirement that weight <= 5. The situ-
ation where a pivot would get trapped by adjacent piv-
ots and the neighborhood would become empty did
not yet arise.

Contiguous walks and SAWs. Let the coordinate
o

ς be
the initial coordinate from which the walk takes the
first step. Then the sequence

},...,,...,,,{
210 ω

ςςςςς
j

			 (2)

is called a walk list or a walk of length w, the coordi-
nates j

ς are denoted as pivot coordinates and)(
j

ςΘ are
denoted as pivot values. Given an instance of size L and

Table 1: Statistical experiments with SAWs to solve, under Plan A, Plan B and Plan C, the HP model of protein folding
in 2D on a square lattice. The input parameters for each plan are: Chain size = 10; Energy target = -4; either fixed bi-
nary coordinate coordB of weight 4 (plan A); or fixed ternary coordinate coordT (plan B); or both initialized randomly
(plan C). Experiments are performed with 1000 initial coordinates for each plan, and both the energy target of -4
and the binary weight target of 4 are reached under each plan, always returning only one binary solutions and two
ternary solutions. Walk lengths under each plan differ significantly, with plan C representing the hardest instance of
the folding protein problem. This is also the problem where SAW is the most effective compared to the (hypothetical)
hamiltonian walk.

Plan A median mean stdev min max

Given coordB cntProbe 244 330.6 302.4 10 1994

with weight = 4, walkLength 25 33.7 31.4 1 205

FIND coordT probesPerStep 10 10.4 1.2 7.9 16

coordB = 1001001001
coordT = 200100100 The average walkLength to reach one of the two coordT
coordT = 211011011 under Hamiltonian walk = 0.25(39 - 1) = 4921

Plan B median mean stdev min max

Given coordT, cntProbe 26 34.0 15.6 1 127

FIND coordB walkLength 4 5.2 2.4 0 20

with weight = 4 probesPerStep 6.5 6.5 0.49 1 8.5

coordT = 211011011 The average walkLength to reach the single coordB
coordB = 1001001001 under Hamiltonian walk = 0.5(210 - 1) = 511

Plan C median mean stdev min max

FIND coordB, cntProbe 10564.5 14187.8 12787.2 35 81156

with weight = 4 walkLength 752.5 1027.1 936.3 2 5936

& FIND coordT probesPerStep 13.9 14.0 0.7 12.0 19.6

coordB = 1001001001
coordT = 200100100 The average walkLength to reach one of the two coordT
coordT = 211011011 under Hamiltonian walk = 0.25 * (210 * 39 - 1) = 5038848

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

65

Figure 5: An example of neighborhood calculation from an initial pivot coordinate (1100101001.21101111) that
leads, in a single step, to an optimal conformation depicted in Figure 4.

B-neighbors

T-neighbors

2 4 6 8 10

0
1

2
3

4
5

6

vertices and labels are ordered L -> R by function values
 (for coordType=BT, vertex distribution at each rank may depend on coordInit)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

in
iti

al
 c

oo
rd

in
at

e
(th

e
bo

tto
m

 v
er

te
x)

00.00:2

00.10:9 01.00:6 10.00:5 00.01:2

10.01:9 00.20:9 00.02:9 01.10:7 10.10:4 11.00:2 01.01:2 00.11:2

11.10:9 00.21:9 00.12:9 10.02:8 01.20:8 10.20:3 01.02:3 11.01:2 10.11:1 01.11:1

11.20:9 11.02:9 01.21:9 00.22:9 10.12:7 01.12:4 11.11:2 10.21:2

11.21:9 11.12:9 10.22:6 01.22:5

11.22:9

function = BT.index.2
|V | = 36, |E | = 84

Introduced in Figure 1, labels in this graph are a a concatenation
of binary coordinates and ternary coordinates. Each binary co-
ordinate always has a neighborhood of 2 (dotted edges) while
the neighborhood of ternary coordinate can vary from 2 to 4
(solid edges). For example, the coordinate 00.00 has 2 binary
and two ternary neighbors; the coordinate 10.11 has 2 binary
and 4 ternary neighbors.

% func.BT.neighb.saw foldHP2 1100101001.21101111

iB iT coordB.coordT yBest n p coordT y
NA NA 1100101001 . 21101111 +8 0 1 21101111 +8
 4 NA 1100 001001. 21101111 +8 1 2 21101111 +8
 9 NA 110010100 0. 21101111 +8 2 3 21101111 +8
 0 NA 0100101001. 21101111 +8 3 4 21101111 +8
 1 NA 1 000101001. 21101111 +8 4 5 21101111 +8
 6 NA 110010 0001. 21101111 +8 5 6 21101111 +8
NA 4 1100101001 . 21101111 +8 6 7 2110 2111 +9
NA 4 1100101001 . 21101111 +8 7 8 2110 0111 +9
NA 6 1100101001 . 21101111 +8 8 9 211011 21 +8
NA 6 1100101001 . 21101111 -2 9 10 211011 01 -2
NA 0 1100101001 . 21101111 -2 10 11 11101111 +4
NA 2 1100101001 . 21101111 -2 11 12 21 201111 +8
NA 2 1100101001 . 21101111 -2 12 13 21 001111 +8
NA 3 1100101001 . 21101111 -2 13 14 211 11111 +5
NA 5 1100101001 . 21101111 -4 14 15 21101 211 -4*
NA 5 1100101001 . 21101111 -4 15 16 21101 011 -2
NA 7 1100101001 . 21101111 -4 16 17 2110111 2 +8
NA 7 1100101001 . 21101111 -4 17 18 2110111 0 +8
NA 1 1100101001 . 21101111 -4 18 19 2 2101111 +8
NA 1 1100101001 . 21101111 -4 19 20 2 0101111 +8

1100101001.21101211 -4 <-- the next step to take
%

Indices iB and iT that address values in binary and ternary
coordinates are always randomly permuted in order to pre-
vent biasing the order of choices for best function value
yBest. Function values y > 0 represent not only unfeasible
conformations but also the relative level of unfeasibility. The
counters n and p report the size of the neighborhood and
the number probes to find each value of y .

Table 2: Statistical summary of experiments, a companion to Figure 8. Experiments under ‘Referenced solutions’ are
under Plan A as defined in the paper. Experiments under ‘Equivalent SAW solutions’ and ‘Better SAW solutions’ are
under Plan C. All experiments, except for the one flagged in the footnote, are based on a sample size of 1000. As an
additional bonus, we also found another improved solution while running the case of L = 24, weight = 10, energy =
10. The energy improved from -10 to -11 and it is this conformation which shown in Figure 8.

Reference solutions Equivalent SAW solutions Better SAW solutions
energy
target

walkLength energy
target

walkLength energy
target

walkLength
instance median mean stdev median mean stdev median mean stdev
length = 20
weight = 10 -9 2079 3097 2890.8 -9 315 812 1183.0 -10 9742 15088 16364
unique sols 4 928 109
length = 24
weight = 10 -9 957 1575 1765 -9 649 4104 54529 -10 9059 19391 26142
unique sols 35 975 875
length = 25
weight = 9 -8 13099 21557 27639 -8 959.5 9679 95154 -10 933928 1243210 1087628
unique sols 32 990 11*

(*) Statistics for the pair (weight = 9, energy target = -10) are based on the sample size of 62 (rather than 1000) as is the
case with other entries in this table.

its best upper bound ub
LΘ , we say that the walk reaches

its target value (and stops) when ub
LΘ=Θ)(

ω
ς .

We say that the walk is contiguous if the rank distance
between adjacent pivots is 1; i.e. we find

 ωςς ,...,2,1 ,1),(
1

==
−

jd
jj

We say that the walk is self-avoiding if all pivots in (2)
are unique. We say that the walk is composed of two

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

66

Figure 6: The walk as a part of the global stochastic search process: the walk stops (1) upon reaching the best upper
bound, returning a new or already known solution coordinate, or (2) upon finding a new best upper bound, returning
a new best solution coordinate, or (3) upon exceeding the allocated time of counter limit, returning a new or already
known censored solution coordinate and a value above the upper bound. The procedure that controls the perfor-
mance of the walk, here a self-avoiding walk, is named coordUpdate.

or more walk segments if the initial pivot of each walk
segment has been induced by a well-defined heuristic
such as random restarts. Walk segments can be of dif-
ferent lengths and if viewed independently of other
walks, may be self-avoiding or not. A walk composed
of two or more self-avoiding walk segments may no
longer be a self-avoiding walk, since some of the pivots
may overlap and also form cycles.

Global stochastic search under SAW. The pseudo-code
in Figure 6 formalizes the global search algorithm that
relies on SAW as its search engine. The code forms the
basis for the prototype solver not only for the porting
folding instances experiments in this paper but also for
a number of other problem instance as outlined in Sec-
tion I.

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

67

4. Summary of Experiments

Experimental results, summarized in Figure 7, Figure 8,
and Table 2, can only be descried briefly.

The motivation for the experiment in Figure 7 came
from [18]:

Instance: An integer n and a finite sequence of S over
the alphabet {H, P} which contains n3 H’s.

Question: Is there a fold of S in Z3 for which H’s are per-
fectly packed into an n x n x n cube?

This problem has been proven to be NP-hard and the
more general problem as NP-complete.

The spiral chain in Figure 7 can be considered as a sim-
pler case of the perfect HP problem posited for a 3-D
cube in [18]. In our context, we ask: how many confor-
mations can be found with the same energy and how
hard is it to find them? The answers that we display in

Figure 7: The spiral chain can be considered as a simpler case of the perfect HP problem posited for a 3-D cube in [18].
In our context, we ask: how many conformations can be found with the same energy and how hard is it to find them?
Some of the answers can be gleaned from the asymptotic performance of the SAW solver in terms of the required
walkLength to reach the minimum energy targets of (-9, -10, ..., -16) for chain lengths for L = (15, 17, ..., 25). It appears
that there are clear different walkLength performance regimes when solving with L = (16, 20, 25) when compared to
solving with other values of L.

1

1

2

345

6

7 8

2

9 10

11

12

1314151617

18

19

20

21 22 23 24 25

3 4

5

6

789

10

11

12

13 14 15 16

weight = 15: 1111111111111111111111111
energy = -16: 200202022022022202220222

16 17 18 19 20 21 22 23 24 25

Sequence Length (L)

solution duplicates
unique solutions

Number of solutions =1000

16 18 20 22 24 26

15
20

25
30

35

x

y

Sequence Length (L)

Pr
ob

es
 P

er
 S

te
p

16 18 20 22 24

1
10

10
0

10
00

10
00

0

x

y
Le

ng
th

 o
f
S
el

f-
Av

oi
di

ng
 W

al
k

Sequence Length (L)

Sample Size =1000 Sample Size =1000

O(2.87^L)

O(2.21^L)

probesPerStep = -2.02 + 1.29*L

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

68

Figure 8: Comparisons of protein folding conformations for chain lengths of 20, 24, and 25. instance conformation in
the column ‘Referenced solutions’ are from from [19] and [20] and have been reported under what we call Plan A in
this paper. Instances under the column ‘Equivalent SAW solutions’ are alternative foldings obtained by our SAW solver
under Plan C and the same energy targets as shown for ‘Referenced solutions’. Instances under the column ‘Better SAW
solutions’ are alternative foldings obtained by our SAW solver under Plan C and better energy targets: -10 vs -9 for
L=20; -11 vs -9 for L=24, and -10 vs -8 for L=25.

L = 20
weight = 10 d

d
ll

u

r
u

rd

u u
r

r

l

l

u

dd

r

1
2

3
4

5

67
8

9

10100110100101100101
 dlluruluurdrdrurddl

valueBest = -9
bbSize = 16

1
2

3
4

5
6 7

8

9

2
0

0 2
0

1
0

1

0

0

1

0
1

0
0

2

2

0

0

10010101001010011011
 2002010100101002200

valueBest = -9
bbSize = 20

1
2

3

4 5 6

7
8 9

10

2
0

0 2

0
1

1

0
1

1
0

1
0

1
1

0

1
12

10011101001010010011
 2002011011010110112

valueBest = -10
bbSize = 16

Referenced solutions Equivalent SAW solutions Better SAW solutions

L = 24
weight = 10

110010010010010010010011
 rdruruluuurululdldrdddl

valueBest = -9
bbSize = 21

1 2

3

4

5

6

7

8

9

d l

l

u

r

u

r
r

l

u

d

d
r

u

u

d

d

u

u

d
r

l

l

101001011000000100100111
 21011210221102101101120

valueBest = -9
bbSize = 25

1
2

34

5
6

78

9

2

0

0

1

2

1
1

1

0

1

1

0

1

1

2

2
2 2

1
1

0

1
0

valueBest = -11
bbSize = 25

8
1

2 3
4

679
510

2

1

0
2

1

1

2

0

2

0

1

0

0

0

1

1

0
1

0

0

0

0

0

111000010010100101001001
 21220021001010010100100

11

L = 25
weight = 9

1001000010010101001001001
 211021120110120100100100

0

1

1

0

0

1
0

0

1

21

1

0

2 1
0

2

1

0
1

2 1

0

0
6

8

1

23

4
5

7

9
10

valueBest = -10
bbSize = 28

0000010000100101001100111
 202011200210220100210020

2

3

1

0

0

0

0 0

0

1

4

56

7
8

2

10

2

1

0

1

0

02
2

2

2

2
1

2
0

valueBest = -8
bbSize = 30

0010011000011000011000011
 lurulurulldlulddrdddruuu

d

l

u

r

d

d

u

u

u

d

d u

d
l

1

2
3

4

5 6

7

8

l

u

r

r

l

u

u

r

ll

valueBest = -8
bbSize = 20

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

69

Figure 7 are somewhat surprising and will be analyzed
in more depth later.

Experiments performed on well-known instance class-
es under Plan A and Plan C are summarized in Figure 8
and Table 2. The main objectives are:
1. 	 Under Plan A: replicate experiments to achieve

the same or better target energy values published
for standard instances with chains of length of 20,
24, and 25, given a fixed binary coordinate [19],
[20]. Return solutions as ternary coordinates.

2. 	 Under the first Plan C: find simultaneously, the
pair of binary and ternary coordinates that main-
tain the weight of binary coordinates under Plan
A – at the same or better target energy values.

3. 	 Under the second Plan C: find simultaneously, the
pair of binary and ternary coordinates that main-
tain the weight of binary coordinates under Plan
A and exceed the energy target value found un-
der the first experiments of Plan C.

Our findings so far:
- 	 Under Plan A, our experiments replicate but not

improve published energy target values.
- 	 Under the first Plan C, our experiments generate

up to 990 (out of 1000 initiated) new and unique
solutions. In most cases, energy values remain the
same as for Plan A. However, there also are im-
provements that lead to experiments under the
second Plan C.

- 	 Under the second Plan C, experiments with im-
proved energy targets generate from 11 to 875
unique solutions with the assigned energy target
value, except for the chain of length 24, where
again, an improved energy target value is ob-
served for two instances.

5 Conclusions and Future Work

Our experiments with the SAW solver raise the expec-
tation that the solution of the protein folding problem,
where the chain configuration and its confirmation
are optimized simultaneously, may be feasible at an
acceptable cost. One of the best way to accelerate im-
provements is cooperate with other researchers so that
solver implementations can be compared side-by-side
for their strengths and weaknesses, following the ex-
ample in [9].

Experiments are being planned also for triangular and
hexagonal grids in 2- and 3-dimensions.

6 Acknowledgments

Computations performed in these experiments could
not have been accomplished without the access to
and the support from the NCSU High Performance
Computing Services (http://www.ncsu.edu/itd/hpc/).
Consultations with Dr. Gary Howell and Dr. Eric Sills are
gratefully acknowledged.

The final draft of this paper has been improved with
suggestions from Dr. Larry Nevin and Dr. Min Chi. For
the encouragement and the extension of the submis-
sion deadline I thank Dr. Andrej Žemva.

References

1. 	 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equation of State Calcu-
lations by Fast Computing Machines. Journal of
Chemical Physics, 21:1087–1092, June 1953.

2.	 W. K. Hastings. Monte Carlo sampling methods
using Markov chains and their applications. Bi-
ometrika, 57(1):97–109, 1970.

3.	 M. P. Vecchi S. Kirkpatrick, D. Gelatt Jr. Optimi-
zation by simulated annealing. Science, 220(5-
6):671–680, 1983.

4.	 Wikipedia. Simulated Annealing, Nov 2013.
5.	 Stuart Geman and Donald Geman. Stochastic re-

laxation, Gibbs distributions and the Bayesian res-
toration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6(6):721–741,
November 1984.

6.	 Fred Glover. Tabu Search – Part I. ORSA Journal on
Computing, 1(3):190–206, 1989.

7.	 Fred Glover. Tabu Search – Part II. ORSA Journal
on Computing, 2(1):4–32, 1990.

8.	 Franc Brglez. Of n-dimensional Dice, Combinato-
rial Optimization, and Reproducible Research: An
Introduction. Eletrotehniški Vestnik 78(4): 181–
192, English Edition,, 78(4):181–192, 2011, http://
ev.fe.uni-lj.si/4-2011/Brglez.pdf.

9.	 Borko Bošković, Franc Brglez, and Janez Brest.
Low-Autocorrelation Binary Sequences: on the
Performance of Memetic-Tabu and Self-Avoiding
Walk Solvers. arxiv.org, Journal Submission, also
posted on http://arxiv.org/, 2014

10.	 Sorin Istrail and Fumei Lam. Combinatorial Al-
gorithms for Protein Folding in Lattice Models:
A Survey of Mathematical Results. Commun. Inf.
Syst.,, 9:303–346, 2009.

11.	 D. I. McCooey. Java Applets for Visualizing Polyhe-
dra. http://www.dmccooey.com/polyhedra/, Sep-
tember 2013.

12.	 Wikipedia. Self-avoiding walk, July 2013.

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

70

13.	 S. Hemmer and P.C. Hemmer. An average selfa-
voiding random walk on the square lattice lasts
71 steps. J. Chem. Phys., 81(1):584–586, 1984.

14.	 Gordon Slade. Self-Avoiding Walks. The Math-
ematical Intelligencer, 16(1), 1994.

15.	 Linus Pauling. General Chemistry. Dover Publica-
tions, 1970.

16.	 Nathan Clisby. Efficient Implementation of the
Pivot Algorithm for Self-avoiding Walks. Journal
of Statistical Physics, 140:349–392, July 2010.

17.	 Brian Hayes. Prototeins. AmSci, 86(3):216–221,
1998.

18.	 Bonnie Berger and Tom Leighton. Protein fold-
ing in the hydrophobic-hydrophilic (HP) model is
NPcomplete. J. Comp Bio, 5:27—40, 1998.

19.	 Ron Unger and John Moult. Genetic Algorithms
for Protein Folding Simulations. Journal of Mo-
lecular Biology, 231(1):75 – 81, 1993.

20.	 Thang N. Bui and Gnanasekaran Sundarraj. An ef-
ficient genetic algorithm for predicting protein
tertiary structures in the 2D HP model. In GECCO
’05, pages 385–392. ACM, 2005.

Arrived: 15. 11. 2013
Accepted: 19. 12. 2013

F. Brglez; Informacije Midem, Vol. 44, No. 1 (2014), 53 – 68

