2019 | št.: 62/1 GEOLOGIJA št.: 62/1, 2019 www.geologija-revija.si 5 Bavec, M. Uvodnik 7 Gosar M., Šajn R., Bavec Š., Gaberšek M., Pezdir V. & Miler M. Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 61 Gosar A. Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mountains 75 Gosar A. Review of seismological investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mountains 89 Reháková D. & Rožic B. Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline (Sava Folds, eastern Slovenia) 103 Rajver D., Pestotnik S. & Prestor J. Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije 123 Novak M. & Mrak I. Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska 2019 | št.: 62/1 ISSN 0016-7789 ISSN Tiskana izdaja / Print edition: 0016-7789 Spletna izdaja / Online edition: 1854-620X GEOLOGIJA 62/1 – 2019 GEOLOGIJA 2019 62/1 1-148 Ljubljana GEOLOGIJA ISSN 0016-7789 http://www.geologija-revija.si/userfiles/image/BY.jpg Izdajatelj: Geološki zavod Slovenije, zanj direktor Miloš Bavec Publisher: Geological Survey of Slovenia, represented by Director Miloš Bavec Financirata Javna agencija za raziskovalno dejavnost Republike Slovenije in Geološki zavod Slovenije Financed by the Slovenian Research Agency and the Geological Survey of Slovenia Vsebina številke 62/1 je bila sprejeta na seji Uredniškega odbora, dne 25. 7. 2019. Manuscripts of the Volume 62/1 accepted by Editorial and Scientific Advisory Board on July 25, 2019. Glavna in odgovorna urednica / Editor-in-Chief: Mateja Gosar Tehnicna urednica / Technical Editor: Bernarda Bole Uredniški odbor / Editorial Board Dunja Aljinovic Rudarsko-geološki naftni fakultet, Zagreb Maria João Batista National Laboratory of Energy and Geology, Lisbona Miloš Bavec Geološki zavod Slovenije, Ljubljana Mihael Brencic Naravoslovnotehniška fakulteta, Univerza v Ljubljani Giovanni B. Carulli Dip. di Sci. Geol., Amb. e Marine, Università di Trieste Katica Drobne Znanstvenoraziskovalni center SAZU, Ljubljana Jadran Faganeli Nacionalni inštitut za biologijo, MBP, Piran Janos Haas Etvös Lorand University, Budapest Bogdan Jurkovšek Geološki zavod Slovenije, Ljubljana Roman Koch Institut für Paläontologie, Universität Erlangen-Nürnberg Marko Komac Poslovno svetovanje s.p., Ljubljana Harald Lobitzer Geologische Bundesanstalt, Wien Miloš Miler Geološki zavod Slovenije, Ljubljana Rinaldo Nicolich University of Trieste, Dip. di Ingegneria Civile, Italy Simon Pirc Naravoslovnotehniška fakulteta, Univerza v Ljubljani Mihael Ribicic Naravoslovnotehniška fakulteta, Univerza v Ljubljani Nina Rman Geološki zavod Slovenije, Ljubljana Milan Sudar Faculty of Mining and Geology, Belgrade Sašo Šturm Institut »Jožef Stefan«, Ljubljana Dragica Turnšek Slovenska akademija znanosti in umetnosti, Ljubljana Miran Veselic Fakulteta za gradbeništvo in geodezijo, Univerza v Ljubljani Naslov uredništva / Editorial Office: GEOLOGIJA Geološki zavod Slovenije / Geological Survey of Slovenia Dimiceva ulica 14, SI-1000 Ljubljana, Slovenija Tel.: +386 (01) 2809-700, Fax: +386 (01) 2809-753, e-mail: urednik@geologija-revija.si URL: http://www.geologija-revija.si/ GEOLOGIJA izhaja dvakrat letno. / GEOLOGIJA is published two times a year. GEOLOGIJA je na voljo tudi preko medknjižnicne izmenjave publikacij. / GEOLOGIJA is available also on exchange basis. Izjava o eticnosti Izdajatelji revije Geologija se zavedamo dejstva, da so se z naglim narašcanjem števila objav v svetovni znanstve­ni literaturi razmahnili tudi poskusi plagiatorstva, zlorab in prevar. Menimo, da je naša naloga, da se po svojih moceh borimo proti tem pojavom, zato v celoti sledimo eticnim smernicam in standardom, ki jih je razvil odbor COPE (Committee for Publication Ethics). Publication Ethics Statement As the publisher of Geologija, we are aware of the fact that with growing number of published titles also the problem of plagiarism, fraud and misconduct is becoming more severe in scientific publishing. We have, there­fore, committed to support ethical publication and have fully endorsed the guidelines and standards developed by COPE (Committee on Publication Ethics). Baze, v katerih je Geologija indeksirana / Indexation bases of Geologija: Scopus, Directory of Open Access Journals, GeoRef, Zoological Record, Geoscience e- Journals, EBSCOhost Cena / Price Posamezni izvod / Single Issue Letna narocnina / Annual Subscription Posameznik / Individual: 15 € Posameznik / Individual: 25 € Institucija / Institutional: 25 € Institucija / Institutional: 40 € Tisk / Printed by: GRAFIKA GRACER d.o.o. Slika na naslovni strani: Posledice izrednega vremenskega dogodka konec oktobra 2018 na cesti skozi Dovžanovo sotesko ob hudourniškem toku Tržiške Bistrice. Foto: Irena Mrak Cover page: The consequences of the extreme weather event at the end of October 2018 on the road through the Dovžan Gorge along the torrential stream of Tržiška Bistrica river. Photo: Irena Mrak GEOLOGIJA 62/1, 3, Ljubljana 2019 VSEBINA – CONTENTS Bavec, M. Uvodnik................................................................................................................................................... 5 Gosar, M., Šajn, R., Bavec, Š., Gaberšek, M., Pezdir, V. & Miler, M. Geochemical background and threshold for 47 chemical elements in Slovenian topsoil...................... 7 Geokemicno ozadje in zgornja meja naravne variabilnosti 47 kemicnih elementov v zgornji plasti tal Slovenije Gosar, A. Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mountains............................................................................................................ 61 Pregled geoloških in seizmotektonskih raziskav povezanih s potresoma 1998 Mw5,6 in 2004 Mw5,2 v Krnskem pogorju Gosar, A. Review of seismological investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mountains.......................................................................................................................................... 75 Pregled seizmoloških raziskav povezanih s potresoma 1998 Mw5,6 in 2004 Mw5,2 v Krnskem pogorju Reháková, D. & Rožic, B. Calpionellid biostratigraphy and sedimentation of the Biancone limestone from the Rudnica Anticline (Sava Folds, eastern Slovenia)........................................................................... 89 Kalpionelidna biostratigrafija in sedimentacija Biancone apnenca Rudniške antiklinale (Posavske gube, vzhodna Slovenija) Rajver, D., Pestotnik, S. & Prestor, J. Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije............................................................................................................................ 103 Examples of the assessment of temperatures on the surface of solid ground in the design of the shallow geothermal energy extractions Novak, M. & Mrak, I. Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska.............................................................................................................................. 123 Aspects of the consequences of the extreme weather event in the Dovžan Gorge Natural Monument Nove knjige Gale, L.: Kolar-Jurkovšek, T. & Jurkovšek, B. 2019: Konodonti Slovenije. Geološki zavod Slovenije, Ljubljana, 259 str ............................................................................................................. 136 Porocila Bracic Železnik, B. & Novak, M.: Porocilo Slovenskega geološkega društva za leto 2018............... 138 Rajver, D. & Rman, N.: 6. evropski geotermalni kongres v Haagu (Nizozemska) 11. – 14. junij 2019.... 141 Navodila avtorjem.................................................................................................................................... 146 Instructions for authors........................................................................................................................... 147 © Author(s) 2019. CC Atribution 4.0 License GEOLOGIJA 62/1, 5, Ljubljana 2019 https://doi.org/10.5474/geologija.2019.000 Uvodnik Ob letošnjem dnevu Zemlje smo na Geološkem zavodu Slovenije (GeoZS) že sedmic podelili najvišja slovenska priznanja in nagrade posameznikom in organizaciji za dosežke v geoznanosti. Medaljo Mar­ka Vincenca Lipolda je za svoje dolgoletno delo prejel dr. Ladislav Placer, priznanje castni clan GeoZS za pomembne uspehe na podrocju geoloških raziskav ter za uveljavitev GeoZS doma in v svetu je bilo podeljeno dr. Ljubu Žlebniku, prejemnik plakete Marka Vincenca Lipolda za vrhunske znanstveno- raziskovalne dosežke v zadnjih dveh letih je dr. Miloš Miler, priznanje castna listina Geološkega zavo­da Slovenije za zasluge pri razvijanju sodelovanja z GeoZS in za pomembne prispevke pri uveljavljanju družbenega pomena raziskovalne dejavnosti pa je prejela Uprava Republike Slovenije za zašcito in reševanje. Dogodek ob podelitvi je bil sprošcen in pozitiven, prav tako nagrajenci. Z razlogom! Doma in po svetu se povecuje zavedanje o odgovornosti te generacije in naslednjih za stanje našega planeta. Vse pomembnejše postaja tudi vprašanje dolgorocne in trajnostne oskrbe z naravnimi viri. Oci javnosti so zato uprte v nas geologe ter druge strokovnjake in raziskovalce na podrocjih geoznanosti. Jasno, saj bo prihodnost življenja na našem planetu odvisna od ravnanja z atmosfero, poleg tega pa tudi od trajnostnega ravnanja z geosfero, ki nam zagotavlja skoraj vse kljucne naravne vire. Geoznanosti po desetletjih nekakšnega prikritega in tihega zastoja znova pridobivajo svojo veljavo. Brez poznavanja geologije danes ne gre, prav tako brez nje ni razvoja. To ve ves svet in tega se pocasi zacenja zavedati tudi naše ožje okolje. Zavedanje o odgovornosti do našega planeta se povecuje, vecajo pa se tudi zahteve države, državlja­nov in celotne družbe do naših strok. Ti zahtevajo vse vec in vse bolj kakovostne odgovore na vse zah­tevnejša strokovna vprašanja, kar je izredno dober, celo navdušujoc znak napredka. Svoje znanje lahko danes hitreje posredujemo v neposredno rabo, se pa žal hkrati nepricakovano ukvarjamo z vse vecjim primanjkljajem na podrocju temeljnih znanosti, ki ga v preteklosti nismo poznali. Temeljna znanja ne zmorejo vec ustrezno podpirati razvoja aplikativnega dela oziroma uporabe znanja v praksi, primanj­kljaj v razvoju temeljnih znanosti pa vpliva na naše geološko delo. Ob obsedenosti s scientometrijo, z na videz objektivnim kvantitativnim vrednotenjem znanstvenega dela, so bile temeljne geoznanosti v Sloveniji odrinjene na rob, medtem ko v svetu cvetijo. Upajmo, da bo nastajajoci zakon o raziskovalni in razvojni dejavnosti uspešno ovrednotil tudi ta vprašanja ter dal geoznanosti in geoznanstvenikom veljavo, ki si jo zaslužijo. V casu pred zastojem razvoja temeljnih znanosti sta glavne raziskovalne preboje naredila letošnja prejemnika visokih priznanj, dr. Ladislav Placer in dr. Ljubo Žlebnik. Današnja generacija geologov si težko predstavlja svoje delo v Sloveniji brez temeljev, ki sta jih postavila. Najmlajši nagrajenec dr. Miloš Miler tako dokazuje, da smo tudi danes sposobni prebojnih temeljnih znanstvenih dosežkov. Konkurenca vrhunskih raziskovalcev in rezultatov je še vedno ostra, morda celo bolj kot v preteklosti, a bi lahko bila in bi morala biti še bistveno ostrejša. Letošnje leto zaznamuje praznovanje 100-letnice Univerze v Ljubljani. Tudi visokošolsko pouce­vanje geologije letos praznuje stoletnico, saj se geologija v Ljubljani poucuje od ustanovitve Univerze. Geologija kot stroka torej ni od vceraj. Je ena najzgodnejših naravoslovnih znanosti in prav tista, ki je postavila temelje za naravoslovno dojemanje sveta, Zemlje in njenega razvoja, vkljucno z razvojem živih bitij na njej. Pomembno je, da slovenske dosežke na podrocju geoznanosti prepoznavamo in jih nagrajujemo. Ne smemo pa pozabiti: geologija je univerzalna, planetarna znanost. Zanjo in za raziskovalce ni državnih meja. Naši raziskovalci se že dolgo odpirajo svetu, v obratni smeri pa nam še ne gre najbolje. Povabimo v Slovenijo raziskovalce, ki danes delujejo zunaj naših meja, in preusmerimo tok znanja. Zemlja in družba nam bosta za to hvaležni! dr. Miloš Bavec, direktor GeoZS © Author(s) 2019. CC Atribution 4.0 License GEOLOGIJA 62/1, 7-59, Ljubljana 2019 https://doi.org/10.5474/geologija.2019.001 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Geokemicno ozadje in zgornja meja naravne variabilnosti 47 kemicnih elementov v zgornji plasti tal Slovenije Mateja GOSAR1, Robert ŠAJN1, Špela BAVEC1, Martin GABERŠEK1, Valentina PEZDIR2 & Miloš MILER1 1Geološki zavod Slovenije, Dimiceva ulica 14, SI–1000 Ljubljana, Slovenija; e-mail: mateja.gosar@geo-zs.si, robert.sajn@geo-zs.si, spela.bavec@geo-zs.si, martin.gabersek@geo-zs.si, milos.miler@geo-zs.si 2Breg pri Borovnici 46, SI-1353 Borovnica, Slovenija; e-mail: valentina.pezdir@gmail.com Prejeto / Received 10. 1. 2019; Sprejeto / Accepted 22. 2. 2019; Objavljeno na spletu / Published online 12. 3. 2019 Key words: soil, lithology, elements, geochemical background, geochemical mapping, geochemical threshold, Slovenia Kljucne besede: tla, litologija, elementi, geokemicno ozadje, geokemicno kartiranje, zgornja meja naravne variabilnosti, Slovenija Abstract Geochemical background and threshold values need to be established to identify areas with unusually high concentrations of elements. High concentrations are caused by natural or anthropogenic processes. The <2 mm fraction of 817 collected topsoil (0 – 10 cm) samples at a 5 × 5 km grid on the territory of Slovenia was analysed. Results are used here to establish the geochemical background variation and threshold values, derived statistically from the data set, in order to identify unusually high element concentrations for these elements in the soil samples. Geochemical threshold values were determined following different methods of calculation for (1) whole of Slovenia and (2) for 8 spatial units determined on the base of geological structure, lithology, relief, climate and vegetation. Medians and geochemical thresholds for whole of Slovenia were compared with data for Europe and for southern Europe separately, since large differences in the spatial distribution of many elements are observed between northern and southern Europe. Potentially toxic elements (PTEs), namely As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, and Zn, are of particular interest. Medians of these PTE elements are all higher in Slovenia than in southern Europe. Medians of Pb and Mo are 1.5 times higher and medians of Hg and Cd are even more than 2 times higher in Slovenia. Geochemical thresholds for As, Cr, Co, Ni, Sb and Zn are of similar values in both Slovenia and southern Europe and some lower for Cu and Ni. Up to 1.5 times higher are tresholds in Slovenia for Mo and Pb and more than 2.5 times higher for Cd and Hg. These values were then compared to existing Slovenian soil guideline values for these elements. Izvlecek Kemicni elementi so v okolju, torej tudi v tleh, naravno prisotni. Povišane vsebnosti le-teh so posledica naravnih danosti ali pa jih povzrocijo clovekove dejavnosti. Obmocja povišanih koncentracij elementov so opredeljena kot obmocja, na katerih vsebnosti elementov presegajo vrednosti geokemicnega praga (zgornjih mej naravne variabilnosti - MNV). Na podlagi kemicnih analiz 817 vzorcev zgornje plasti tal (0–10 cm), odvzetih v mreži 5 × 5 km na obmocju celotne Slovenije, smo izracunali mediane (geokemicno ozadje) in zgornje meje naravne variabilnosti (MNV) po vec metodah za celotno Slovenijo in za 8 manjših prostorskih enot, ki smo jih dolocili glede na geološko zgradbo, kamninsko sestavo, relief, podnebje in rastlinstvo. Znotraj posameznih manjših prostorskih enot se izracunane MNV po razlicnih metodah mocno razlikujejo zaradi heterogenosti enot in majhnega števila vzorcev. Mediane in zgornje meje naravne variabilnosti za celotno Slovenijo smo primerjali s podatki za celotno Evropo in še posebej južno Evropo, ker se prostorske porazdelitve elementov med južno in severno Evropo mocno razlikujejo. Zanimive so vsebnosti potencialno strupenih elementov (As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Zn) in primerjava z mejnimi, opozorilnimi in kriticnimi vrednostmi za tla po slovenski zakonodaji. Mediane teh elementov so v Sloveniji višje kot v celotni Evropi in v južni Evropi. Primerjava z južno Evropo kaže, da sta mediani Pb in Mo 1,5 krat višji, mediani Cd in Hg pa celo vec kot 2 krat višji v Sloveniji. V Sloveniji so MNV blizu vrednostim v južni Evropi za elemente As, Cr, Co, Ni, Sb in Zn, malo nižje za Cu in Ni, do 1,5 krat višje za elementa Mo in Pb ter vec kot 2,5 krat višje za Cd in Hg. 8 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Introduction Chemical elements are in environment, as well as in soil, present naturally. High element concentrations in environment may be due to oc­currence of mineralization, unusual rock types, such as serpentinite, black shale mudstone, etc., or may be caused by human activities (mining, metallurgy, industry, traffic, agriculture, etc.). Depending on bioavailability and stability of the material in which the chemical elements appear, their high concentration levels may present envi­ronmental risk due to element toxicity. Anthropogenic chemical contamination is one of the most evident signals of human influence on the environment. The large amounts of indus­trially produced pollutants that have been intro­duced, over decades, into air, soil and water have caused modifications to natural elemental cy­cling (Galuszka et al., 2014). Anthropogenic con­tamination usually leads to enrichment in many elements, particularly in industrial areas. Cer­tain elements and their isotopes can therefore be used as geochemical indicators of anthropogenic impact. There are also secondary effects of the pollution, such as acidification, which causes in­creased geochemical mobility of elements in sur­ficial deposits. Methods used in geochemistry to assess the scale of anthropogenic influence on the environment include determination of geochem­ical background and thresholds, calculation of enrichment and contamination factors, geoaccu­mulation index and pollution load index. The use of geochemical background levels to distinguish between natural and anthropogenic pollution is important (fig. 1 and 2) (Galuszka et al., 2014). To identify areas with unusually high (or low) concentrations of “potentially toxic elements” (PTEs), geochemical background and threshold values of these elements need to be determined. Geochemical threshold values are used to iden­tify locations with unusually high element con­centrations. A lower threshold, determined in the lower part of the data distribution, is used to identify locations with unusually low element concentrations. Deficiency of certain elements in the soil can present a problem to living organisms in those environments (Reimann et al., 2018). In this work we focused solely on upper threshold and did not discuss the lower threshold. After identification of areas with unusual­ly high element concentrations, risk assessment must be determined in these areas. Risk assess­ment of soil determines whether the high element concentrations pose a threat to living organisms or the environment. It is dependent from elements, as certain elements are toxic at low concentrations and other elements are biologically essential, but harmful at higher concentration levels (Reimann et al., 2018). Proper risk assessment of soil includes comparison of determined element concentration values with effect thresholds for environmental and human health derived from (eco)toxicologi­cal data. This approach preferentially takes into account the effect of abiotic soil properties (such as mineral composition, structure and texture of the soil, water and air present in the soil) on bio­availability and toxicity of the element (examples in Smolders et al. (2009), Oorts & Schoeters (2014), Oorts et al. (2016) or Birke et al. (2016)). Proper risk assessment of certain location also requires a substantial amount of additional data, such as bioavailability of elements, acidity (pH), grain size, cation exchange capacity and total organic carbon. Additional data must be available for each determined location with high element concentra­tions. Identifying geochemical (non-toxicological) threshold can simply be defined as a value above which the concentration of an element in a given data set is “unusually high”. With this approach we separate locations that require attention and further analysis and studies (Reimann et al., 2018). Unusually high element concentrations in the upper soil layer can be due to anthropogenic ac­tivities, such as urbanization, industrial activi­ties, mining and agricultural practices. They may also be of natural origin and indicate areas with geochemically unusual rock types or areas hav­ing a high potential for the occurrence of mineral deposits (Reimann et al., 2018). The separation of these three distinct causes for high element con­centrations in soil requires substantial expert knowledge about the location of possible con­tamination sources (cities, metal smelters, power plants, industry), climate, vegetation zones, ge­ology, element dispersion processes, mineral de­posits etc. (Reimann et al., 2018). Materials and methods Soil as sample material in geochemistry Soils are an unique natural resource essential for food production and an irreplaceable compo­nent of natural ecosystems. Due to numerous en­vironmental, economic, social and cultural func­tions (the multifunctionality of soils), soils are of crucial importance for life in terrestrial ecosys­tems (Vidic et al., 2015). Soils represent the upper part of Earth’s crust that consist of mineral particles, organic mat­ter, water, air and living organisms (FitzPatric, 1986). They are indispensable to humanity and to maintaining a healthy natural environment. Soil formation is a slow process. Soils form as a result of lithosphere weathering due to inter­actions of pedogenetic factors, which are litho­logical parent material, climate, relief, time and living organisms. Lithological parent material provides the original quantity of mineral material (with exception of carbonate rocks), from which soils are composed. It also influences thickness of the soil, physical, mineral and chemical attributes and further development of the soil (FitzPatrick, 1986). Climate influences soil development with solar radiation and dynamic processes in the at­mosphere, which have an impact on humidity, heat and atmospheric deposition of particles. Organ­isms exchange substances and energy from litho­logical parent material and soils and thus directly affect soil development. The relief indirectly in­fluences the formation of the soil by distribution of surface material and energy. Moving and reten­tion potential of substances in the original loca­tion depend on the slope steepness. The relief also affects the thickness and humidity of the soil. Hu­mans also have an influence on soil development, either directly by agriculture, infrastructure and urbanization or indirectly by changing relief, wa­ter regime, vegetation and pollution, which can be of point or dispersed type. Soils have a high buff­ering capacity which relates to stability of the soil system and the pH of the soil and to the soil re­taining capacity. Thus, the content of water, min­eral particles, gases as well as pollutants in the soil are regulated. However, the buffering capaci­ty of the soil is not unlimited and therefore certain pollutants can exceed the retention or buffering capacity of the soil (FitzPatric, 1986). Soil is a dynamic complex formation, in which biological, chemical and physical processes con­tinuously take place. It represents a complex ecosystem that enables plant growth and bioge­ochemical circulation of elements. Physical pro­cesses include decomposition of rocks into small­er particles without changing their mineral and chemical composition. Physical decomposition is caused by temperature changes, frost, wind, glaciation, plant roots activity and water. Due to physical decomposition, the specific particle size increases, allowing for faster chemical decom­position. Chemical processes are dissolution, hy­drolysis, hydration, oxidation or reduction, and the formation of clay and other minerals. Water, that contains dissolution of various gases and ac­ids, plays an important role in all these processes. Most of the soil processes are of direct or indirect biological nature. Organisms are effective leach­ing factors in the dissolution of many elements. Due to the extremely high reproduction rate of microorganisms, their effect can be significant and can be important in the migration of ele­ments in the soil (Siegel, 2002). The unique characteristic of the soils is the distribution of their components and features in layers, that are dependent on the present land­scape surface and that vary with depth. Migra­tion processes of particles, chemical elements and humus substances take place due to weath­ering, water and organisms in the soil. Thus, soil layers are formed, which differ in morphologi­cal features: colour, density of the roots, humus content, grains, humidity and other. Individual layers are called soil horizons. They were created in the process of soil formation and interaction between the layers. They can be from few cen­timeters to several meters thick. Together, they form a soil profile (Siegel, 2002). Trace elements in the soils occur in primary minerals that originate from lithological parent material, in secondary newly formed minerals, and bound to clay minerals and organic matter. In addition to geological and pedological fea­tures, soils also provide information on pollut­ants in the air, and are therefore a very useful and widespread sample medium. A regional radiometric and geochemical sur­vey was performed on the entire territory of Slo­venia during the period 1990–1993 by the Geo­logical Survey of Slovenia. Soil sampling was performed at a 5 × 5 km grid with a randomly selected starting point to ensure randomness of sampling (fig. 3) (Andjelov, 1994). In total, 817 topsoil (0–10 cm) samples were collected. The air dried samples were gently disaggregated in a ceramic mortar, sieved through a 2 mm sieve and stored. In 2012 the stored soil samples were taken out of the depot at the Geological Survey of Slovenia, pulverized in an agate mill to a fine-grain size (<0.075 mm) and submitted to chem­ical analysis in Bureau Veritas Mineral Labo­ratories at Vancouver, Canada. Samples were analysed with inductively coupled plasma (ICP) and mass spectrometry (MS) after digestion of an aliquot of 15 g sample material with aqua regia (1 : 1 : 1 HCl : HNO3 : H2O). Concentrations of fol­lowing 53 elements were determined: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr. Quality control The quality control of analyses was assured by several methods. Aliquots of Certified Reference Materials (CRM: OREAS 43P, OREAS 44P, ORE­AS 45P, OREAS 45CA), and sample replicates were included randomly into the sample batch­es to estimate accuracy and precision of chem­ical analyses. Analysed concentration values of standards were compared to the certified values, as well as the repetitions of analyses of standard materials and soil samples. With this we deter­mined the accuracy (A) and precision (P) of used analytical methods for analysed chemical ele­ments (figs. 4 and 5). Table 1 shows the numbers of soil samples having individual element con­centrations below the lower detection limit. Ac­curacy (A) of analytics is evaluated as a relative difference between the analytical value of the el­ement and its certified value. Analytical values of geological standard materials are compared with their certified values (Abbey, 1983; Reimann et al., 2009). Individual standards and their rep­licates were randomly distributed among the soil samples. Calculated relations between replicated values and their certified values are in fact the correction factor, by which analysed values could be divided in order to approach the certified val­ues (Gosar, 2007). Precision (P) of analytical methods is a meas­ure of repeatability of determining a parameter in the same sample standard material, regardless of deviation from the certified value (Rose et al., 1979; Reimann et al., 2009). Chemical elements Ge, Pd, Pt, Re, Ta and W were eliminated from further discussion, because their concentrations in more than 30 % of the samples were below detection limit of the analyti­cal methods (table 1). For other chemical elements, sensitivity, accuracy (A) and precision (P) of an­alytical methods were satisfactory (table 1). They were included in further statistical processing. Based on the findings described above, the fol­lowing 47 chemical elements were discussed in statistical analyses: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, Tl, U, V, Y, Zn, Zr. Methods for determination of geochemical threshold values In scientific literature can be found several methods for calculating the geochemical thresh­old which is needed for recognizing the unusu­ally high element concentrations. We summarize a selection of the most commonly used methods. The original and most simple approach to cal­culate the geochemical threshold is “Mean + 2 × standard deviations (SD)” (abr. X2S) of a given data set. The method was developed in explora­tion geochemistry to detect data outliers and to determine the threshold between geochemical background and unusually high element concen­trations that can indicate areas of mineralization (Matschullat et al., 2000; Reimann & Garrett, 2005; Reimann et al., 2018). The approach has many shortcomings, among which the most im­portant one is that the method does not consider the multimodal nature of geochemical data sets (Reimann & Filzmoser, 2000). Geochemical data have a high spatial vari­ability, are influenced by many factors and are often imprecise due to unavoidable sampling er­rors, sample preparation and analytical errors. Due to these properties of geochemical data, Re­imann et al. (2005) suggested to replace the earli­er X2S approach by using “Median + 2 × median absolute deviations (abr. MAD)” (abr. MD2MAD), where the median is defined for a sample x1, … …, xn as medianj(xj). Mediani(xi) is then defined for a new data set, that is determined from absolute values obtained by subtracting the medianj(xj) from each original value in the sample. MAD is therefore determined as: MADi(xi) = 1.48 × mediani|xi – medianj(xj)| In case of normal data distribution, a constant 1.48 is added to MAD definition for approxima­tion to standard deviation (SD) (Rousseeuw & Croux, 1993; Reimann et al., 2018). The approach MD2MAD is much more efficient in exposing the anomalously high element concentrations, while the approach X2S only determines extreme val­ues that are not necessarily the anomalous high values. The disadvantage of the MD2MAD meth­od, if applied to raw, untransformed data, is that it delivers very conservative (low) threshold val­ues (quite often around the 90th percentile), i.e., it produces a lot of sites that need to be checked (Re­imann et al., 2018). The reason is that geochemical data distributions are most often strongly right-skewed, while, when using the above formula, the underlying assumption is of a symmetrical (not necessarily normal) data distribution. The cor­rect approach to using this formula would thus be to calculate “Median + 2 × MAD” (MD2MAD) on the log-transformed data (e.g., using log base 10) and then to back-transform the result and use these values as threshold according to the formu­la (Reimann et al., 2018). Geochemical threshold is therefore determined according to formula: Threshold (after MD2MAD approach) = 10b where b = (mediani (log10(xi)) + 2 × MADj (log10(xj)) Values calculated using this approach are of­ten comparable with the TIF (Tukey inner (up­per) fence or upper whisker in a boxplot) method (Reimann et al., 2018). This method is based on the boxplot, an exploratory data analysis tool that depends solely on the symmetry of data dis­tribution. It allows the definition of a threshold for outliers even if none are present in the data set (i.e., Max < TIF), as it extrapolates from the robust inner core (25th to 75th percentiles) of the data structure. TIF is calculated as follows: TIF = Q3 + 1.5 × IQR Where Q3 stands for the 3rd quartile (equiva­lent to the 75th percentile), and IQR is the inter­quartile range (75th – 25th percentile). The multi­plying factor of 1.5 in the formula is based on the assumption of a symmetrical data distribution. All values higher than TIF are therefore labeled as anomalously high values. With this approach TIF also presents a geochemical threshold val­ue (Reimann et al., 2005). When dealing with geochemical data, which are most often right-skewed, TIF must be calculated on the log- (or otherwise) transformed data to achieve “symme­try”. The TIF can be considered as one of the most reliable tools to calculate meaningful threshold values for any given data set (Reimann & Caritat, 2017; Reimann et al., 2018). Reimann et al. (2005) compared methods dis­cussed above by using normal distribution and log-normal distribution data sets. The results showed that the boxplot gives the best results when samples with anomalously high concentra­tions are less than 10 %. In case when samples with anomalously high concentrations exceed 15 % or even more than half of all data, only “Median + 2 × MAD” (MD2MAD) gives useful results (Reimann et al., 2005). Approach “Mean + 2 × standard deviation” (X2S) exposes only ex­treme values. It is only meaningful when all sam­ples with anomalously high concentrations also represent extreme values. Another approach, which again stems from exploration geochemistry, is to study data distri­butions in a cumulative probability (CP) diagram (Reimann et al., 2018). A CP diagram shows sta­tistical distributions of data and can detect pro­cesses that cause deviation from general data dis­tribution (Reimann et al., 2005; Reimann et al., 2018). It allows detection of samples with anom­alously high element concentrations and their distance from other data. Values above threshold are most often detected as a break of the distri­bution in the cumulative probability diagrams. Geochemical threshold can also be determined by using the percentile-based approach (Reimann et al., 2018). It is a simplistic method with the 90th, 95th, 97.5th or 98th percentile of a given data set defining the threshold (abr. P90, P95, P97.5 and P98, see also Ander et al., 2013). The 98th percen­tile, which identifies 2 % of all samples as upper outliers, comes closest to the original method of calculating the “mean + 2 SD” in the case of a normal distribution, which would result in 2.3 % of upper outliers. A common feature of all these statistical methods is that it will not necessari­ly be possible to establish a meaningful single threshold valid for the whole country, because the background varies spatially. Furthermore, there exists no valid scientific reason why 2, 5 or 10 % of the samples should be considered as “anoma­lous” regardless of the statistical data distribu­tion. It will only determine the highest values in a data set that may also be anomalous. Though the method is very practical due to its simplicity and as there is no need for normal data distribution and with it, for transformations. In Great Britain, cumulative probability dia­grams and percentiles (most frequently the 95th percentile) have been used to detect samples de­viating from the “normal background deviation” and to identify a case-specific threshold (e.g. Cave et al., 2012; Johnson et al., 2012; Ander et al., 2013). Geological and pedological settings and smaller spatial units in Slovenia Geological diversity of Slovenia is a result of a contact between 3 larger geotectonic units in Slovenia. Most of Slovenia is composed of clas­tic rocks and sediments that comprise around half of Slovenian area and carbonates (lime­stone and dolomites), that comprise around 40 % of the area. Metamorphic rocks cover around 4 % of the area, pyroclastic rocks are less than 2 % and around 1.5 % of Slovenian area is com­prised of igneous rocks (Komac, 2005, fig. 6). There are many soil types in Slovenia, as soil forming factors (lithology, relief, climate, hy­drology, vegetation, organisms and human in­fluence) have a large spatial variability (Vidic et al., 2015). In Slovenia, lithology and relief have the greatest impact on soil formation (Vidic et al., 2015). Most of Slovenia is comprised of car­bonate rocks, (including sediments and clastic rocks with carbonate clasts or cement) and soils that forms on these rocks. Lithosols and shallow rendzinas are present on steep slopes in moun­tain terrains. In areas with gentle slopes, brown soils on limestone and dolomite and rendzinas are present (Vidic et al., 2015). On carbonate flysch in western Slovenia and marlstones in eastern Slovenia are rendzinas and eutric brown soils. Rendzinas are also common on other clas­tic carbonate sediments as gravel and sand in river valleys (Vidic et al., 2015). Dystric rankers, dystric brown soils and leached soils are present on other noncarbonate clastic rocks and most of metamorphic and igneous rocks. On noncar­bonate sediments in valleys of eastern Slovenia (Drava and Ptuj plains, Prekmurje), dystric soils are formed (Vidic et al., 2015). Next, we present the spatial distribution of Slovenia, that is based on geological struc­ture, lithology, relief, climate and vegetation acocording to suggestions from Poljak (1987). Slovenia was divided into 8 smaller spatial units (Western Alps, Eastern Alps, Western Prealps, Eastern Prealps. Western Dinarides, Eastern Dinarides, Pannonian basin and Inte­rior basins, fig. 7), that we discuss later. Nam­ing of spatial units is valid only for Slovenia and is not related to other units’ names in Eu­rope or in the entire Alps. Geological settings are summarized after Geology of Slovenia (Plenicar et al., 2009) and pedological settings after monograph Soils of Slovenia with soil map 1 : 250,000 (Vidic et al., 2015). Samples were collected at a grid of 5 × 5 km and assigned to spatial units according to their spatial distribution in Slovenia. Number of samples (N) in each spatial unit is presented in table 2. Western Alps Western Alps cover the area of the Julian Alps, Kamnik Savinja Alps and Karavanke Alps (Karawanks) in which are the highest peaks of Slovenia. Most of this spatial unit comprises area above the tree line, which is reflected in almost no vegetation and shallow (rendzinas) or unde­veloped soils. Julian and Kamnik Savinja Alps are predominantly composed of carbonate rocks. The area developed from glacial processes and is influenced by dissolution of limestone in karstic areas. Due to lithology and dissolution of lime­stone, this area is also called “high or Alpine karst”. The Karavanke Alps are a long mountain range along Austrian border which ends near Mežica in the east. Their lithology is diverse, with carbonate rocks, which predominate, clastic and igneous rocks. The Julian Alps are mostly composed of lime­stone and dolomite (Dozet & Buser, 2009). Lime­stone with chert, clay marlstone and limestone with manganese nodules are also present (Buser & Dozet, 2009). Larger areas containing iron ore are in the vicinity of Pokljuka, Bohinj and Jelovi­ca (Ogorelec et al., 2006; Pirc & Herlec, 2009). There are smaller areas of Cretaceous flysch marlstone, located in southern part of the Julian Alps (Plenicar, 2009). The Kamnik Savinja Alps consist of mostly carbonate rocks and less clastic rocks (Dozet and Buser, 2009). Carbonate conglomerates that transit to marly clay called “sivica” are present on larger area of Smrekovec and Gorn­ji Grad. There are Oligocene volcaniclastic rocks on Smrekovec area and other smaller ar­eas in the Kamnik Savinja Alps (Pavšic & Hor­vat, 2009). Carbonate rocks (limestones and dolomites) predominate in the Karavanke Alps. Clastic rocks are also common. Iron, lead, zinc, and an­timony ores often occur at the contact of clas­tic rocks and carbonate rocks (Ramovš & Buser, 2009; Novak & Skaberne, 2009). Igneous rocks, limestone with chert and shales are also present in the Karavanke Alps. Also found in the Kara­vanke Alps are traces of manganese ore, that was mined in this area. Rendzinas (profile A-C or A-R) predominates on carbonate rocks at higher altitudes and steep slopes. Rarely, brown soils (A-B-C) have formed. Dystric brown soils have formed on clastic and volcaniclastic rocks (Vidic et al., 2015). Eastern Alps Eastern Alps cover the area of Pohorje, a large massif that is distinctly separated from other areas. This area is predominantly composed of ig­neous and metamorphic rocks. Weathering of these rocks causes forming of dystric brown soils and rankers on steeper slopes (Vidic et al., 2015). Pohorje is covered with dense vegetation with conifers, mixed forests and meadows due to fertile soils, wet climate and impermeable li­thology. Central part of the Pohorje range is composed of granodiorite batholith, that is surrounded with metamorphic rocks, of which most special are eclogite and garnet peridotite. In northern part of Pohorje there are mostly mica schists, gneisses, amphibolite and less eclogite and mar­ble. Amphibolite that includes chlorite and epi­dote is found in southwestern part of Pohorje (Hinterlechner-Ravnik & Trajanova, 2009). Phyllitic schists with quartzite, metakerato­phyre, marble, graphitic slates and amphibole schists with chlorite and epidote represent the transit from lower grade metamorphic rocks to higher metamorphic grade, found west of Koban­sko. Mineral garnet is more common (Hinter­lechner-Ravnik & Trajanova, 2009). Miocene conglomerate with dacite tuff is present in the Ribnica-Selnica tectonic graben and on Mt. Koz­jak (Pavšic & Horvat, 2009). Quartz sandstones, conglomerates and silt­stones compose western part of Eastern Alps. Dolomites, limestones, marlstones and claystone are present in smaller areas (Dozet & Buser, 2009; Buser & Dozet, 2009). In the area around Stran­ice and Zrece are dolomites with layers of black coal, claystone, siltstones and marlstones. In Ve­lenje valley predominate Plio-Quaternary clas­tic rocks and sediments that include carbonates and pyroclastic rocks with andesite and dacite. Here are layers of lignite between clastic rocks (Markic, 2009). Igneous rocks of Pohorje are divided into two groups: Magdalensberg series and Železna Kap­la magmatic zone. Magdalensberg series passes along river Meža, via Slovenj Gradec to north­western Pohorje and area of Remšnik. Central part of the series is composed of felsic igneous rocks and northern part of the series is composed of mafic igneous rocks (Trajanova, 2009). Železna Kapla magmatic zone is exposed along Periadri­atic lineament, passes south of Peca, via Koprivna and Crna na Koroškem and plunges beneath the sediments in the vicinity of Mt. Plešivec. Magmat­ic zone is mostly composed of felsic igneous rocks. Northern part of the magmatic zone is composed of syenogranitic massif and in southern part is a tonalite belt. Syenogranitic massif includes gab­bro, monzogabbro, monzodiorite and monzonite (Dobnikar & Zupancic, 2009; Trajanova et al., 2009). Tonalitic belt is composed mostly of horn­blende-biotite and biotite tonalite that can transit to granodiorite (Trajanova et al., 2009). Western Prealps Prealps have very heterogeneous lithology composed of carbonates, carbonate-clastic rocks and siliciclastic rocks (fig. 6). Lithology has an impact on erosion rate and vegetation. Western Prealps represent the area of central Slovenia, west of Ljubljana basin and comprise the Idri­ja-Žiri area, Tolmin area, Baca and Selška Sora area, Polhov Gradec hills, Škofja Loka hills, Pol­jane-Vrhnika area and Trnovski Gozd, Nanos, Hrušica and Javorniki area. Polhov Gradec-Vrh­nika area is composed mainly of clastic rocks, such as quartz sandstone and quartz conglom­erates (Novak & Skaberne, 2009). Sandstones, conglomerates and siltstones are found in a belt between Cerkno and Smrecje. This area is known for its copper ore and uranium deposit. Lime­stones, dolomites, marlstones and siltstones pre­dominate in Polhov Gradec hills and Cerkno-Id­rija area. In area around Idrija are claystone and sandstones that are rich in mercury ore (Dozet & Buser, 2009). Area between Petrovo Brdo and Železniki is composed of shale mudstones, sandstones, limestones with chert and breccias (Plenicar, 2009). Mafic igneous rocks are found in some places in Škofja Loka hills (Hinterlech­ner-Ravnik & Trajanova, 2009). Trnovski gozd, Banjšice, Hrušica, Javorni­ki and Nanos are composed of carbonate rocks (limestones and dolomites). Bauxite loam and bauxite are present in a belt from Nanos, Hrušica to Žužemberk (Buser & Dozet, 2009). Limestones with chert are common in the Tol­min area and Škofja Loka hills (Dozet & Bus­er, 2009). There are manganese deposits and iron manganese nodules between Perbla and Tolmin­ske Ravne (Buser & Dozet, 2009). In some places in the area of Soca river valley are limestone brec­cias, on top of them occurs marlstone that transits into flysch (Plenicar, 2009). Cretaceous and Pale­ocene carbonate flysch is composed of red or grey marlstone (Drobne et al., 2009). Lacustrine sedi­ments with predominant carbonate component are sparsely found in upper Soca river valley (Bavec & Pohar, 2009). Eutric brown soils on flysch are found in west­ernmost part of Western Prealps. On carbonate rocks of western part of Western Prealps are rendzinas (profile A-C or A-R) on steeper slopes and in more favorable conditions brown soils (A-B-C). In central and eastern part of this spa­tial unit, clastic rocks and dystric brown soils predominate (Vidic et al., 2015). Eastern Prealps Eastern Prealps represent the area of the Sava Folds east of Ljubljana basin. The area consists of ridges and valleys in east–west direction. Sim­ilar as Western Prealps, this spatial unit has a very heterogeneous lithology, where clastic rocks predominate. Lithology has an impact on erosion rate and vegetation, that is mostly dense with mixed forest and arable land. Southern part of the Sava Folds is composed of marlstone, siltstone, claystone, limestone and sandstones. There are more shale mudstones, siltstones, claystone and dolomite in northern part of the Sava Folds, and in central part, lime­stone and dolomite predominate. Both limestone and dolomite are also sparsely found in south­ern and northern part of the Sava Folds. Lime­stone with chert is also present in some areas (Dozet & Buser, 2009). Limestone and dolomite occur in the area of Tuhinj valley and Mirna and south from Sevnica (Buser & Dozet, 2009). Sandstones, conglomerates and siltstones are found in the Radece area. There are also smaller copper deposits (Skaberne et al., 2009). Clastic sedimentary rocks with vein deposits of Pb, Zn, Hg, Cu, Ba and Sb are sparsely located east of Ljubljana (Novak & Skaberne, 2009). Clastic flysch rocks can be found in Litija overthrust (Plenicar, 2009). In the area of Bohor are igneous rocks, that can be enriched with Pb and Zn (Trajanova & Grafenauer, 2009). Northwestern part of the Sava Folds is com­posed of more conglomerate, followed by clay, marlstone and sandstone. Same rocks with ad­dition of pyroclastic rocks and coal in the area from Laško to Zagorje, are found in eastern part of the Sava Folds. Coal was mined in collieries Zagorje, Trbovlje, Hrastnik, Laško and Senovo (Markic, 2007). Limestone sandstones, quartz sand and clayey marl are present in the areas of Celje, Senovo and Laško synclines (Pavšic & Horvat, 2009). Dystric brown soils and rankers predominate in southern and northern part of the Sava Folds, where there are more clastic rocks. Eutric brown soils are present on carbonate clastic rocks in eastern part of this spatial unit. Rendzinas (pro­file A-C or A-R) and brown soils (A-B-C) are most common on carbonate rocks in the central part of the Sava Folds (Vidic et al., 2015). Western Dinarides Western Dinarides are represented with wide valleys (Vipava valley, Matarsko podolje), hills and the large Karst plateau (in Slovene: Kras) that have a typical Dinaric northwest–southeast direction. Climate and vegetation are submedi­terranean. Kras plateau, Cicarija and Matarsko podolje are composed mainly of limestone and dolomite with breccia with bauxite clay. In some areas, limestones include nodules and sheets of chert. Around Lipica and Secovlje area are layers of coal (Plenicar, 2009). Large area of Western Dinarides is covered with flysch (layers of marl, sandstone and car­bonate turbidite). Red and grey marlstones are present in Vipava valley, Goriška Brda and Ko­per hills (Drobne et al., 2009). Flysch in Goriška Brda is of Cretaceous age (Plenicar, 2009). There is also limestone in the area of Goriška Brda (Drobne et al., 2009). Boundary between Cretaceous and Tertiary rocks is best visible on Kras plateau between Seža­na and Kozina. Rocks from the area of the bound­ary have increased contents of iridium, mercury and rare earth elements (Plenicar, 2009). On the boundary is also an increase in content of Ga, Sm, Zr, Co, Ni and V (Drobne et al., 2009). Limestone sparsely occurs in the area of flysch rocks. Brown soils and rendzinas predominate on carbonate rocks (limestones and dolomites). Var­iation of brown soils, brown and red brown soils called also terra rossa is found on Kras plateau. Terra rossa forms on hard limestones and dolo­mites in submediterranean climate. Cambic ho­rizon is brown-red to red. Organic (A) horizon is thin and poor in humus as organic matter quickly decays and mineralizes due to warm and dry cli­mate. Contact with rocks is not straight, pockets of soil are common. Eutric brown soils predominate in the area of carbonate flysch rocks (Vipava val­ley, Goriška Brda and Koper hills). Dystric brown soils are present on flysch rocks in southeastern part of Western Dinarides (Vidic et al., 2015). Eastern Dinarides Eastern Dinarides represent hilly karstic landscape with altitudes to 1000 meters with typical vegetation of mixed to broadleaf forests and meadows. Similar as Western Dinarides, hill ridges have a northwest–southeast direction. Bela Krajina plateau in the east represents the tran­sition to the Pannonian basin. Limestones and dolomites predominate in this area. The area of Eastern Dinarides is also called “low or Dinaric karst”. Brown soils predominate as soil type (Vid­ic et al., 2015). Most of the Eastern Dinarides area is composed of limestones and dolomites and in some areas also marlstone, claystone and sandstone. Bitumi­nous dolomite and limestone are found in the area of Cerknica lake, Logatec hills, Kocevje and Bela Krajina, where also coal can be present. Dolomite and bituminous dolomite predominate in Krim hills area, where limestone is also present. Baux­ite loam and bauxite are present in a belt from Na­nos, Hrušica, via Rakek, Vrhnika, Grosuplje, Krka to Žužemberk. Snežnik area is composed of lime­stone and breccia with bauxite clay. Area between Tržišce, Škocjan and Krško hills and Gorjanci area is comprised of clayey and marly shales with chert and limestone (Plenicar, 2009). Marly limestone, limestone marlstone or clay­stone, tuffs and tuffite compose the area of Do­lenjska around Mišji Dol and Primskovo (Dozet & Buser, 2009). Quartz conglomerates and quartz sandstones appear in the area around Ortnek and south of Kocevje (Novak & Skaberne, 2009). Flysch with red and grey marlstone is found in Pivka valley (Drobne et al., 2009). Around Ilirska Bistrica is grey clay, lying on top of lignite. Coal was found south of Crnomelj and in Kocevje area. Red and brown clay spreads from Šmarje and Grosuplje via Ivancna Gorica to Trebnje and Mirna valley and in Mirna Pec and Novo mesto area. These rocks can include chert (Markic, 2009). Most of the area of Eastern Dinarides is cov­ered with brown soils and less rendzinas on carbonate rocks. Eutric brown soils formed on carbonate flysch rocks and dystric brown soils formed on siliciclastic rocks. The area of Bela Krajina is covered with leached soils and in some places with terra rossa, that does not form in this area any longer (Vidic et al., 2015). Pannonian basin Pannonian basin in Slovenia is known for its wide river valleys (Mura, Drava and Krško ba­sin) and low hills (Goricko, Slovenske gorice and Haloze with Kozjansko). River valleys are filled with gravel, sand and clay. Higher altitudes com­prise clastic rocks and sediments, such as sand­stone and marl. Due to the lithology, this area has a rugged terrain with intensive erosion and hydrogeological regime that is in favor to form­ing fertile soils, suitable for intensive agricul­ture. Larger areas of Pannonian basin are com­posed of clastic rocks and sediments with vein quartz gravel and less chert, mica schists, dia­base and andesite. Between these, lignite can be present. In some areas are coal, clay or “sivica” clay. Sandy and clayey marl, sandstone, sand, gravel and conglomerate and less limestone are present in the area of Štajerska basin and Mura basin. In Mura and Drava basin area are depos­its of oil and gas (Pavšic & Horvat, 2009). Gravel, sand and clay that originate from car­bonate and metamorphic rocks from Central Alps are found in the area of Goricko, Ljutomerske and Lendavske gorice and river valleys between them. In Goricko, traces of vulcanism can also be seen. Clays can contain iron or manganese ox­ides and hydroxides. Most of them are found in Krško basin and Bizeljsko where they are also li­monitized (Markic, 2009). Marlstones, calcaren­ites and other carbonate rocks, mainly limestone comprise the area in Krško basin around Catež (Pavšic & Horvat, 2009). Eutric brown soils formed on carbonate sedi­ments (gravel, sand, marl and flysch) on low re­lief. They are more common in Krško basin. Dys­tric brown soils have formed on noncarbonate sediments, mostly in Drava and Mura basin. Weakly-developed soils, such as rendzinas and rankers are scarce. Alluvial soils and hypogleys formed on extensive river plains (Drava, Mura). Pseudogleys developed on hill slopes (Vidic et al., 2015). Interior basins Larger valleys are located within Alps, Pre­alps and Dinarides. The largest ones are Ljublja­na-Kranj and Celje basin. They represent densely populated plains. Ljubljana-Kranj basin is filled with sediments of glacial, fluvio-glacial and la­custrine-glacial origin. Celje basin is a fertile valley filled with river sediments. In older river terraces, sediments have formed rocks (conglom­erate, sandstone, tillite). Celje basin is filled with sediments from grav­el to clay. Gravel is mainly composed of car­bonates, sandstone, keratophyre, diabase and chert (Markic, 2009). Ljubljana basin is filled with gravel, sand and clay. In Bled lake and Radovljica area are car­bonate sediments (silt and clay). Ljubljana moor is filled with gravels, sandy gravels and silty gravels with lacustrine and paludal sediments (Bavec & Pohar, 2009). Juvenile soils, that formed on alluvial plains, predominate in Interior basins. In some areas, the soils are affected by streams that accumulate re­cent material. Brown soils formed on sediments and alluvial soils formed next to rivers. Leached soils appear in northwestern part of Ljublja­na-Kranj basin. In Ljubljana moor area, topogen­ic peat soils have formed (Vidic et al., 2015). Results and discussion Table 3 shows basic statistical parameters, that were determined by parametric and nonpar­ametric statistical methods for chemical elements Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, Tl, U, V, Y, Zn, Zr. The basic statistical param­eters are mean, geometric mean, median, maxi­mum and minimum, quartiles and percentiles (Q1 (=P25), Q2 (=P50=Md), Q3 (=P75)), skewness and kurtosis. Basic statistical parameters are shown for whole of Slovenia (table 3) and separately for smaller spatial units in appendix 1/1-8. Box and whiskers diagrams were made for 9 major elements and for 11 trace elements (figs. 8 and 9). Box represent interquartile range (lower boundary of the box represents 1st quartile, upper boundary represents 3rd quartile) and whiskers represent Tukey inner fence (TIF). Concentration value axis scale is logarithmic. Table 4 shows calculated geochemical thresh­old values (X2S, MD2MAD, TIF, P95, P97.5) for 47 chemical elements (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, Tl, U, V, Y, Zn, Zr) for whole of Slovenia. In appendix 2/1-8 geochemical threshold val­ues (X2S, MD2MAD, TIF, P95, P97.5) for smaller spatial units in Slovenia are presented. Due to nature of geochemical data, which is generally applicable for the data set in question, logarithmic data transformation is required. Skewness and kurtosis values imply that our data set does not have a normal data distribution. Therefore, we calculated geochemical thresholds using log-transformed data (labeled L). Results were afterwards back transformed. In Europe, most of the element distributions clearly show the differences between the compo­sition of the northern and southern parts of Eu­rope. In northern Europe, influence of glaciation is obvious for most elements (Reimann et al., 2018). Reimann et al. (2018) showed soil composition data separately for northern and southern Europe, of which Slovenia is a part of. Therefore, the Sloveni­an soil element concentrations were compared with the soil concentrations of Europe and of southern Europe. Comparison of the element concentration in Slovenia with Europe shows that most of ele­ment concentrations are higher in Slovenia than in the whole Europe and also in the southern Europe. In Slovenia most of median element concentrations exceed median values in southern Europe (fig. 10). Mercury (Hg) and Cd medians are 2 times high­er in Slovenia than in southern Europe, while the concentration of In is almost 2 times higher. Sev­eral elements (Tl, Pb, Mo, Sb, Bi, S, Ag, Y, Sc) have around 1.5 times higher median values in Slove­nia. Only Ti, Zr, P, K, Sr and B have lower medi­an concentration values in Slovenia, compared to southern Europe. Comparison between determined MD2MAD values in Slovenia and southern Europe (fig. 11) shows that more elements in Slovenia have low­er MD2MAD values than in the case of median values. MD2MAD values in southern Europe are close to Slovenian threshold values for elements Sb, Na, Se and Cs. Lead (Pb), Y, In, Nb, V and Mo have around 1.5 times higher thresholds values in Slovenia and Tl has almost 2 times higher values in Slovenia, compared to southern Europe. Com­pared to southern Europe, Hg and Cd stand out the most, with more than 2.5 times higher thresh­old values in Slovenia. Most of Slovenian territory is represented by rendzinas and brown soils that have formed on carbonate rocks (Vidic et al., 2015; Zupancic et al., 2018). It took a long time for the soil to develop due to these soils forming on limestone and dolomites with 1–2 % insoluble rock residue. During soil de­velopment, the soil could also be under the influence of eolian and other deposits (Gosar, 2007). Soils on carbonate rocks often have higher concentrations of As, Bi, Co, Cr, Cu, Hg, Li, Mn, Nb, Ni, Pb, Sb, Th, U, V, Zn and Zr than Slovenian average con­centration values (Gosar, 2007). Large differences in geochemical composition between soils in Slove­nia and Europe can therefore be a consequence of prevailing carbonate lithology in Slovenia. For easier understanding of medians and cal­culated threshold values (X2S (L), MD2MAD (L), TIF (L) and P97.5) selected elements are shown in fig. 12 to 15. Medians and geochemical threshold values are shown for smaller spatial units (left part of the graph), for whole of Slovenia and in compar­ison, also for southern, northern and entire Europe (right part of the graph, according to the GEMAS project, Reimann et al. (2018)). On the graph, limit value is marked with the orange dash line, warn­ing value is marked with red dash line and critical value is marked with red full line according to De­cree on limit values, alert thresholds and critical levels of dangerous substances in the soil (Official Gazette RS, 1996). Reimann et al. (2018) used 98th percentile for European data, while in Slovenia we used 97.5th percentile, as in case of an ideal normal distribution, values of X2S, MD2MAD and 97.5th percentile coincide in the same value. Median values of individual spatial units in Slo­venia are similar for elements As, Pb, Sb and Zn. In case of Co and Cr, there are higher median values in Dinarides. Higher median values for Mo are in Eastern Dinarides. Of significance are higher medi­an values for Cu and Ni in Western Dinarides, where Ni median value exceeds the limit value (50 mg/kg) according to Official Gazette RS, 1996 (fig. 14). Large median value differences are apparent for Cd, with highest values in Western Alps, where median value also exceeds the limit value (1 mg/kg) according to Official Gazette RS, 1996 (fig. 12). Somewhat higher median values of Cd are also in Eastern Dinarides and Interior basins. Among the spatial units in Slo­venia, there are large differences between median values for Hg. Mercury (Hg) median value is much higher in Western Prealps (0.270 mg/kg), compared to other spatial units (fig. 13). Comparison with southern Europe shows that Cu median value in Slovenia (20 mg/kg) and southern Europe (19 mg/kg) are similar (fig. 13). Median values for As, Co, Cr, Mo, Ni, Pb, Sb and Zn are from 1.4 to 1.6 times higher in Slovenia than in southern Europe. Large differences be­tween median values in Slovenia and southern Europe are for Cd (0.48 mg/kg in Slovenia and 0.22 mg/kg in southern Europe (Reimann et al., 2018)) and Hg (0.106 mg/kg in Slovenia (Gosar et al., 2016) and 0.036 mg/kg in southern Europe (Reimann et al., 2018)). Calculated geochemical threshold values are similar between spatial units in Slovenia only for Sb (fig. 15). Smaller differences between spatial units are in case of As and Cr, where the thresh­old values are lower only in the Pannonian basin and Interior basins. Lower geochemical threshold values in Pannonian basin and Interior basins are also for elements Co, Cu and Ni. Cobalt have low­er values in Western Dinarides and Cu in Eastern Dinarides. Nickel has higher threshold values in also Western Prealps and Western Dinarides. In case of Zn, there are higher geochemical threshold values in Alps and Prealps. Large differences be­tween spatial units are visible for Pb, where there are higher threshold values in Alps and lower val­ues in Eastern Dinarides and Pannonian basin. Molybdenum threshold values are very high in Di­narides, compared to other spatial units. Greatest differences between spatial units are in case of Cd and Hg. Cadmium has higher geochemical thresh­old values in western Alps and Prealps (fig. 12) and Hg has higher values in Western Alps and highest threshold values in Western Prealps (fig. 13). For comparison of geochemical threshold val­ues between Slovenia and southern Europe we compared threshold values calculated using MD­2MAD approach, since TIF values are very high due to wide interquartile range and percentile threshold values are too dependent on number of samples. For As, Co, Cr, Sb and Zn, MD2MAD val­ues are similar or up to 20 % higher in Slovenia than in southern Europe. MD2MAD values for Ni and Cu are lower in Slovenia (Ni: 87 kg/kg, Cu: 54 mg/kg) than in southern Europe (Ni: 100 mg/kg, Cu: 73 mg/kg (Reimann et al. 2018)). For Mo and Pb, MD2MAD values in Slovenia are 1.5 to 1.7 times higher than in southern Europe. In Slovenia MD2MAD values for Hg are 2.6 times higher than in southern Europe, while threshold valued for Cd are 4.8 times higher than in southern Europe. Conclusion Slovenia was divided into smaller spatial units as homogeneous as possible. Spatial units are still very heterogeneous due to the high variability of the lithological parent material and soil type. Heterogeneity within an individual spatial unit is expressed by very different values of geochem­ical threshold, calculated by using different meth­ods. Differences between calculated geochemical threshold values reflect the different concentra­tions of elements among spatial units and espe­cially the high variability within individual units. Calculation of geochemical threshold using TIF method, that is based on the interquartile range (IQR), generally gives much higher values than other methods we used. This shows a high data variability between the first and third quartiles, which means a very high interquartile range (IQR). We conclude that in most cases TIF(L) values are very high, which is due to the already men­tioned large interquartile range (IQR). Therefore, we focused on calculations based on methods X2S.(L), MD2MAD(L) and P97.5. In case of an ide­al normal distribution, all three of these methods give the same value. In smaller spatial units, cal­culated threshold values using methods X2S(L), MD2MAD(L) and P97.5 result in large differenc­es. However, if we compare their values with the results that were calculated with data for whole of Slovenia, we see that they are much closer. This shows that the data set for whole Slovenia is more suitable for geostatistical analysis (larger num­ber of samples) than data for individual spatial units. Whole Slovenia and smaller spatial units discussed in the present work are lithologically and consequently pedologically heterogeneous. More homogeneous units could be established by considering the geochemical features of the soil on a single lithology, which would be extremely demanding and time-consuming. The fragmenta­tion of units and their number would not be ap­propriate. Geochemical maps are suitable for showing spa­tial variability of chemical elements in the soil and for identifying areas with higher element concen­trations. Geochemical maps are multilayer maps that are formed by connecting geochemical anal­yses and geographic-information systems. With geochemical maps, we identify spatial connections, for example, between higher element concentra­tions in soil and geogenic sources (lithological par­ent material) or anthropogenic sources (industry, traffic). At the Geological Survey of Slovenia, we have produced a number of geochemical maps at different scales and participated in the preparing of geochemical atlases of Europe (Reimann et al., 2014; Salminen et al., 2005). We studied mercury concentrations in the Slovenian soil and published a geochemical map of mercury distribution in Slo­venian soil (fig. 16) (Gosar et al., 2016). In the con­tinuation of the presented work, it would be useful to create geochemical maps for 47 elements based on data set presented in this paper. Acknowledgements Special thanks go to Dr. Mišo Andjelov, leader of the project “Radiometric map of Slovenia” (1990–1994), during which a great archive of soil samples was established, without which this research would not be possible. We are thankful for detailed review and overview of the work provided by prof. dr. Simon Pirc, dr. Matevž Novak and anonymous reviewer. With their help we improved our work. We dedicate this paper to our teacher Emeritus Professor Dr. Simon Pirc and hope that he continues to monitor and evaluate the work of his students still for a long time. The research was financed by the Ministry of the Environment and Spatial Planning (Report: Definiranje naravnih nivojev slednih prvin v tleh na ozemlju Slovenije (opredelitev mej naravne va­riabilnosti kemicnih elementov v zgornjem sloju tal v Sloveniji)) and Slovenian Research Agency for Research Programs P1-0020 and P1-0025, which are carried out at the Geological Survey of Slovenia. Uvod Kemicni elementi (prvine) so v okolju, torej tudi v tleh, naravno prisotni. Njihove povišane vsebnosti v okolju so lahko posledica naravnih danosti (pojavljanje mineralizacij oziroma oru­denj in kamnin z naravno visokimi vsebnostmi nekaterih elementov, kot so na primer serpenti­nit, crni skrilavi glinavci, itd.), ali pa jih povzro­cijo clovekove dejavnosti (rudarstvo, metalurgija, industrija, promet, kmetijstvo, itd.). Odvisno od obstojnosti zvrsti, v katerih kemicni elementi na­stopajo, lahko njihove povišane vsebnosti pred­stavljajo okoljska tveganja zaradi biodostopnosti škodljivih elementov. Antropogena kemicna kontaminacija je eden najbolj ocitnih znakov clovekovega vpliva na okolje. Dolgoletno delovanje razlicnih indu­strij, prometa in drugih clovekovih dejavnosti so povzrocili povišanje vsebnosti nekaterih ele­mentov v površinskih materialih (tla, sedimenti, itd.) in spremembe naravnega kroženja elemen­tov (Galuszka et al., 2014). Antropogeni vplivi navadno vodijo v obogatitev številnih elementov, še zlasti na industrijskih obmocjih. Nekateri ele­menti in njihovi izotopi se tako lahko uporabljajo kot geokemicni indikatorji antropogenega vpli­va. Poznamo tudi sekundarne ucinke onesnaže­nja, kot je na primer zakisljevanje, ki povzroca povecano geokemicno mobilnost elementov v površinskih materialih. Metode, ki jih geokemi­ki uporabljamo za oceno obsega antropogenega vpliva na okolje, vkljucujejo opredelitev ravni geokemicnega ozadja in mej naravne variacije, izracune obogatitvenih razmerij, geoakumula­cijskih indeksov in indeksov onesnaženja. Še po­sebej pomembna je uporaba geokemicnih ravni ozadja za locitev naravnega in antropogenega deleža onesnaženja (sl. 1 in 2) (Galuszka et al., 2014). S pomocjo opredelitve vrednosti mej narav­ne variabilnosti za posamezne elemente se dolo­ca obmocja z nenavadno visoko (ali nizko) kon­centracijo “potencialno strupenih elementov” (v nadaljevanju PTE – potentially toxic elements). Geokemicni prag, ki je definiran kot zgornja meja naravne variabilnosti, se uporablja za dolocitev obmocij z nenavadno visoko koncentracijo ele­mentov. Zanimiva je tudi spodnja meja naravne variabilnosti, ki je definirana v spodnjem delu porazdelitve geokemicnih podatkov in se uporab­lja za dolocitev obmocij z nenavadno nizko kon­centracijo elementov, saj lahko tudi pomanjkanje nekaterih elementov v tleh povzroca težave živim bitjem (Reimann et al., 2018). Spodnja meja na­ravne variabilnosti ne sodi v vsebino tega dela, zato je v nadaljevanju ne bomo obravnavali. Obmocja z nenavadno visokimi koncentraci­jami elementov v tleh je potrebno raziskati s po­sebno študijo, imenovano ocena tveganja, s katero ugotavljamo, ali te nenavadno visoke vsebnosti elementa lahko škodujejo okolju oz. živim bit­jem. Nekateri elementi so namrec potencialno strupeni že v nižjih vsebnostih, drugi pa so bi­ološko nujno potrebni, vendar njihove previsoke vsebnosti lahko škodujejo živim bitjem (Reimann et al., 2018). Pravilna ocena tveganja vkljucuje primerjavo izmerjenih koncentracij elementov z vrednostmi elementa, ki negativno ucinkujejo na okolje in zdravje ljudi na podlagi ekotoksiko­loških raziskav. Ta pristop prednostno upošteva ucinek abiotskih lastnosti tal (kot so mineralna sestava, tekstura in struktura tal ter voda in zrak v tleh) na biološko dostopnost (primeri v Smol­ders et al. (2009), Oorts & Schoeters (2014), Oorts et al. (2016) ali Birke et al. (2016)). Za dolocitev ocene tveganja na dolocenem obmocju so dodat­no potrebni še drugi podatki o tleh, kot so biodo­stopni delež elementov, kislost (pH) in zrnavost tal, kationska izmenjevalna kapaciteta ter skup­ni organski ogljik. Tudi ti morajo biti na voljo za vsako obravnavano obmocje. Geokemicno (ne to­ksikološko) zgornjo mejo naravne variabilnosti v obravnavanih tleh lahko preprosto dolocimo kot vrednost, nad katero je koncentracija elementa v tleh na podlagi danih podatkov “nenavadno viso­ka”. S tako dolocenimi zgornjimi mejami naravne variacije izdvojimo obmocja tal, ki zahtevajo vec­jo pozornost in morda nadaljnje analize in študije (Reimann et al., 2018). Nenavadno visoke koncentracije elementov v zgornjem sloju tal so lahko posledica antropoge­nih dejavnosti ali pa so naravnega izvora (Rei­mann et al., 2018). Za identifikacijo vzrokov visoke ravni elementov v tleh je potrebno zahtevno raz­iskovalno delo. Potrebno je izdelati kompleksno študijo, v kateri združujemo podatke o geoloških lastnostih (litološke znacilnosti ozemlja, podatki o morebitnih orudenjih) in okoljskih znacilnostih obravnavanega ozemlja, kot so npr. morebitni viri onesnaževanja (urbanizirana obmocja, kovinska industrija, termoelektrarne, druge vrste industri­je) ter informacije o podnebju, talnih in vegeta­cijskih znacilnostih in podobno (Reimann et al., 2018). Materiali in metode Tla kot vzorcni medij v geokemiji Tla so edinstven naravni vir, ki je neposred­no povezan s pridelavo hrane in splošno blaginjo, hkrati pa predstavljajo nenadomestljiv del na­ravnih ekosistemov. Zaradi številnih okoljskih, ekonomskih, socialnih in kulturnih funkcij so tla kljucnega pomena za življenje v kopenskih ekosi­stemih (Vidic et al., 2015). Tla predstavljajo zgornji del zemeljske skorje, ki ga sestavljajo mineralni delci, organska snov, voda, zrak in živi organizmi (FitzPatrick, 1986). So zelo pomembna za cloveštvo in za vzdrževanje zdravega naravnega okolja. Tvorba tal je pocasen proces. Tla nastajajo ob preperevanju litosfere zaradi medsebojnega de­lovanja tlotvornih (pedogenetskih) dejavnikov, kot so maticna podlaga, podnebje, relief, cas in organizmi. Maticna podlaga zagotavlja osnovno kolicino mineralnega gradiva (izjema je karbo­natna podlaga), iz katerega sestoje tla, in vpliva na debelino, na fizikalne, mineralne in kemicne lastnosti ter na nadaljnjo smer njihovega razvo­ja (FitzPatrick, 1986). Podnebje vpliva na razvoj s soncnim sevanjem in z dinamicnimi procesi v at­mosferi, ki prenašajo vlago, toploto in vplivajo na atmosfersko odlaganje delcev. Živi svet izmenjuje z maticno podlago in s tlemi snovi in energijo ter tako neposredno vpliva na razvoj tal. Relief po­sredno vpliva na oblikovanje tal s tem, da razpo­reja po površini snovi in energijo. Premešcanje ali zadrževanje snovi na prvotnem mestu je odvisno od strmine pobocja. Relief vpliva tudi na debeli­no in vlažnost tal. Na njihovo oblikovanje vpliva tudi clovek. Neposredno z obdelovanjem, gradnjo infrastrukture in naselij, posredno pa s spremi­njanjem reliefa, vodnega režima, rastlinstva in z onesnaževanjem, ki je lahko tockovno ali razpr­šeno. Tla imajo veliko puferno sposobnost, ki se nanaša na stabilnost talnega sistema in pH tal ter na zadrževalno sposobnost tal. Tako se uravnava vsebnost vode, mineralnih delcev, plinov kot tudi onesnaževal v tleh. Puferna sposobnost tal pa ni neomejena in zato lahko dolocena onesnaževala tudi presežejo zadrževalno oz. puferno sposob­nost tal (FitzPatrick, 1986). Tla so dinamicna kompleksna tvorba, v kateri ves cas potekajo biološki, kemicni in fizikalni pro­cesi. Predstavljajo zapleten ekosistem, ki omogoca rast rastlin in biogeokemicno kroženje elementov. Fizikalni procesi obsegajo razpadanje kamnine na manjše delce, pri cemer se njihova mineralna in kemicna sestava ne spremenita. Fizikalno raz­padanje povzrocajo temperaturne spremembe, delovanje zmrzali, vetra, ledenikov, rastlinskih korenin in vode. Zaradi takega razpadanja se poveca specificna površina delcev, kar omogoca hitrejše kemicno razpadanje. Kemicni procesi so raztapljanje, hidroliza, hidratacija, oksidacija ali redukcija ter tvorba glinenih in drugih mineralov. Pri vseh teh procesih ima pomembno vlogo voda, v kateri so raztopljeni razlicni plini in kemicne snovi. Vecina talnih procesov je posredno ali ne­posredno biološke narave. Organizmi so ucinkovi­ti dejavniki izluževanja in raztapljanja številnih elementov. Zaradi izredno velike razmnoževalne hitrosti mikroorganizmov je njihov skupni ucinek lahko znaten in je lahko pomemben v migraciji elementov v tleh (Siegel, 2002). Edinstvena znacilnost tal je razporeditev nji­hovih sestavin in lastnosti v plasteh, ki so odvisne od sedanjega površja in se spreminjajo z globino. Zaradi preperevanja, delovanja vode ter organiz­mov v tleh potekajo procesi premešcanja delcev, kemicnih elementov in humusnih snovi. Tako na­stanejo v tleh plasti, ki se razlikujejo po morfo­loških lastnostih: barvi, prekoreninjenosti, deležu humusa, deležu skeleta, vlažnosti in drugem. Po­samezne plasti imenujemo talni horizonti. Nastali so v procesu nastanka in razvoja tal v medseboj­ni odvisnosti. Debeli so od nekaj centimetrov do vec metrov. Skupaj sestavljajo talni profil (Siegel, 2002). Sledni elementi v tleh so vezani v obstojnih pr­votnih mineralih, ki izvirajo iz maticne kamnine, v drugotnih, novonastalih mineralih, ter veza­ni na glinene minerale in organsko snov. Ker pa poleg geoloških in pedoloških znacilnosti dajejo tudi informacijo o onesnaževalih v zraku, so tla zelo uporaben in razširjen vzorcni medij. V letih 1990–1993 je Geološki zavod Slovenije izvedel regionalno vzorcenje tal celotnega ozem­lja Slovenije za potrebe izdelave karte naravne radioaktivnosti. Tla so bila sistematicno vzorcena v mreži 5 × 5 km, v kateri je bila merjena tudi na­ravna radioaktivnost (sl. 3) (Andjelov, 1994). Skup­no je bilo odvzetih 817 vzorcev zgornje plasti tal (0–10 cm), ki so bili posušeni in presejani na frak­cijo <2 mm. Del vzorcev je bil arhiviran v depoju GeoZS. Leta 2012 so bili vzorci vzeti iz depoja, zmleti v ahatnem mlincku (<0,075 mm) in posredo­vani v kemicne analize v Bureau Veritas Mineral Laboratories (Vancouver, Kanada). Vzorci so bili analizirani z metodo induktivno vezane plazem­ske masne spektrometrije (ICP-MS) po razklopu z modificirano zlatotopko (15 g vzorca so razto­pili v mešanici kislin HCl : HNO3 : H2O = 1 : 1 : 1). Dolocene so bile vsebnosti naslednjih 53 elemen­tov: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr. Presoja kakovosti analitike Kakovost analitike smo ocenili na podlagi re­zultatov kemicnih analiz standardnih materialov (OREAS 43P, OREAS 44P, OREAS 45P, OREAS 45CA), katerih vsebnosti analiziranih elementov smo primerjali s priporocenimi vrednostmi, ter s ponovitvami analiz standardnih materialov in vzorcev tal. To je omogocilo oceno tocnosti (A ac­curacy) in natancnosti (P precision) uporabljene analitske metode za analizirane kemicne elemen­te (sl. 4 in 5). Naredili smo tudi pregled, v koliko vzorcih tal so vsebnosti obravnavanih kemicnih elementov pod mejo dolocljivosti (spodnja meja zaznavnosti) (tabela 1). Tocnost (A accuracy) ana­litike ocenjujemo z relativno razliko med analit­sko vrednostjo elementa v vzorcu in njeno pripo­roceno vrednostjo. Navadno primerjamo analitske vrednosti geoloških standardnih materialov z nji­hovimi priporocenimi vrednostmi (Abbey, 1983; Reimann et al., 2009). Posamezni standardi so bili pod laboratorijskimi številkami nakljucno poraz­deljeni med ostale vzorce in veckrat analizirani. Izracunana razmerja med ponovitvami analiz in priporocenimi vrednostmi so pravzaprav poprav­ni kolicnik, s katerim bi morali deliti analizirane vrednosti, da bi se bolje približali priporocenim vsebnostim v vzorcih (Gosar, 2007). Natancnost (P precision) analitike predstavlja mero ponovljivosti dolocanja nekega parametra v istem vzorcu ali v standardnem materialu ne gle­de na odstopanje od priporocene vrednosti (Rose et al., 1979; Reimann et al., 2009). Kemicne elemente Ge, Pd, Pt, Re, Ta in W smo izlocili iz nadaljnje obdelave, ker je bila njihova vsebnost v vec kot 30 % vzorcev nižja od spodnje meje zaznavnosti analitike (tabela 1). Za ostale elemente smo ugotovili, da so obcutljivost, tocnost (A accuracy) in natancnost (P precision) analitike zadovoljivi (tabela 1), zato smo rezultate vkljucili v nadaljnjo statisticno obdelavo. Na podlagi zgoraj navedenih ugotovitev smo v nadaljnjih statisticnih obdelavah obravnavali naslednjih 47 elementov: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, Tl, U, V, Y, Zn, Zr. Pregled metod za opredelitev zgornje meje naravne variabilnosti V znanstveni literaturi najdemo vec metod za dolocanje geokemicnih zgornjih mej naravne va­riabilnosti za dolocitev anomalno visokih vsebno­sti elementov. V nadaljevanju povzemamo izbor najpogosteje uporabljenih metod. Prvi in najpreprostejši pristop, pri katerem izracunamo zgornjo mejo naravne variabilnosti, temelji na izracunu “aritmeticna sredina + 2 × standardni odklon (SD)” (okrajšano: X2S) za dane podatke. S tem izracunom so v preteklih geoke­micnih raziskavah za iskanje mineralnih surovin racunali vsebnost za definiranje meje med vseb­nostmi, ki sodijo v geokemicno ozadje in anomalno visokimi vsebnostmi, ki lahko nakazujejo obmocja mineralizacije (Matschullat et al., 2000; Reimann & Garrett, 2005; Reimann et al., 2018). Ta metoda ima vec pomanjkljivosti, med katerimi je najpo­membnejša neupoštevanje vecmodalne narave ge­okemicnih podatkov (Reimann & Filzmoser, 2000). Geokemicni podatki so prostorsko variabilni, na njihove vrednosti vplivajo številni dejavniki in so pogosto nenatancni zaradi neizogibnih na­pak pri vzorcenju, pripravi vzorcev in analizah. Reimann in sodelavci (2005) so glede na naštete lastnosti geokemicnih podatkov predlagali za­menjavo prej omenjenega pristopa z izracunom “mediana + 2 × mediana absolutnih standardnih odklonov od mediane (okrajšano MAD)” (okraj­šano: MD2MAD), kjer je mediana definirana za podatke x1, … …, xn kot medianaj(xj). Nato se do­loci medianai(xi) iz novega seta podatkov, ki se ga doloci kot absolutna vrednost razlike med posa­mezno vrednostjo novega vzorca in medianej(xj). MAD je tako definiran kot: MADi(xi) = 1,48 × medianai|xi – medianaj(xj)| V primeru normalne porazdelitve podatkov je definicija MAD s konstanto 1,48 približek osnov­nemu standardnemu odklonu (SD) (Rousseeuw & Croux, 1993; Reimann et al., 2018). Ta metoda veliko bolje izpostavi anomalno visoke vsebnosti. Metoda X2S ugotovi predvsem samo ekstremne vrednosti, ki ne predstavljajo vedno tudi anomal­no visokih vsebnosti. Pomanjkljivost metode MD­2MAD je, da je ne smemo uporabiti na surovih, netransformiranih podatkih (Reimann et al., 2018). Pogoj za uporabo je namrec simetricna (in zlasti normalna) porazdeljenost podatkov. Ce jo uporabimo za netransformirane podatke, dobimo kot rezultat zelo konzervativne (nizke) vrednosti zgornjih mej naravne variabilnosti, pogosto okoli 90. percentila. To je posledica desne asimetric­nosti porazdelitve geokemicnih podatkov, ki je v geoloških materialih zelo pogosta. Obrazec za iz­racun predpostavlja osnovno simetricno (ne nujno normalno) porazdelitev podatkov. Zato je pravi­len pristop k uporabi te metode izracun “medi­ana + 2 × MAD” (MD2MAD) s transformiranimi podatki (npr. z uporabo logaritemske transforma­cije) ter ponovno re-transformacijo rezultata iz­racuna (Reimann et al., 2018). V zadnjem primeru torej mejno vrednost za anomalno visoke vsebno­sti z logaritemsko transformacijo izracunamo po obrazcu: Zgornja meja naravne variacije (po metodi MD2MAD) = 10b kjer je b = (medianai (log10(xi)) + 2 × MADj (log10(xj)) Vrednosti, ki jih pridobimo s tem pristopom, so pogosto primerljive z metodo TIF (Tukeye­va notranja meja; ang. Tukey Inner Fence) (Rei­mann et al., 2018). Ta metoda temelji na diagra­mu škatla z brki, ki omogoca dolocanje zgornjih mej naravne variabilnosti, tudi ce med podatki ni vzorcev z anomalno visokimi vsebnostmi (torej je max < TIF). Izracuna se po sledecem obrazcu z ekstrapolacijo iz medkvartilnega razpona (25. do 75. percentil) vseh podatkov, kar predstavlja cen­tralno “škatlo”: TIF = Q3 + 1,5 × IQR Q3 je 3. kvartil (ekvivalent 75. percentilu) in IQR (Interquartile range) predstavlja medkvar­tilni razpon (75.–25. percentil). Faktor množenja 1,5 v formuli temelji na domnevi o simetricni po­razdelitvi podatkov. Vse vrednosti, ki so vecje od tako postavljene meje, so anomalno visoke vseb­nosti. S tem pristopom TIF predstavlja mejo na­ravne variabilnosti (Reimann et al., 2005). Tudi TIF mora biti v primeru desno asimetricnih geo­kemicnih podatkov izracunan preko log- (ali dru­gace) transformiranih podatkov, da se ti približa­jo “simetricnosti”. TIF je ena najbolj zanesljivih metod za izracun meje naravne variabilnosti za kakršnekoli podatke (Reimann & Caritat, 2017; Reimann et al., 2018). Reimann s sodelavci (2005) je primerjal nave­dene metode v primeru normalne porazdelitve in logaritemsko normalne porazdelitve. Rezultati so pokazali, da diagram škatla z brki poda najbolj­še rezultate v primeru, da je vzorcev z anomalno visokimi vsebnostmi manj kot 10 %. V primeru, da je vzorcev z anomalno visokimi vsebnostmi vec kot 15 % ali celo vec kot polovica vseh po­datkov, da uporabne rezultate le metoda “media­na + 2 × MAD” (MD2MAD) (Reimann et al., 2005). Metoda “aritmeticna sredina + 2 × standardni odklon (X2S)” izpostavi le ekstremne vrednosti. Smiselna je le v primeru, ko vsi vzorci z anomal­no visokimi vsebnostmi predstavljajo hkrati tudi ekstreme. Za dolocitev vzorcev z anomalno visokimi vsebnostmi se uporablja tudi graficni prikaz po­razdelitve podatkov v diagramu kumulativne verjetnosti (CP) (Reimann et al., 2018). Diagram prikazuje statisticne porazdelitve podatkov, iz katerih je mogoce zaznati procese, ki povzro­cajo odstopanje od splošne porazdelitve podat­kov (Reimann et al., 2005; Reimann et al., 2018). Omogoca dolocitev vzorcev z anomalno visokimi vsebnostmi ter njihovo oddaljenost od ostalih podatkov. Vrednosti nad zgornjo mejo narav­ne variacije se najpogosteje zazna kot prelom v porazdelitveni krivulji podatkov na teh diagra­mih. Zgornjo mejo naravne variabilnosti lahko dolo­cimo tudi z uporabo pristopa, ki temelji na percen­tilih (Reimann et al., 2018). Mejo lahko postavimo pri 90., 95., 97,5. ali 98. percentilu danih podatkov (okrajšano: P90, P95, P97.5 ter P98, glej tudi An­der et al., 2013). Osemindevetdeseti percentil, ki predstavlja 2 % najvišjih vrednosti, je najbližje iz­virni metodi racunanja X2S v primeru normalne porazdelitve, ki bi v tem primeru dolocila 2,3 % vrednosti nad zgornjo mejo naravne variabilnosti. S tem pristopom se lahko odkrije nesmiselno viso­ke mejne vrednosti naravne variabilnosti na zelo velikih obmocjih, saj ne upoštevajo vpliva ozadja, ki se prostorsko spreminja. Prav tako ne obstaja znanstveni razlog, zakaj bi moralo biti 2, 5 ali 10 % vzorcev dolocenih za “anomalne”. S temi metoda­mi se najenostavneje doloci le najvišje vrednosti podatkov, ki so seveda lahko tudi anomalne. Meto­da je vsekakor zelo prakticna, ker je enostavna in ni potrebno, da so podatki normalno porazdeljeni. Zato podatkov tudi ni potrebno transformirati. V Veliki Britaniji pogosto uporabljajo diagra­me kumulativne verjetnosti in percentile (naj­pogosteje 95. percentil – P95) za ugotavljanje vzorcev, ki odstopajo od “normalne variacije v definiranem ozadju” in za dolocitev geokemicne­ga praga (zgornjih mej naravne variabilnosti) na dolocenem obmocju (npr. Cave et al., 2012; John­son et al., 2012; Ander et al., 2013). Geološke in pedološke znacilnosti Slovenije in razmejitev na manjše prostorske enote Slovenija leži na ozemlju stika 3 velikih geotek­tonskih enot in je zato geološko zelo pestra. Velik del Slovenije sestavljajo klasticne kamnine in se­dimenti, ki obsegajo približno polovico površine ozemlja Slovenije ter karbonati (apnenci in dolomi­ti), ki jih je okoli 40 %. Metamorfne kamnine obse­gajo približno 4 % površine slovenskega ozemlja, piroklasticnih kamnin je manj kot 2 %, najmanj (1,5 %) pa je magmatskih kamnin (Komac, 2005, sl. 6). Ker so v Sloveniji tlotvorni dejavniki, torej maticna osnova, relief, klima, vodne razmere, ra­stlinske združbe, dejavnost organizmov in aktiv­nosti cloveka, mocno spremenljivi in se pojavljajo v razlicnih kombinacijah, je tudi talna odeja zelo pestra (Vidic et al., 2015). Najvecji vpliv na nastaja­nje tal, in s tem tudi na pestrost talnih tipov v Slo­veniji, imata maticna podlaga in relief (Vidic et al., 2015). Za Slovenijo je najbolj znacilna karbonatna podlaga (karbonatne kamnine ter sedimenti in se­dimentne kamnine, ki vsebujejo karbonatna zrna ali vezivo) ter tla, ki se tam razvijajo. V visokogor­skih obmocjih in na strmih pobocjih najdemo lito­sole in plitve rendzine. V nižjih predelih in na manj strmih pobocjih pa nastopajo skupaj z rendzinami tudi rjava pokarbonatna tla (Vidic et al., 2015). Na karbonatnem flišu zahodne Slovenije in laporovcih vzhodne Slovenije prevladujejo rendzine in evtric­na rjava tla. Rendzine se pojavljajo tudi na drugih klasticnih karbonatnih sedimentih, kot so prodi in peski v nekaterih recnih dolinah (Vidic et al., 2015). Na drugih nekarbonatnih klasticnih kamninah, na vecini metamorfnih in magmatskih kamnin so di­stricni rankerji, districna rjava tla in rjava izprana tla. V nižinah vzhodne Slovenije (Dravsko, Ptujsko polje, Prekmurje) so na nekarbonatnih sedimentih razvita districna tla (Vidic et al., 2015). V nadaljevanju povzemamo prostorsko razde­litev Slovenije, ki smo jo izvedli na podlagi geolo­ške zgradbe, kamninske sestave (litologije), reliefa, podnebja in rastlinstva skladno s predlogi Polja­ka (1987). Slovenijo smo razdelili na 8 manjših prostorskih enot (Zahodne Alpe, Vzhodne Alpe, Zahodne Predalpe, Vzhodne Predalpe, Zahod­ni Dinaridi, Vzhodni Dinaridi, Panonska nižina, Notranje kotline, sl. 7), katerih znacilnosti poda­jamo v nadaljevanju. Prostorske enote smo dolocili in poimenovali samo za Slovenijo in poimenovanje nima enakega pomena kot v Evropi in celotnih Al­pah. Geološke znacilnosti so povzete iz monografi­je Geologija Slovenije (Plenicar et al., 2009), pedo­loške pa po monografiji Tla Slovenije s pedološko karto v merilu 1 : 250 000 (Vidic et al., 2015). Vzorcna mesta tal, ki so bila vzorcena v mre­ži 5 × 5 km, smo v skladu s prikazano prostorsko porazdelitvijo Slovenije, pripisali posameznim prostorskim enotam. V tabeli 2 je navedeno število vzorcev tal (N), odvzetih v posamezni prostorski enoti. Zahodne Alpe Zahodne Alpe obsegajo Julijske Alpe, Kam­niško Savinjske Alpe in Karavanke, ki reliefno predstavljajo najvišje vrhove v Sloveniji. Vecji del te prostorske enote obsega obmocja nad gozdno mejo, torej je vegetacija skromna, tla so vecinoma plitva (rendzine) ali nerazvita. Obmocje Julijskih in Kamniško Savinjskih Alp je zgrajeno pretežno iz karbonatnih kamnin. To obmocje se je oblikova­lo z ledeniškim delovanjem in je podvrženo recen­tni kraški eroziji. Zaradi litološke sestave in kraške erozije se obmocje Alp imenuje tudi “visoki ali alp­ski kras”. Karavanke predstavlja dolg gorski gre­ben, ki se vlece v ozkem pasu ob avstrijski meji do Mežice na vzhodu. Litološka sestava je pestra. Pre­vladujejo ciste karbonatne kamnine. Najdemo pa tudi raznovrstne klasticne in magmatske kamnine. Julijske Alpe so v vecini sestavljene iz apnen­cev in dolomitov (Dozet & Buser, 2009). Mestoma najdemo apnence z roženci, glinene laporovce ter apnence z manganovimi gomolji (Buser & Dozet, 2009). V okolici Pokljuke – Bohinja ter Jelovice so pomembnejša orudenja železa (Ogorelec et al., 2006; Pirc & Herlec, 2009). V južnem delu Julij­skih Alp so manjša obmocja krednega flišnega la­porovca (Plenicar, 2009). Kamniško Savinjske Alpe sestavljajo vecino­ma karbonatne kamnine, mestoma izdanjajo tudi klastiti (Dozet & Buser, 2009). Na širšem obmocju Smrekovca in Gornjega Grada ležijo karbonatni konglomerati, ki prehajajo v laporasto glino ali sivico. Na obmocju Smrekovca ter v manjših ob­mocjih znotraj Kamniško Savinjskih Alp najdemo oligocenske vulkanoklasticne kamnine (Pavšic & Horvat, 2009). V Karavankah prevladujejo karbonatne ka­mnine (apnenci in dolomiti) razlicnih starosti. Po­goste so tudi klasticne kamnine, kjer se mestoma na njihovem stiku z apnencem pojavljajo orudenja železa, svinca, cinka in antimona (Ramovš & Bu­ser, 2009; Novak & Skaberne, 2009). V Karavan­kah se mestoma pojavljajo magmatske kamnine. Ponekod najdemo apnence z roženci, skrilave gli­navce in sledove manganove rude, ki so jo v prete­klosti kratek cas tudi izkorišcali. Na karbonatnih kamninah v višjih legah z nekoliko strmejšim reliefom je prevladujoci tal­ni tip rendzina (profil A-C ali A-R), ki le mesto­ma prehaja v rjava pokarbonatna tla (A-B-C). Na klasticnih in vulkanoklasticnih kamninah so di­stricna rjava tla (Vidic et al., 2015). Vzhodne Alpe Vzhodne Alpe obsegajo Pohorje, velik masiv, ki se ostro loci od sosednjih ozemelj. Gradijo ga pretežno magmatske in metamorf­ne kamnine, iz katerih pri preperevanju nastajajo na strmejših delih rankerji, bolj pogosto pa dis­tricna rjava tla (Vidic et al., 2015). Vecinoma so to rodovitna tla, ki omogocajo ob obilju padavin in nepropustni geološki podlagi gost vegetacijski pokrov iglavcev, mešanega gozda in travnikov. Na osrednjem delu grebena Pohorja je gra­nodioritni batolit, ki ga obdajajo metamorfne kamnine. Posebnosti sta eklogit in granatov pe­ridotit. Na severnem delu Pohorja najdemo pred­vsem blestnik, gnajs in amfibolit, manj je eklogita in marmorja. Amfibolit je tudi na jugozahodnem delu Pohorja, ki tu vkljucuje klorit in epidot (Hin­terlechner-Ravnik & Trajanova, 2009). Zahodno od Kobanskega so razvite manj me­tamorfozirane kamnine, ki prehajajo v mocneje metamorfozirane kamnine, ki jih predstavljajo filitni skrilavci s kvarcitom, metakeratofir, mar­mor in grafitni skrilavec ter amfibolovi skrilavci s kloritom in epidotom. Na nekaterih obmocjih je zelo pogost mineral granat (Hinterlechner-Rav­nik & Trajanova, 2009). Na Kozjaku ter v Rib­niško-selniškem tektonskem jarku so miocenski konglomerati, ki vsebujejo tudi dacitne tufe (Pavšic & Horvat, 2009). Na zahodnem obmocju Vzhodnih Alp so kre­menovi pešcenjaki, konglomerati in meljevci. Mestoma se pojavljajo dolomiti, apnenci, laporov­ci in glinavci (Dozet & Buser, 2009; Buser & Do­zet, 2009). V okolici Stranic in Zrec so dolomiti s plastmi crnega premoga ter glinavci, meljevci in laporovci. V Velenjski kotlini je veliko plio­kvartarnih klastitov, ki izvirajo iz podlage in jih zastopajo karbonati ter piroklasticne kamnine z andezitom in dacitom, med njimi pa je prisoten lignit (Markic, 2009). Magmatske kamnine na Pohorju izdanjajo na obmocju štalenskogorske serije in železnokapel­ske magmatske cone. Štalenskogorska serija po­teka vzdolž reke Meže preko Slovenj Gradca na severozahodno Pohorje ter na obmocje Remšnika. Kisle magmatske kamnine sestavljajo osrednji del serije, na severnem delu serije pa so bazicne magmatske kamnine (Trajanova, 2009). Železno­kapelska magmatska cona poteka vzdolž Peria­driatskega prelomnega sistema, južno od Pece, preko Koprivne in Crne na Koroškem in tone pod sedimente v okolici Plešivca. Cono v vecini ses­tavljajo kisle magmatske kamnine. Na severnem delu je sienogranitni masiv, na južnem pa tonali­tni. V sienogranitnem masivu so prisotni gabro, monzogabro, monzodiorit in monzonit (Dobnikar & Zupancic, 2009; Trajanova et al., 2009). Tonali­tni pas pa sestavlja v vecini rogovacno-biotitni in biotitni tonalit, ki ponekod prehaja v granodiorit (Trajanova et al., 2009). Zahodne Predalpe Na sliki 6 je razvidno, da imajo Predalpe zelo heterogeno litološko zgradbo. Sestavljajo jo kar­bonati, karbonatno-klasticne in siliciklasticne kamnine. Litološka sestava mocno vpliva na ero­zijo in vegetacijo. Zahodne Predalpe zavzemajo osrednji del Slovenije, ki leži zahodno od Lju­bljanske kotline in obsegajo Idrijsko-Žirovsko ozemlje s hribovjem okoli Tolmina, ob Baci in Selški Sori, Polhograjsko hribovje, Škofjelo­ško hribovje, Poljansko-Vrhniško ozemlje ter Trnovski gozd, Nanos, Hrušico in Javornike. Na Polhograjsko-Vrhniškem obmocju najdemo kla­sticne kamnine, predvsem kremenove pešcenjake in kremenove konglomerate (Novak & Skaberne, 2009). V širokem pasu med Cerknim in Smrec­jem se pojavljajo pešcenjaki, konglomerati in muljevci. V tem obmocju je veliko rudišc bakra in uranovo rudišce. Obsežno obmocje Polhograj­skega hribovja, Cerkljanskega in Idrijskega ses­tavljajo apnenci, dolomiti, laporovci in meljevci. Na Idrijskem se menjavajo glinavci in pešcenjaki, ki so bogato orudeni s cinabaritom (Dozet & Bu­ser, 2009). Na obmocju med Petrovim Brdom in Železniki so navzoci skrilavi glinavci, pešcenja­ki, apnenci z roženci in brece (Plenicar, 2009). V Škofjeloškem hribovju mestoma najdemo bazic­ne magmatske kamnine (Hinterlechner-Ravnik & Trajanova, 2009). Na obmocju Trnovskega gozda, Banjške pla­note, Hrušice, Javornikov ter Nanosa izdanjajo karbonatne kamnine (apnenci in dolomiti). V pasu od Nanosa in Hrušice proti Žužemberku najdemo boksitno ilovico in boksit (Buser & Dozet, 2009). Na obmocju Tolmina se pojavljajo plošcati apnenci z roženci, ki jih najdemo tudi na Škofjelo­škem hribovju (Dozet & Buser, 2009). Med Perblo in Tolminskimi Ravnami je veliko manganovega orudenja in železovo manganovih gomoljev (Buser & Dozet, 2009). Na obmocju Posocja se ponekod pojavlja apnenceva breca, na kateri leži laporovec, ki prehaja v flišne plasti (Plenicar, 2009). Kredne in paleocenske karbonatne fliše sestavljajo plasti rdecega ali sivega laporovca (Drobne et al., 2009). Na manjših obmocjih v zgornjem Posocju najdemo jezerske sedimente, v katerih prevladuje karbo­natna komponenta (Bavec & Pohar, 2009). Na skrajnem zahodnem delu Zahodnih Pre­dalp, kjer so vecinoma flišne kamnine, so prevla­dujoc talni tip evtricna rjava tla. V zahodnem delu, kjer je vec karbonatnih kamnin, so na strmejših obmocjih rendzine (profil A-C ali A-R), ki ob ugodnih pogojih za razvoj tal prehajajo v rjava pokarbonatna tla (A-B-C). V centralnem in vzhodnem delu Zahodnih Predalp prevladujejo klasticne kamnine, na katerih so districna rjava tla (Vidic et al., 2015). Vzhodne Predalpe Vzhodne Predalpe obsegajo obmocje Posa­vskih gub vzhodno od Ljubljanske kotline, ki predstavljajo vrsto grebenov in dolin v smeri vzhod-zahod. Podobno kot Zahodne Predalpe imajo tudi Vzhodne zelo heterogeno litološko zgradbo. Obmocje je zgrajeno pretežno iz klastic­nih kamnin. Litološka sestava mocno vpliva na stopnjo erozije in vegetacijo, ki je vecinoma bujna s prevladujocim mešanim gozdom in obdelanimi površinami. V južnem delu Posavskih gub so laporovci, meljevci, glinavci, apnenci in pešcenjaki. V se­vernem delu je vec skrilavega glinavca, meljevca in dolomita, v osrednjem delu Posavskih gub pa prevladujeta apnenec in dolomit, ki se mestoma pojavljata tudi v južnem in severnem delu Po­savskih gub. Ponekod se pojavlja tudi apnenec z rožencem (Dozet & Buser, 2009). Vec apnenca in dolomita je tudi na obmocju Tuhinjske doline in Mirne ter južno od Sevnice (Buser & Dozet, 2009). Na obmocju Radec izdanjajo pešcenjaki, konglomerati in meljevci. Na tem obmocju so pri­sotna tudi manjša bakrova orudenja (Skaberne et al., 2009). Vzhodno od Ljubljane se mestoma po­javljajo klasticne sedimentne kamnine, v katerih so žilna rudišca Pb, Zn, Hg, Cu, Ba in Sb (Novak & Skaberne, 2009). V Litijskem narivu so flišne klasticne kamnine (Plenicar, 2009). V okolici Bohorja najdemo ma­gmatske kamnine, ki so mestoma obogatene s Pb in Zn (Trajanova & Grafenauer, 2009). Na severozahodnem delu Posavskih gub naj­demo konglomerate, ki jim sledijo glina, laporo­vec in pešcenjak, na vzhodnem delu pa poleg teh še piroklastite ter malo premoga, ki ga vec najde­mo od Laškega do Zagorja. Premog so izkorišca­li v premogovnikih Zagorje, Trbovlje, Hrastnik, Laško in Senovo (Markic, 2007). Na obmocju Celjske, Senovške in Laške sinklinale so apnen­cevi pešcenjaki, kremenov pesek in glinast lapor (Pavšic & Horvat, 2009). Na južnem in severnem delu obmocja, kjer je vec klasticnih kamnin, so districna rjava tla in rankerji. Na karbonatnih klasticnih kamninah predvsem v vzhodnem delu Vzhodnih Predalp so evtricna rjava tla. V osrednjem delu so na karbo­natnih kamninah rendzine (profil A-C ali A-R) in rjava pokarbonatna tla (A-B-C) (Vidic et al., 2015). Zahodni Dinaridi Zahodne Dinaride sestavljajo široke doline (Vipavska dolina, Matarsko podolje), gricevja in obsežna planota Kras, ki se raztezajo v smeri se­verozahod–jugovzhod. Podnebje in rastlinstvo sta submediteranska. Na planoti Kras najdemo apnenec in dolomit ter nekaj brece z boksitno glino. Podobno je tudi v Cicariji in Matarskem podolju. Ponekod apnenec vsebuje lece in pole roženca. V okolici Lipice in v Secovljah najdemo plasti premoga (Plenicar, 2009). Velik del obmocja Zahodnih Dinaridov obsega fliš (plasti laporja, pešcenjaka in karbonatnega turbidita). V Vipavski dolini, Goriških Brdih in Koprskem gricevju najdemo rdece in sive lapo­rovce (Drobne et al., 2009). Na obmocju Goriških Brd najdemo kredni fliš (Plenicar, 2009) in apne­nec (Drobne et al., 2009). Meja med krednimi in terciarnimi plastmi je najbolje vidna na Krasu med Sežano in Kozino in je zaznamovana s povišanjem iridija, kamni­ne vsebujejo tudi vec živega srebra (Hg) in redkih zemelj (Plenicar, 2009). Na meji kreda/terciar so povišane tudi vsebnosti nekaterih drugih elemen­tov: Ga, Sm, Zr, Co, Ni, V (Drobne et al., 2009). Mestoma se apnenec nahaja tudi na obmocju fli­šnih kamnin. Na karbonatnih kamninah (apnenci in do­lomiti) prevladujejo rjava pokarbonatna tla in rendzine. Na Krasu veckrat najdemo poseben razlicek rjavih pokarbonatnih tal, imenovan je­rovica (terra rossa). Jerovice nastajajo na trdih apnencih in dolomitih, kjer se pojavlja subme­diteransko podnebje. Kambicni horizont je iz­razito rdece barve. Horizont A je slabo izražen in zato slabo opazen, saj organska snov zaradi toplega in suhega podnebja hitro razpade in se mineralizira. Stik z maticno podlago je izrazito neenakomeren, žepast. Na obmocju karbonatnih flišnih kamnin (Vipavska dolina, Goriška Brda in Koprsko gricevje) so evtricna rjava tla, na fli­šnih kamninah v jugovzhodnem delu Zahodnih Dinaridov pa so districna rjava tla (Vidic et al., 2015). Vzhodni Dinaridi V Vzhodnih Dinaridih prevladuje hribovit kraški svet, ki leži na nadmorski višini do 1000 metrov, z vegetacijo mešanega do listnatega goz­da s travniki. Podobno kot v Zahodnih Dinaridih se hribovja raztezajo v smeri severozahod–ju­govzhod. Na vzhodu je Belokranjska planota, ki predstavlja prehod v Panonsko nižino. Ozemlje je v vecini sestavljeno iz apnencev in dolomitov. Vzhodni Dinaridi se imenujejo tudi “nizki ali di­narski kras”. Prevladujoci talni tip so rjava po­karbonatna tla (Vidic et al., 2015). Apnenec in dolomit (mestoma tudi laporovec, glinavec in pešcenjak) gradita vecino obmocja Vzhodnih Dinaridov. Na obmocju Cerkniškega jezera, Logaške planote, Kocevskega in Bele Kra­jine izdanja bituminozni dolomit, ki ponekod pre­haja v apnence. Pojavljajo se tudi lece premoga. V Krimskem pogorju in v njegovi okolici je apnenec, prevladujeta pa dolomit in bituminozen dolomit. V pasu Nanos, Hrušica, Rakek, Vrhnika, Grosuplje, Krka, Žužemberk sta prisotna boksitna ilovica in boksit. Obmocje Snežnika je zgrajeno iz apnenca in brece z boksitno glino. Na obmocju med Trži­šcem in Škocjanom ter proti Krškem hribovju in na Gorjancih so razviti glinasti in laporasti skri­lavci z rožencem in apnencem (Plenicar, 2009). Na Dolenjskem v okolici Mišjega Dola in Prim­skovega so crni laporasti apnenci, apnencevi la­porovci ali glinavci, tufi in tufiti (Dozet & Buser, 2009). V okolici Ortneka in južno od Kocevja so kremenovi konglomerati in kremenovi pešcenjaki (Novak & Skaberne, 2009). V Pivški kotlini izda­njajo flišne kamnine s plastmi rdecega in sivega laporovca (Drobne et al., 2009). V okolici Ilirske Bistrice najdemo sivo glino nad lignitom. Premog so odkrili tudi južno od Cr­nomlja ter v okolici Kocevja. Rdece in rjave gli­ne se razširjajo od Šmarja in Grosupljega preko Ivancne Gorice do Trebnjega ter v Mirnski dolini in v okolici Mirne Peci in Novega mesta. Ponekod vsebujejo veliko roženca (Markic, 2009). Na vecini ozemlja Vzhodnih Dinaridov so rja­va pokarbonatna tla in redkeje rendzine na kar­bonatnih kamninah. Na karbonatnih flišnih ka­mninah so evtricna rjava tla, na siliciklasticnih kamninah pa districna rjava tla. Na obmocju Bele Krajine so izprana tla, najdemo pa tudi jerovice (terra rosse), ki danes na tem obmocju ne nastaja­jo vec (Vidic et al., 2015) Panonska nižina Panonsko nižino v Sloveniji zaznamujejo širo­ke recne doline (Murski, Dravski in Krški bazen) in nizka hribovja (Goricko, Slovenske gorice in Haloze s Kozjanskim). Recne doline so zapolnjene s prodom, peskom in glino. Višji predeli so iz kla­sticnih kamnin in sedimentov, kot so pešcenja­ki in laporji. Zaradi tovrstne litološke sestave je razvit razclenjen relief z intenzivnimi erozijskimi pojavi in hidrogeološkim režimom, ki je ugoden za nastanek rodovitnih tal, primernih za inten­zivno poljedelstvo. Vecji del Panonske nižine gradijo klasticne ka­mnine in sedimenti s prodniki žilnega kremena in manj roženca ter zelo malo blestnika, diabaza in andezita. Vmes se pojavlja tudi lignit. Mestoma se pojavljajo vložki premoga in gline ali sivice. Na obmocju Štajerskega bazena in Murskega baze­na so pešceni in glinasti lapor, pešcenjak, pesek, prod in konglomerat ter malo apnenca. Na obmo­cju Murskega in Dravskega bazena so nahajali­šca nafte in zemeljskega plina (Pavšic & Horvat, 2009). Na obmocju Gorickega, Ljutomerskih in Len­davskih goric in v vmesnih recnih dolinah naj­demo prod, pesek in glino iz karbonatnih in metamorfnih kamnin, ki izvirajo iz Centralnih Alp. Na Gorickem so sledovi vulkanizma. Gline ponekod vsebujejo vec železovih in manganovih oksidov in hidroksidov. Veliko teh kamnin najde­mo tudi v Krškem bazenu in na Bizeljskem, kjer so tudi limonitizirane (Markic, 2009). V Krškem bazenu v okolici Cateža se menjavajo laporovci, kalkareniti ter druge karbonatne kamnine, pred­vsem apnenci (Pavšic & Horvat, 2009). Zaradi blagega reliefa so na podlagi iz karbo­natnih sedimentov (prod, pesek, lapor, fliš) raz­vita evtricna rjava tla, ki se pogosteje pojavljajo v Krškem bazenu, na nekarbonatnih pa districna rjava tla predvsem v Dravskem in Murskem ba­zenu. Manj razvita tla, kot so rendzine in ranker­ji, so zelo redka. Na obsežnih ravninah ob rekah (Drava, Mura) so razvita obrecna tla in hipogleji, na pobocjih gricevij so ponekod psevdogleji (Vidic et al., 2015). Notranje kotline Znotraj Alp, Predalp in Dinaridov so vecje ko­tline. Najvecji sta Ljubljansko-Kranjska in Celj­ska kotlina. Predstavljata gosto naseljeni nižini. Ljubljansko-Kranjska kotlina je zapolnjena s se­dimenti ledeniškega, recno-ledeniškega in jezer­sko-ledeniškega nastanka. Celjska kotlina je ro­dovitna dolina, ki sestoji iz recnih sedimentov. V starejših terasah so sedimenti sprijeti v kamnine (konglomerat, pešcenjak, tilit). V Celjski kotlini najdemo sedimente velikosti od prodov do gline. Prode sestavljajo karbonati, pešce­njaki, keratofir, diabaz in roženec (Markic, 2009). Na obmocju Ljubljanske kotline so prodi, pe­ski in glina. V Blejskem jezeru je karbonatni sedi­ment (melj in glina), ki ga najdemo tudi v širši oko­lici Radovljice. Na Ljubljanskem barju so prodni, meljasti in pešceno prodni nanosi z jezerskimi in mocvirskimi sedimenti (Bavec & Pohar, 2009). V kotlinah prevladujejo mlada tla, razvita na aluvialnih ravninah, ki so mestoma še pod vplivom vodotokov, ki stalno prinašajo material. Na sedimentih so razvita rjava tla, ob rekah pa obrecna tla. V severozahodnem delu Ljubljan­sko-Kranjske kotline so pogosta izprana tla. Na Ljubljanskem barju so šotna tla (Vidic et al., 2015). Rezultati in diskusija V tabeli 3 so prikazani osnovni statisticni para­metri, ki smo jih dolocili na osnovi parametricnih in neparametricnih statisticnih metod za naštete kemicne elemente Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, Tl, U, V, Y, Zn, Zr. Izraženi so kot aritmeticna srednja vrednost, geometrijska srednja vrednost, mediana, najmanjša in najvecja vrednost, kvartili oziroma percentili (Q1 (=P25), Q2 (=P50=Md), Q3 (=P75)), asimetricnost in sploš­cenost. Izsledki statisticnih obdelav so prikazani tabelaricno za celotno Slovenijo (tabela 3) in za manjše prostorske enote v prilogi 1/1-8. Za 9 glavnih prvin in 11 slednih prvin smo iz­delali diagrame škatel z brki (sl. 8 in 9), kjer škatla predstavlja medkvartilni razpon (spodnja meja je 1. kvartil, zgornja meja pa 3. kvartil), brki pa predstavljajo Tukeyevo notranjo mejo (TIF). Naj opozorimo, da je merilo osi, ki prikazuje vsebno­sti elementov, logaritemsko. V tabeli 4 navajamo izracunane vrednosti zgornje meje naravne variabilnosti (X2S, MD­2MAD, TIF, P95, P97.5) za 47 elementov (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, Tl, U, V, Y, Zn, Zr) za celotno Slovenijo. V prilogi 2/1-8 podajamo izracunane vrednos­ti zgornje meje naravne variabilnosti (X2S, MD­2MAD, TIF, P95, P97.5) manjših prostorskih enot v Sloveniji. Zaradi narave porazdelitve geokemicnih po­datkov, ki velja na splošno in za obravnavani set podatkov, je potrebna logaritemska transforma­cija podatkov. Vrednosti asimetricnosti in sploš­cenosti sta pokazali, da podatki nimajo normalne porazdelitve. Zato v nadaljevanju razpravljamo o mejah naravne variabilnosti, ki smo jih izracuna­li z logaritmiranimi podatki (oznaka L). Koncni rezultati so antilogaritmirani. V Evropi vecina porazdelitev elementov jasno kaže razlike med sestavo severnega in južnega dela Evrope. Zelo opazen je vpliv poledenitve v severnem delu Evrope (Reimann et al., 2018). Zato je Reimann s sodelavci (2018) prikazal locene po­datke o sestavi tal za severno in južno Evropo, v katero je bila vkljucena tudi Slovenija. Zato naše podatke v nadaljevanju primerjamo z južno in ce­lotno Evropo. Primerjava vsebnosti elementov v Sloveniji in južni Evropi kaže, da so vsebnosti ve­cine elementov v Sloveniji vecje kot v južni Evro­pi. Mediane vecine elementov v Sloveniji prese­gajo mediane v južni Evropi (sl. 10). Živo srebro (Hg) in Cd imata v Sloveniji vec kot 2 krat višje vsebnosti kot v južni Evropi, blizu 2 krat višja je tudi vsebnost In. Vec elementov (Tl, Pb, Mo, Sb, Bi, S, Ag, Y, Sc) ima v Sloveniji okoli 1,5 krat višje vsebnosti mediane kot v južni Evropi. Samo Ti, Zr, P, K, Sr in B imajo nižjo mediano v Sloveniji kot v južni Evropi. Razmerja vrednosti MD2MAD v Sloveniji in južni Evropi (sl. 11) kažejo, da ima vec elementov v Sloveniji nižje vrednosti MD2MAD, kot v pri­meru razmerja median. Vrednosti MD2MAD so si v Sloveniji in južni Evropi blizu za elemente Sb, Na, Se in Cs. Okoli 1,5 krat so v Sloveniji višje vrednosti MD2MAD za Pb, Y, In, Nb, V in Mo. Skoraj 2 krat je v Sloveniji višja vrednost Tl. V primerjavi z južno Evropo, v Sloveniji najbolj iz­stopata Hg in Cd, ki imata v Sloveniji vec kot 2,5 krat višje vrednosti MD2MAD. V Sloveniji vecji delež ozemlja predstavljajo rendzine in rjava pokarbonatna tla, ki nastaja­jo na karbonatnih kamninah (Vidic et al., 2015; Zupancic et al., 2018). Ker nastajajo ta tla na apnencih in dolomitih z 1–2 % netopnega ostanka kamnin, je bilo potrebno dolgo casovno obdobje, da so se tla razvila. V casu razvoja tal so bila tla lahko tudi pod vplivom eolskih in drugih nano­sov (Gosar, 2007). Tla na karbonatnih kamninah imajo zato pogoste višje vsebnosti As, Bi, Co, Cr, Cu, Hg, Li, Mn, Nb, Ni, Pb, Sb, Th, U, V, Zn in Zr od slovenskega povprecja (Gosar, 2007). Veli­ke razlike med Slovenijo in Evropo so torej lahko posledica obsežnih obmocij karbonatnih kamnin v Sloveniji, ki pa v Evropi predstavljajo manjši delež. Za lažje razumevanje median in izracunanih zgornjih mej naravne variabilnosti (X2S(L), MD­2MAD(L), TIF(L) in P97.5) smo le-te za izbrane elemente prikazali na slikah od 12 do 15. Medi­ane in zgornje meje naravne variabilnosti so pri­kazane za prostorske enote v Sloveniji (levi del grafa), za celotno Slovenijo in primerjalno tudi za severni in južni del Evrope ter za celotno Evropo (desni del grafa, po podatkih projekta GEMAS, Reimann et al. (2018)). Na grafih smo z oranžno crtkano crto oznacili mejno vrednost, z rdeco pre­kinjeno crto opozorilno vrednost in s polno rdeco crto kriticno vrednost po Uredbi o mejnih, opozo­rilnih in kriticnih imisijskih vrednostih nevarnih snovi v tleh (Uradni list RS, 1996). Pri podatkih o Evropi so Reimann in sodelavci (2018) upora­bili vrednosti za 98. percentil, v Sloveniji pa smo uporabili 97,5. percentil. Uporabili smo ga, ker v primeru idealne normalne porazdelitve vrednosti X2S, MD2MAD in 97,5. percentil sovpadajo v isti vrednosti. Mediane posameznih prostorskih enot v Slo­veniji so si blizu za As, Pb, Sb in Zn. Pri Co in Cr opažamo višje vrednosti median v Dinaridih, pri Mo pa višje vrednosti v Vzhodnih Dinaridih. Znacilnost Cu in Ni so višje vrednosti median v Zahodnih Dinaridih, kjer mediana Ni presega mejno vrednost (50 mg/kg) po Uradnem listu RS, 1996 (sl. 14). Vecje razlike med medianami po­sameznih prostorskih enot so v primeru Cd, ki mocno izstopa v Zahodnih Alpah, kjer mediana tudi presega mejno vrednost (1 mg/kg) po Ura­dnem listu RS, 1996 (sl. 12). Nekoliko višje vred­nosti median Cd so tudi v Vzhodnih Dinaridih in Notranjih kotlinah. Med prostorskimi enotami v Sloveniji so velike razlike tudi med medianami za Hg. Mediana Hg v Zahodnih Predalpah je veliko višja (0,270 mg/kg), kot v drugih prostorskih eno­tah (sl. 13). Primerjava z južno Evropo pokaže, da so si mediane Cu v Sloveniji (20 mg/kg) in južni Evro­pi (19 mg/kg) blizu (sl. 13). Vrednosti median As, Co, Cr, Mo, Ni, Pb, Sb in Zn so v Sloveniji od 1,4 krat do 1,6 krat višje kot v južni Evropi. Velike razlike med medianama Slovenije in južne Evro­pe smo ugotovili za Cd (0,48 mg/kg v Sloveniji in 0,22 mg/kg v južni Evropi (Reimann et al., 2018)) in Hg (0,106 mg/kg v Sloveniji (Gosar et al., 2016) in 0,036 mg/kg v južni Evropi (Reimann et al., 2018)). Izracunane vrednosti zgornjih mej naravne variabilnosti so si med vsemi prostorskimi eno­tami v Sloveniji podobne le za Sb (sl. 15). Manjše razlike so pri As in Cr, kjer so vrednosti nižje le v Panonski nižini in Notranjih kotlinah. Nižje vrednosti zgornjih mej naravne variabilnosti v Panonski nižini in Notranjih kotlinah so tudi pri Co, Cu in Ni. Kobalt ima nižje vrednosti tudi v Zahodnih Dinaridih, Cu pa v Vzhodnih Dinari­dih. Ni ima višje vrednosti zgornjih mej naravne variabilnosti v Zahodnih Predalpah in Zaho­dnih Dinaridih. V primeru Zn so višje vrednos­ti zgornjih mej naravne variabilnosti v Alpah in Predalpah. Vecje razlike med vrednostmi so pri Pb, kjer so višje vrednosti v Alpah ter nižje vrednosti v Vzhodnih Dinaridih in Panonski ni­žini. Zgornje meje naravne variabilnosti za Mo so v primerjavi z ostalimi prostorskimi enotami zelo visoke v Dinaridih. Najvecje razlike med prostorskimi enotami so v primeru Cd in Hg. Cd ima višje vrednosti zgornjih mej naravne varia­bilnosti v Zahodnih Alpah in Predalpah (sl. 12), Hg pa v Zahodnih Alpah ter najvišje v Zahodnih Predalpah (sl. 13). Primerjavo zgornjih mej naravne variabilno­sti med Slovenijo in južno Evropo smo naredili s primerjanjem vrednosti izracunanih po metodi MD2MAD, saj so vrednosti TIF zaradi velike­ga medkvartilnega razpona zelo visoke, vred­nosti percentilov pa so zelo odvisne od števila vzorcev. Pri As, Co, Cr, Sb in Zn so si vrednosti MD2MAD podobne ali do 20 % višje kot v juž­ni Evropi. Vrednosti MD2MAD za Ni in Cu sta nižji v Sloveniji (Ni: 87 mg/kg, Cu: 54 mg/kg) kot v južni Evropi (Ni: 100 mg/kg, Cu: 73 mg/kg (Reimann et al. 2018)). Pri Mo in Pb so vrednosti MD2MAD v Sloveniji 1,5 krat do 1,7 krat višje kot v južni Evropi. V Sloveniji so vrednosti MD­2MAD za Hg 2,6 krat višje kot v južni Evropi, vrednosti za Cd pa so 4,8 krat višje v Sloveniji kot v južni Evropi. Zakljucek Slovenijo smo poskušali razdeliti na cim bolj homogene prostorske enote, kar pa se je zaradi ve­like spremenljivosti v maticni podlagi in talnem tipu izkazalo za prakticno nemogoce. Heterogenost znotraj posameznih enot se izraža v zelo razlicnih vrednostih zgornjih mej naravne variabilnosti, iz­racunanih z razlicnimi metodami. V razlikah med izracunanimi zgornjimi mejami naravne variabil­nosti se zrcalijo razlicne vsebnosti elementov po prostorskih enotah in še posebej velika spremen­ljivost znotraj posameznih enot. Izracun zgornje meje naravne variabilnosti z metodo TIF, ki teme­lji na medcetrtinskem razmiku (IQR), vecinoma daje mnogo višje vrednosti kot druge uporabljene metode. V tem se kaže velika variabilnost podat­kov že med prvim in tretjim kvartilom, torej zelo velik medcetrtinski razmik (IQR). Ugotavljamo, da so vrednosti TIF(L) v veci­ni primerov zelo visoke, kar je posledica že prej omenjenega velikega medcetrtinskega razmika (IQR). Zato smo se osredotocili na izracune po metodah X2S(L), MD2MAD(L) in P97.5. V pri­meru idealne normalne porazdelitve vse 3 ome­njene metode dajo podobne vrednosti. V manjših prostorskih enotah so razlike med izracunanimi vrednostmi po metodah X2S(L), MD2MAD(L) in P97.5 vecinoma velike. Ce pa primerjamo te vred­nosti z rezultati, ki so bili izracunani s podatki za celotno Slovenijo, vidimo, da so si le-te precej bliže. To kaže, da je set podatkov za celo Sloveni­jo primernejši za geostatisticno obravnavo (vecje število vzorcev) kot podatki po posameznih pro­storskih enotah. Slovenija je namrec litološko in posledicno še zlasti pedološko mocno heterogena tudi v manjših prostorskih enotah. Bolj homoge­ne enote bi morda lahko vzpostavili na podlagi geokemicnih lastnosti tal na enotni litološki pod­lagi, kar bi bilo izjemno zahtevno in zamudno. Razdrobljenost enot in njihovo število pa bi bila neustrezno velika. Za pregled prostorske variabilnosti kemic­nih elementov v tleh Slovenije in za identifika­cijo obmocij s povišanimi vsebnostmi so zelo primerne tudi geokemicne karte. Geokemicne karte spadajo med vecslojne zemljevide, ki jih tvorimo s povezovanjem geokemicnih analiz in geografsko-informacijskim sistemom v celoto. Z njimi ugotavljamo prostorske povezave, npr. med povišanimi koncentracijami elementov v tleh in geogenimi viri (maticna kamninska pod­laga) ali antropogenimi viri (industrija, promet). Na Geološkem zavodu Slovenije smo v preteklih letih izdelali kar nekaj geokemicnih kart razlic­nih meril in sodelovali pri izdelavi geokemicnih atlasov Evrope (Reimann et al., 2014; Salminen et al., 2005). Raziskovali smo vsebnosti živega srebra v tleh Slovenije in izdelali karto porazde­litve živega srebra v tleh Slovenije (sl. 16) (Gosar et al., 2016). V nadaljevanju predstavljenega dela bi bilo koristno na podlagi predstavljenih podat­kov izdelati karte porazdelitev vseh obravnava­nih elementov. Zahvala Posebna zahvala gre dr. Mišu Andjelovu, vod­ji projekta “Radiometricna karta Slovenije” (1990–1994), tekom katerega je nastal odlicen materialni arhiv vzorcev tal, brez katerega raziskava ne bi bila mogoca. Avtorji smo za natancen pregled dela, kori­stne pripombe in predloge za izboljšave hvaležni prof. dr. Simonu Pircu, dr. Matevžu Novaku in anonio­mnemu recenzentu. Z njihovo pomocjo smo naše delo izboljšali. Delo posvecamo našemu ucitelju zaslužnemu pro­fesorju dr. Simonu Pircu z željo, da bi še dolgo sprem­ljal in ocenjeval dela svojih ucencev. Raziskavo je financiralo Ministrstvo za okolje in prostor (naloga Definiranje naravnih nivojev slednih prvin v tleh na ozemlju Slovenije (opredelitev mej na­ravne variabilnosti kemicnih elementov v zgornjem sloju tal v Sloveniji)) in Javna agencija za raziskoval­no dejavnost v okviru Raziskovalnih programov P1-0020 in P1-0025, ki se izvajata na Geološkem zavodu Slovenije. References / Literatura Abbey, S. 1983: Studies in “standards samples” of silicate rocks and minerals 1969-1982. Geological Survey of Canada, Paper 83-15: 114 p. Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P. & Lark, R. M. 2013: Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Total Environ., 454-455: 604-618. Andjelov, M. 1994: Rezultati radiometricnih in geokemicnih meritev za karto naravne radi­oaktivnosti Slovenije. Geologija, 36: 223-248. http://doi.org/10.5474/geologija.1994.012 Bavec, M. & Pohar, V. 2009: Kvartar = Quaternary. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 441-464. Birke, M., Reimann, C., Oorts, K., Rauch, U., Demetriades, A., Dinelli, E., Ladenberger, A., Halamic, J., Gosar, M., Jähne.Klingberg, F. & GEMAS Project Team 2016: Use of GEMAS data for risk assessment of cad­mium in European agricultural and grazing land soil under the REACH Regulation. Appl. Geochem., 74: 109-121. Buser, S. & Dozet, S. 2009: Jura = Jurassic. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 215-254. Cave, M. R., Johnson, C. C., Ander, E. L. & Palumbo-Roe, B. 2012: Methodology for the determination of normal background con­taminant concentrations in English soils. British Geological Survey. Dozet, S. & Buser, S. 2009: Trias = Triassic. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 161-214. Drobne, K., Ogorelec, B., Pavšic, J. & Pavlovec, R. 2009: Paleocen in Eocen v jugozahodni Sloveniji = Paleocene and Eocene in south­-western Slovenia. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 311-372. FitzPatrick, E. A. 1986: An introduction to soil science. Longman Scientific & Technical, Hong Kong: 255 p. Galuszka, A., Migaszewski, Z. M. & Zalasiewics, J. 2014: Assessing the Athropocene with ge­ochemical methods. The Geological Society of London, Special Publications, 395: 221-238. http://doi.org/10.1144/SP395.5 Gosar, M. 2007: Porazdelitev slednih prvin v treh kraških talnih profilih v Sloveniji = Trace element distribution in three karst soil pro­files from Slovenia. Geologija, 50/1: 147-156. https://doi.org/10.5474/geologija.2007.012 Gosar, M., Šajn, R. & Teršic, T. 2016. Distribution pattern of mercury in the Slovenian soil: Geochemical mapping based on multiple ge­ochemical datasets. Journal of Geochemical Exploration 167: 38-48. https://doi.org/10.1016/j.gexplo.2016.05.005 Hinterlechner-Ravnik, A. & Trajanova, M. 2009: Metamorfne kamnine = Metamorphic rocks. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 69-90. Johnson, C. C., Ander, E. L., Cave, M. R. & Palumbo-Roe, B. 2012: Normal background concentrations (NBCs) of contaminants in English soils: Final project report. British Geological Survey. Komac, M. 2005: Statistics of the Geological Map of Slovenia at scale 1: 250.000. Geologija, 48/1: 117-126. https://doi.org/10.5474/geologija.2005.011 Markic, M. 2007: Premogi v Sloveniji ter prikaz njihovih nahajališc na šestih izbranih kartah. Mineralne surovine v letu 2006, 3/1: 149-165. Markic, M. 2009: Pliocen in pliokvartar = Pliocene and Plio-Quaternary. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 427-440. Matschullat, J., Ottenstein, R. & Reimann, C. 2000: Geochemical background – can we calculate it? Environ. Geol., 39/9: 990-1000. https://doi.org/10.1007/s002549900084 Novak, M. & Skaberne, D. 2009: Zgornji karbon in spodnji perm = Upper Carboniferous and Lower Permian. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 99-136. Ogorelec, B, Buser, S. & Mišic, M. 2006: Manganovi gomolji v jurskem apnencu Južnih Alp Slovenije = Manganese nodules in Jurassic limestone of the Southern Alps in Slovenia. Geologija, 49/1: 69-84. https://doi.org/10.5474/geologija.2006.005 Oorts, K. & Schoeters, I. 2014: Use of monito­ring data for risk assessment of metals in soil under the European REACH regulati­on. In: Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O‘Connor, P. (eds.): Chemistry of Europe‘s Agricultural Soils – Parb B: General Background Information and Further Analysis of the GEMAS Data Set. Geologisches Jahrbuch (Reihe B103). Schweizerbarth, Hannover: 189-202. Oorts, K., Smolders, E., McGrath, S. P., Van Gestel, C. A. M., McLaughlin, M. J. & Carey, S. 2016: Derivation of ecological standards for risk assessment of molybdate in soil. Environ. Chem., 13: 168-180. https://doi.org/10.1071/EN15086 Pavšic, J. & Horvat, A. 2009: Eocen, oligocen in miocen v osrednji in vzhodni Sloveniji = Eocene, Oligocene and Miocene in central and eastern Slovenia. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 373-426. Pirc, S. & Herlec, U. 2009: Mineralne in energet­ske surovine = Mineral and energy raw mate­rials. In Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 373-426. Plenicar, M. 2009: Kreda = Cretaceous. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 255-302. Plenicar, M., Ogorelec, B. & Novak, M. (eds.) 2009: Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 612 p. Poljak, M. 1987: Homogene naravne enote, ba­zirane na geografsko-geoloških znacil­nostih SR Slovenije. In: Tretjak, A. (ed.): Uporaba Satelitskih Metod Teledetekcije Za Ocenjevanje Izrabe Tal in za Potrebe Kmetijstva in Gozdarstva, Projekt: FAO:TCP /YUG/ 4502 (T). Zavod SR Slovenije za stati­stiko, Ljubljana: 36-43. Ramovš, A. & Buser, S. 2009: Devon in spodnji kar­bon = Devonian and Lower Carboniferous. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 91-98. Reimann, C. & Caritat, P. de. 2017: Establishing geochemical background variation and thre­shold values for 59 elements in Australian surface soil. Sci. Total Environ., 578: 633-648. https://doi.org/10.1016/j.scitotenv.2016.11.010 Reimann, C. & Filzmoser, P. 2000: Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the sta­tistical treatment of geochemical and envi­ronmental data. Environ. Geol., 39/9: 1001-1014. https://doi.org/10.1007/s002549900081 Reimann, C. & Garrett, R. G. 2005: Geochemical background – concept and reality. Sci. Total Environ., 350: 12-27. https://doi.org/10.1016/j.scitotenv.2005.01.047 Reimann, C., Filzmoser, P. & Garrett, R. G. 2005: Background and threshold: critical compari­son of methods of determination. Sci. Total Environ., 346: 1-16. https://doi.org/10.1016/j.scitotenv.2004.11.023 Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O‘Connor, P. 2014. Chemistry of Europe‘s Agricultural Soils – Part A: Methodology and Interpretation of the GEMAS Data Ser. Geol. Jb., Reihe B 102, Schweizerbarth, Hannover: 528 p. http://www.schweizerbart.de/publications/detail/isbn/9783510968466 Reimann, C., Demetriades, A., Eggen, O.A., Filzmoser, P., The EuroGeoSurveys Geochemistry Expert Group (eds.): 2009: The EuroGeoSurveys Geochemical Mapping of Agricultural and Grazing Land Soils Project (GEMAS) – Evaluation of Quality Control Results of Aqua Regia Extraction Analysis. pp. 049. Geological Survey of Norway, Trondheim, NGU report: 94 p. Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K., Matschullat, J., Caritat, P. de & GEMAS Project Team. 2018: GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem., 88/B: 302-318. http://doi.org/10.1016/j.apgeochem.2017.01.021 Rose, A. W., Hawkes, H. E. & Webb, J. S. 1979: Geochemistry in mineral exploration. Academic Press, London, New York, Toronto, Sydney, San Francisco: 656 p. Rousseeuw, P. J. & Croux, C. 1993: Alternatives to the Median Absolute Deviation. Journal of the American Statistical Association, 88: 1273-1283. Salminen, R., Batista, M.J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Gilucis, A.,Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., Mrnkova, J., O‘Connor, P.J., Olsson, S.Å., Ottesen, R.-T., Petersell, V., Plant, J.A., Reeder, S., Salpeteur, I., Sandströom, H., Siewers, U., Steenfelt, A. & Tarvainen, T., 2005: FOREGS Geochemical Atlas of Europe, Part 1 e Background Information, Methodology, and Maps. Geological Survey of Finland, Espoo: 690 p. Skaberne, D., Ramovš, A. & Ogorelec, B. 2009: Srednji in zgornji perm = Middle and Upper Permian. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 137-154. Siegel, F. R. 2002: Environmental Geochemistry of Potentially Toxic Metals. Springer-Verlag, Berlin, Heidelberg: 218 p. Smolders, E., Oorts, K., Van Sprang, P., Schoeters, I., Janssen, C. R., McGrath, S. P. & McLaughlin, M. J. 2009: Toxicity of trace metals in soil as affected by soil type and aging after contami­nation: using calibrated bioavailability mo­dels to set ecological soil standards. Environ. Toxicol. Chem., 28: 1633-1642. Trajanova, M. 2009: Paleozojski magmatizem – Diabazi Štalenogorske serije = Paleozoic ma­gmatism – Diabases of the Magdalensberg Series. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 469-472. Trajanova, M. & Grafenauer, S. 2009: Triasni vu­lkanizem = Triassic volcanism. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 479-490. Trajanova, M., Zupancic, N. & Drobnikar, M. 2009: Terciarni magmatizem = Tertiary magmatism. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geološki zavod Slovenije, Ljubljana: 491-502. Uradni list RS, 1996: Uredba o mejnih, opo­zorilnih in kriticnih imisijskih vrednostih nevarnih snovi v tleh. Uradni list Republike Slovenije, št. 68/96: 5773–5774. Vidic, N. J., Prus, T., Grcman, H., Zupan, M., Lisec, A., Kralj, T., Vršcaj, B., Rupreht, J., Šporar, M., Suhadolc, R., Mihelic, R. & Lobnik, F. 2015: Tla Slovenije s pedološko karto v merilu 1: 250 000 = Soils of Slovenia with soil map 1: 250 000. Evropska komisija, Skupni razi­skovalni center (JRC)/European Commission Joint Research Centre (JRC)/Publication Office of the European Union, Luxembourg: 152 p. http://doi.org/10.2788/88750 Zupancic, N., Turniški, R., Miler, M. & Grcman, H. 2018: Geochemical fingerprint of inso­luble material in soil on different limestone formations. Catena, 170: 10-24. https://doi.org/10.1016/j.catena.2018.05.040 Fig. 1. Geochemical background and anomalies (after Galuszka et al., 2014). Sl. 1. Geokemicno ozadje in anomalije (po Galuszka et al., 2014). 9 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Fig. 2. Systematics of geochemical anomalies (after Galuszka et al., 2014). Sl. 2. Sistematika geokemicnih anomalij (po Galuszka et al., 2014). 10 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 11 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 12 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Fig. 3. Sampling locations. Sl. 3. Prikaz vzorcnih lokacij. 13 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Fig. 4. Accuracy of analytical method. Sl. 4. Tocnost analitske metode. Fig. 5. Precision of analitical method. Sl. 5. Natancnost analitske metode. 14 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 15 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Table 1. Quality control of analytical method. Tabela 1. Ocena kakovosti analitske metode. Unit DL UL N(DL) A (%) P (%) Ag µg/kg 2 100000 817 1.6 17.2 Al % 0.01 10 817 3.0 10.7 As mg/kg 0.1 10000 817 0.2 8.7 Au mg/kg 0.2 100000 797 -1.5 43.1 B mg/kg 1 2000 631 5.0 21.5 Ba mg/kg 0.5 10000 817 -6.2 6.4 Be mg/kg 0.1 1000 814 0.7 20.8 Bi mg/kg 0.02 2000 817 1.3 14.4 Ca % 0.01 40 813 1.9 10.5 Cd mg/kg 0.01 2000 813 -1.8 13.6 Ce mg/kg 0.1 2000 817 -4.1 10.3 Co mg/kg 0.1 2000 817 0.9 6.7 Cr mg/kg 0.5 10000 817 1.9 7.8 Cs mg/kg 0.02 2000 817 2.5 14.3 Cu mg/kg 0.01 10000 817 -0.1 7.9 Fe % 0.01 40 817 2.2 4.3 Ga mg/kg 0.1 1000 817 3.2 8.1 Ge mg/kg 0.1 100 31 -13.9 1.0 Hf mg/kg 0.02 1000 658 0.6 22.8 Hg mg/kg 0.005 50 817 0.8 16.4 In mg/kg 0.02 1000 709 0.7 24.4 K % 0.01 10 816 2.6 13.3 La mg/kg 0.5 10000 817 2.2 10.3 Li mg/kg 0.1 2000 817 10.0 10.4 Mg % 0.01 30 817 1.0 7.3 Mn mg/kg 1 10000 817 -4.7 6.8 Mo mg/kg 0.01 2000 817 -6.0 10.3 Na % 0.001 5 806 7.0 13.7 Nb mg/kg 0.02 2000 816 -26.0 14.9 Ni mg/kg 0.1 10000 817 4.3 10.3 P % 0.001 5 817 1.5 6.0 Pb mg/kg 0.01 10000 817 -5.2 6.3 Pd µg/kg 10 100000 10 14.6 - Pt µg/kg 2 100000 47 3.2 6.0 Rb mg/kg 0.1 2000 817 1.2 12.9 Re µg/kg 1 100 255 1.6 18.9 S % 0.02 5 668 9.3 13.5 Sb mg/kg 0.02 2000 817 -8.5 11.4 Sc mg/kg 0.1 100 817 13.8 10.5 Se mg/kg 0.1 100 778 -8.7 36.1 Sn mg/kg 0.1 100 817 0.1 14.4 Sr mg/kg 0.5 10000 817 -5.1 9.9 Ta mg/kg 0.05 2000 0 - - Te mg/kg 0.02 1000 607 -5.5 41.8 Th mg/kg 0.1 2000 816 -0.2 12.3 Ti % 0.001 5 782 -1.4 15.0 Tl mg/kg 0.02 1000 817 1.4 7.6 U mg/kg 0.05 2000 817 -1.2 8.8 V mg/kg 2 10000 817 -1.3 7.4 W mg/kg 0.05 100 335 -38.6 10.5 Y mg/kg 0.01 2000 817 -3.3 7.7 Zn mg/kg 0.1 10000 817 -2.5 7.7 Zr mg/kg 0.1 2000 800 -12.0 14.0 DL – spodnja meja detekcije analiz/lower detection limit; UL – zgornja meja detekcije analiz/upper detection limit; N(DL) – število vzorcev nad DL/number of values above DL; A (%) – tocnost/accuracy; P (%) – natancnost/precision 16 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 17 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 18 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Fig. 6. Basic lithological units (after data from Bavec et al. (2016) and Novak et al. (2016)). Sl. 6. Osnovne litološke enote (po podatkih iz Bavec et al. (2016) in Novak et al. (2016)). 19 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Fig. 7. Smaller spatial units in Slovenija (addapted after Poljak, 1987). Sl. 7. Prikaz opisanih prostorskih enot v Sloveniji (prirejeno po Poljaku, 1987). 20 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Table 2. Smaller spatial units in Slovenia and number of samples for each unit (N). Tabela 2. Prostorske enote v Sloveniji in število pripadajocih vzorcev tal (N). Prostorske enote – Spatial units N Zahodne Alpe (Western Alps) 99 Vzhodne Alpe (Eastern Alps) 80 Zahodne Predalpe (Western Prealps) 98 Vzhodne Predalpe (Eastern Prealps) 116 Zahodni Dinaridi (Western Dinarides) 66 Vzhodni Dinaridi (Eastern Dinarides) 163 Panonska nižina (Pannonian basin) 157 Notranje kotline (Interior basins) 38 21 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 22 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 23 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 24 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 25 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 26 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 27 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 28 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 29 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Fig. 8. Box and whiskers plot for major elements. Sl. 8. Diagrami škatle z brki za glavne prvine. Fig. 9. Box and whiskers plot for PTEs (As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb and Zn). Sl. 9. Diagrami škatle z brki za PTE (As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb in Zn). 30 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Table 3. Basic statistical parameters for Slovenia. Tabela 3. Osnovni statisticni parametri za Slovenijo. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 78 63 62 1.0 1200 43 93 7.75 95.39 -0.17 2.95 Al % 1.9 1.7 1.8 0.090 5.7 1.4 2.4 0.53 0.74 -1.39 4.06 As mg/kg 13 11 11 0.85 140 7.6 15 5.67 56.73 -0.25 1.94 Au µg/kg 2.5 1.7 1.7 0.10 110 1.1 2.7 14.62 274.70 -0.36 3.12 B mg/kg 2.8 1.9 2.0 0.50 36 1.0 4.0 3.90 31.11 -0.07 -0.68 Ba mg/kg 83 71 75 3.2 820 55 100 5.36 61.52 -0.89 3.52 Be mg/kg 1.0 0.89 0.90 0.050 3.5 0.60 1.3 0.98 0.86 -0.78 2.17 Bi mg/kg 0.36 0.32 0.33 0.020 1.3 0.24 0.43 1.28 2.53 -0.49 1.79 Ca % 2.0 0.55 0.44 0.0050 25 0.19 1.7 2.74 8.07 0.16 -0.37 Cd mg/kg 0.85 0.50 0.47 0.0050 11 0.25 1.0 3.86 21.40 -0.16 1.32 Ce mg/kg 39 33 38 1.8 130 24 52 0.50 0.61 -1.22 1.88 Co mg/kg 15 13 14 0.50 74 9.7 19 1.95 7.02 -1.12 3.34 Cr mg/kg 38 32 34 2.6 210 23 49 2.40 11.35 -0.56 1.01 Cs mg/kg 1.5 1.3 1.4 0.050 7.0 0.88 2.0 1.26 2.89 -0.90 1.73 Cu mg/kg 25 21 20 1.4 300 15 28 6.14 54.76 0.07 2.41 Fe % 2.8 2.6 2.9 0.15 10 2.3 3.4 0.85 7.03 -2.16 7.63 Ga mg/kg 5.3 4.8 5.2 0.20 19 3.8 6.7 0.75 1.84 -1.33 3.66 Hf mg/kg 0.071 0.047 0.050 0.010 0.37 0.020 0.10 1.44 2.38 -0.29 -0.95 Hg mg/kg 0.17 0.12 0.11 0.012 5.3 0.069 0.18 10.38 135.24 0.84 2.09 In mg/kg 0.039 0.033 0.040 0.010 0.25 0.030 0.050 2.31 15.37 -0.57 0.06 K % 0.13 0.12 0.11 0.0050 1.0 0.090 0.16 4.58 34.47 0.03 3.18 La mg/kg 18 15 17 1.0 82 11 24 1.16 4.01 -1.05 1.43 Li mg/kg 20 17 19 0.30 150 13 24 4.27 37.31 -1.36 5.22 Mg % 0.98 0.54 0.46 0.030 9.9 0.32 0.74 3.40 12.11 0.81 1.31 Mn mg/kg 960 760 790 17 7200 520 1200 2.42 12.41 -0.75 2.10 Mo mg/kg 1.4 0.84 0.72 0.070 38 0.48 1.3 7.83 92.88 0.81 1.05 Na % 0.0079 0.0063 0.0070 0.0005 0.057 0.0050 0.010 3.03 16.49 -0.72 1.75 Nb mg/kg 0.75 0.54 0.60 0.025 7.8 0.31 1.0 2.95 20.64 -0.44 0.05 Ni mg/kg 34 27 29 0.80 500 20 41 6.58 90.17 -0.57 1.99 P % 0.063 0.053 0.054 0.0060 0.52 0.037 0.076 3.57 23.20 0.01 0.82 Pb mg/kg 40 34 34 6.2 850 25 45 13.93 294.78 0.39 2.38 Rb mg/kg 19 17 18 0.40 94 13 23 1.79 9.53 -1.29 4.85 S % 0.043 0.032 0.030 0.010 0.37 0.020 0.050 3.49 17.45 0.13 0.00 Sb mg/kg 0.64 0.54 0.53 0.060 8.9 0.41 0.72 7.11 84.55 0.22 2.42 Sc mg/kg 4.2 3.7 3.9 0.20 19 2.8 5.3 1.27 3.97 -0.86 2.11 Se mg/kg 0.44 0.35 0.40 0.050 2.6 0.28 0.55 2.19 8.38 -0.69 1.03 Sn mg/kg 1.3 1.1 1.1 0.10 25 0.80 1.6 11.77 215.39 0.30 2.37 Sr mg/kg 30 16 14 1.6 940 8.5 25 7.58 76.43 0.95 1.59 Te mg/kg 0.049 0.035 0.040 0.010 0.24 0.020 0.070 1.39 2.18 -0.14 -1.09 Th mg/kg 4.3 3.6 4.1 0.050 17 2.7 5.7 0.59 0.91 -1.50 3.85 Ti % 0.012 0.0057 0.0060 0.0005 0.29 0.0030 0.011 6.26 49.64 0.25 0.63 Tl mg/kg 0.32 0.26 0.23 0.050 1.3 0.16 0.43 1.56 2.63 0.24 -0.57 U mg/kg 1.1 0.96 1.0 0.10 10 0.70 1.4 3.69 28.00 -0.11 0.91 V mg/kg 49 40 40 3.0 230 28 60 2.07 5.43 -0.11 0.68 Y mg/kg 14 11 11 0.78 110 7.1 16 3.67 21.09 -0.09 0.86 Zn mg/kg 83 72 72 9.2 1400 57 92 11.10 152.99 0.52 6.37 Zr mg/kg 2.4 1.5 1.8 0.050 12 0.80 3.4 1.44 2.18 -0.85 0.79 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – minimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 31 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Table 4. Determined thresholds for Slovenia. Tabela 4. Zgornje meje naravne variabilnosti za Slovenijo. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 170 210 220 230 130 190 170 300 Al % 3.3 3.5 3.5 4.6 3.3 4.1 3.9 5.4 As mg/kg 25 34 32 34 22 30 26 40.9 Au µg/kg 5.8 8.1 13 9.2 3.8 6.2 5.1 10.4 B mg/kg 8.0 9.5 8.4 11 5.0 16 8.5 32.0 Ba mg/kg 150 200 190 220 140 180 170 250 Be mg/kg 2.1 2.4 2.1 2.8 1.8 3.0 2.4 4.1 Bi mg/kg 0.68 0.80 0.69 0.83 0.60 0.80 0.72 1.0 Ca % 11 14 9.4 15 1.4 7.3 3.9 44.2 Cd mg/kg 2.7 4.0 3.1 4.0 1.3 3.6 2.2 8.4 Ce mg/kg 71 80 78 120 80 110 94 160 Co mg/kg 30 38 34 47 28 39 32 50.7 Cr mg/kg 75 89 85 110 71 100 88 150 Cs mg/kg 3.3 3.7 3.4 5.0 3.0 4.6 3.7 7.0 Cu mg/kg 53 68 70 69 40 54 49 75.6 Fe % 4.3 4.5 4.8 6.5 4.4 5.0 5.0 6.0 Ga mg/kg 9.4 10 10 14 9.3 12 11 15.7 Hf mg/kg 0.20 0.23 0.19 0.33 0.17 0.39 0.22 1.1 Hg mg/kg 0.44 0.66 0.82 0.54 0.24 0.41 0.35 0.76 In mg/kg 0.070 0.090 0.083 0.11 0.070 0.094 0.080 0.11 K % 0.25 0.32 0.31 0.32 0.20 0.28 0.27 0.38 La mg/kg 34 39 38 57 36 51 43 76.5 Li mg/kg 36 43 44 58 35 44 40 58.1 Mg % 4.5 6.5 4.1 3.7 0.99 1.5 1.4 2.6 Mn mg/kg 2200 2700 2330 3200 1800 2900 2300 4600 Mo mg/kg 4.8 6.8 6.3 5.0 1.7 2.9 2.4 5.3 Na % 0.018 0.021 0.020 0.026 0.016 0.020 0.018 0.028 Nb mg/kg 1.9 2.3 2.0 3.0 1.5 3.2 2.0 5.8 Ni mg/kg 78 94 92 110 60 87 74 130 P % 0.13 0.18 0.15 0.17 0.11 0.15 0.13 0.22 Pb mg/kg 82 110 110 96 64 84 75 110 Rb mg/kg 34 39 36 47 31 39 37 51.8 S % 0.11 0.17 0.12 0.14 0.060 0.10 0.095 0.20 Sb mg/kg 1.4 1.7 1.7 1.6 0.97 1.2 1.2 1.7 Sc mg/kg 7.8 9.1 8.4 11 7.5 10 9.1 13.8 Se mg/kg 1.0 1.2 1.1 1.5 0.84 1.0 0.96 1.6 Sn mg/kg 2.5 3.0 3.7 3.2 2.3 2.8 2.8 4.5 Sr mg/kg 96 180 160 110 34 69 50 130 Te mg/kg 0.13 0.15 0.13 0.20 0.13 0.31 0.15 0.46 Th mg/kg 8.1 8.8 8.6 14 8.2 11 10 17.5 Ti % 0.038 0.066 0.059 0.053 0.018 0.047 0.023 0.077 Tl mg/kg 0.77 0.88 0.76 0.93 0.53 0.82 0.83 1.9 U mg/kg 2.4 3.0 2.7 3.1 1.9 2.9 2.4 4.0 V mg/kg 120 150 120 140 84 130 110 190 Y mg/kg 34 45 37 43 23 36 30 55.3 Zn mg/kg 140 170 250 190 120 150 150 190 Zr mg/kg 6.6 7.7 6.5 13 5.4 14 7.3 29.8 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/ mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 32 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Fig. 10. Ratios of medians between Slovenia and southern Europe. Light blue colour mark PTEs, orange lines represent 1 time and 2 times higher values in Slovenia. Sl. 10. Razmerja median med Slovenijo in južno Evropo. S svetlo modro so oznaceni PTE, oranžni crti predstavljata 1 krat in 2 krat višje vrednosti v Sloveniji. Fig. 11. Ratios of threshold (MD2MAD) between Slovenia and southern Europe. Light blue colour mark PTEs, orange lines represent 1 time and 2 times higher values in Slovenia. Sl. 11. Razmerja zgornje meje naravne variabilnosti (MD2MAD) med Slovenijo in južno Evropo. S svetlo modro so oznaceni PTE, oranžni crti predstavljata 1 krat in 2 krat višje vrednosti v Sloveniji. 33 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 34 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Fig. 12. Medians and thresholds calculated by different methods for arsenic (As), cadmium (Cd) and cobalt (Co). European data are after Reimann et al. (2018). Markings: orange dotted line – limit soil value, red dotted line – warning soil value, red line – critical soil value (Official Gazette RS, 1996). Sl. 12. Prikaz median in izracunanih zgornjih mej naravne variabilnosti po izbranih metodah za arzen (As), kadmij (Cd) in kobalt (Co). Podatki za Evropo po Reimann et al. (2018). Oznake na sliki: oranžna crtkana crta – mejna vrednost, rdeca preki­njena crta – opozorilna vrednost, polna rdeca crta – kriticna vrednosti (Uradni list RS, 1996). 35 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Fig. 13. Medians and thresholds calculated by different methods for chromium (Cr), copper (Cu) and mercury (Hg). European data are after Reimann et al. (2018). Markings: orange dotted line – limit soil value, red dotted line – warning soil value, red line – critical soil value (Official Gazette RS, 1996). Sl. 13. Prikaz median in izracunanih zgornjih mej naravne variabilnosti po izbranih metodah za krom (Cr), baker (Cu) in živo srebro (Hg). Podatki za Evropo po Reimann et al. (2018). Oznake na sliki: oranžna crtkana crta – mejna vrednost, rdeca pre­kinjena crta – opozorilna vrednost, polna rdeca crta – kriticna vrednosti (Uradni list RS, 1996). 36 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Fig. 14. Medians and thresholds calculated by different methods for molybdenum (Mo), nickel (Ni) and lead (Pb). European data are after Reimann et al. (2018). Markings: orange dotted line – limit soil value, red dotted line – warning soil value, red line – critical soil value (Official Gazette RS, 1996). Sl. 14. Prikaz median in izracunanih zgornjih mej naravne variabilnosti po izbranih metodah za molibden (Mo), nikelj (Ni) in svinec (Pb). Podatki za Evropo po Reimann et al. (2018). Oznake na sliki: oranžna crtkana crta – mejna vrednost, rdeca preki­njena crta – opozorilna vrednost, polna rdeca crta – kriticna vrednosti (Uradni list RS, 1996). 37 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Fig. 15. Medians and thresholds calculated by different methods for antimony (Sb) and zinc (Zn). European data are after Reimann et al. (2018). Markings: orange dotted line – limit soil value, red dotted line – warning soil value, red line – critical soil value (Official Gazette RS, 1996). Sl. 15. Prikaz median in izracunanih zgornjih mej naravne variabilnosti po izbranih metodah za antimon (Sb) in cink (Zn). Podatki za Evropo po Reimann et al. (2018). Oznake na sliki: oranžna crtkana crta – mejna vrednost, rdeca prekinjena crta – opozorilna vrednost, polna rdeca crta – kriticna vrednosti (Uradni list RS, 1996). 38 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 39 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Fig. 16. Geochemical map of spatial mercury (Hg) di­stribution in Slovenian soil (after Gosar et al., 2016). Sl. 16. Geokemicna karta porazdelitve živega srebra (Hg) v tleh Slovenije (po Gosar et al., 2016) 40 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 41 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 42 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER 43 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil 44 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 1/1. Basic statistical parameters for Western Alps. Priloga 1/1. Osnovni statisticni parametri za Zahodne Alpe. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 84 70 67 12 410 51 110 2.43 11.34 -0.39 0.79 Al % 1.8 1.4 1.7 0.090 4.6 0.99 2.5 0.31 -0.45 -1.27 1.46 As mg/kg 13 11 12 0.85 80 7.2 16 3.51 19.21 -0.64 2.10 Au µg/kg 1.9 1.2 1.3 0.10 34 0.70 2.3 8.04 73.47 -0.46 1.43 B mg/kg 4.1 2.9 3.0 0.50 19 2.0 5.0 1.83 4.01 -0.39 -0.20 Ba mg/kg 61 48 63 3.2 200 32 80 0.76 1.48 -1.21 1.32 Be mg/kg 1.0 0.80 0.80 0.050 3.0 0.60 1.4 0.82 0.30 -1.04 1.52 Bi mg/kg 0.43 0.38 0.39 0.050 1.1 0.29 0.56 0.96 1.12 -0.74 1.65 Ca % 4.1 1.4 1.6 0.020 25 0.35 7.0 1.83 3.46 -0.23 -0.90 Cd mg/kg 1.8 1.1 1.1 0.11 10 0.52 2.3 1.93 4.14 -0.00 -0.68 Ce mg/kg 30 22 28 1.8 81 13 43 0.49 -0.69 -0.84 0.10 Co mg/kg 11 8.5 11 0.50 32 5.3 15 0.58 0.17 -1.13 1.05 Cr mg/kg 30 24 24 2.7 86 15 40 0.97 0.25 -0.40 -0.12 Cs mg/kg 1.3 0.95 1.1 0.050 5.6 0.53 1.9 1.29 2.62 -0.93 0.88 Cu mg/kg 22 18 19 1.4 86 13 28 1.72 5.02 -0.91 2.01 Fe % 2.4 1.9 2.6 0.15 5.3 1.4 3.3 -0.25 -0.74 -1.44 1.43 Ga mg/kg 4.6 3.6 4.4 0.20 14 2.3 6.3 0.57 0.22 -1.11 1.07 Hf mg/kg 0.084 0.062 0.070 0.010 0.31 0.035 0.11 1.51 2.50 -0.34 -0.26 Hg mg/kg 0.25 0.18 0.16 0.022 2.6 0.11 0.31 5.91 45.33 0.29 0.95 In mg/kg 0.044 0.038 0.040 0.010 0.11 0.030 0.060 0.26 0.30 -1.12 0.60 K % 0.12 0.098 0.11 0.0050 0.40 0.070 0.15 1.35 2.70 -1.09 3.35 La mg/kg 15 10 11 1.0 62 5.7 20 1.31 1.85 -0.51 -0.18 Li mg/kg 15 11 15 0.30 41 6.6 21 0.48 -0.09 -1.31 1.89 Mg % 1.6 0.76 0.57 0.030 9.3 0.33 2.3 1.87 2.64 0.45 -0.31 Mn mg/kg 910 650 770 31 5700 400 1300 2.78 14.40 -0.74 0.74 Mo mg/kg 0.90 0.64 0.63 0.070 6.4 0.41 0.89 3.51 12.71 0.96 2.40 Na % 0.0083 0.0068 0.0070 0.0010 0.052 0.0050 0.010 4.02 20.73 0.32 1.78 Nb mg/kg 0.67 0.45 0.45 0.040 3.2 0.22 0.79 1.75 3.13 -0.14 -0.35 Ni mg/kg 27 19 24 0.80 79 12 36 0.94 0.61 -0.98 0.97 P % 0.079 0.062 0.056 0.011 0.33 0.043 0.095 1.90 3.60 0.14 0.14 Pb mg/kg 53 44 42 8.5 150 30 70 1.20 0.94 -0.12 -0.17 Rb mg/kg 14 11 13 0.40 49 7.6 19 0.91 2.03 -1.30 2.39 S % 0.069 0.046 0.050 0.010 0.34 0.030 0.090 1.86 3.45 -0.02 -0.55 Sb mg/kg 0.68 0.57 0.59 0.070 3.1 0.42 0.89 2.53 11.05 -0.32 1.33 Sc mg/kg 3.8 2.9 3.4 0.20 12 1.8 5.3 0.91 0.47 -0.76 0.45 Se mg/kg 0.59 0.46 0.40 0.050 2.5 0.30 0.80 1.97 4.99 -0.19 0.48 Sn mg/kg 1.4 1.2 1.3 0.10 3.7 0.90 1.8 0.89 0.59 -0.98 2.12 Sr mg/kg 25 18 18 2.8 97 9.5 35 1.49 1.90 0.08 -0.75 Te mg/kg 0.060 0.040 0.050 0.010 0.23 0.015 0.090 1.27 1.07 -0.14 -1.11 Th mg/kg 2.8 1.9 2.4 0.050 9.9 1.1 3.9 1.15 0.94 -0.87 1.19 Ti % 0.011 0.0039 0.0030 0.0005 0.19 0.0020 0.0070 4.81 24.50 0.90 1.82 Tl mg/kg 0.36 0.30 0.31 0.060 1.1 0.18 0.53 0.92 0.46 -0.20 -0.74 U mg/kg 0.75 0.67 0.70 0.10 1.9 0.50 1.0 1.00 0.98 -0.53 1.33 V mg/kg 37 30 39 3.0 150 21 48 1.51 6.23 -0.91 0.77 Y mg/kg 16 10 9.7 0.78 100 6.3 19 2.44 7.54 -0.17 0.10 Zn mg/kg 94 80 87 9.2 510 62 110 3.62 23.28 -1.05 2.85 Zr mg/kg 2.4 1.8 2.0 0.20 8.9 1.0 3.2 1.52 2.38 -0.35 -0.03 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – minimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 45 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 1/2. Basic statistical parameters for Eastern Alps. Priloga 1/2. Osnovni statisticni parametri za Vzhodne Alpe. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 90 61 60 1.0 580 37 120 2.85 11.44 -0.90 3.58 Al % 2.2 2.1 2.2 0.34 5.7 1.7 2.7 0.77 2.80 -1.23 3.31 As mg/kg 12 7.5 7.2 1.6 140 4.6 12 5.05 29.90 0.73 1.35 Au µg/kg 3.1 1.4 1.3 0.10 58 0.95 2.5 6.04 40.84 0.12 1.78 B mg/kg 2.3 1.6 2.0 0.50 9.5 0.50 3.0 1.62 2.99 0.03 -1.19 Ba mg/kg 91 78 78 14 310 59 110 1.68 3.68 -0.41 1.12 Be mg/kg 0.92 0.84 0.90 0.20 2.2 0.70 1.1 0.93 1.83 -0.84 2.00 Bi mg/kg 0.30 0.26 0.27 0.020 1.3 0.19 0.38 2.28 9.18 -0.96 3.48 Ca % 1.1 0.29 0.23 0.020 17 0.12 0.52 4.41 20.27 0.70 0.71 Cd mg/kg 0.44 0.31 0.31 0.040 2.2 0.17 0.54 2.44 6.56 0.21 0.06 Ce mg/kg 34 31 33 5.4 65 25 44 0.13 -0.60 -1.17 1.69 Co mg/kg 15 13 14 2.1 55 9.6 17 1.81 4.93 -0.53 1.14 Cr mg/kg 40 32 33 6.3 210 23 46 3.05 12.13 0.02 0.72 Cs mg/kg 2.0 1.7 1.8 0.34 7.0 0.96 2.6 1.23 2.19 -0.30 -0.36 Cu mg/kg 30 23 25 1.7 220 17 33 4.59 29.73 -0.58 2.13 Fe % 3.4 3.1 3.3 0.41 10 2.7 3.9 1.92 8.13 -1.47 6.17 Ga mg/kg 6.7 6.1 6.5 0.90 19 4.8 8.1 1.16 2.96 -0.97 2.70 Hf mg/kg 0.025 0.017 0.010 0.010 0.19 0.010 0.030 3.13 11.99 1.31 0.72 Hg mg/kg 0.10 0.080 0.078 0.012 0.67 0.056 0.12 4.29 21.39 0.31 2.22 In mg/kg 0.037 0.031 0.030 0.010 0.15 0.025 0.040 2.41 9.30 -0.23 0.66 K % 0.19 0.16 0.16 0.040 1.0 0.11 0.21 3.45 13.80 0.49 1.50 La mg/kg 16 14 16 2.1 30 11 20 0.04 -0.59 -1.27 2.00 Li mg/kg 27 23 25 3.6 130 19 33 3.10 16.70 -0.74 1.85 Mg % 1.2 0.81 0.69 0.090 9.3 0.53 1.1 4.05 16.87 1.04 2.97 Mn mg/kg 720 620 630 150 2800 460 840 2.39 7.41 0.16 0.68 Mo mg/kg 0.93 0.69 0.68 0.13 7.9 0.50 1.1 4.76 29.94 0.08 0.87 Na % 0.014 0.011 0.012 0.0010 0.057 0.0070 0.018 1.78 4.64 -0.79 1.12 Nb mg/kg 1.1 0.67 0.73 0.060 7.8 0.31 1.3 2.85 11.80 -0.15 -0.34 Ni mg/kg 32 27 31 3.7 130 20 38 2.22 8.74 -0.86 1.43 P % 0.072 0.065 0.063 0.028 0.19 0.049 0.085 1.45 2.44 0.25 -0.22 Pb mg/kg 41 32 31 6.2 170 23 47 2.29 5.44 0.24 0.41 Rb mg/kg 23 19 19 5.1 94 14 25 2.19 6.30 0.16 0.48 S % 0.031 0.025 0.030 0.010 0.090 0.010 0.040 0.85 0.61 -0.27 -1.14 Sb mg/kg 0.59 0.44 0.44 0.070 4.7 0.27 0.69 4.51 27.48 0.22 0.83 Sc mg/kg 4.6 3.9 4.0 0.70 19 2.7 5.7 2.24 8.18 -0.08 0.61 Se mg/kg 0.40 0.32 0.35 0.050 1.2 0.20 0.50 1.02 1.02 -0.85 0.67 Sn mg/kg 1.4 0.94 0.90 0.20 25 0.70 1.3 8.05 68.54 1.68 8.02 Sr mg/kg 22 14 13 3.2 390 8.8 24 7.95 67.75 0.92 3.17 Te mg/kg 0.030 0.023 0.022 0.010 0.090 0.010 0.040 0.93 0.18 0.10 -1.46 Th mg/kg 3.9 3.2 3.6 0.40 9.2 2.4 5.5 0.37 -0.56 -1.18 1.23 Ti % 0.041 0.016 0.016 0.0020 0.29 0.0040 0.058 2.25 5.65 0.12 -1.21 Tl mg/kg 0.23 0.21 0.21 0.060 0.64 0.16 0.30 1.24 2.29 -0.25 0.06 U mg/kg 1.2 1.0 0.90 0.10 5.0 0.70 1.5 2.26 5.64 0.07 1.42 V mg/kg 51 43 39 6.0 190 30 59 2.29 5.70 0.31 1.75 Y mg/kg 9.0 7.8 8.3 2.4 33 5.5 11 1.79 5.41 -0.00 -0.12 Zn mg/kg 95 85 84 17 410 68 110 3.25 13.66 0.34 3.24 Zr mg/kg 0.75 0.41 0.50 0.050 4.7 0.20 0.97 2.43 7.10 -0.24 -0.59 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – minimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 46 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 1/3. Basic statistical parameters for Western Prealps. Priloga 1/3. Osnovni statisticni parametri za Zahodne Predalpe. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 91 78 83 11 570 57 110 4.47 30.62 -0.21 1.89 Al % 2.0 1.8 1.9 0.41 3.9 1.5 2.5 0.10 -0.68 -0.90 0.67 As mg/kg 13 11 11 1.1 52 8.0 16 2.23 7.79 -0.64 2.21 Au µg/kg 2.6 1.9 2.0 0.10 17 1.4 2.7 3.47 16.32 -0.60 2.84 B mg/kg 2.9 2.2 2.0 0.50 9.0 1.0 4.0 0.81 0.23 -0.52 -0.65 Ba mg/kg 78 67 71 9.1 230 50 100 1.02 1.50 -0.69 0.98 Be mg/kg 1.1 0.89 1.0 0.050 3.5 0.70 1.5 0.90 1.23 -1.44 3.54 Bi mg/kg 0.47 0.43 0.45 0.16 1.1 0.32 0.57 0.81 0.42 -0.21 -0.31 Ca % 1.5 0.51 0.52 0.020 13 0.20 1.3 2.70 7.46 -0.12 -0.33 Cd mg/kg 0.94 0.59 0.56 0.0050 4.6 0.28 1.4 1.85 3.82 -0.86 2.82 Ce mg/kg 36 29 32 2.4 110 19 48 0.78 0.72 -0.88 0.69 Co mg/kg 15 12 16 0.50 36 8.2 20 0.20 -0.36 -1.81 4.71 Cr mg/kg 37 29 36 2.6 120 19 51 0.84 1.35 -0.91 0.56 Cs mg/kg 1.5 1.2 1.4 0.060 4.1 0.74 2.1 0.61 -0.22 -0.93 1.40 Cu mg/kg 30 24 25 3.4 100 15 37 1.62 3.04 -0.12 0.02 Fe % 2.9 2.7 2.9 0.24 4.9 2.5 3.5 -0.55 0.38 -2.60 9.95 Ga mg/kg 5.1 4.6 5.0 1.2 9.5 3.8 6.6 0.08 -0.72 -0.76 -0.09 Hf mg/kg 0.091 0.069 0.080 0.010 0.36 0.050 0.12 1.51 3.03 -0.69 0.41 Hg mg/kg 0.44 0.28 0.27 0.046 5.3 0.16 0.42 5.32 31.96 0.76 1.60 In mg/kg 0.044 0.039 0.040 0.010 0.11 0.030 0.050 0.73 1.20 -0.99 1.23 K % 0.13 0.12 0.12 0.040 0.29 0.090 0.16 0.87 0.49 -0.20 -0.04 La mg/kg 17 13 15 1.1 82 7.8 22 2.26 7.36 -0.49 0.20 Li mg/kg 23 19 20 1.0 69 14 29 1.16 1.54 -1.25 3.08 Mg % 0.87 0.51 0.45 0.030 8.0 0.33 0.75 3.55 13.44 0.36 1.51 Mn mg/kg 1200 850 1000 17 7200 560 1500 3.22 18.68 -1.59 4.62 Mo mg/kg 1.1 0.68 0.62 0.10 12 0.39 0.93 4.03 20.29 0.91 1.41 Na % 0.0061 0.0050 0.0060 0.0010 0.017 0.0030 0.0080 0.97 0.77 -0.47 -0.19 Nb mg/kg 0.65 0.42 0.44 0.040 2.8 0.20 0.97 1.30 1.24 -0.15 -0.70 Ni mg/kg 42 30 35 1.4 250 15 58 2.44 10.20 -0.64 0.67 P % 0.072 0.059 0.064 0.0090 0.22 0.039 0.098 1.24 1.76 -0.48 0.22 Pb mg/kg 46 42 43 14 110 32 54 1.21 1.81 -0.04 0.06 Rb mg/kg 18 16 16 4.1 39 13 23 0.65 0.04 -0.53 0.42 S % 0.048 0.040 0.040 0.010 0.17 0.030 0.060 1.67 4.98 -0.54 0.17 Sb mg/kg 0.80 0.61 0.55 0.21 8.9 0.45 0.76 5.84 39.54 1.78 5.26 Sc mg/kg 4.2 3.6 4.2 0.50 13 2.8 5.3 0.82 2.10 -0.92 1.00 Se mg/kg 0.55 0.48 0.50 0.10 1.5 0.30 0.70 1.12 0.88 -0.08 -0.29 Sn mg/kg 1.5 1.3 1.3 0.37 5.6 0.80 2.0 1.76 5.10 0.13 -0.49 Sr mg/kg 19 12 12 1.6 230 7.4 22 5.63 41.28 0.34 0.75 Te mg/kg 0.063 0.047 0.060 0.010 0.20 0.030 0.080 0.94 0.74 -0.59 -0.60 Th mg/kg 3.9 3.5 3.5 0.60 8.8 2.6 4.9 0.72 -0.02 -0.63 0.92 Ti % 0.0042 0.0027 0.0030 0.0005 0.026 0.0010 0.0060 2.23 6.56 -0.11 -0.67 Tl mg/kg 0.33 0.28 0.25 0.080 1.1 0.18 0.45 1.33 1.44 0.28 -0.68 U mg/kg 1.0 0.81 0.75 0.20 5.2 0.50 1.3 2.29 7.89 0.18 -0.25 V mg/kg 46 37 41 6.0 160 24 57 1.52 2.95 -0.43 0.02 Y mg/kg 17 11 13 1.0 110 6.4 19 3.67 15.31 -0.20 0.74 Zn mg/kg 88 80 86 11 190 64 110 0.46 0.02 -1.11 2.63 Zr mg/kg 2.7 2.1 2.1 0.30 11 1.3 3.6 1.63 2.95 -0.18 -0.14 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – minimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 47 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 1/4. Basic statistical parameters for Eastern Prealps. Priloga 1/4. Osnovni statisticni parametri za Vzhodne Predalpe. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 71 55 55 15 1000 42 73 8.00 74.60 1.01 4.13 Al % 1.6 1.4 1.6 0.26 3.5 1.1 1.9 0.66 0.31 -0.80 1.42 As mg/kg 13 11 11 2.0 50 8.4 15 2.23 7.75 -0.51 1.24 Au µg/kg 2.4 1.7 1.6 0.20 41 1.2 2.5 8.42 80.99 0.59 3.78 B mg/kg 2.9 1.9 2.0 0.50 18 1.0 4.0 2.10 5.75 0.12 -0.94 Ba mg/kg 88 70 70 17 820 47 100 5.73 44.76 0.49 1.43 Be mg/kg 0.93 0.79 0.70 0.20 2.6 0.60 1.2 1.27 1.04 0.12 -0.42 Bi mg/kg 0.31 0.29 0.30 0.090 0.75 0.23 0.39 0.72 1.06 -0.57 0.36 Ca % 2.4 0.48 0.36 0.0050 17 0.15 2.4 1.99 2.91 0.04 -0.65 Cd mg/kg 0.96 0.53 0.52 0.030 11 0.28 1.0 4.20 22.35 0.09 0.27 Ce mg/kg 35 30 33 5.3 93 23 46 0.67 0.59 -0.87 0.42 Co mg/kg 16 12 12 2.3 74 8.0 17 2.32 6.21 0.06 0.26 Cr mg/kg 33 27 26 5.7 210 16 40 3.43 20.96 0.12 -0.08 Cs mg/kg 1.4 1.2 1.4 0.14 5.2 0.79 2.0 1.12 2.23 -0.75 0.52 Cu mg/kg 24 19 18 3.9 300 13 28 7.07 59.93 0.43 2.43 Fe % 2.6 2.4 2.5 0.47 4.8 2.1 3.2 0.07 -0.30 -1.23 1.99 Ga mg/kg 4.4 3.9 4.1 0.60 10 2.9 5.5 0.67 -0.04 -0.69 0.76 Hf mg/kg 0.064 0.047 0.050 0.010 0.30 0.030 0.090 1.73 4.29 -0.31 -0.45 Hg mg/kg 0.17 0.12 0.11 0.015 3.9 0.076 0.18 9.36 94.46 0.91 4.35 In mg/kg 0.038 0.030 0.030 0.010 0.25 0.020 0.050 3.98 21.25 0.11 0.50 K % 0.13 0.11 0.11 0.040 0.65 0.080 0.15 3.39 15.22 0.84 1.52 La mg/kg 17 14 15 2.1 46 10 22 0.74 0.36 -0.83 0.59 Li mg/kg 17 15 16 2.6 64 11 20 1.73 5.20 -0.52 0.87 Mg % 1.2 0.47 0.38 0.040 9.9 0.22 0.73 2.71 6.54 0.83 0.41 Mn mg/kg 940 680 720 54 3300 410 1100 1.50 1.67 -0.28 0.02 Mo mg/kg 0.83 0.65 0.65 0.095 6.0 0.46 0.93 3.88 20.29 0.21 1.64 Na % 0.0082 0.0065 0.0070 0.0005 0.043 0.0050 0.011 2.50 11.91 -1.01 2.62 Nb mg/kg 0.53 0.40 0.45 0.025 1.7 0.26 0.71 1.21 1.51 -0.77 0.74 Ni mg/kg 30 22 22 4.7 500 15 32 8.50 82.15 0.87 3.59 P % 0.064 0.050 0.050 0.010 0.52 0.033 0.075 4.67 30.84 0.40 1.07 Pb mg/kg 43 33 33 6.2 850 27 40 9.70 99.95 1.22 9.13 Rb mg/kg 16 14 15 3.1 37 11 21 0.59 -0.14 -0.59 0.06 S % 0.036 0.029 0.030 0.010 0.20 0.020 0.040 2.76 13.75 -0.18 -0.31 Sb mg/kg 0.63 0.53 0.54 0.13 4.0 0.40 0.68 3.84 19.80 0.32 1.71 Sc mg/kg 3.8 3.3 3.1 1.0 12 2.3 4.4 1.58 2.43 0.33 -0.12 Se mg/kg 0.36 0.29 0.30 0.050 0.90 0.20 0.50 0.45 -0.55 -0.90 0.31 Sn mg/kg 1.1 0.97 1.0 0.25 6.0 0.70 1.4 3.14 15.43 0.32 0.72 Sr mg/kg 44 16 13 1.7 940 7.8 34 5.75 38.59 0.98 1.22 Te mg/kg 0.055 0.037 0.040 0.010 0.24 0.020 0.080 1.42 1.98 -0.06 -1.08 Th mg/kg 4.4 3.8 4.3 0.50 11 3.1 5.6 0.32 0.29 -1.54 3.26 Ti % 0.0055 0.0039 0.0050 0.0005 0.019 0.0020 0.0080 1.11 0.89 -0.61 -0.20 Tl mg/kg 0.24 0.20 0.21 0.050 1.2 0.15 0.28 2.39 9.95 -0.01 0.10 U mg/kg 1.1 0.93 0.90 0.10 4.6 0.70 1.2 2.56 8.32 -0.03 2.13 V mg/kg 36 30 29 7.0 150 21 43 1.94 5.15 0.26 -0.14 Y mg/kg 13 9.7 9.1 1.2 57 5.4 18 1.79 3.28 0.13 -0.50 Zn mg/kg 99 68 67 16 1400 48 88 5.98 36.09 1.97 8.74 Zr mg/kg 2.2 1.7 1.6 0.30 7.4 1.1 3.0 1.17 0.88 -0.12 -0.53 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – minimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 48 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 1/5. Basic statistical parameters for Western Dinarides. Priloga 1/5. Osnovni statisticni parametri za Zahodne Dinaride. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 81 74 74 21 170 55 110 0.49 -0.58 -0.46 0.07 Al % 2.1 1.9 1.9 0.62 4.7 1.4 2.5 1.06 0.93 0.00 0.01 As mg/kg 12 10 9.8 4.3 27 6.6 16 0.83 -0.29 0.14 -1.04 Au µg/kg 2.7 2.1 2.5 0.10 14 1.6 3.1 3.30 17.01 -1.29 4.38 B mg/kg 2.7 2.3 2.5 0.50 8.0 2.0 4.0 0.79 0.96 -0.84 0.23 Ba mg/kg 99 90 95 31 310 67 120 1.69 6.07 -0.11 0.15 Be mg/kg 1.2 0.99 0.93 0.40 2.6 0.60 1.6 0.63 -0.87 0.08 -1.35 Bi mg/kg 0.40 0.35 0.37 0.090 0.82 0.24 0.52 0.52 -0.64 -0.38 -0.36 Ca % 3.4 1.2 0.86 0.040 17 0.44 4.5 1.50 0.83 0.31 -0.77 Cd mg/kg 0.73 0.48 0.40 0.060 2.8 0.23 0.95 1.47 1.07 0.30 -0.75 Ce mg/kg 34 28 29 9.2 75 19 50 0.46 -1.10 -0.14 -1.27 Co mg/kg 18 18 17 9.0 29 15 21 0.34 -0.31 -0.31 -0.24 Cr mg/kg 62 55 51 21 190 39 72 1.82 3.36 0.67 0.04 Cs mg/kg 1.2 0.96 0.95 0.29 3.9 0.60 1.5 1.52 1.88 0.16 -0.60 Cu mg/kg 40 33 30 14 240 24 41 4.52 21.98 1.83 5.24 Fe % 3.0 2.9 3.1 1.5 4.8 2.3 3.6 0.08 -0.92 -0.35 -0.78 Ga mg/kg 5.9 5.4 5.5 2.1 13 4.0 7.5 0.82 0.15 -0.02 -0.66 Hf mg/kg 0.11 0.084 0.085 0.010 0.26 0.050 0.16 0.58 -0.94 -0.33 -0.41 Hg mg/kg 0.096 0.080 0.076 0.016 0.40 0.058 0.11 2.48 7.53 0.28 1.04 In mg/kg 0.043 0.037 0.040 0.010 0.090 0.030 0.060 0.19 -0.65 -0.86 0.05 K % 0.16 0.15 0.15 0.050 0.37 0.12 0.19 0.94 1.35 -0.22 0.08 La mg/kg 16 13 14 3.3 37 7.2 23 0.62 -0.86 -0.14 -1.14 Li mg/kg 19 18 19 8.3 33 15 22 0.49 -0.46 -0.16 -0.47 Mg % 0.50 0.40 0.39 0.15 4.3 0.31 0.48 5.40 31.14 1.86 7.49 Mn mg/kg 1200 1100 980 400 2600 790 1300 1.10 0.49 0.25 -0.38 Mo mg/kg 1.8 0.94 0.71 0.17 15 0.39 1.8 3.13 11.39 0.67 -0.32 Na % 0.0061 0.0053 0.0060 0.0005 0.015 0.0040 0.0070 0.55 0.82 -1.85 4.92 Nb mg/kg 0.78 0.42 0.30 0.050 2.9 0.14 1.5 0.95 -0.33 0.15 -1.50 Ni mg/kg 64 60 58 22 130 50 78 0.94 0.73 -0.08 0.11 P % 0.050 0.045 0.046 0.013 0.14 0.036 0.059 1.33 3.51 -0.40 0.78 Pb mg/kg 33 30 30 13 68 21 44 0.41 -0.65 -0.22 -1.00 Rb mg/kg 19 18 17 9.7 44 15 22 1.44 1.63 0.66 0.03 S % 0.049 0.037 0.040 0.010 0.21 0.020 0.060 2.11 5.48 -0.11 -0.34 Sb mg/kg 0.55 0.45 0.46 0.060 2.7 0.30 0.65 2.94 12.25 -0.06 1.47 Sc mg/kg 5.2 4.8 4.7 2.1 9.5 3.8 6.7 0.37 -0.70 -0.27 -0.75 Se mg/kg 0.48 0.40 0.40 0.050 1.7 0.30 0.60 2.07 6.58 -0.89 2.65 Sn mg/kg 1.4 1.2 1.2 0.30 9.4 0.80 2.0 4.90 32.27 0.37 1.59 Sr mg/kg 57 27 21 2.9 450 12 55 2.46 7.07 0.67 -0.42 Te mg/kg 0.076 0.068 0.080 0.010 0.14 0.050 0.10 -0.21 -0.61 -1.37 1.89 Th mg/kg 4.1 3.7 3.8 1.5 10 2.4 5.6 1.01 0.64 0.07 -0.80 Ti % 0.0054 0.0035 0.0030 0.0005 0.028 0.0020 0.0080 2.00 4.19 0.23 -0.61 Tl mg/kg 0.29 0.23 0.20 0.080 0.81 0.13 0.42 0.93 -0.27 0.31 -1.31 U mg/kg 0.76 0.65 0.60 0.20 1.9 0.40 1.1 0.88 -0.29 0.13 -1.01 V mg/kg 76 58 46 16 230 31 110 1.17 0.14 0.48 -1.09 Y mg/kg 15 13 13 2.4 45 9.1 20 1.29 2.11 -0.45 0.60 Zn mg/kg 70 68 68 39 120 58 81 0.62 0.18 -0.01 -0.34 Zr mg/kg 3.6 2.7 2.3 0.70 12 1.4 5.8 1.06 0.24 0.22 -1.34 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – minimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 49 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 1/6. Basic statistical parameters for Eastern Dinarides. Priloga 1/6. Osnovni statisticni parametri za Vzhodne Dinaride. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 64 55 54 12 240 39 79 1.91 5.34 -0.07 0.32 Al % 2.2 2.1 2.2 0.35 4.3 1.8 2.7 -0.00 0.40 -1.74 4.89 As mg/kg 15 14 14 2.9 56 11 18 2.26 8.41 -0.22 1.79 Au µg/kg 1.9 1.5 1.6 0.10 8.2 1.0 2.4 2.02 6.00 -1.02 2.42 B mg/kg 2.6 1.6 2.0 0.50 36 1.0 3.0 5.97 47.54 0.35 -0.03 Ba mg/kg 80 74 77 15 200 58 97 1.28 3.69 -0.75 2.37 Be mg/kg 1.4 1.2 1.4 0.20 3.3 1.0 1.7 0.28 0.31 -1.21 2.30 Bi mg/kg 0.39 0.37 0.37 0.10 0.86 0.30 0.47 0.61 0.49 -0.69 1.39 Ca % 1.7 0.61 0.57 0.0050 14 0.23 1.7 2.76 7.92 -0.01 0.03 Cd mg/kg 0.86 0.64 0.65 0.060 5.9 0.42 1.1 3.03 13.71 -0.17 0.56 Ce mg/kg 55 50 56 5.7 130 46 66 0.14 1.91 -1.93 4.83 Co mg/kg 20 18 19 2.0 65 14 26 1.34 2.92 -0.96 2.08 Cr mg/kg 47 44 46 6.9 110 39 57 0.16 1.41 -1.69 3.93 Cs mg/kg 2.0 1.7 2.0 0.23 6.4 1.3 2.6 0.68 1.80 -1.09 1.15 Cu mg/kg 18 17 16 3.6 99 13 21 3.90 23.05 0.35 2.61 Fe % 3.0 2.8 3.0 0.48 5.7 2.7 3.5 -0.43 1.64 -2.39 7.95 Ga mg/kg 6.5 6.0 6.4 1.0 13 5.4 7.6 0.05 1.14 -1.86 4.98 Hf mg/kg 0.10 0.085 0.090 0.010 0.37 0.055 0.13 1.35 2.36 -0.34 0.23 Hg mg/kg 0.13 0.12 0.12 0.025 0.45 0.086 0.16 1.63 4.09 -0.16 0.43 In mg/kg 0.046 0.042 0.040 0.010 0.10 0.030 0.060 0.53 0.63 -1.20 2.63 K % 0.12 0.10 0.10 0.020 0.86 0.080 0.12 5.66 41.51 0.95 4.48 La mg/kg 24 22 24 2.8 65 19 30 0.35 1.86 -1.64 3.69 Li mg/kg 21 19 20 2.7 150 15 25 6.21 48.20 -0.15 4.21 Mg % 1.0 0.55 0.43 0.10 9.2 0.30 0.74 2.97 9.31 1.10 0.71 Mn mg/kg 1200 1000 1100 170 4200 680 1600 1.28 2.28 -0.32 -0.21 Mo mg/kg 3.1 2.0 2.0 0.31 38 1.1 3.1 5.24 35.43 0.49 0.52 Na % 0.0060 0.0047 0.0060 0.0005 0.019 0.0030 0.0080 0.96 1.24 -1.08 1.09 Nb mg/kg 1.1 0.93 1.0 0.070 2.5 0.72 1.3 0.50 0.21 -1.48 3.49 Ni mg/kg 35 31 30 5.4 150 22 44 1.84 6.28 -0.22 0.58 P % 0.048 0.039 0.038 0.0060 0.44 0.027 0.060 5.56 42.85 0.47 1.96 Pb mg/kg 38 37 39 13 78 32 44 0.40 1.33 -0.84 1.84 Rb mg/kg 22 20 22 3.3 52 18 26 0.36 1.38 -1.39 3.16 S % 0.042 0.033 0.030 0.010 0.23 0.020 0.050 2.63 9.58 -0.01 -0.21 Sb mg/kg 0.68 0.60 0.58 0.13 3.0 0.46 0.81 2.51 11.21 -0.07 1.35 Sc mg/kg 4.8 4.4 4.8 0.60 11 3.6 5.9 0.38 0.74 -1.44 3.40 Se mg/kg 0.44 0.36 0.40 0.050 1.6 0.30 0.50 1.64 3.81 -0.96 1.86 Sn mg/kg 1.4 1.3 1.3 0.30 5.0 1.0 1.7 2.09 11.11 -0.51 1.93 Sr mg/kg 21 13 12 2.6 240 7.5 20 4.18 21.95 0.80 0.80 Te mg/kg 0.057 0.045 0.050 0.010 0.17 0.030 0.070 0.93 0.80 -0.72 -0.14 Th mg/kg 5.7 5.1 5.6 0.30 17 4.6 7.1 0.45 2.37 -2.03 5.65 Ti % 0.0076 0.0064 0.0070 0.0005 0.021 0.0040 0.010 0.74 0.37 -0.84 1.25 Tl mg/kg 0.53 0.46 0.48 0.10 1.3 0.34 0.68 0.80 0.56 -0.59 0.21 U mg/kg 1.6 1.4 1.4 0.30 6.2 1.1 2.0 2.06 9.77 -0.53 1.65 V mg/kg 74 67 70 13 200 54 87 1.25 2.52 -0.63 1.41 Y mg/kg 16 13 14 2.1 59 9.0 20 1.90 4.96 -0.20 0.52 Zn mg/kg 65 62 64 17 130 50 76 0.53 0.38 -0.64 1.08 Zr mg/kg 4.0 3.5 3.5 0.60 11 2.6 4.9 0.93 0.77 -0.60 0.74 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – minimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th per­centile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarithmic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 50 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 1/7. Basic statistical parameters for Pannonian basin. Priloga 1/7. Osnovni statisticni parametri za Panonsko nižino. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 67 57 57 11 280 39 79 2.00 4.92 0.05 0.44 Al % 1.6 1.5 1.6 0.57 2.9 1.3 1.8 0.20 0.42 -0.82 1.30 As mg/kg 10 9.3 9.3 3.5 92 7.2 12 7.94 83.02 0.77 4.07 Au µg/kg 3.2 2.1 2.1 0.30 110 1.4 3.1 11.72 142.89 1.20 6.48 B mg/kg 2.5 1.7 2.0 0.50 11 1.0 3.0 1.85 3.61 -0.02 -0.80 Ba mg/kg 84 79 81 27 230 64 100 1.16 3.55 -0.23 0.37 Be mg/kg 0.76 0.72 0.70 0.30 2.5 0.60 0.90 1.91 9.49 -0.22 0.93 Bi mg/kg 0.26 0.25 0.25 0.080 0.69 0.21 0.31 1.21 5.25 -0.45 1.61 Ca % 1.1 0.33 0.25 0.020 17 0.16 0.55 4.28 19.94 0.90 0.91 Cd mg/kg 0.38 0.25 0.25 0.0050 2.9 0.18 0.36 3.59 14.25 -0.94 6.28 Ce mg/kg 39 37 39 13 80 31 46 0.43 0.32 -0.49 0.26 Co mg/kg 13 12 13 4.7 32 9.9 15 1.15 3.21 -0.16 0.64 Cr mg/kg 30 29 29 8.9 65 25 35 1.09 2.36 -0.30 1.55 Cs mg/kg 1.3 1.2 1.3 0.30 4.4 1.0 1.5 2.04 11.44 -0.39 2.14 Cu mg/kg 24 21 20 3.2 200 16 27 5.99 46.94 0.53 4.06 Fe % 2.7 2.6 2.6 1.1 9.3 2.3 3.0 3.72 30.30 -0.00 4.48 Ga mg/kg 4.6 4.4 4.5 1.5 8.6 3.8 5.3 0.28 0.65 -0.81 1.58 Hf mg/kg 0.030 0.020 0.015 0.010 0.15 0.010 0.040 1.85 3.18 0.68 -0.89 Hg mg/kg 0.081 0.069 0.067 0.026 0.96 0.054 0.086 8.28 79.68 1.66 7.85 In mg/kg 0.025 0.022 0.025 0.010 0.080 0.010 0.030 1.06 1.80 -0.17 -0.94 K % 0.13 0.12 0.12 0.040 0.35 0.090 0.15 1.51 2.99 0.26 0.34 La mg/kg 18 17 18 5.1 32 14 21 0.18 -0.22 -0.75 0.85 Li mg/kg 18 17 19 5.0 37 14 22 0.20 0.21 -0.89 1.10 Mg % 0.57 0.46 0.46 0.040 5.0 0.34 0.59 4.90 32.38 0.30 3.33 Mn mg/kg 700 640 670 140 2100 510 810 1.24 3.63 -0.51 0.83 Mo mg/kg 0.80 0.63 0.61 0.18 6.6 0.41 0.89 4.55 25.48 0.95 1.85 Na % 0.0086 0.0076 0.0080 0.0020 0.023 0.0050 0.011 0.93 0.64 -0.32 -0.02 Nb mg/kg 0.57 0.52 0.57 0.11 1.5 0.41 0.69 0.52 0.84 -0.76 0.61 Ni mg/kg 28 26 26 8.7 66 21 35 0.95 0.96 -0.16 0.06 P % 0.061 0.057 0.058 0.022 0.13 0.044 0.074 0.85 0.79 -0.16 -0.11 Pb mg/kg 27 24 23 11 210 19 28 5.58 40.63 1.70 5.55 Rb mg/kg 18 17 18 9.1 39 14 21 0.89 1.55 0.03 -0.17 S % 0.030 0.024 0.030 0.010 0.21 0.020 0.030 4.20 25.34 0.27 0.58 Sb mg/kg 0.58 0.53 0.51 0.16 1.7 0.43 0.65 1.96 4.96 0.24 1.47 Sc mg/kg 3.7 3.5 3.5 1.4 11 2.8 4.4 1.54 5.64 0.07 0.61 Se mg/kg 0.34 0.27 0.30 0.050 1.5 0.20 0.40 1.62 4.65 -0.67 0.34 Sn mg/kg 0.95 0.88 0.90 0.40 5.1 0.70 1.1 4.75 37.66 0.87 2.57 Sr mg/kg 33 16 13 2.6 750 9.4 21 6.34 46.06 1.62 3.76 Te mg/kg 0.025 0.019 0.020 0.010 0.15 0.010 0.030 2.59 11.07 0.49 -0.81 Th mg/kg 4.3 4.0 4.2 1.1 8.9 3.1 5.3 0.48 0.07 -0.63 0.36 Ti % 0.015 0.010 0.012 0.0005 0.14 0.0050 0.020 4.30 32.05 -0.31 -0.01 Tl mg/kg 0.19 0.18 0.17 0.090 0.81 0.14 0.21 3.58 16.73 1.29 3.35 U mg/kg 1.1 1.0 1.0 0.30 3.7 0.85 1.2 2.48 10.12 0.39 1.91 V mg/kg 34 32 32 15 76 26 39 1.27 2.61 0.14 0.40 Y mg/kg 10 9.5 9.8 2.6 64 7.9 12 5.89 55.02 -0.05 3.11 Zn mg/kg 77 70 69 32 660 57 86 7.97 78.25 1.60 8.20 Zr mg/kg 0.90 0.60 0.60 0.050 4.4 0.30 1.1 1.90 3.89 -0.43 0.24 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – mi­nimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 51 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 1/8. Basic statistical parameters for Interior basins. Priloga 1/8. Osnovni statisticni parametri za Notranje kotline. Unit X¯ X(G) Md Min Max P25 P75 A E A(L) E(L) Ag µg/kg 120 88 93 18 1200 55 140 5.57 33.04 0.97 4.28 Al % 1.8 1.8 1.9 0.60 2.9 1.5 2.3 -0.05 -0.37 -1.04 2.00 As mg/kg 11 10 11 5.6 15 7.8 13 -0.03 -1.30 -0.37 -1.09 Au µg/kg 2.6 2.0 1.9 0.60 12 1.2 2.7 2.51 7.36 0.48 0.10 B mg/kg 2.6 1.9 2.0 0.50 7.0 1.0 4.0 0.63 -0.55 -0.39 -1.12 Ba mg/kg 95 78 83 21 560 51 110 4.46 24.05 0.38 2.10 Be mg/kg 0.88 0.83 0.90 0.30 1.6 0.70 1.0 0.45 0.08 -0.63 0.71 Bi mg/kg 0.33 0.32 0.35 0.18 0.56 0.24 0.40 0.03 -0.44 -0.45 -0.81 Ca % 2.1 0.54 0.60 0.0050 20 0.17 2.9 3.65 16.81 -0.34 -0.52 Cd mg/kg 0.70 0.55 0.61 0.050 1.6 0.42 0.98 0.41 -0.53 -1.42 2.11 Ce mg/kg 33 30 35 7.4 56 24 42 -0.10 -0.84 -1.14 1.19 Co mg/kg 11 10 10 2.8 29 8.2 12 1.15 1.66 -0.33 0.45 Cr mg/kg 28 26 28 8.3 56 20 35 0.57 0.49 -0.71 0.82 Cs mg/kg 1.4 1.2 1.4 0.24 2.7 0.96 1.8 0.22 -0.36 -1.11 1.73 Cu mg/kg 21 20 20 8.2 40 16 24 0.97 1.11 -0.04 0.34 Fe % 2.6 2.5 2.7 1.2 4.5 2.2 3.1 -0.04 0.01 -0.79 0.04 Ga mg/kg 5.0 4.7 5.0 1.6 8.0 3.8 6.1 -0.02 -0.43 -1.01 1.98 Hf mg/kg 0.091 0.074 0.080 0.010 0.24 0.050 0.12 0.95 0.51 -0.93 1.38 Hg mg/kg 0.17 0.15 0.15 0.057 0.60 0.12 0.19 3.05 13.64 0.42 1.73 In mg/kg 0.038 0.036 0.040 0.010 0.060 0.030 0.050 -0.41 0.17 -1.71 3.73 K % 0.12 0.11 0.10 0.050 0.34 0.090 0.14 1.75 3.83 0.57 0.17 La mg/kg 15 13 15 2.7 30 11 18 0.45 0.07 -1.10 1.89 Li mg/kg 18 16 18 4.3 38 14 22 0.32 0.55 -1.12 1.31 Mg % 0.89 0.54 0.41 0.030 4.7 0.29 0.80 2.13 4.17 0.18 1.27 Mn mg/kg 800 640 820 100 1600 350 1200 0.22 -1.03 -0.81 -0.21 Mo mg/kg 0.79 0.73 0.72 0.31 1.6 0.56 1.0 0.52 0.08 -0.31 -0.52 Na % 0.0074 0.0066 0.0065 0.0020 0.022 0.0050 0.010 1.70 4.48 -0.22 0.84 Nb mg/kg 0.60 0.50 0.54 0.12 1.2 0.36 0.82 0.42 -0.90 -0.67 -0.13 Ni mg/kg 24 21 22 7.2 64 20 26 1.64 4.73 -0.48 1.33 P % 0.073 0.063 0.067 0.0080 0.20 0.050 0.10 0.83 1.80 -1.16 2.27 Pb mg/kg 44 42 42 21 67 33 53 0.05 -0.65 -0.55 -0.06 Rb mg/kg 18 17 18 5.4 45 14 22 0.84 1.97 -0.60 0.13 S % 0.060 0.044 0.040 0.010 0.37 0.030 0.060 3.75 14.17 0.58 2.75 Sb mg/kg 0.58 0.54 0.54 0.26 1.6 0.40 0.76 1.93 5.71 0.55 0.27 Sc mg/kg 3.5 3.3 3.3 1.4 6.1 2.8 4.4 0.20 -0.81 -0.43 -0.51 Se mg/kg 0.54 0.44 0.40 0.10 2.6 0.30 0.60 3.01 10.74 0.60 1.44 Sn mg/kg 1.7 1.4 1.4 0.40 11 1.0 1.8 4.88 27.09 1.08 4.10 Sr mg/kg 23 14 12 2.9 210 6.9 27 4.37 21.67 0.62 0.69 Te mg/kg 0.037 0.029 0.035 0.010 0.090 0.010 0.060 0.59 -0.45 -0.39 -1.15 Th mg/kg 3.6 3.3 3.8 0.90 7.0 2.6 4.5 0.04 -0.27 -1.13 0.98 Ti % 0.0051 0.0040 0.0050 0.0005 0.014 0.0030 0.0070 0.95 1.39 -0.97 0.72 Tl mg/kg 0.27 0.25 0.26 0.090 0.60 0.20 0.33 0.85 1.10 -0.37 0.19 U mg/kg 1.4 1.1 1.1 0.30 10 0.80 1.5 4.53 22.66 1.33 4.42 V mg/kg 39 36 40 13 89 30 44 0.93 2.59 -0.48 0.52 Y mg/kg 12 10 9.8 2.0 30 7.6 15 1.08 1.28 -0.47 0.45 Zn mg/kg 78 74 75 29 120 63 99 0.03 -0.48 -0.86 0.86 Zr mg/kg 2.5 2.3 2.3 1.1 5.8 1.5 3.2 1.07 0.57 0.26 -0.82 X¯ – aritmeticna sredina/arithmetic mean; X(G) – geometrijska sredina/geometric mean; Md – mediana/median (Q2); Min – mi­nimium/minimum; Max – maksimum/maximum; P25 – 25. percentil/ 25th percentile (Q1), P75 – 75. percentil/75th percentile (Q3); A – asimetricnost/skewness; E – splošcenost/kurtosis; A(L) – asimetricnost (logaritmirane vrednosti)/skewness (logarith­mic values); E(L) – splošcenost (logaritmirane vrednosti)/kurtosis (logarithmic values) 52 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 2/1. Determined thresholds for Western Alps. Priloga 2/1. Zgornje meje naravne variabilnosti za Zahodne Alpe. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 180 180 190 250 140 190 200 350 Al % 3.6 3.7 3.7 6.8 3.9 6.2 4.7 9.6 As mg/kg 30 34 34 43 24 37 29 53.0 Au µg/kg 4.8 5.2 8.8 8.9 3.4 8.0 4.7 13.7 B mg/kg 12 14 11 17 6.0 10 9.5 19.8 Ba mg/kg 130 140 130 240 130 150 150 310 Be mg/kg 2.3 2.3 2.2 3.7 2.0 3.2 2.6 5.0 Bi mg/kg 0.86 0.94 0.84 1.1 0.70 0.99 0.97 1.5 Ca % 16 21 15 42 5.8 130 17 620 Cd mg/kg 6.4 6.5 5.7 8.7 3.2 11 4.9 20.5 Ce mg/kg 67 70 69 130 73 160 89 270 Co mg/kg 25 26 25 47 25 40 30 72.6 Cr mg/kg 67 78 69 99 57 100 78 180 Cs mg/kg 3.3 3.6 3.3 6.3 3.0 6.4 4.0 13.1 Cu mg/kg 49 56 49 70 40 56 49 84.4 Fe % 4.2 4.3 4.8 9.2 4.9 6.1 6.1 11.9 Ga mg/kg 8.8 10 10 18 10 17 12 28.6 Hf mg/kg 0.22 0.27 0.21 0.32 0.17 0.37 0.22 0.61 Hg mg/kg 0.56 0.71 0.83 0.81 0.42 0.71 0.60 1.4 In mg/kg 0.070 0.090 0.085 0.13 0.070 0.094 0.11 0.17 K % 0.24 0.28 0.26 0.37 0.23 0.33 0.27 0.47 La mg/kg 39 39 38 65 31 68 42 140 Li mg/kg 29 38 33 70 35 61 43 120 Mg % 7.2 8.1 6.0 8.4 1.4 3.1 5.2 40.5 Mn mg/kg 2100 2400 2440 4000 2000 3900 2700 7700 Mo mg/kg 3.6 5.1 3.1 2.8 1.3 1.9 1.6 2.8 Na % 0.017 0.024 0.023 0.023 0.013 0.019 0.018 0.028 Nb mg/kg 1.9 2.4 1.9 2.8 1.2 3.1 1.6 5.4 Ni mg/kg 71 77 64 120 61 110 73 200 P % 0.24 0.25 0.20 0.25 0.12 0.17 0.17 0.31 Pb mg/kg 130 150 120 150 90 140 130 240 Rb mg/kg 27 33 31 54 31 45 37 79.1 S % 0.23 0.24 0.20 0.29 0.14 0.23 0.18 0.47 Sb mg/kg 1.3 1.6 1.5 1.8 1.2 1.8 1.6 2.7 Sc mg/kg 8.7 9.3 8.8 14 8.4 15 11 26.8 Se mg/kg 1.4 2.1 1.5 1.9 0.99 1.7 1.6 3.5 Sn mg/kg 3.2 3.4 3.0 4.3 2.8 3.9 3.2 5.1 Sr mg/kg 75 82 67 93 49 110 73 240 Te mg/kg 0.17 0.20 0.17 0.28 0.15 0.39 0.20 1.3 Th mg/kg 7.6 8.1 7.1 13 6.5 13 8.1 26.0 Ti % 0.056 0.12 0.066 0.042 0.009 0.014 0.014 0.046 Tl mg/kg 0.77 0.88 0.82 1.1 0.75 1.5 1.1 2.7 U mg/kg 1.5 1.7 1.5 1.8 1.3 1.9 1.8 2.8 V mg/kg 73 79 81 120 80 130 89 170 Y mg/kg 58 60 49 71 24 52 37 95.6 Zn mg/kg 180 190 210 280 160 230 190 290 Zr mg/kg 6.8 7.7 6.0 8.6 5.0 8.8 6.5 18.3 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 53 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 2/2. Determined thresholds for Eastern Alps. Priloga 2/2. Zgornje meje naravne variabilnosti za Vzhodne Alpe. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 250 340 270 410 140 270 240 660 Al % 3.5 3.7 3.9 4.8 3.7 4.3 4.2 5.5 As mg/kg 39 70 50 42 19 29 22 46.2 Au µg/kg 10 22 18 14 3.4 7.6 4.9 11.2 B mg/kg 7.0 9.0 6.3 9.4 6.4 16 6.8 44.1 Ba mg/kg 220 240 200 250 140 200 190 290 Be mg/kg 1.6 1.9 1.6 2.0 1.5 1.6 1.7 2.2 Bi mg/kg 0.64 0.74 0.66 0.86 0.54 0.75 0.67 1.1 Ca % 4.9 13 6.9 5.4 0.67 2.0 1.1 4.7 Cd mg/kg 1.3 2.0 1.3 1.6 0.75 1.6 1.1 2.9 Ce mg/kg 60 61 63 86 64 81 74 110 Co mg/kg 35 39 33 42 27 36 29 40.9 Cr mg/kg 88 150 100 120 64 91 80 130 Cs mg/kg 4.2 4.7 4.5 6.0 4.2 7.0 5.1 11.6 Cu mg/kg 63 85 85 100 49 71 58 93.0 Fe % 5.1 7.5 6.3 7.7 5.1 5.6 5.6 6.7 Ga mg/kg 12 14 13 16 11 14 13 17.5 Hf mg/kg 0.085 0.11 0.086 0.080 0.010 0.010 0.060 0.16 Hg mg/kg 0.21 0.49 0.31 0.30 0.15 0.25 0.22 0.40 In mg/kg 0.075 0.10 0.081 0.096 0.060 0.070 0.063 0.081 K % 0.41 0.89 0.53 0.54 0.31 0.44 0.35 0.52 La mg/kg 25 28 29 40 31 41 35 53.0 Li mg/kg 55 64 61 77 45 57 54 76.0 Mg % 3.1 8.9 4.5 3.7 1.4 2.0 1.9 3.1 Mn mg/kg 1600 2300 1630 1800 1200 1600 1400 2100 Mo mg/kg 2.4 3.3 2.9 3.1 1.5 2.4 2.0 3.7 Na % 0.034 0.040 0.033 0.051 0.028 0.047 0.035 0.074 Nb mg/kg 3.4 4.0 3.5 5.3 2.0 7.2 2.8 11.5 Ni mg/kg 54 92 71 96 58 72 65 97.4 P % 0.15 0.18 0.14 0.16 0.12 0.14 0.14 0.19 Pb mg/kg 130 160 110 130 64 90 84 140 Rb mg/kg 51 67 54 62 34 44 42 61.5 S % 0.065 0.075 0.068 0.095 0.060 0.10 0.085 0.32 Sb mg/kg 1.4 2.0 1.8 1.9 1.0 1.8 1.3 2.8 Sc mg/kg 9.8 12 10 12 7.7 12 10 17.1 Se mg/kg 0.90 1.1 0.90 1.4 0.79 1.0 0.95 2.0 Sn mg/kg 2.5 4.4 7.0 3.5 1.6 2.0 2.2 3.3 Sr mg/kg 49 59 110 67 32 62 46 100 Te mg/kg 0.070 0.085 0.073 0.10 0.059 0.24 0.085 0.32 Th mg/kg 7.9 8.2 8.2 14 8.0 12 10 19.1 Ti % 0.17 0.21 0.15 0.29 0.052 0.85 0.14 3.3 Tl mg/kg 0.44 0.55 0.46 0.56 0.39 0.57 0.52 0.81 U mg/kg 3.2 4.8 3.2 3.7 1.8 3.0 2.7 4.7 V mg/kg 140 170 120 130 73 94 100 160 Y mg/kg 18 22 19 22 17 23 20 31.9 Zn mg/kg 200 290 210 210 140 160 160 200 Zr mg/kg 2.5 3.7 2.5 4.4 1.4 7.5 2.1 10.5 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 54 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 2/3. Determined thresholds for Western Prealps. Priloga 2/3. Zgornje meje naravne variabilnosti za Zahodne Predalpe. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 170 200 220 240 160 210 180 280 Al % 3.3 3.4 3.5 4.5 3.5 4.5 4.2 5.9 As mg/kg 27 36 28 35 22 31 27 42.5 Au µg/kg 6.5 10 7.4 9.2 3.9 5.7 4.7 7.2 B mg/kg 7.0 7.0 6.8 11 5.0 16 8.5 32.0 Ba mg/kg 150 180 160 210 140 210 190 320 Be mg/kg 2.3 2.5 2.4 3.9 2.2 3.3 2.7 4.7 Bi mg/kg 0.85 0.92 0.86 1.0 0.83 1.1 0.94 1.4 Ca % 8.7 9.2 6.6 12 1.6 8.5 3.0 22.8 Cd mg/kg 3.2 4.0 2.8 5.1 1.6 5.0 3.1 15.9 Ce mg/kg 74 81 78 120 76 130 93 200 Co mg/kg 27 30 30 56 31 41 39 80.0 Cr mg/kg 69 88 81 130 82 140 98 220 Cs mg/kg 3.1 3.2 3.2 5.2 3.3 6.3 4.1 10.0 Cu mg/kg 78 94 70 89 58 95 71 150 Fe % 4.1 4.4 4.6 6.5 4.6 5.1 5.2 6.1 Ga mg/kg 8.5 8.9 9.1 12 9.3 11 11 15.3 Hf mg/kg 0.24 0.27 0.22 0.35 0.18 0.32 0.22 0.45 Hg mg/kg 1.2 2.1 1.8 1.5 0.63 1.2 0.81 1.8 In mg/kg 0.080 0.10 0.084 0.11 0.070 0.094 0.080 0.11 K % 0.24 0.27 0.24 0.28 0.21 0.28 0.27 0.38 La mg/kg 44 55 45 66 36 65 44 110 Li mg/kg 54 61 52 81 42 60 51 86.8 Mg % 4.0 5.8 3.5 3.5 0.97 1.4 1.4 2.6 Mn mg/kg 2700 2900 3000 5400 2400 3900 2900 6400 Mo mg/kg 4.8 6.1 4.6 4.0 1.3 2.4 1.7 3.4 Na % 0.013 0.016 0.013 0.019 0.015 0.020 0.016 0.035 Nb mg/kg 1.7 2.2 1.8 3.0 1.2 4.5 2.1 10.4 Ni mg/kg 97 140 120 190 98 200 120 460 P % 0.17 0.21 0.16 0.22 0.15 0.23 0.19 0.39 Pb mg/kg 85 100 86 98 76 90 87 120 Rb mg/kg 32 36 33 41 31 41 38 53.5 S % 0.10 0.12 0.11 0.14 0.099 0.13 0.11 0.17 Sb mg/kg 1.9 3.7 2.9 2.0 0.93 1.1 1.2 1.7 Sc mg/kg 7.6 8.3 8.3 11 8.1 11 9.1 13.8 Se mg/kg 1.3 1.3 1.2 1.4 1.1 1.9 1.3 2.5 Sn mg/kg 2.9 3.7 3.2 3.8 2.9 4.7 3.8 7.9 Sr mg/kg 61 72 72 70 30 62 44 110 Te mg/kg 0.16 0.17 0.15 0.26 0.15 0.23 0.16 0.35 Th mg/kg 7.6 8.0 7.6 9.6 6.5 8.7 8.4 12.7 Ti % 0.014 0.015 0.013 0.019 0.009 0.023 0.014 0.088 Tl mg/kg 0.78 0.84 0.75 0.90 0.52 0.78 0.85 1.8 U mg/kg 2.4 3.3 2.6 3.1 1.8 3.0 2.5 5.5 V mg/kg 110 140 110 150 89 150 110 210 Y mg/kg 43 98 55 67 32 48 38 98.6 Zn mg/kg 160 170 160 210 150 190 170 240 Zr mg/kg 7.4 8.4 6.7 9.0 4.8 8.7 7.0 16.6 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/ mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 55 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 2/4. Determined thresholds for Eastern Prealps. Priloga 2/4. Zgornje meje naravne variabilnosti za Vzhodne Predalpe. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 130 220 270 190 100 150 120 170 Al % 3.1 3.3 2.9 3.7 2.8 3.5 3.2 4.6 As mg/kg 26 36 28 34 22 38 26 37.6 Au µg/kg 5.5 10 10 7.1 3.6 4.2 4.5 7.5 B mg/kg 9.0 12 8.8 13 5.3 3.6 8.5 32.0 Ba mg/kg 200 300 260 250 150 170 180 320 Be mg/kg 2.2 2.4 2.0 2.4 1.6 3.5 2.1 3.4 Bi mg/kg 0.53 0.62 0.56 0.68 0.54 1.1 0.63 0.86 Ca % 13 14 10 25 1.3 8.3 5.9 170 Cd mg/kg 3.6 6.3 3.8 4.5 1.4 3.3 2.1 7.2 Ce mg/kg 67 80 73 110 70 150 81 130 Co mg/kg 45 60 42 51 25 20 32 56.2 Cr mg/kg 72 77 81 94 58 65 77 160 Cs mg/kg 3.0 3.4 3.1 4.6 3.1 5.2 3.7 7.6 Cu mg/kg 47 52 85 70 39 37 50 86.6 Fe % 4.3 4.6 4.6 5.9 4.3 4.6 5.0 6.4 Ga mg/kg 8.6 9.3 8.6 11 7.8 10 9.5 14.7 Hf mg/kg 0.16 0.17 0.16 0.25 0.11 0.33 0.18 0.47 Hg mg/kg 0.36 0.41 0.92 0.50 0.26 0.28 0.34 0.66 In mg/kg 0.070 0.14 0.10 0.11 0.060 0.10 0.095 0.20 K % 0.28 0.43 0.31 0.30 0.20 0.22 0.26 0.39 La mg/kg 33 37 35 50 31 87 38 65.1 Li mg/kg 35 48 37 46 29 33 34 49.9 Mg % 7.7 8.2 5.4 5.5 0.93 0.70 1.5 4.4 Mn mg/kg 2900 3100 2480 3600 1800 1500 2200 5300 Mo mg/kg 2.6 3.1 2.3 2.4 1.3 5.8 1.6 2.6 Na % 0.017 0.023 0.019 0.028 0.016 0.016 0.020 0.036 Nb mg/kg 1.4 1.7 1.3 2.0 1.1 8.2 1.4 3.3 Ni mg/kg 66 120 130 85 45 44 59 100 P % 0.16 0.25 0.18 0.19 0.11 0.10 0.14 0.26 Pb mg/kg 69 120 200 100 53 99 60 74.3 Rb mg/kg 32 34 32 41 30 26 37 58.9 S % 0.090 0.10 0.088 0.11 0.060 0.10 0.070 0.11 Sb mg/kg 1.7 2.3 1.6 1.7 0.96 1.5 1.1 1.5 Sc mg/kg 9.2 9.7 8.1 9.1 6.1 8.1 7.5 11.4 Se mg/kg 0.70 0.80 0.76 1.2 0.60 0.70 0.95 2.0 Sn mg/kg 2.4 3.3 2.6 2.8 1.9 3.3 2.4 4.0 Sr mg/kg 180 410 270 170 36 86 74 320 Te mg/kg 0.14 0.19 0.15 0.23 0.13 0.077 0.17 0.64 Th mg/kg 7.5 8.0 8.1 12 7.9 14 9.3 13.5 Ti % 0.015 0.016 0.014 0.025 0.014 0.030 0.017 0.064 Tl mg/kg 0.51 0.62 0.56 0.66 0.40 0.86 0.48 0.71 U mg/kg 2.3 3.5 2.6 2.9 1.8 3.0 2.0 2.7 V mg/kg 80 110 82 94 62 110 76 130 Y mg/kg 39 51 37 49 23 27 37 110 Zn mg/kg 140 1100 480 250 120 110 150 220 Zr mg/kg 5.1 6.1 5.2 7.1 3.9 10 5.9 14.5 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/ mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 56 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 2/5. Determined thresholds for Western Dinarides. Priloga 2/5. Zgornje meje naravne variabilnosti za Zahodne Dinaride. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 140 140 150 180 140 200 190 300 Al % 4.0 4.3 3.8 4.3 3.4 4.3 4.2 5.9 As mg/kg 24 25 23 28 21 33 29 55.8 Au µg/kg 6.1 6.6 6.6 9.5 5.0 6.3 5.3 8.4 B mg/kg 5.0 6.0 5.8 8.9 4.0 4.6 7.0 11.3 Ba mg/kg 160 200 190 220 180 230 210 310 Be mg/kg 2.3 2.4 2.4 3.0 2.2 4.7 3.1 7.0 Bi mg/kg 0.71 0.80 0.77 0.97 0.75 1.3 0.94 1.7 Ca % 14 15 13 23 2.6 20 11 150 Cd mg/kg 2.4 2.6 2.2 3.0 0.97 2.5 2.0 8.0 Ce mg/kg 66 69 71 95 76 130 97 220 Co mg/kg 28 29 28 31 27 29 30 34.5 Cr mg/kg 160 170 130 140 95 130 120 180 Cs mg/kg 3.2 3.7 3.0 3.7 2.3 3.7 2.8 5.8 Cu mg/kg 81 230 120 92 51 60 65 88.0 Fe % 4.2 4.4 4.6 5.0 5.1 5.7 5.5 6.9 Ga mg/kg 12 12 11 13 10 14 13 19.3 Hf mg/kg 0.21 0.24 0.24 0.35 0.22 0.56 0.33 0.92 Hg mg/kg 0.24 0.33 0.23 0.26 0.15 0.19 0.19 0.28 In mg/kg 0.080 0.090 0.085 0.12 0.099 0.13 0.11 0.17 K % 0.26 0.30 0.28 0.32 0.25 0.30 0.30 0.38 La mg/kg 35 37 36 51 36 79 48 140 Li mg/kg 31 33 31 35 31 40 34 42.6 Mg % 0.90 3.0 1.7 1.2 0.64 0.72 0.73 0.92 Mn mg/kg 2300 2400 2210 2500 1800 2100 2200 3000 Mo mg/kg 6.7 13 7.3 8.3 2.0 6.3 3.9 18.1 Na % 0.011 0.013 0.012 0.019 0.012 0.014 0.012 0.016 Nb mg/kg 2.2 2.6 2.4 4.4 0.85 5.4 3.5 50.9 Ni mg/kg 120 130 110 130 98 120 120 150 P % 0.089 0.097 0.095 0.11 0.079 0.096 0.094 0.12 Pb mg/kg 53 67 61 73 63 91 78 130 Rb mg/kg 37 40 35 37 27 30 34 42.6 S % 0.13 0.19 0.13 0.17 0.099 0.13 0.12 0.31 Sb mg/kg 1.0 1.8 1.4 1.6 0.94 1.3 1.2 2.1 Sc mg/kg 8.5 9.3 9.0 10 9.0 12 11 15.7 Se mg/kg 0.90 1.6 1.1 1.4 0.70 0.94 1.0 1.7 Sn mg/kg 2.5 3.1 3.8 3.8 2.4 4.0 3.8 7.9 Sr mg/kg 220 280 220 280 53 130 120 530 Te mg/kg 0.13 0.13 0.14 0.20 0.14 0.15 0.18 0.28 Th mg/kg 8.0 10 8.3 9.9 8.3 13 10 20.0 Ti % 0.019 0.021 0.017 0.023 0.009 0.018 0.017 0.064 Tl mg/kg 0.64 0.71 0.67 0.85 0.43 0.81 0.85 2.4 U mg/kg 1.6 1.7 1.6 2.0 1.5 2.0 2.2 5.0 V mg/kg 200 220 190 240 97 170 230 740 Y mg/kg 29 40 32 42 26 38 36 65.6 Zn mg/kg 110 110 110 110 100 110 120 130 Zr mg/kg 9.8 11 9.3 13 5.8 14 12 48.9 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/ mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 57 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 2/6. Determined thresholds for Eastern Dinarides. Priloga 2/6. Zgornje meje naravne variabilnosti za Vzhodne Dinaride. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 130 160 140 170 110 150 140 230 Al % 3.5 3.7 3.7 4.7 3.5 3.9 4.0 4.9 As mg/kg 27 36 30 33 23 28 28 36.1 Au µg/kg 4.1 5.6 4.6 7.0 3.4 5.3 4.5 8.9 B mg/kg 8.0 11 9.9 9.9 5.0 16 6.0 15.6 Ba mg/kg 120 150 140 170 130 160 150 210 Be mg/kg 2.2 2.4 2.4 3.1 2.6 2.9 2.8 3.8 Bi mg/kg 0.65 0.68 0.67 0.78 0.61 0.70 0.72 0.92 Ca % 7.2 11 7.1 11 1.8 8.4 3.9 33.2 Cd mg/kg 2.0 3.1 2.4 3.0 1.5 2.8 2.2 5.1 Ce mg/kg 83 87 94 130 85 94 96 110 Co mg/kg 40 50 42 56 34 45 43 64.7 Cr mg/kg 75 79 81 110 72 81 83 99.1 Cs mg/kg 3.5 3.7 3.9 5.8 3.8 5.1 4.5 7.0 Cu mg/kg 32 40 40 40 28 34 34 44.8 Fe % 4.2 4.4 4.7 6.0 4.1 4.4 4.6 5.1 Ga mg/kg 9.9 11 11 14 9.7 11 11 12.7 Hf mg/kg 0.22 0.25 0.22 0.29 0.21 0.30 0.24 0.47 Hg mg/kg 0.28 0.30 0.27 0.32 0.23 0.30 0.27 0.41 In mg/kg 0.080 0.090 0.080 0.10 0.070 0.094 0.11 0.17 K % 0.21 0.27 0.29 0.25 0.16 0.19 0.18 0.22 La mg/kg 39 39 42 58 39 46 46 58.5 Li mg/kg 33 35 53 51 34 41 39 52.2 Mg % 4.4 6.0 4.1 3.8 0.90 1.5 1.4 2.9 Mn mg/kg 2600 3100 2640 3500 2400 4000 2900 5600 Mo mg/kg 11 12 12 11 5.0 11 6.1 15.3 Na % 0.013 0.015 0.013 0.023 0.012 0.020 0.016 0.035 Nb mg/kg 2.1 2.2 2.1 3.1 1.9 2.4 2.2 3.3 Ni mg/kg 72 84 76 91 58 80 77 120 P % 0.094 0.14 0.14 0.13 0.079 0.12 0.11 0.20 Pb mg/kg 56 61 59 65 56 61 61 69.3 Rb mg/kg 34 38 37 46 34 39 38 44.9 S % 0.11 0.14 0.11 0.14 0.060 0.10 0.095 0.20 Sb mg/kg 1.2 1.6 1.4 1.6 1.0 1.3 1.3 1.9 Sc mg/kg 8.1 8.7 8.5 11 8.2 9.6 9.4 12.4 Se mg/kg 1.0 1.2 0.99 1.4 0.70 0.94 0.80 1.1 Sn mg/kg 2.3 2.4 2.5 2.8 2.2 2.8 2.8 3.8 Sr mg/kg 71 110 80 74 28 49 39 86.0 Te mg/kg 0.13 0.15 0.13 0.20 0.11 0.14 0.13 0.25 Th mg/kg 9.4 9.9 10 16 9.2 11 11 13.6 Ti % 0.015 0.017 0.016 0.022 0.016 0.020 0.019 0.040 Tl mg/kg 1.1 1.2 1.1 1.4 0.95 1.3 1.2 1.9 U mg/kg 2.7 3.0 3.0 3.6 2.6 3.5 3.3 4.9 V mg/kg 130 170 140 170 120 140 140 180 Y mg/kg 36 40 36 44 29 44 37 69.0 Zn mg/kg 100 110 110 130 100 120 120 150 Zr mg/kg 7.9 8.9 8.0 10 6.8 8.9 8.4 12.7 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/ mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 58 Mateja GOSAR, Robert ŠAJN, Špela BAVEC, Martin GABERŠEK, Valentina PEZDIR & Miloš MILER Appendix 2/7. Determined thresholds for Pannonian basin. Priloga 2/7. Zgornje meje naravne variabilnosti za Panonsko nižino. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 180 210 160 180 120 160 140 230 Al % 2.3 2.5 2.4 2.7 2.3 2.6 2.6 3.0 As mg/kg 18 22 26 22 16 19 18 24.2 Au µg/kg 6.5 8.9 21 8.5 4.2 6.7 5.6 9.9 B mg/kg 7.0 9.0 6.9 9.7 5.0 16 6.0 15.6 Ba mg/kg 140 150 140 160 130 170 160 210 Be mg/kg 1.2 1.2 1.3 1.5 1.3 1.5 1.4 1.7 Bi mg/kg 0.37 0.43 0.42 0.46 0.40 0.43 0.46 0.56 Ca % 5.6 10 6.3 4.8 0.63 1.4 1.1 3.6 Cd mg/kg 1.2 2.1 1.3 1.5 0.52 0.74 0.64 1.0 Ce mg/kg 61 66 63 70 61 67 68 82.4 Co mg/kg 20 23 21 23 20 23 22 27.5 Cr mg/kg 51 54 49 53 44 48 50 57.7 Cs mg/kg 2.1 2.2 2.2 2.4 2.0 2.3 2.3 2.7 Cu mg/kg 44 50 63 56 35 44 44 60.3 Fe % 3.7 4.0 4.3 4.4 3.7 4.0 4.1 4.6 Ga mg/kg 6.6 7.6 7.0 7.8 6.7 7.2 7.5 8.7 Hf mg/kg 0.10 0.11 0.088 0.11 0.030 0.050 0.085 0.32 Hg mg/kg 0.14 0.16 0.25 0.17 0.11 0.14 0.13 0.17 In mg/kg 0.050 0.060 0.053 0.067 0.040 0.048 0.060 0.16 K % 0.24 0.29 0.23 0.25 0.21 0.26 0.24 0.32 La mg/kg 28 29 29 33 28 33 32 38.9 Li mg/kg 27 29 30 35 31 36 34 43.2 Mg % 1.6 2.2 1.6 1.6 0.82 1.0 0.96 1.3 Mn mg/kg 1200 1400 1280 1500 1100 1300 1300 1600 Mo mg/kg 1.7 3.3 2.4 2.2 1.3 2.0 1.6 2.8 Na % 0.018 0.020 0.017 0.021 0.017 0.027 0.020 0.036 Nb mg/kg 0.94 1.0 1.0 1.3 1.0 1.3 1.1 1.5 Ni mg/kg 52 59 51 58 46 55 56 75.6 P % 0.11 0.12 0.11 0.12 0.10 0.12 0.12 0.16 Pb mg/kg 51 100 69 57 37 44 42 50.6 Rb mg/kg 27 30 28 30 27 30 31 36.4 S % 0.060 0.080 0.078 0.082 0.060 0.10 0.045 0.055 Sb mg/kg 1.1 1.4 1.1 1.2 0.81 0.91 0.97 1.2 Sc mg/kg 6.1 6.4 6.2 6.7 5.6 6.8 6.7 8.5 Se mg/kg 0.70 0.90 0.78 1.2 0.60 1.0 0.70 1.1 Sn mg/kg 1.6 1.9 1.9 1.8 1.5 1.9 1.7 2.2 Sr mg/kg 83 300 200 100 26 40 38 68.6 Te mg/kg 0.060 0.070 0.065 0.075 0.050 0.16 0.060 0.16 Th mg/kg 7.3 8.5 7.6 9.2 7.3 8.8 8.6 11.8 Ti % 0.036 0.043 0.043 0.060 0.034 0.079 0.042 0.16 Tl mg/kg 0.39 0.54 0.39 0.37 0.26 0.30 0.31 0.39 U mg/kg 1.9 2.4 2.0 2.1 1.6 1.8 1.8 2.1 V mg/kg 55 69 56 59 50 59 59 71.6 Y mg/kg 17 19 22 22 16 18 18 22.3 Zn mg/kg 120 140 190 150 110 130 130 160 Zr mg/kg 2.7 3.7 2.6 4.2 1.5 4.7 2.4 8.6 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/me­an+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) 59 Geochemical background and threshold for 47 chemical elements in Slovenian topsoil Appendix 2/8. Determined thresholds for Interior basins. Priloga 2/8. Zgornje meje naravne variabilnosti za Notranje kotline. Unit P95 P97.5 X2S X2S(L) MD2MAD MD2MAD(L) TIF TIF(L) Ag µg/kg 200 1200 480 350 210 330 270 570 Al % 2.7 2.9 2.9 3.3 3.0 3.4 3.4 4.3 As mg/kg 15 15 17 19 19 24 22 30.2 Au µg/kg 8.1 12 7.3 8.4 4.4 6.1 5.0 9.1 B mg/kg 6.5 7.0 6.3 11 6.4 16 8.5 32.0 Ba mg/kg 170 560 270 260 180 240 200 370 Be mg/kg 1.5 1.6 1.5 1.7 1.5 1.8 1.5 1.7 Bi mg/kg 0.44 0.56 0.51 0.57 0.55 0.58 0.64 0.86 Ca % 7.1 20 9.4 27 2.2 43 7.1 210 Cd mg/kg 1.5 1.6 1.5 2.9 1.4 2.3 1.8 3.4 Ce mg/kg 55 56 60 82 67 79 69 99.2 Co mg/kg 21 29 22 27 17 19 19 23.1 Cr mg/kg 53 56 50 61 49 62 56 77.0 Cs mg/kg 2.5 2.7 2.5 3.4 2.7 3.9 3.0 4.6 Cu mg/kg 39 40 35 38 33 41 36 44.7 Fe % 3.8 4.5 4.2 4.8 4.0 4.3 4.4 5.1 Ga mg/kg 7.3 8.0 7.8 9.0 8.4 9.7 9.5 12.4 Hf mg/kg 0.22 0.24 0.20 0.31 0.17 0.32 0.22 0.45 Hg mg/kg 0.28 0.60 0.35 0.37 0.27 0.31 0.30 0.40 In mg/kg 0.060 0.060 0.062 0.079 0.070 0.077 0.080 0.11 K % 0.23 0.34 0.24 0.26 0.17 0.21 0.22 0.27 La mg/kg 28 30 28 38 24 30 28 35.4 Li mg/kg 33 38 33 44 32 40 35 45.3 Mg % 3.4 4.7 3.0 3.9 0.86 1.5 1.6 3.7 Mn mg/kg 1600 1600 1710 2800 1900 3200 2400 7200 Mo mg/kg 1.3 1.6 1.4 1.6 1.3 1.5 1.7 2.4 Na % 0.016 0.022 0.015 0.018 0.011 0.014 0.018 0.028 Nb mg/kg 1.1 1.2 1.2 1.8 1.2 1.8 1.5 2.8 Ni mg/kg 50 64 45 54 33 35 36 40.4 P % 0.13 0.20 0.15 0.21 0.14 0.20 0.18 0.28 Pb mg/kg 64 67 67 74 71 84 83 110 Rb mg/kg 32 45 34 43 30 36 34 44.8 S % 0.33 0.37 0.20 0.19 0.070 0.094 0.11 0.17 Sb mg/kg 1.1 1.6 1.1 1.2 1.0 1.5 1.3 2.0 Sc mg/kg 5.5 6.1 5.9 6.8 6.0 7.4 6.9 8.9 Se mg/kg 1.6 2.6 1.5 1.5 0.70 0.94 1.0 1.7 Sn mg/kg 3.5 11 5.1 4.3 2.5 3.2 3.0 4.3 Sr mg/kg 100 210 96 91 33 90 57 210 Te mg/kg 0.085 0.090 0.084 0.13 0.11 0.18 0.14 0.88 Th mg/kg 6.3 7.0 6.6 9.0 6.6 8.2 7.3 10.2 Ti % 0.013 0.014 0.011 0.018 0.011 0.016 0.013 0.025 Tl mg/kg 0.50 0.60 0.49 0.58 0.46 0.55 0.53 0.70 U mg/kg 5.2 10 4.8 3.8 1.8 2.3 2.5 3.9 V mg/kg 59 89 68 79 68 89 66 80.1 Y mg/kg 29 30 24 32 22 29 27 42.8 Zn mg/kg 120 120 130 150 120 140 150 190 Zr mg/kg 5.5 5.8 5.0 5.8 4.8 7.0 5.8 10.0 P95 – 95. percentil/95th percentile, P97.5 – 97,5. percentil/97.5th percentile; X2S – srednja vrednost+2×standardni odklon/ mean+2×standard deviation; MD2MAD – mediana+2×absolutna deviacija mediane/median+2×median absolute deviation; TIF – Tukeyeva zgornja meja/Tukey upper fence; (L) – izracun na osnovi logaritemskih vrednosti/(calculated based on logarithmic values) © Author(s) 2019. CC Atribution 4.0 License GEOLOGIJA 62/1, 61-73, Ljubljana 2019 https://doi.org/10.5474/geologija.2019.002 Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mountains Pregled geoloških in seizmotektonskih raziskav povezanih s potresoma 1998 Mw5,6 in 2004 Mw5,2 v Krnskem pogorju Andrej GOSAR1,2 1Slovenian Environment Agency, Seismology Office, Vojkova 1b, SI-1000 Ljubljana, Slovenia; e-mail: andrej.gosar@gov.si 2University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerceva 12, SI-1000 Ljubljana, Slovenia Prejeto / Received 23. 1. 2019; Sprejeto / Accepted 29. 3. 2019; Objavljeno na spletu / Published online 31. 7. 2019 Key words: earthquake, seismotectonics, earthquake effects, rockfalls, European Macroseismic Scale, Environmental Seismic Intensity scale (ESI scale), Krn Mountains, Ravne fault Kljucne besede: potres, seizmotektonika, ucinki potresa, skalni podori, Evropska potresna lestvica, intenzitetna lestvica potresnih ucinkov na okolje (ESI lestvica), Krnsko pogorje, Ravenski prelom Abstract A review of geological and seismotectonic investigations conducted in the two decades after the 12 April 1998 earthquake in Krn Mountains, according to its magnitude the strongest earthquake in Slovenia in the 20th century, is given. Many of these studies have wider scientific meaning than expected from the size of the earthquake. This was the first case in Slovenia that a strong earthquake was undoubtedly related to a particular fault. Seismotectonic studies of seismogenic Ravne fault revealed that it is an actively propagating strike-slip fault growing by interaction of individual right stepping fault segments and breaching of local transtensional step-over zones. Airborne laser scanning (LiDAR) of Idrija and Ravne faults, which resulted in high resolution bare earth digital elevation model, was in 2005 for the first time used to study surface expression of an active fault in Europe. Among the primary characteristics of the 1998 earthquake were extensive environmental effects expressed mainly as massive rockfalls. They were systematically documented and evaluated for intensity assessment using European Macroseismic Scale (EMS-98) and Environmental Seismic Intensity (ESI) scale introduced in 2007, because application of the data on damage to buildings was limited in sparsely populated high mountains epicentral area. These studies were pioneering due to novelty of both intensity scales, indicating their strong points and weaknesses. Large variations in damage to buildings in the upper Soca valley at similar epicentral distances pointed to strong site effects due to very heterogeneous glacial and fluvial deposits in sedimentary basins and valleys. Therefore, different seismic microzonation maps were prepared to evaluate the influence of soft sediments on seismic ground motion. Conducted studies fostered development of several earthquake geology research methods in Slovenia as tectonic geomorphology, evaluation of environmental seismic effects and seismotectonics. They had positive impact also on the university education in the fields of geophysics, seismology and structural geology. Izvlecek Podan je pregled geoloških in seizmotektonskih raziskav opravljenih v dveh desetletjih po potresu 12. aprila 1998 v Krnskem pogorju, ki je bil po magnitudi najmocnejši potres v Sloveniji v dvajsetem stoletju. Mnoge od teh študij imajo širši znanstveni pomen kot bi pricakovali glede na velikost potresa. Prvic v Sloveniji, da je bil mocan potres nedvoumno pripisan nekemu prelomu. Seizmotektonske študije seizmogenega Ravenskega preloma so pokazale, da je to aktivno napredujoc zmicni prelom, ki raste z interakcijo med posameznimi segmenti in preskoki med lokalnimi transtenzijskimi conami. Letalsko lasersko skeniranje (LiDAR), s katerim pridobimo visokolocljiv digitalen model višin golega površja brez vegetacije, je bilo v letu 2005 na obmocju Idrijskega in Ravenskega preloma prvic uporabljeno v Evropi za študij površinskega odraza aktivnega preloma. Med glavnimi znacilnostmi potresa 1998 so bili obsežni ucinki v naravnem okolju, izraženi predvsem kot veliki skalni podori. Ti so bili sistematicno dokumentirani in ovrednoteni za dolocitev intenzitete po Evropski potresni lestvici (EMS-98) in Environmental Seismic Intensity (ESI) lestvici, ki je bila uvedena v letu 2007, ker je bila uporaba podatkov le o poškodbah objektov v nadžarišcnem obmocju zelo omejena, saj je zaradi visokogorja to redko poseljeno. Ker sta obe lestvici novi, so bile te študije v mnogih vidikih pionirske in so pokazala na njihove prednosti in slabosti. Velike razlike v poškodbah objektov v zgornjem Posocju na primerljivih nadžarišcnih oddaljenostih, so pokazale na velik seizmicni vpliv heterogenih ledeniških in recnih sedimentov, ki zapolnjujejo kotline in doline. Zato so bile izdelane razlicne karte potresne mikrorajonizacije in ocenjen vpliv mehkih sedimentov na potresno nihanje tal. Izvedene raziskave so imele pomemben vpliv na razvoj raziskovalnih metod potresne geologije v Sloveniji kot so tektonska geomorfologija, analiza ucinkov potresov na naravno okolje in seizmotektonika. Pozitivno so vplivale tudi na razvoj univerzitetnega izobraževanja na podrocju geofizike, seizmologije in strukturne geologije. 62 Andrej GOSAR Introduction The earthquake on 12 April 1998 in Krn Moun­tains was according to its magnitude Mw5.6 the strongest earthquake in Slovenia in the 20th cen­tury. According to its maximum intensity VII-VI­II EMS-98 it was surpassed only by the VIII EMS-98 Brežice earthquake (Cecic et al., 2018) and by the Friuli 1976 earthquake, which reached max­imum intensity VIII-IX in Slovenia in Podbela (Breginjski kot), but its epicentre was in NE Italy. In Krn Mountains another strong earthquake oc­curred on 12 July 2004 with Mw5.2 and maximum intensity VI-VII EMS-98. Both earthquakes had strong impact on the development of seismolog­ical and earthquake geology sciences in Slove­nia. The 20th anniversary of the 1998 earthquake is an opportunity for a review of very extensive investigations and developments in the multi­disciplinary field of earthquake research. In this paper a review of geological and seismotectonic investigations related to both earthquakes is giv­en. Many of these studies had strong influence on the development of different important scientific disciplines in Slovenia as tectonic geomorpholo­gy, environmental earthquake effects studies, site effects studies and paleoseismology. These dis­ciplines undergone very fast development in the world in the last two decades, facilitated by new techniques as airborne laser scanning (LiDAR), advances in microtremors method and geophys­ical shallow subsurface characterisation etc. A complementary review paper in this issue is de­voted to advances in extensive seismological in­vestigation related to both Krn Mountains earth­quakes (Gosar, 2019b). Krn Mountains earthquakes in 1998 and 2004 The 12 April 1998 Mw5.6 earthquake occurred on the Ravne fault approximately 8 km SE from Bovec. It caused extensive damage to buildings in the upper Soca valley, but no casualties. The maximum intensity VII-VIII EMS-98 was ob­served in four villages: Lepena, Magozd, Spodnje Drežniške Ravne and Tolminske Ravne (Živcic et al., 1999; Zupancic et al., 2001). Mainly older buildings, built of rubble and simple stone, were damaged (fig. 1), but also some newer masonry buildings. The problem of macroseismic eval­uation of this event was that the application of intensity scales based on damage to buildings and effects on humans and objects was limited in the epicentral area, because it is very sparsely populated high mountain area. The earthquake was followed by long aftershocks sequence. An­other strong earthquake with Mw5.2 occurred on 12 July 2004 on the same fault, with only slight­ly different focal mechanism. The maximum intensity of this event was VI-VII EMS-98, and it caused a casualty of a mountaineer hit by a fallen rock. The distance of both earthquakes to the towns of Bovec and Kobarid was 6-9 km (Zupancic et al., 2001). In the scientific literature there is a slight confusion regarding the name of the 1998 event, because in some early studies, especially those conducted by Italian research­ers, they named it Bovec or Kobarid earthquake (Di Giacomo et al., 2014). Later some authors used also the name upper Soca valley (Posocje) earth­quake. However, we believe that the only correct name is Krn Mountains earthquake and this name now prevails in the published literature (Di Giacomo et al., 2014). Seismotectonic investigations A preliminary evaluation of seismotecton­ic characteristics of 1998 earthquake was per­formed by Bernardis et al. (2000), but it was based mainly on focal mechanisms and aftershock distribution, without any geological field work. The earthquake was attributed to Cez Potoce fault named after Cez Potoce pass located 2 km north of Mt. Krn. However, such a name is not known in a geological literature and the correct name of this fault is Ravne fault after Tolminske Ravne (Buser, 1986). In the work of Bernardis et al. (2000), the fault was put in a regional tectonic context of the general crustal structure of NW Slovenia and Friuli area. The first seismotectonic analysis of the 1998 earthquake has shown that it occurred on a dex­tral strike-slip subvertical Ravne fault (figs. 2 and 3) oriented in NW-SE direction (Zupancic et al., 2001). This was the first case in Slovenia that a strong earthquake was undoubtedly related to a particular fault mapped in the field. Earlier, such seismotectonic relations were mainly pre­cluded by large errors in earthquake foci loca­tions due to very sparse distribution of seismo­logical stations. The hypocentral depth of the 1998 event was 7.6 km No surface rupture was found and based on distribution of aftershocks the fault rupture dimensions were assessed on 10 km × 7 km. The seismotectonic analysis was based on focal mechanisms, field observations and ortho photo aerial images. It was revealed that recent seismic activity in NW Slovenia is re­lated to strike-slip Dinaric faults (fig. 3) as well as to thrusting along Southalpine thrust front and parallel planes (Zupancic et al., 2001). The area is located at the kinematic transition be­tween E-W striking thrust faults of the Alpine system in Friuli and NW-SE striking dextral strike-slip faults of the Dinarides system in NW Slovenia. The fault plane solution of 1998 event shows almost pure strike-slip mechanism with only minor reverse component. Further seismotectonic analysis of the 1998 earthquake (Bajc et al., 2001) was based on relo­cation of hypocentres, strong motion (accelero­grams) data inversion, field geological inspection and study of digital elevation models. From strong motion inversion it was revealed that the rupture was confined between 3 and 9 km depth and that it propagated bilaterally between two structur­al barriers. In the NW the barrier is related to the junction between Dinaric and Alpine struc­tures and related sharp change in the geometry of faulting. The SE barrier is within the Dinaric system and at the surface expressed as Tolminka spring perched basin (fig. 4), a 1 km restraining step-over (Bajc et al., 2001). First evidence of the segmentation of more than 40 km long Ravne fault has strong implications for seismic hazard assess­ment and motivated further detailed research. The second strong earthquake on 12 July 2004 opened many new questions on its seismotectonic characteristics, because the distribution of dam­age was slightly different, although the epicentre was very close (1.5 km distance) to the 1998 event (Vidrih & Ribicic, 2004). Seismological analyses showed slightly different focal mechanism with more pronounced reverse component (Kastelic et al., 2006). In addition, aftershocks were most­ly distributed NW to WWN from those of 1998 event and do not show such a uniform spatial dis­tribution. Spatial and temporal distribution of aftershocks depicts a contemporary seismic ac­tivity on NW-SE and WWN-EES to W-E oriented faults (Kastelic et al., 2006). In 2005, when airborne laser scanning (Li­DAR) was still very rare and expensive (Gosar, 2007), we had, through international coopera­tion, an unique opportunity to survey Idrija and Ravne faults with this very promising method (Cunningham et al., 2007), which after a decade strongly changed the science of tectonic geo­morphology, through providing high resolution bare earth digital elevation models. Measure­ments were very successful especially on the Idrija fault where details of near fault struc­tures and Quaternary terraces were revealed. Based on this study a location in Kanomljica valley was proposed for later paleoseismologi­cal studies. On the Ravne fault the most inter­esting results were obtained in the Tolminka spring basin (fig. 4), where LiDAR images re­vealed several branches of the fault. It was in­terpreted as active transtensional basin within overall transpressional regime (Cunningham et al, 2006). This investigation represents the first application of airborne LiDAR in Europe for the purpose of mapping the surface expression of seismogenic faults. The most comprehensive seismotectonic anal­ysis of the Ravne fault was done within the Ph.D. thesis of Kastelic (2008) and Kastelic et al. (2008). It was revealed that Ravne fault is an actively propagating strike-slip fault growing by interac­tion of individual right stepping fault segments and breaching of local transtensional step-over zones. The spatial distribution of aftershocks shows that activity on strike-slip segments and thrust faults is contemporaneous. The Ravne fault is a structure that lies in an area subject­ed to multiple tectonic events under different regional stress conditions. At epicentral depths, the fault system is accommodating recent strain along newly formed fault planes, whereas in the upper parts of the crust, the activity is distrib­uted over a wide deformation zone that includes reactivated thrust faults (Kastelic et al., 2008). Investigations of the effects of earthquakes on natural environment Most prominent characteristics of the 1998 earthquake is that it had extensive effects on the natural environment in Julian Alps expressed mainly as rockfalls, which where is some cases very large. For the moderate magnitude (Mw5.6) event, such a great extent of rockfalls was not expected, therefore it immediately draws attrac­tion of researchers and many thorough studies followed. Besides rockfalls, several other envi­ronmental effects occurred as well, which were also systematically documented and analysed. Analyses of rockfalls and seismic intensity scales All rockfalls were systematically mapped soon after the 1998 earthquake to assess further risks to infrastructure and buildings (Ribicic, 1998). From the seismogeological point of view a further in-depth study was performed by Vid­rih & Ribicic (1999). They documented all larger rockfalls and did the first evaluation of the appli­cability of a new European Macroseismic Scale (EMS-98) to assess intensity. For the epicentral area between Lepena and Tolminka valleys they proposed, based on effects on nature, maximum intensity VII-VIII EMS-98, which is in accord­ance to damage related intensity assessment in four villages in the same area. Since some of the rockfalls were very large (fig. 5), Gosar (1999b) in­vestigated the possibility to use Digital Elevation Models (DEM) derived from aerial photography surveys before and after the earthquake to esti­mate their volumes (fig. 6). The volumes of the two largest rockfalls were quantitatively assessed to be 15·106 m3 (Veliki Lemež in Lepena valley) and 3·106 m3 (Osojnica in Tolminka valley). In a further study (Vidrih et al., 2001) on the applicability of EMS-98 for assessing intensities for 1998 event, it was realized that the EMS-98 scale (Grünthal, 1998) is not sufficiently detailed in the description and evaluation of effects on the natural environment. It is deficient especially in quantitative description of environmental effects characteristic for particular intensity degrees. In EMS-98 environmental effects are rather briefly described on two pages and corresponding ta­ble (Grünthal, 1998). In this table for each type of effects three intensity ranges are presented: a) the possible range of observations, b) the range of intensities that is typical for this effect, and c) the range of intensities for which this effect is most usefully employed as diagnostic (Grünthal, 1998). One of the main problems of this table is that the same phenomenon is ascribed to a very wide range of intensity degrees, which prevents its practical use in assessing intensities. There­fore, Vidrih et al. (2001) proposed a different ap­proach, reducing the intensity extent of phenom­ena appearance by introducing, in analogy to buildings, terrain vulnerability regarding strong shaking, the frequency of appearance and the level of damage with individual phenomena. The introduction of a completely new and first scale at all devoted only to environmental effects - Environmental Seismic Intensity scale (ESI) in 2007 (Guerrieri & Vittori, 2007) moti­vated a new research on effect on natural en­vironment aimed to evaluate the applicability of ESI to 1998 earthquake (Gosar, 2012; Gosar, 2014). All environmental effects were described, classified and evaluated again. These effects in­clude rockfalls (fig. 7), landslides, fallen boulders (fig. 8), secondary ground cracks and hydrogeo­logical effects. It was realized that only rockfalls (all together 78 were registered) are widespread enough to be used for intensity assessment. They were classified into five categories according to their volume. Distribution of very large, large and medium size rockfalls has clearly defined an elliptical zone, elongated along the strike of the seismogenic fault, for which the intensity VII-VI­II was assessed. This isoseismal line was com­pared to the VII-VIII EMS-98 isoseism derived from damage-related macroseismic data, which has similar elongated shape, but is slightly larg­er. This isoseism is defined by four points only and its size is strongly controlled by a single in­tensity point (Tolminske Ravne) lying quite far from other three points (Lepena, Magozd, Spod­nje Drežniške Ravne), at the location where local amplification is likely. In this study the ESI 2007 scale has proved to be an effective tool for inten­sity assessment in sparsely populated mountain regions not only for very strong, but for moderate earthquakes as well (Gosar, 2012). The size of the area affected by earthquake in­duced rockfalls depends on the magnitude (Mw) and on the maximum intensity (Imax). The estab­lished 180 km2 area (r=7.6 km) for 1998 Mw 5.6 event was compared with two worldwide data­sets for magnitude dependence (Gosar, 2019a). For the given magnitude the affected area is considerably below the upper bound limit estab­lished from both datasets. The same is valid for the Friuli Mw 6.4 earthquake with a 2050 km2 af­fected area. However, comparison with the ESI scale definitions has shown that the area affect­ed by the 1998 Imax VII–VIII event is significantly larger than the one proposed by this scale, but smaller for the 1976 Imax X event. This could not be explained by differences in hypocentral depth or focal mechanisms of both events. The results of this study have implications for seismic haz­ard assessment and for understanding environ­mental effects caused by moderate earthquakes in mountain regions (Gosar, 2019a). The 2004 earthquake caused significantly less rockfalls than 1998 one. This was expected due to lower magnitude and the fact that most vul­nerable slopes had already broken in stronger 1998 event. Anyway, 44 rockfalls were analysed, but only five of them were a bit larger (Vidrih & Ribicic, 2004). However, a fallen rock hit a moun­taineer in Krn Mountains who died. Two very big landslides in Log pod Mangrtom and in Kosec near Kobarid fortunately did not react to seismic shaking due to relatively low intensity at their epicentral distance. Some very long cracks were developed along the edge of the Soca river ter­races, which have contributed somewhere to the damage to buildings (Vidrih & Ribicic, 2004). The most complete review and documentation of all effects of 1998 and 2004 events on natural envi­ronment was prepared in Ph.D. thesis of Vidrih (2006) and later published in a monograph (Vid­rih, 2008). Rockfalls and landslides in several cases reached valley streams and rivers and signif­icantly changed normal input of rock material. Therefore, Mikoš et al. (2006) studied sediment production and delivery from earthquake-in­duced rockfalls in the Upper Soca valley. Analyses of other seismic effects on natural environment The 1998 earthquake had curiously enough a substantial effect on the groundwater levels on Sorško and Kranjsko polje, located 60 km east of the epicentre. As recorded by four piezometers, it caused fluctuations in groundwater levels rang­ing from 23 to 82 cm (Uhan & Gosar, 1999). No fluctuations were recorded before or after the main shock, and no other fluctuations were re­ported from elsewhere. Therefore, an (hydro)ge­ological interpretation of the observed phenome­non is not possible. A short part of the Bohinj lake southern shore built of glaciofluvial debris slid into the water (Vidrih & Ribicic, 1999), but no evidence of lique­faction was found. It is located 25 km east of the epicentre where the intensity of 1998 event was VI EMS-98 and liquefaction is very unlikely at expected ground shaking. In the areas of highest intensities VII-VIII EMS-98 there were some reports of cracks in the flat ground (in Magozd) (Vidrih & Ribicic, 1999). They resulted from strong ground shaking and cannot represent possible surface faulting or slope movements. Since at the time of the 1998 earthquake there was a large amount of fresh snow (more than 0.5 m) in Krn Mountains, some interesting phe­nomena, which can be classified in-between snow avalanche, landslide and debris flow occurred. The most characteristically one occurred in Lep­ena valley (fig. 9). A mixture of snow, soil and rock slid down a steep ravine as an avalanche for more than 500 m of elevation difference. When it reached the valley floor, the debris was deposited as a debris flow in a wide fan (Vidrih & Ribicic, 1999; Gosar, 2012). Seismic microzonations Among important characteristics of 1998 and 2004 earthquakes were large variations in dam­age to buildings of similar vulnerability class at comparable epicentral distances. These vari­ations were explained by prominent site effects within sedimentary basins (Bovec basin, Kobar­id basin etc.) filled with heterogeneous glacial and fluvial sediments (fig. 10). In addition, strong resonance effects between soft sediments and buildings were proved at several locations using microtremor HVSR method (Gosar, 1999a). How­ever, extensive studies using this method are pre­sented in a complementary review paper on seis­mological investigation (Gosar, 2019b). Here only seismic microzonations motivated by observed prominent site effects that are based on geologi­cal and geotechnical data will be reviewed. Within the project aimed to support retrofit­ting of damaged buildings several maps in dif­ferent scales were prepared (Ribicic et al., 2000). In the general engineering-geological map of the upper Soca area was classified in hard rocks, medium hard rocks, slope sediments and alluvial sediments with geological and geotechnical de­scription of each unit with relation to conditions for building foundations. Based on this division, a general seismic microzonation map of the area was prepared with soil classification to three groups. At that time a new seismic hazard map showing ground acceleration for Slovenia was not yet available. Therefore, the seismic micro­zonation map was prepared to be used with the old seismic hazard map showing expected inten­sities for a return period of 500 years. According to this map NW Slovenia was characterized by expected intensities of VIII and IX on MSK scale and seismic microzonation provides intensity in­crements. For a Bovec basin a more detailed geo­technical map was prepared in which rocks and sediments were classified in eight types. Based on it, a detailed seismic microzonation of the Bovec basin was prepared, which shows that most of the area is characterised by VIII2 and VIII3 intensi­ties (Ribicic et al., 2000; Ribicic, 2011). Consider­ing also resonance effects between sediments and structures, preliminary microtremor method in­vestigations were carried out in affected area to explain large variations in damage to buildings due to site effects (Gosar, 1999a; Gosar, 1999c). It turned out that resonance effect could play im­portant role in distribution of damage especially in the Bovec basin filled with heterogeneous sed­iments (fig. 10). A step forward in seismic microzonation based on detailed engineering geological map­ping was performed for Breginjski kot (the most western part of Slovenia) (Kokošin, 2011), which suffered the highest damage (intensity VIII-IX EMS-98) in the Friuli 1976 earthquake sequence and significantly lower damage (VI-VII EMS-98 in Kobarid) in the 1998 earthquake due greater distance from the epicentre and lower magni­tude event. According to the old seismic hazard map, the whole Breginjski kot is assessed as in­tensity IX MSK and according to the new haz­ard map to design ground acceleration of 0.250 g. First, a detailed engineering geological mapping in scale 1: 5000 was conducted. On the basis of this mapping, a soil classification was carried out according to the Medvedev method (intensi­ty increments) and the Eurocode 8 standard (soil factors) and two microzonation maps prepared to be applied with both seismic hazard maps. The microzonation clearly points out the dependence of damage distribution to local site effects in the case of Friuli earthquake (Kokošin & Gosar, 2013). Within the project Earthquake risk in Slove­nia (POTROG – Potresna ogroženost Slovenije), there was a need to prepare a seismic microzo­nation maps of all areas where according to the official seismic hazard map of Slovenia a design ground acceleration for 475 years return period is assessed on 0.225 and greater. This includes also the whole upper Soca River territory. A seismic microzonation of this area in accordance to the Eurocode 8 standard was prepared in the frame of a diploma thesis (Trobec, 2012). However, this microzonation was based on existing data only (basic geologic maps, engineering geological maps and seismic microzonation of Breginjski kot) without any field investigations. Therefore, it is intended only for the general risk assessment studies and civil protection planning and not for the purpose of earthquake engineering design. The classification of rocks and sediments accord­ing to Eurocode 8 was as follows. Solid rocks as carbonates, marlstone, sandstone, breccia, flysch rocks and shale represents ground type A. Allu­vium of Lepenjica river represents ground type B, older Quaternary sediments ground type C and younger Quaternary sediments and fluvial sediments of Bovec basin ground type D. Ground type E is represented by fine grained river sedi­ments, diamicts overlying ground type A, lacus­trine chalk (fig. 11) and alluvium near Kobarid (Trobec, 2012). By application of soil factors the maximum design ground acceleration for a re­turn period of 475 years in the area is 0.425 g on ground type E (soil factor 1.7, design ground ac­celeration on rock 0.250) in Breginjski kot, which is close to the highest values assessed in Slove­nia. This value is surpassed only in the Ljubljana Moor where on very soft lacustrine and marsh sediments (ground type S1) the design ground acceleration on solid rock of 0.250 g can be in­creased in the northern part by soil factor of 2.55 on 0.635 g and in other parts the design ground acceleration on solid rock of 0.225 g can be in­creased on 0.575 g (Zupancic et al., 2004). Macroseismic data collected for strong earth­quakes are not used only to study particularities of the macroseismic field related to distribution and properties of soft sediments in epicentral area where highest intensities are observed. They are valuable also at larger epicentral distances. In such study macroseismic data was used to in­vestigate the influence of geological site effects on earthquake intensities (for all together 11 earth­quakes) in greater Ljubljana area located around 80 km from epicentres of Krn Mountains earth­quakes. The maximum intensities of 1998 and 2004 earthquakes in wider Ljubljana area and for the strongest 1998 aftershock were V EMS-98. The results showed a systematic increase in ob­served seismic intensities as the seismogeological characteristics of the ground deteriorated (Jerše et al., 2013; Jerše et al., 2015). Only one ground type (D) showed slightly lower intensity than ex­pected. This may be due to some unrevealed geo­logical factors or very limited macroseismic data available for this particular ground type which is relatively rare in wider Ljubljana area. Conclusions Geological and seismotectonic investigations related to the 1998 and 2004 earthquakes in Krn Mountains performed in two decades had in sev­eral cases much wider scientific meaning that could be expected from the size and effects of both events. This is reflected also in large num­ber of citations of many studies obtained in in­ternational scientific literature. Since new Eu­ropean Macroseismic Scale (EMS-98) was after preliminary version from 1992 in its final form presented in 1998 (Grünthal, 1998), this was one of the first strong European earthquakes macro­seismicaly evaluated by using this scale (Cecic et al., 1999; Zupancic et al., 2001). Especially im­portant were first attempts to apply EMS-98 to evaluate seismogeological effects expressed as massive rockfalls in extent not expected for the magnitude of the event (Vidrih & Ribicic, 1999; Vidrih et al., 2001). It was realised that EMS-98 scale is not sufficiently detailed in description of effects on the natural environment, especially in quantitative description of effects character­istic for particular intensity. Later presentation of Environmental Seismic Intensity Scale (ESI) (Guerrieri & Vittori, 2007) motivated a new study which proved that it is an effective tool for in­tensity assessment in sparsely populated moun­tain regions also for moderate earthquakes (Go­sar, 2012). Application of airborne laser scanning (LiDAR) of the Ravne and Idrija faults to reveal their geomorphological and structural features was a pioneering LiDAR study applied for tec­tonic geomorphology in Europe (Cunningham et al., 2006). Both earthquakes motivated first thor­ough, modern and quantitative seismotectonic studies of an active fault in Slovenia. The seis­mogenic Ravne fault was recognized as a typical example of actively propagating strike-slip fault which is growing by interaction of segments and breaching of local transtensional step over zones (Kastelic et al., 2008). During recent preparation of a seismotectonic model for a new seismic haz­ard map of Slovenia, it was realised that thor­ough understanding of segmented faults behav­iour is of key important for realistic earthquake hazard modelling. Studies of geological and seis­motectonic characteristics of the 1998 and 2004 earthquakes were important also for university education of geology in Slovenia as two Ph.D. thesis were prepared (Vidrih, 2006; Kastelic, 2008) and at least eight diploma theses related to these topics at the University of Ljubljana, Fac­ulty of Natural Sciences and Engineering. These studies foster education in different geological fields: structural geology and active tectonics, geophysics, seismology, engineering geology and Quaternary geology. Acknowledgments This study is partly realized with the support of the research program P1-0011 financed by Slovenian Research Agency. The author is grateful to all sei­smologists at the Slovenian Environment Agency, Seismology office, who participated in many of the described studies. References Bajc, J., Aoudia, A., Sarao, A. & Suhadolc, P. 2001: The 1998 Bovec-Krn mountain (Slovenia) earthquake sequence. Geophysical Research Letters, 28/9: 1839-1842. https://doi.org/10.1029/2000GL011973 Bernardis, G., Poli, M.E., Snidarcig, A. & Zanferrari, A. 2000: Seismotectonic and ma­croseismic characteristics of the earthquake of Bovec (NW Slovenia: April 12,1998). Boll. Geof. Teor. Appl., 41/2: 133-148. Buser, S. 1986: Osnovna geološka karta 1: 100.000, Tolmac listov Tolmin in Videm. Zvezni geolo­ški zavod, Beograd: 103 p. Cecic, I., Godec, M., Zupancic, P. & Dolenc, D. 1999: Macroseismic effects of 12 April 1998 Krn, Slovenia, earthquake: An overview. XII General Assembly of the IUGG, Abstract Book B, Birmingham: 189-189. Cecic, I., Necak, D. & Berus, M. 2018: Ob 101. obletnici brežiškega potresa. Posvetovanje SZGG – raziskave s podrocja geodezije in ge­ofizike 2017, Zbornik del, Ljubljana: 73-84. Cunningham, D., Grebby, S., Tansey, K., Gosar, A. & Kastelic, V. 2006: Application of airborne LiDAR to mapping seismogenic faults in fores­ted mountainous terrain, SE Alps, Slovenia. Geophysical Research Letters 33, L20308: 1-5. https://doi.org/10.1029/2006GL027014| Cunningham, D., Gosar, A., Kastelic, V., Grebby, S. & Tansey, K. 2007: Multi-disciplinary in­vestigations of active faults in the Julian Alps, Slovenia. Acta Geodynamica et Geomaterialia, 4/1: 77-85. Di Giacomo, D., Storchak, D.A., Safronova, N., Ozgo, P., Harris, J., Verney, R. & Bondár, I. 2014: A New ISC Service: The Bibliography of Seismic Events. Seismol. Res. Lett., 85/2: 354-360. https://doi.org/10.1785/0220130143 Gosar, A. 1999a: Potres 12. aprila 1998 v zgor­njem Posocju: Raziskave ojacanja nihanja tal zaradi lokalne geološke zgradbe. Potresi v letu 1998, Uprava RS za geofiziko: 101-110. Gosar, A. 1999b. Potres 12. aprila 1998 v zgornjem Posocju: Odsev velikih hribinskih podorov v digitalnem modelu reliefa. Potresi v letu 1998, Uprava RS za geofiziko: 111-120. Gosar, A. 1999c: Rezultati raziskav o vplivih lo­kalne geološke zgradbe na poškodbe objektov (Potres 12. aprila 1998 v Krnskem pogorju). Ujma, 13: 102-106. Gosar, A. 2007: Letalsko lasersko skeniranje (LiDAR) Idrijskega in Ravenskega preloma v zahodni Sloveniji. Ujma, 21: 139-144. Gosar, A. 2012: Application of Environmental Seismic Intensity scale (ESI 2007) to Krn Mountains 1998 Mw = 5.6 earthquake (NW Slovenia) with emphasis on rockfalls. Nat. Hazards Earth Syst. Sci., 12: 1959-1670. https://doi.org/10.5194/nhess-12-1659-2012 Gosar, A. 2014: Ocena intenzitet potresa leta 1998 v Krnskem pogorju z uporabo Environmental Seismic Intensity lestvice (ESI 2007). In: Zorn, M. (ed.) et al.: (Ne)prilagojeni, knji­žna zbirka Naravne nesrece, 3. Založba ZRC, Ljubljana: 83-93. Gosar, A. 2019a: The size of the area affected by earthquake induced rockfalls: Comparison of the 1998 Krn Mountains (NW Slovenia) earthquake (Mw 5.6) with worldwide data. Acta Geographica Slovenica, 59/1: 51-61. https://doi.org/10.3986/AGS.4845 Gosar, A. 2019b: Review of seismological inve­stigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn mountains. Geologija, 62/1: 75-88. https://doi.org/10.5474/geologija.2019.003 Grünthal, G. 1998: European Macroseismic Scale 1998. Conseil de L’Europe, Cahiers du Centre Europeen de Geodynamique et de Seismologie, Luxemburg: 99 p. Guerrieri L. & Vittori, E. 2007: Intensity scale ESI 2007. Mem. Descr. Carta Geologica d’Italia, 74. Servicio Geologico d’Italia, APAT, Rome: 41 p. Jerše, A., Gosar, A. & Živcic, M. 2013: Makro-seizmicne raziskave vpliva geološke podla­ge na intenzitete nekaterih potresov na šir­šem obmocju Ljubljane. Potresi v letu 2012, Agencija RS za okolje: 84-95. Jerše, A., Gosar, A. & Živcic, M. 2015: Macro-seismic investigations of the geological site effects on intensities of selected earthqu­akes in the greater Ljubljana area. Acta Geographica Slovenica, 55/1: 7-28. https://doi.org/10.3986/AGS.793 Kastelic, V., Živcic, M., Pahor, J. & Gosar, A. 2006: Seizmotektonske znacilnosti potresa leta 2004 v Krnskem pogorju. Potresi v letu 2004, Agencija RS za okolje: 78-87. Kastelic, V. 2008: Seismotectonic study of Ravne fault and 1998 and 2004 Upper Posocje Earthquake. Ph.D. thesis. Faculty of Natural Sciences and Engineering, Ljubljana: 112 p. Kastelic, V., Vrabec, M., Cunningham, D. & Gosar, A. 2008: Neo-Alpine structural evolution and present day tectonic activity of the eastern Southern Alps: the case of the Ravne Fault, NW Slovenia. Journal of Structural Geology, 30/8: 963-975. https://doi.org/10.1016/j.jsg.2008.03.009 Kokošin, J. & Gosar, A. 2013: Seismic microzona­tion of Breginjski kot (NW Slovenia) based on detailed engineering geological mapping. The Scientific World Journal, article ID 626854: 1-12. https://doi.org/10.1155/2013/626854 Mikoš, M., Fazarinc, R. & Ribicic, M. 2006: Sediment production and delivery from recent large landslides and earthquake-induced rock falls in the Upper Soca River Valley, Slovenia. Engineering Geology, 86/2-3: 198-210. https://doi.org/10.1016/j.enggeo.2006.02.015 Ribicic, M. 1998: Analysis of the effects of the earthquake in Posocje on 12 April 1998. Appendix 3: Structure and listing of the data­base of rockfalls. Civil Engineering institute ZRMK, unpublished report, Ljubljana: 5 p. Ribicic, M., Vidrih, R. & Godec, M. 2000: Seismogeological and geotechnical condi­tions of buildings in upper Soca Territory, Slovenia. Geologija, 43/1: 116-142. https://doi.org/10.5474/geologija.2000.011 Ribicic, M. 2011: Ground structure and its seis­mogeological characteristics influencing lo­cal seismic effects of the 1998 and 2004 Upper Posocje earthquakes in Slovenia. Geofizika, 28/1: 41-63. Uhan, J. & Gosar, A. 1999: Ucinki potresa na gla­dino podzemne vode. Potres 12. aprila 1998 v Krnskem pogorju. Ujma, 13: 117-121. Vidrih R. & Ribicic, M. 1999: Slope failure effects in rocks at earthquake in Posocje on April 12, 1998 and European Macroseismic Scale (EMS-98). Geologija, 41: 365-410. https://doi.org/10.5474/geologija.1998.019 Vidrih, R., Ribicic, M. & Suhadolc, P. 2001: Seismogeological effects on rocks du­ring 12 April 1998 upper Soca Territory earthquake (NW Slovenia). Tectonophysics, 330/3-4: 153-175. https://doi.org/10.1016/S0040-1951(00)00219-5 Vidrih, R. & Ribicic, M. 2006: The earthqua­ke on July 12, 2004 in Upper Soca territo­ry (NW Slovenia) – preliminary geological and seismological characterstics. Geologija, 47/2: 199-220. https://doi.org/10.5474/geologija.2004.016 Vidrih, R. 2006: Geološki vidiki potresa 12. apri­la 1998 v zgornjem Posocju. Doktorska di­sertacija. Naravoslovnotehniška fakulteta, Ljubljana: 432 p. Vidrih, R. 2008: Potresna dejavnost zgornjega Posocja = Seismic activity of the upper Posocje area. Agencija RS za okolje, Ljubljana: 509 p. Zupancic, P., Cecic, I, Gosar, A., Placer, L., Poljak, M. & Živcic, M. 2001: The earthquake of 12 April 1998 in the Krn Mountains (Upper Soca valley, Slovenia) and its seismotectonic cha­racteristics. Geologija, 44/1: 169-192. https://doi.org/10.5474/geologija.2001.012 Zupancic, P., Šket Motnikar, B., Gosar, A. & Prosen, T. 2004: Karta potresne mikrorajoni­zacije Mestne obcine Ljubljana. Potresi v letu 2002, Agencija RS za okolje: 32-54. Živcic, M., Cecic, I, Gosar, A. & Zupancic, P. 1999: Potres 12. aprila 1998 v zgornjem Posocju - osnovne znacilnosti. Potresi v letu 1998: 48-64, Uprava RS za geofiziko. Fig. 1. In 1998 earthquake mainly older buildings, built of rubble and sim­ple stone, were damaged (left), but also several monuments (right) (photo: A. Gosar). Sl. 1. Ob potresu 1998 so bile poškodovane predvsem starejše stavbe zgra­jene iz neobdelanega kamna (levo) in tudi številni spomeniki (desno) (foto: A. Gosar). 63 Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mts Fig. 3. Detailed view of the Ravne fault plane in a gully above Planina na Polju with clear indications of strike-slip chara­cter of this fault (photo: A. Gosar). Sl. 3. Pogled na drsno ploskev Ravenskega preloma v grapi nad planino Na Polju, kjer se jasno vidijo strukture, ki kaže­jo na zmicen znacaj tega preloma(foto: A. Gosar). Fig. 2. The view of seismogenic Ravne fault across Tolminka spring basin towards NW (photo: A. Gosar). Sl. 2. Pogled na seizmogeni Ravenski prelom prek obmocja izvira Tolminke proti NW (foto: A. Gosar). 64 Andrej GOSAR Fig. 4. 3D view of a Digital Elevation Model of the Ravne fault and Tolminka spring basin towards SE derived from LiDAR survey (left) and photo of the same area (right) (photo: A. Gosar). Sl. 4. 3D pogled na Ravenski prelom in obmocje izvira Tolminke proti SE na digitalnem modelu višin izdelanem iz LiDARskega snemanja (levo) in fotografija istega obmocje (desno) (foto: A. Gosar). 65 Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mts Fig. 5. Very large rock­fall caused by the 1998 earthquake in which the whole SE face of the Osojnica Mountain above Tolminka valley collapsed (photo: A. Gosar in May 1998). Sl. 5. Zelo velik skalni po­dor nastal ob potresu 1998 v katerem se je podrlo ce­lotno SE ostenje Osojnice nad dolino Tolminke (foto: A. Gosar, maj 1998). Fig. 6. Rockfall on the Osojnica Mountain was clearly reflected in Digital Elevation Models (DEM) showing pre- and post­-earthquake topography. From the difference between both DEMs the volume of the rockfall was estimated on 3·106 m3 (after Gosar, 1999b). Sl. 6. Skalni podor na Osojnici se jasno odraža v digitalnem modelu višin (DMV), ki kaže topografijo pred in po potresu. Iz raz­like obeh DMV je bila pro­stornina podora ocenje­na na 3·106 m3 (po Gosar, 1999b). 66 Andrej GOSAR Fig. 7. A typical example of medium size rockfall oc­curred at V. Šmohor in Krn Mountains. The top of not very steep mountain col­lapsed (photo: A. Gosar in August 2003). Sl. 7. Znacilen primer sre­dnje velikega podora se je zgodil na V. Šmohorju v Krnskem pogorju. Vrh ne prevec strme gore se je podrl (foto: A. Gosar, avgust 2003). 67 Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mts Fig. 8. A huge boulder in Dolic valley, very close to the epicentre of the 1998 earthquake, resulted from the rockfall on the Lipnik Mountain. The hight of the boulder is 5 m (photo: A. Gosar in September 2004). Sl. 8. Ogromen balvan v do­lini Dolica, zelo blizu na­džarišca potresa, je nastal zaradi podora na Lipniku. Višina balvana je 5 m (foto: A, Gosar, september 1998). 68 Andrej GOSAR Fig. 9. Triggered by the 1998 earthquake, a mix­ture of snow, soil and rocks slid down a steep ravine in Lepena valley as an avalanche and cre­ated a fan shaped debris flow in the valley floor (photo: A. Gosar in May 1998). Sl. 9: Mešanica snega, zemlje in skal je sprožena s potresom 1998 zdrsnila po strmi grapi v pobocju doline Lepene in v dnu doline povzrocila nasta­nek pahljacastega dro­birskega toka (foto: A. Gosar, maj 1998). 69 Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mts Fig. 10. Heterogeneous glacial and fluvial sedi­ments in the Bovec basin were responsible for lar­ge variations in seismo­logical site effects and consequently to the de­gree of buildings dama­ge. A rockfall occured in the wall above the Soca river during the 1998 earthquake (photo: A. Gosar in May 1998). Sl. 10. Zaradi heteroge­nih ledeniških in recnih sedimentov v Bovški ko­tlini, so bile tam velike razlike v seizmoloških vplivih na potresno ni­hanje tal in posledicno razlike v stopnji poško­dovanosti stavb. Med potresom 1998 je v ste­ni nad reko Soco nas­tal tudi vecji skalni po­dor (foto: A, Gosar, maj 1998). 70 Andrej GOSAR Fig. 11. Soft lacustrine sediments as exposed in abandoned clay pit near Srpenica can significantly amplify seismic ground motion and are classified as ground type E according to the Eurocode 8 standard. a) General view of thin bedded lacustrine deposits, b) close view of very soft sediment (photo: A. Gosar). Sl. 11. Mehki jezerski sedimenti, kot so razgaljeni v opušcenem glinokopu pri Srpenici, lahko znatno ojacajo potresno nihanje tal in jih klasificiramo v vrsto tal E po standardu Evrokod 8. a) pogled od dalec na tanko plastovite jezerske sedimente, b) bližnji pogled na zelo mehek sediment (foto: A. Gosar). 71 Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mts 72 Andrej GOSAR 73 Review of geological and seismotectonic investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mts © Author(s) 2019. CC Atribution 4.0 License GEOLOGIJA 62/1, 75-88, Ljubljana 2019 https://doi.org/10.5474/geologija.2019.003 Review of seismological investigations related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes in Krn Mountains Pregled seizmoloških raziskav povezanih s potresoma 1998 Mw5,6 in 2004 Mw5,2 v Krnskem pogorju Andrej GOSAR1,2 1Slovenian Environment Agency, Seismology Office, Vojkova 1b, SI-1000 Ljubljana, Slovenia; e-mail: andrej.gosar@gov.si 2University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerceva 12, SI-1000 Ljubljana, Slovenia Prejeto / Received 23. 1. 2019; Sprejeto / Accepted 2. 4. 2019; Objavljeno na spletu / Published online 31. 7. 2019 Key words: earthquake, seismology, seismotectonics, macroseismics, focal mechanism, aftershock sequence, static stress change, seismological site effects, microtremor method, Krn Mountains, Ravne fault Kljucne besede: potres, seizmologija, seizmotektonika, makroseizmika, žarišcni mehanizem, popotresni niz, staticna sprememba napetosti, lokalni seizmološki vplivi, metoda mikrotremorjev, Krnsko pogorje, Ravenski prelom Abstract Overview of extensive seismological studies of Krn Mountains earthquakes performed in two decades is given. Detailed macroseismic studies by using a new European Macroseismic Scale EMS-98 showed large variations in damage to buildings due to the influence of very heterogeneous sediments and partly also due to the differences in source radiation pattern. Site effects were carefully studied and it was proven by microtremor HVSR method that soil-structure resonance effects severely enhanced the damage in many places. Particularly important were seismotectonic studies based mainly on focal mechanisms and distribution of aftershocks. Combined with geological data these studies pointed to the complex structure of segmented Ravne fault, which is growing by interactions between individual fault segments. A wider area is characterised by a kinematic transition between Dinaric (NW-SE) strike-slip faults in W Slovenia and E-W trending Alpine structures with predominantly reverse faulting in Friuli. Other investigations included static stress changes on neighbouring faults, analyses of the time decay of extensive aftershock sequences and magnitude-frequency relations. All these studies have significantly fostered seismological research in Slovenia and have enhanced international cooperation. Following the 1998 earthquake a modern national seismological network was built composed of 26 stations equipped with broadband sensors, accelerometers and high-resolution digitizers. Together with cross-border exchange of real-time data the seismological monitoring has been significantly improved. Izvlecek Podan je pregled obsežnih seizmoloških raziskav, ki so v dveh desetletjih sledile potresoma v Krnskem pogorju. Podrobne makroseizmicne raziskave z uporabo nove Evropske potresne lestvice EMS-98 so pokazale velike razlike v poškodovanosti stavb zaradi vpliva zelo heterogenih sedimentov in deloma tudi zaradi sevalne funkcije posameznih potresov. Vplivi mehkih sedimentov so bili natancno raziskani, z uporabo metode spektralnih razmerij mikrotremorjev je bilo mogoce dokazati velik vpliv resonancnih ucinkov med sedimenti in stavbami, ki so ponekod bistveno povecali škodo zaradi potresa. Posebno pomembne so bile seizmotektonske študije, ki so temeljile predvsem na žarišcnih mehanizmih potresov in prostorski porazdelitvi popotresov. Skupaj z geološkimi podatki so razkrile zapleteno strukturo segmentiranega Ravenskega preloma, ki raste z interakcijo med posameznimi segmenti preloma. Za širše obmocje je znacilen kinematicni prehod med zmicnimi prelomi Dinarske smeri (NW-SE) v zahodni Sloveniji in Alpsko usmerjenimi (E-W) strukturami v Furlaniji s prevladujocim reverznim prelamljanjem. Druge raziskave so vkljucevale tudi analizo staticnega prenosa napetosti na sosednje prelome, analize casovnega poteka obsežnih popotresnih nizov in odnosa med magnitudo in frekvenco potresov. Vse te študije so pomembno spodbudile razvoj seizmologije v Sloveniji in razmahnile mednarodno sodelovanje. Po potresu leta 1998 je bila zgrajena moderna seizmološka mreža, ki je sestavljena iz 26 opazovalnic opremljenih s širokopasovnimi seizmometri, pospeškometri in visoko-locljivimi digitalizatorji. Skupaj s cezmejno izmenjavo podatkov v stvarnem casu se je bistveno izboljšala kvaliteta seizmološkega monitoringa. 76 Andrej GOSAR Introduction The earthquake on 12 April 1998 in Krn Moun­tains was according to its magnitude Mw5.6 the strongest earthquake in Slovenia in the 20th cen­tury. According to its maximum intensity VII-VI­II EMS-98 it was surpassed only by the intensi­ty VIII EMS-98 Brežice earthquake (Cecic et al., 2018) and by the Friuli 1976 earthquake, which reached maximum intensity VIII-IX in Slovenia in Podbela (Breginjski kot), but its epicentre was in Italy. In Krn Mountains another strong earth­quake occurred on 12 July 2004 with Mw5.2 and maximum intensity VI-VII EMS-98 (fig. 1). Both earthquakes had strong impact on the develop­ment of seismological and earthquake geology sciences in Slovenia. The 20th anniversary of the 1998 earthquake is an opportunity for a review of extensive studies and developments in the inter­disciplinary seismological research. In this paper a review of seismological investigations related to both earthquakes is given. These studies had pos­itive impact on the development in many areas as seismological monitoring, seismotectonics, stud­ies of aftershock sequences, stress change studies, macroseismics and site effects studies. Most of the studies related to both earthquakes were pub­lished by Slovenian and Italian researchers (Di Giacomo et al., 2014). A complementary review paper in this journal issue is devoted to extensive geological and seismotectonic investigation relat­ed to Krn Mountain earthquakes (Gosar, 2019). In the introductory part of that paper an overview of both earthquakes and their consequences is also given (Gosar, 2019). Macroseismic investigations After the 1998 earthquake the largest macro­seismic survey in Slovenia so far was conducted. Macroseismic questionnaires were distributed to all voluntary observers (more than 4300) in the database of Uprava RS za geofiziko (Geophysi­cal Survey of Slovenia) and 68 % were returned, which is very high percentage comparing to sim­ilar surveys (Cecic et al., 1999). Macroseismic data on damage to buildings and other effects were collected in the field by seismologists and integrated with the data contributed by official damage inspection commissions. Data were eval­uated by means of the European Macroseismic Scale (EMS-98), which was in its final version published in the same year of earthquake occur­rence (Grünthal, 1998). Therefore, this was one of the first comprehensive macroseismic surveys of a strong earthquake in Europe using a new scale. In Slovenia data were evaluated for more than 2000 localities (fig. 1) and macroseismic data collected from all other Central European countries to re­veal the whole macroseismic field (Zupancic et al., 2001). The maximum intensity VII-VIII EMS-98 was observed in four villages: Lepena, Magozd, Spodnje Drežniške Ravne and Tolminske Ravne. Average radii of the areas of the same EMS-98 intensity were VII-13 km, VI-25 km, V-66 km, IV-180 km, III-422 km. More than 3000 damaged houses were examined (Godec et al., 1999). Old­er objects built of rubble and simple stone with wooden floors and poor quality mortar suffered damage most frequently, including partial col­lapse of walls or corners. Numerous houses had damage on roofs and chimneys and extensive cracks in walls. Some newer masonry buildings were also damaged, in many cases due to strong site effects (Zupancic et al., 2001). Large vari­ations in damage within short distances were a very prominent characteristic of this earthquake. They cannot be explained by different vulnera­bility, because the building construction is simi­lar in the whole area, but should be attributed to the amplifications in soft sediments (Gosar, 2007). The 2004 earthquake had maximum intensity VI-VII EMS-98 in Cezsoca, Vodenca, and some parts of Bovec (Cecic et al., 2006). It was soon re­alized that the distribution of damage is slight­ly different in comparison to the 1998 event, al­though both epicentres were very close (Vidrih & Ribicic, 2006). Intensive retrofitting activities took place after the 1998 earthquake, but were not completely finished before the 2004 event (Godec et al., 2006). This partly influenced the assessment of the 2004 event intensities. Due to much higher magnitude of the 1998 earthquake, the intensities in most localities in the upper Soca river territory were from 0.5 to 2.0 degrees higher with respect to that observed for 2004 earthquake. But this was not the case for Cezsoca and Žaga, where the same intensities were observed, and for Srpenica and Trnovo ob Soci, where for the 2004 event even a higher intensity for 0.5 degree was observed (Zupancic et al., 2001; Cecic et al., 2006). Gosar (2014) performed an analysis of the im­pact of fault mechanism radiation patterns on macroseismic fields to explain the observed dif­ferences. Although both earthquakes occurred on the Ravne fault, the focal mechanism of the first event was almost pure strike-slip, and a strike-slip with a small reverse component for the second one (fig. 1). This was explained as an active growth of the fault at its NW end (Kastel­ic et al., 2008). Radiation amplitude lobes were computed for three orthogonal directions. The highest intensities of both earthquakes were sys­tematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH compo­nent (which corresponds mainly to Love waves), which have significantly different orientation for both events. As expected for the strike-slip mechanism of the 1998 event, the radiation pat­tern shows a very symmetrical four-lobe shape with all four amplitude lobes of almost the same size. On the other hand the small reverse com­ponent in the mechanism of the 2004 event re­sults in a distinctively larger amplitude lobe in SW direction when compared to the other three lobes. The two settlements (Srpenica and Trnovo ob Soci) where the intensity of the 2004 event ex­ceeds the intensity of the 1998 event are located in the direction of the highest P amplitude lobe of the radiation pattern. The study has shown that although both macroseismic fields are very com­plex due to influences of multiple earthquakes, retrofitting, site effects, and sparse distribution of settlements, unusual differences in observed intensities can be explained to some extent with different radiation patterns (Gosar, 2014). Krn Mountain earthquakes and seismic hazard maps of Slovenia At the time of the 1998 earthquake the offi­cial seismic hazard map in Slovenia was inten­sity map showing expected intensities in MSK scale for 500 years return period (Ribaric, 1987). According to this map the most western part of the upper Soca territory, which extends close to the towns of Bovec and Tolmin, belongs to the intensity IX and the rest mainly to the intensity VIII. The comparison of the 1998 event maximum intensities (VII-VIII EMS-98) with this map has shown that the predicted values were not exceed­ed (Zupancic et al., 2001). It should be noted that the differences in MSK and EMS-98 scales could be neglected in such a comparison. In 1998 there were no accelerographs installed in the area to measure ground motion accelerations. The near­est seismic station was in Italy, 16 km from the epicentre and the nearest seismic station in Slove­nia in Vojsko, 36 km from the epicentre, equipped at that time with analogue seismograph. After the 1998 earthquake several temporary seismological stations were deployed in wider ep­icentral area including three strong motion in­struments (accelerographs) in Bovec, Kobarid and Drežnica, which are located less than 10 km from the epicentre of 2004 earthquake. Obtained ac­celerograms were the first modern digital strong motion data of a relatively strong earthquake re­corded at close epicentral distances in Slovenia and are thus important for engineering seismol­ogy (Šket Motnikar & Prosen, 2006). However, it turned out that several factors could influence the measurements including site and building ef­fects and instrument fixation. In Drežnica (5 km from the epicentre) peak horizontal acceleration of 0.38 g was recorded (fig. 2), but strong motion instrument was not fixed to the ground and its sliding during the earthquake could not be totally excluded, although it is not likely. In Bovec (7 km from the epicentre) peak horizontal acceleration of 0.48 g was recorded in a public library. Due to the damage to ceiling and falling of the books from the shelf close to the instrument, the accel­erogram was significantly deformed. However, it is believed that basic accelerogram corrections removed the noise. In Kobarid (7 km from the epicentre) peak horizontal acceleration of 0.15 g was recorded. In comparison to established at­tenuation models, these values are much higher than expected for Mw5.2 earthquake. However the duration of strong shaking above the selected threshold was in all cases very short, and higher values appeared at short periods. Measured peak accelerations also do not correlate with observed damage and assessed intensities, which were expected for an earthquake of such magnitude. Although accelerograms were corrected, peak values could not be treated as effective ground accelerations (Šket Motnikar & Prosen, 2006). According to the official seismic hazard map of Slovenia (Lapajne et al., 2001) all three stations are located in the area of 0.225 g design ground accel­eration for return period of 475 years. This raised a question, if seismic hazard is underestimated in the upper Soca territory. Because for the 1998 much stronger earthquake, for which no measure­ments are available, even higher peak accelera­tion are expected in comparison to the measured 2004 values. The opinion of Lapajne et al. (2006) is that high uncertainties and measurement errors are possible due to the inappropriate installation of instruments. In addition such high values can be explained by several causes: increased vulner­ability of building in which measurements were taken, local site effects, near-filed and fault direc­tivity effects. The observed intensities also does not support the exceedance of effective values of ground acceleration (Lapajne et al., 2001). Seismotectonic investigations based on seismological data In a complementary paper on geological and seismotectonic investigations (Gosar, 2019), a review of seismotectonic investigations, which involved also field geological work and remote sensing studies is given. Here, a review will be given on investigations based mainly on seismo­logical data that includes computation of earth­quake focal mechanisms, studies of a spatial dis­tribution of aftershocks and moment distribution on the fault etc. For any in-depth seismological study accu­rate locations of hypocentres are needed, taking into account distances of seismological stations and azimuthal coverage. For the 1998 earthquake the hypocentral parameters of aftershocks were obtained using adapted joint hypocentre deter­mination (JHD) method (Bajc et al., 1999), and the average estimated location error is approxi­mately 500 m. Hypocentres of the majority of the aftershocks stretch in a NW-SE elongated belt that is 10 km long and 3 km wide. They occurred along almost vertical fault plane at depths from just below the surface to 7 km (Zupancic et al., 2001). The ruptured area was estimated to be around 10 km × 7 km, which is close to published expected values for Mw5.6 earthquake that vary from length 8 km or area 42 km2 to length 13 km or area 107 km2. The fault plane solution of the main 1998 shock is almost pure dextral strike-slip (NW-SE plane) (fig. 1), but many aftershocks, which were mostly shallower, show different mechanisms. They mainly contain also a reverse component in the WNW-ESE plane. The major principal stress is approximately N-S (Zupancic et al., 2001). Another preliminary study of the 1998 earth­quake and its aftershock sequence was based mainly on data recorded by seismic stations lo­cated in Friuli-Venezia Giulia (Bernardis et al., 2000). Similar focal mechanisms as those by Zu­pancic et al. (2001) were obtained for the main shock and nine stronger aftershocks with mag­nitude 3.5-4.0. On the other hand, aftershocks with magnitude 3.0-3.5 show transtensional or even extensional focal mechanisms with orien­tation of planes from NW-SE to N-S. This type of focal mechanisms prevails over the fault plane solutions typical of low-angle NW-SE to NE-SW trending reverse faults. This suggests that the deformation recovery of the crustal volume affected by the main shock may be achieved through reactivation of several pre-existing faults (Bernardis et al., 2000). An advanced relocation followed, which was based on 4000 aftershocks recorded by seismic networks in Slovenia, Italy, Austria and Croatia by adapting the joint hypocentre determination (JHD) method for teleseismic data to local earth­quakes (Bajc et al., 2001). The relocated after­shocks are well organized along a trend of about N125o and the area of epicentres is 12 km × 3 km. Only five hypocentres were deeper than 10 km, all of them off-fault. The accelerograms of four stations of the Friuli network were inverted to study the source process of the main shock. The seismic moment of 4.5 × 1017 Nm was obtained and the average slip of 18 cm. The moment distribu­tion shows the maximum energy release around the hypocentre of the main shock, confined into a region of 10 km × 6 km and decreasing towards the edges of the fault. The rupture was growing in a bilateral way starting from the hypocentre within 3 s (Bajc et al., 2001). The distribution of aftershocks is compatible with the slip; they are more frequent in shallower areas that didn't break during the main shock. The majority of the main shock energy release occurred towards the SE end, where there is a diffuse aftershock ac­tivity at the shallowest part. At the NW end, the aftershock distribution clearly shows an abrupt cut-off in activity, connected with the area of low energy release during the main shock (fig. 3). These observations indicate that the NW barrier close to the Bovec basin is stronger and related to the sharper change of the strike at the transition from Dinaric to Alpine structures than SE barri­er at the Tolminka spring basin, which is within the Dinaric system (Bajc et al., 2001). Seismotectonic characteristics of the 2004 earthquake were studied by Kastelic et al. (2006). The main shock occurred very close to the 1998 earthquake, but shows slightly different focal mechanism (fig. 1) with more pronounced reverse component in addition to prevailing strike-slip one. The aftershocks of the 2004 event are mostly located in the NW to WWN direction from those of the 1998 event and do not show such a uniform distribution (fig. 3). A group of aftershocks that have a prevailing strike-slip focal mechanisms continues in a NW-SE direction, while the after­shocks oriented in a WWN-EES to W-E direction show more pronounced reverse component. Such temporal and spatial distribution of the after­shocks depicts a contemporary activity on both NW-SE and WWN-EES to W-E oriented faults. The principal stress axis is oriented generally in N-S direction with only slight deviations for in­dividual aftershocks (Kastelic et al., 2006). Inte­grated with structural geological data a further seismotectonic interpretation of the Ravne fault was given in Kastelic et al. (2008). The fault is growing by interaction of individual right step­ping fault segments and breaching of local tran­stensional step-over zones. The fault geometry is controlled by the original geometry of the NW-SE trending thrust zone, modified by successive faulting within the fault zone. In a recent stress regime, the segmented fault is lengthening by ac­tive growth at its NW end. At epicentral depths, the fault system is accommodating recent strain along newly formed fault planes, whereas in the upper parts of the crust the activity is distributed over a wider deformation zone that includes reac­tivated thrust faults (Kastelic et al., 2008). Herak et al. (2003) studied azimuthal aniso­tropy of P-wave velocity in Krn Mountains by measuring differences of travel times and travel paths towards the seismic stations located at dif­ferent azimuths. The P-wave velocity varies from 6.0 km/s in the ENE-WSW direction to 6.4 km/s in NNW-SSE direction. Both directions closely match those of the mean regional principle stress components obtained from focal mechanisms. A large part of observed anisotropy may be ex­plained by assuming that the hypocentral volume is pervaded by a system of vertical/subvertical extensive-dilatancy cracks aligned under the in­fluence of local tectonic stress field (Herak et al., 2003) Source parameters of the 2004 main shock and of 165 aftershocks (0.8 Pregled > Agrometeorologija > Povprecja > Temperature tal (globine 2, 5, 10, 20, 30, 50 in 100 cm): Povprecja mesecnih temperatur tal v razlicnih globinah v obdob­ju 1971-2000 http://meteo.arso.gov.si/met/sl/agromet/period/soiltemp/ (26.3.2019) Internet 2: meteo.si > Pregled > Podnebje > Preglednice > Ucinkovita raba energije: Podatki za pravilnik o ucinkoviti rabi energije http://meteo.arso.gov.si/met/sl/climate/ta­bles/pravilnik-ucinkoviti-rabi-energije/ (26.3.2019) Internet 3: Atlas okolja, Agencija RS za okolje (ARSO) http://gis.arso.gov.si/atlasokolja/profile.aspx?id=Atlas_Okolja_AXL@Arso (26.3.2019) Internet 4: meteo.si > Pregled > Podnebje > Preglednice > Klimatološka povprecja 1981-2010 http://meteo.arso.gov.si/met/sl/climate/tables/normals_81_10/ (26.3.2019) Internet 5: UEA Climatic Research Unit, Global Temperature Record, Phil Jones & Tim Osborn http://www.cru.uea.ac.uk/ (26.03.2019) Internet 6: meteo.si > Pregled > Agrometeorologija > Podatki > Temperature tal - zip datoteke (dnevni podatki za postajo): Temperature tal za celotno arhivsko obdobje (dnevni podatki po letu 1961) http://meteo.arso.gov.si/met/sl/agromet/data/arhiv_ttal/ (26.03.2019) 105 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije 106 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR 107 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije Sl. 1. Odvisnost temperatur iz termogramov vrtin, temperatur tal v globini 2 cm, povprecne temperature zraka po enacbi 5 (iz višinskih gradientov lokacij vrtin) ter zraka na višini 2 m od nadmorske višine za primorsko Slovenijo. Fig. 1. Dependence of temperatures from borehole thermograms (squares), soil temperatures at a depth of 2 cm (triangles), mean air temperature after equation 5 (from altitude gradients of borehole locations)(quadrangles) and air at a height of 2 m (circles) from altitude for the coastal Slovenia. 108 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR Sl. 2. Odvisnost temperatur iz termogramov vrtin, temperatur tal v globini 2 cm, povprecne temperature zraka po enacbi 6 (iz višinskih gradientov lokacij vrtin) ter zraka na višini 2 m od nadmorske višine za celinsko Slovenijo. Fig. 2. Dependence of temperatures from borehole thermograms (squares), soil temperatures at a depth of 2 cm (triangles), mean air temperature after equation 6 (from altitude gradients of borehole locations)(quadrangles) and air at a height of 2 m (circles) from altitude for the continental Slovenia. Sl. 3. Podnebni tipi v Sloveniji (Ogrin & Plut, 2009). Fig. 3. The climate types in Slovenia (Ogrin & Plut, 2009). 109 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije Celinska / Continental Slovenija sl. 2 / fig. 2 x: nadmorska višina/altitude, m k n 200 500 1000 1500 tla / ground: -0,0051 12,30 11,28 9,75 7,20 4,65 zrak / air: -0,0049 11,03 10,05 8,58 6,13 3,68 1,23 1,17 1,07 0,97 dT tla-zrak / dT ground-air -0,0002 1,27 1,2 1,2 1,1 1,0 Primorska / Coastal Slovenija sl. 1 / fig. 1 x: nadmorska višina/altitude, m k n 0 50 100 150 tla / ground: -0,0092 13,69 13,69 13,23 12,77 12,31 zrak / air: -0,0054 12,56 12,56 12,29 12,02 11,75 1,13 0,94 0,75 0,56 dT tla-zrak / dT ground-air -0,0038 1,13 1,1 0,9 0,8 0,6 Tabela 1. Dolocitev tempera­turne razlike dT med premi­cama kx+n iz slik 1 in 2. Table 1. Determination of the temperature difference dT between the lines kx + n from figs. 1 and 2. Celinska / Continental Slovenija x: nadmorska višina / altitude, m 200 500 1000 1500 dT tla-zrak/ground-air (°C) 1,2 1,2 1,1 1,0 Primorska / Coastal Slovenija x: nadmorska višina / altitude, m 0 50 100 150 dT tla-zrak/ground-air (°C) 1,1 0,9 0,8 0,6 Tabela 2. Vrednosti za pre­tvorbo temperature zraka v temperaturo tal (poe­nostavljeno iz tabele 1). Table 2. Values for conver­ting the air temperature to the soil temperature (sim­plified from Table 1). 110 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR Sl. 4. Lokacije s termogrami vrtin za dolocitev temperatur na površini trdnih tal v Sloveniji. Vrtine so razvršcene med celinsko in primorsko Slovenijo glede na njihovo lokacijo in nadmorsko višino. Opredeljena je kvaliteta interpretacije: A - normalen termogram temperature z globino, B - odvisnost temperature z globino interpretirana z ekstrapolacijo, potek temperature je lahko nelinearen, C - interpretacija je vprašljiva ali težavna. Fig. 4. Locations with borehole thermograms for determination of temperatures on the surface of solid ground in Slovenia. Boreholes are classified between continental and coastal Slovenia according to their location and altitude. The quality of interpretation is defined: A - normal temperature thermogram with depth, B - dependence of temperature with depth is inter­preted by extrapolation, the temperature course can be nonlinear, C - interpretation is questionable or problematic. 111 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije Te,a,m = 9,5 °C Tg,a = Te,a,m + 1,2 = 10,7 °C Tg,a,H = Tg,a - 1 = 9,7 °C Tg,a = Te,a,m + 1,2 = 11,2 °C Tg,a,H = Tg,a - 1 = 11,2 - 1,0 = 10,2 °C 112 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR 1. Lokacija Cerkno, pri stavbi CŠOD Predvideno zajetje plitve geotermalne energije z geosondo bo namenjeno predvsem ogrevanju in le zelo malo tudi hlajenju. GKX: 109742 GKY: 422039 Z=319,2 m 1. korak 2. korak 3. korak Nacin povprecna letna temperatura zraka   povprecna temperatura površja tal celinska lega (tab. 2) temperatura površja tal (TPT) tolerancna vrednost za ogrevanje 1) Izracun temperature iz meteorološke postaje (ki je najbližje lokaciji) - spletna stran ARSO:     Tg,a=Te,a,m + 1,2 = 10,7 °C     Tg,,a,H=Tg,a - 1 = 10,7 - 1 = 9,7 °C http://meteo.arso.gov.si/met/sl/climate/tables/pravilnik-ucinkoviti-rabi-energije/   Te,a,m = 9,5 °C   2) Enacba za višinski gradient letne povprecne temperature zraka za celinsko Slovenijo (v tem primeru): 11,6 °C - 4,9 K/km · z (v km) 11,6 °C – 4,9 K/km · 0,3192 km = 10,0 °C   Tg,a=Te,a,m + 1,2 = 11,2 °C   Tg,,a,H=Tg,a - 1 = 11,2 - 1 = 10,2 °C 3) V bližini je meteorološka postaja, kjer merijo temperaturo tal (išcemo temp. tal v globini 5 cm) - spletna stran ARSO: http://meteo.arso.gov.si/met/sl/agromet/period/soiltemp/     naša lokacija v Cerknem ni blizu nobeni od navedenih postaj       4) Primerno izmerjen T-z profil (termogram) iz najbližje vrtine: iz termograma vrtine Ce-1/94 (Cerkno, Na Rajdi):     povprecna temperatura površja tal T0 = 10 °C (A kvaliteta interpret.)   Tg,,a,H=Tg,a - 1 = 10,0 - 1 = 9,0 °C 2. Lokacija Lucija pri Portorožu, pri vrtcu Morje Lucija Predvideno zajetje plitve geotermalne energije z geosondami bo namenjeno ogrevanju, morda pa še bolj hlajenju. GKX: 041043 GKY: 391551 Z=2 m 1. korak 2. korak 3. korak Nacin povprecna letna temperatura zraka   povprecna temperatura površja tal primorska lega (tab. 2) temperatura površja tal (TPT) tolerancna vrednost za hlajenje 1) Izracun temperature iz meteorološke postaje (ki je najbližje lokaciji) - spletna stran ARSO:     Tg,a=Te,a,m + 1,1 = 14,6 °C     Tg,,a,C=Tg,a + 1 = 14,6 + 1 = 15,6 °C http://meteo.arso.gov.si/met/sl/climate/tables/pravilnik-ucinkoviti-rabi-energije/   Te,a,m = 13,5 °C   2) Enacba za višinski gradient letne povprecne temperature zraka za primorsko Slovenijo (v tem primeru): 13,5 °C - 6,4 K/km · z (v km) 13,5 °C – 6,4 K/km · 0,002 km = 13,5 °C   Tg,a=Te,a,m + 1,1 = 14,6 °C   Tg,,a,C=Tg,a + 1 = 14,6 + 1 = 15,6 °C 3) V bližini je meteorološka postaja, kjer merijo temperaturo tal (išcemo temp. tal v globini 5 cm) - spletna stran ARSO: http://meteo.arso.gov.si/met/sl/agromet/period/soiltemp/     naša lokacija v Luciji je blizu meteorološki postaji Portorož - Letališce; za letno povpre­cje dobimo: Tg,a = 14,7 °C   T,,a,C=Tg,a + 1 = 14,7 + 1 = 15,7 °C 4) Primerno izmerjen T-z profil (termogram) iz najbližje vrtine: - na voljo imamo dva termograma: (a) iz termograma vrtine Lu-1/94 (Lucija): (b) iz termograma vrtine LIV-1/01 (Izola):       povprecna temperatura površja tal T0 = 13,5 °C (B kvaliteta interpret.) T0 = 13,4 °C (A kvaliteta interpret.) odlocimo se npr. za primer (a): Tg,,a,C=T,a + 1 = 13,5 + 1 = 14,5 °C   3. Lokacija Zgornji Brnik, Letališce J.Pucnika Ljubljana Predviden sistem zajetja plitve geotermalne energije z geosondo bo namenjen pretežno ogrevanju in bolj malo tudi hlajenju. GKX: 120709 GKY: 458131 Z=382,4 1. korak 2. korak 3. korak Nacin povprecna letna temperatura zraka   povprecna temperatura površja tal celinska lega (tab. 2) temperatura površja tal (TPT) tolerancna vrednost za ogrevanje 1) Izracun temperature iz meteorološke postaje (ki je najbližje lokaciji) - spletna stran ARSO:     Tg,a=Te,a,m + 1,2 = 10,6 °C     Tg,,a,H=Tg,a - 1 = 10,6 - 1 = 9,6 °C http://meteo.arso.gov.si/met/sl/climate/tables/pravilnik-ucinkoviti-rabi-energije/   Te,a,m = 9,4 °C   2) Enacba za višinski gradient letne povprecne temperature zraka za celinsko Slovenijo (v tem primeru): 11,6 °C - 4,9 K/km · z (v km) 11,6 °C – 4,9 K/km · 0,3824 km = 9,7 °C   Tg,a=Te,a,m + 1,2 = 10,9 °C   Tg,,a,H=Tg,a - 1 = 10,9 - 1 = 9,9 °C 3) V bližini je meteorološka postaja, kjer merijo temperaturo tal (išcemo temp. tal v globini 5 cm) - spletna stran ARSO: http://meteo.arso.gov.si/met/sl/agromet/period/soiltemp/     naša lokacija v Zg. Brniku je nekje vmes med postajama Lesce in Ljubljana; privzamemo srednjo letno vrednost obeh postaj: Tg,a = 10,5 °C   Tg,,a,H=Tg,a - 1 = 10,5 - 1 = 9,5 °C 4) Primerno izmerjen T-z profil (termogram) iz najbližje vrtine: iz termograma vrtine BR-1/86 (Brdo pri Kranju):     povprecna temperatura površja tal T0 = 9,3 °C (A kvaliteta interpret.)   Tg,,a,H=Tg,a - 1 = 9,3 - 1 = 8,3 °C 4. Lokacija Babno Polje, pri Župnijski cerkvi Sv. Nikolaja Predviden sistem zajetja plitve geotermalne energije z geosondo bo namenjen pretežno ogrevanju in le zelo malo tudi hlajenju. GKX: 055825 GKY: 465233 Z=754,8 m 1. korak 2. korak 3. korak Nacin povprecna letna temperatura zraka   povprecna temperatura površja tal celinska lega (tab. 2) temperatura površja tal (TPT) tolerancna vrednost za ogrevanje 1) Izracun temperature iz meteorološke postaje (ki je najbližje lokaciji) - spletna stran ARSO:     Tg,a=Te,a,m + 1,1 = 8,1 °C     Tg,,a,H=Tg,a - 1 = 8,1 - 1 = 7,1 °C http://meteo.arso.gov.si/met/sl/climate/tables/pravilnik-ucinkoviti-rabi-energije/   Te,a,m = 7,0 °C   2) Enacba za višinski gradient letne povprecne temperature zraka za celinsko Slovenijo (v tem primeru): 11,6 °C - 4,9 K/km · z (v km) 11,6 °C – 4,9 K/km · 0,7548 km = 7,9 °C   Tg,a=Te,a,m + 1,1 = 9,0 °C   Tg,,a,H=Tg,a - 1 = 9,0 - 1 = 8,0 °C 3) V bližini je meteorološka postaja, kjer merijo temperaturo tal (išcemo temp. tal v globini 5 cm) - spletna stran ARSO: http://meteo.arso.gov.si/met/sl/agromet/period/soiltemp/     naša lokacija na Babnem Polju ni blizu no­beni od navedenih postaj.       4) Primerno izmerjen T-z profil (termogram) iz najbližje vrtine: iz termograma vrtine SK-1/98 (Stari Kot pri Cabru):     povprecna temperatura površja tal T0 = 7,9 °C (B kvaliteta interpret.)   Tg,,a,H=Tg,a - 1 = 7,9 - 1 = 6,9 °C 5. Lokacija Maribor - Brezje, na vzhodnem robu Stražunskega gozda Predviden sistem zajetja plitve geotermalne energije z geosondo bo namenjen pretežno ogrevanju, nekoliko pa tudi hlajenju. GKX: 154860 GKY: 552805 Z=256 m 1. korak 2. korak 3. korak Nacin povprecna letna temperatura zraka   povprecna temperatura površja tal celinska lega (tab. 2) temperatura površja tal (TPT) tolerancna vrednost za ogrevanje 1) Izracun temperature iz meteorološke postaje (ki je najbližje lokaciji) - spletna stran ARSO:     Tg,a=Te,a,m + 1,2 = 11,1 °C     Tg,,a,H=Tg,a - 1 = 11,1 - 1 = 10,1 °C http://meteo.arso.gov.si/met/sl/climate/tables/pravilnik-ucinkoviti-rabi-energije/     Te,a,m = 9,9 °C 2) Enacba za višinski gradient letne povprecne temperature zraka za celinsko Slovenijo (v tem primeru): 11,6 °C - 4,9 K/km · z (v km) 11,6 °C – 4,9 K/km · 0,256 km = 10,3 °C   Tg,a=Te,a,m + 1,2 = 11,5 °C   Tg,,a,H=Tg,a - 1 = 11,5 - 1 = 10,5 °C 3) V bližini je meteorološka postaja, kjer merijo temperaturo tal (išcemo temp. tal v globini 5 cm) - spletna stran ARSO: http://meteo.arso.gov.si/met/sl/agromet/period/soiltemp/     naša lokacija v Mariboru-Brezje je dokaj blizu meteorološki postaji Maribor; za letno povprecje dobimo: Tg,a = 10,96 =11,0 °C   Tg,,a,H=Tg,a - 1 = 11,0 - 1 = 10,0 °C 4) Primerno izmerjen T-z profil (termogram) iz najbližje vrtine: iz termograma vrtine MB-1/90 (Maribor - Stražun):     povprecna temperatura površja tal T0 = 10,4 °C (A kvaliteta interpret.)   Tg,,a,H=Tg,a - 1 = 10,4 - 1 = 9,4 °C Tabela 3. Primeri izracuna temperature na površini trdnih tal za pet izbranih lokacij.  Table 3. Examples of temperature calculation on the surface of solid earth for five selected locations. 113 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije 114 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR The calculation mode: 1) calculation of temperature from the meteorological station (closest to the location) - ARSO website, 2) the equation for the height gradient of the annual mean air temperature, for continental or coastal Slovenia, 3) nearby is a meteorological station measuring the soil temperature (we are looking for a temperature at 5 cm depth) - ARSO website. 4) properly measured T-z profile from the nearest borehole. 115 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije Tg,a,H = Tg,a - 1 = 10,0 - 1,0 = 9,0 °C Tabela 4. Povprecja mesecnih temperatur tal v globini 5 cm v obdobju 1971-2000 za Portorož.  Table 4. The average monthly temperatures of the soil at a depth of 5 cm in the period 1971-2000 for Portorož. Jan Feb Mar Apr Maj Jun Jul Avg Sep Okt Nov Dec Letno povprecje/Annual average T (°C) 4,1 4,4 8,8 13,5 19,7 23,6 26,1 26,1 20 14,8 9,4 5,3 14,7 116 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR Tabela 5. Rezultati izracunanih temperatur (°C) na površini trdnih tal za vseh pet lokacij po štirih nacinih. Table 5. Results of calculated temperatures (°C) on the surface of solid earth for all five locations in four calculation modes. Nacin izracuna / Calculation mode Lokacija / Site Cerkno, CŠOD Lucija, vrtec Morje Babno Polje Maribor-Tezno Zgornji Brnik, Letališce 1. Temperatura zraka v temperaturo tal / Air temp. into Ground temp. 9,7 15,6 7,1 10,1 9,6 2. Višinski gradient / Height gradient 10,2 15,6 8,0 10,5 9,9 3. Meteo. postaja / Meteo station: 5 cm - 15,7 - 10,0 9,5 4. T-z termogram / T-z profile 9,0 14,5 6,9 9,4 8,3 Tabela 6. Ocena ustreznosti nacina izracuna za vseh pet lokacij (iz Tab. 5). Table 6. Assessment of the calculation modes for all five locations (from Tab. 5). Nacin izracuna / Calculation mode Cerkno, CŠOD Lucija, vrtec Morje Babno Polje Maribor-Brezje Zgornji Brnik, Letališce 1. Temp. zraka v temp. tal / Air temp. into Ground temp. *** *** *** *** *** 2. Višinski gradient/ Height gradient *** *** ** - nadmor­ska višina kraja/altitude of location ** ** 3. Meteo. postaja/ Meteo station: 5 cm - *** - *** *** 4. T-z termogram/ T-z profile ** - vpliv mi­krolokacije vrtine/influence of borehole‘s microlocality ** - T-z profil iz preteklega desetletja/T­-z profile from the past decade *** ** - vpliv mi­krolokacije vrtine/influen­ce of borehole‘s microlocality ** - vpliv mi­krolokacije vrtine/influen­ce of borehole‘s microlocality Legenda za klasifikacijo / Legend for classification: *** bolj primeren / more appropriate; ** primeren / appropriate; * manj primeren/less appropriate 117 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije Tabela 7. Razpon nadmorskih višin meteoroloških postaj in vrtin s termogrami ter število enih in drugih v celinskem in pri­morskem delu Slovenije. Table 7. Range of altitudes of meteorological stations and boreholes with thermograms and number of one and the other in the continental and coastal part of Slovenia. Razpon nadmorskih višin meteoroloških postaj in vrtin s termogrami / število postaj, vrtin Range of altitudes of meteo stations and boreholes with T-z profiles / number of stations, boreholes Celinski del / Continental part (m n.m.) Primorski del / Coastal part (m n.m.) Postaje s temperaturo tal na -2 cm / Stations with ground temperature at -2 cm 188 – 515 / 7 2 – 55 / 2 Postaje s temperaturo zraka na 2 m / Stations with air temperature at 2 m 157 – 2.514 / 29 2 – 320 / 4 Vrtine s termogrami vrtin / Boreholes with T-z profiles 144 – 808 / 73 22 – 241 / 16 118 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR Sl. 5. Vpliv povprecne le­tne temperature tal (T0) na potrebno globino vrti­ne pri razlicnih toplotnih prevodnostih (.) kamnin in zemljin in gostoti toplotnega toka (q) 0,065 W/m2 in volu­mski kapaciteti toplote (Cv) 2,2 MJ/(m3K). Fig. 5. The influence of the annual average ground tem­perature (T0) on the required drilling depth for different thermal conductivities (.) of rock and soil and for the hea­t-flow density (q) of 0.065 W/m2 and the volume heat capa­city (Cv) of 2.2 MJ/(m3K). 119 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije Sl. 6. Termicni spomin Zemlje za dogodke na nje­ni površini. Enovita tem­peraturna anomalija v trajanju . na površini (A) se širi navzdol in izginja (B). Krivulje kažejo jakost temperaturne anomalije T v globinsko - casovnem po­lju, izražene kot odstotek anomalne površinske tem­perature D. Fig. 6. The thermal mem­ory of the Earth for events on its surface. A uniform temperature anomaly of duration . at the surface (A) propagates downward and fades away (B). Curves show strength of the tempe­rature anomaly T in the de­pth-time field expressed as a percentage of anomalous surface temperature D. 120 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR 121 Primeri ocene temperatur na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije 122 Dušan RAJVER, Simona PESTOTNIK & Joerg PRESTOR © Author(s) 2019. CC Atribution 4.0 License GEOLOGIJA 62/1, 123-135, Ljubljana 2019 https://doi.org/10.5474/geologija.2019.006 Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska Aspects of the consequences of the extreme weather event in the Dovžan Gorge Natural Monument Matevž NOVAK1 & Irena MRAK2 1Geološki zavod Slovenije, Dimiceva ul. 14, SI-1000 Ljubljana, Slovenija; e-mail: matevz.novak@geo-zs.si 2Visoka šola za varstvo okolja, Trg mladosti 7, SI-3320 Velenje, Slovenija; irena.mrak@siol.net Prejeto / Received 7. 6. 2019; Sprejeto / Accepted 10. 7. 2019; Objavljeno na spletu / Published online 31. 7. 2019 Kljucne besede: ekstremni vremenski dogodek, geološko pogojene naravne nesrece, spremembe površja, naravni spomeniki, Dovžanova soteska, Slovenija Key words: extreme weather event, geohazard, relief changes, natural monuments, Dovžan Gorge, Slovenia Izvlecek Vsa zavarovana obmocja naravnih vrednot, v katerih živi clovek, se soocajo s problemom vzdrževanja ravnovesja med ohranjanjem naravnega okolja in clovekovimi posegi vanj zaradi njegovih gospodarskih dejavnosti in njegove varnosti. Ekstremni vremenski dogodek je v noci z 29. na 30. oktober 2018 povzrocil velike spremembe v porecju Tržiške Bistrice, ki so najbolj ocitne v Naravnem spomeniku Dovžanova soteska. Dogodek je osvetlil vec vidikov te problematike. Pri analizi tega vremenskega dogodka, sprememb površja iz fotodokumentacije ter zgodovinskega arhiva se je Naravni spomenik Dovžanova soteska pokazal kot odlicen poligon za proucevanje naravnih procesov in antropogenih vplivov ter clovekovega dojemanja naravnih nesrec in zgodovinskega spomina nanje. Abstract All protected areas of natural values which are populated are faced with the problem of maintaining a balance between preserving the natural environment and human interventions in it for its economic activities and its security. The extreme weather event in the night from 29th to 30th October 2018 caused major changes in the Tržiška Bistrica river basin, which are most evident in the Dovžan Gorge Natural Monument. The event highlighted several aspects of this issue. Through the analysis of this weather event, changes in the surface from photo documentation and historical archives, the Dovžan Gorge Natural Monument has proven to be an excellent polygon for the study of natural processes, anthropogenic influences and the human perception of natural disasters and historical memory of them. Uvod Dovžanova soteska je zaradi izjemnih geolo­ških in geomorfoloških razmer od leta 1988 zava­rovana kot naravni spomenik. Je eno tistih ožjih zavarovanih obmocij Slovenije, ki so poseljena, skozenj pa vodi tudi prometna povezava med na­seljem Tržic in njegovim hribovitim zaledjem z obsežnimi, gospodarsko pomembnimi gozdnimi površinami. Zaradi geološke zgradbe in topogra­fije površja v obliki strmih pobocij in hudourniš­kega toka Tržiške Bistrice je obmocje podvrženo hitrim in velikim naravnim spremembam, ki so še posebej intenzivne ob ekstremnih vremenskih dogodkih, ko povzrocajo gmotno škodo. Nenehno pa predstavljajo nevarnost za ljudi in infrastruk­turo. Analiza vremenske ujme, ki je v noci z 29. na 30. oktober 2018 prizadela obmocje porecja Tr­žiške Bistrice, je strokovno zanimiva kot ekstre­mni vremenski dogodek in še bolj zato, ker je po­novno pokazala na nepremišljeno rabo naravnih virov, predvsem gozda in problem neurejenih hu­dournikov. Obenem pa je potrdila rezultate mno­gih prejšnjih raziskav o clovekovem dojemanju in zgodovinskem spominu naravnih nesrec. Z vec strani je osvetlila problematiko vzdrževanja rav­novesja med ohranjanjem naravnega okolja v za­varovanih naravnih spomenikih in clovekovimi posegi vanje zaradi njegovih ekonomskih dejav­nosti in njegove varnosti (Novak & Mrak, 2019). Reka Tržiška Bistrica ima hudourniški znacaj, kljub temu pa obicajno ne povzroca vecje gmotne škode, saj je njena poplavna ravnica skoraj nepo­seljena. Tržiška Bistrica težave povzroca prebi­valcem naselij Jelendol, Dolina, Cadovlje pri Tr­žicu in Tržic, kjer je tudi lanska oktobrska ujma povzrocila najvec gmotne škode. Prav to obmocje je za analizo posledic ekstremnih vremenskih dogodkov in vzrokov zanje zelo zanimivo iz vec spodaj naštetih razlogov, ki so tako naravni kot antropogeni: -- raznovrstna litološka zgradba in (posledic­no) oblika površja, ki na tem obmocju pogo­jujeta razlicne erozijske procese in pobocne masne premike; -- dobra fotodokumentacija (najlepši motivi v Dovžanovi soteski so zelo pogosto fotografira­ni, kar omogoca zelo dobro analizo sprememb struge Tržiške Bistrice po ekstremnih vre­menskih dogodkih); -- porecje Tržiške Bistrice je že stoletja pod­vrženo izkorišcanju gozda, prav tako so v zadnjih dveh stoletjih ekstremni vremenski dogodki na tem obmocju razmeroma dobro dokumentirani; -- obmocje je zaradi izjemnih geološko-geo­morfoloških razmer zavarovano kot naravni spomenik, ki pa je stalno podvržen cloveko­vim posegom tudi v zaledju. Vsi Zaradi vsega naštetega je obmocje med Jelendolom in Cadovljami, posebej pa Dovžano­va soteska, zelo dober študijski in ucni poligon za proucevanje odnosa med naravnim okoljem in clovekovimi prilagoditvami ter kljubovanja take­mu, za poselitev marsikje neprimernemu okolju. Metode Predstavljena študija je rezultat podrobne analize ekstremnega vremenskega dogodka v porecju Tržiške Bistrice v noci med 29. in 30. ok­tobrom 2018 ter ogleda posledic in analize vzro­kov zanje. Pri analizi vremenskih podatkov sta bili uporabljeni porocili Urada za meteorologijo in hidrologijo Agencije Republike Slovenije za okolje (v nadaljevanju ARSO) o tem dogodku. Prvo porocilo obravnava obilne padavine in mo­can veter (ARSO, 2018a), drugo pa visoke vode in poplave (ARSO, 2018b). Iz obeh porocil in dru­gih javnih podatkov ARSO (ARSO, 2018c) so bili v detajlni analizi zajeti podatki za obmocje med naselji Jelendol in Cadovlje pri Tržicu (Novak & Mrak, 2019). V tem clanku so povzeti kljucni po­datki te analize. Za analizo poškodb so bile uporabljene fo­tografije clanov Gorske reševalne službe Tržic, posnete takoj zjutraj po dogodku in podatki, pri­dobljeni pri ogledu terena 13. 11. 2018. Pri pro­ucevanju sprememb površja je bila uporabljena arhivska fotodokumentacija Tržiškega muzeja, pregledana baze ortofoto posnetkov, elaborata o izdelavi Kart erozijske in poplavne nevarnosti, plazljivosti in nevarnosti snežnih plazov za ob­mocje obcine Tržic (Natek et al., 2010) in Katastra zemeljskih plazov, hudournikov in snežnih plazov v obcini Tržic (Mrak et al., 2012) ter lastna foto­dokumentacija od leta 2000. Za analizo vzrokov takih posledic so bili upo­rabljeni podatki dolgoletnih lastnih opazovanj, geološka karta Dovžanove soteske (Novak, 2007) in arhivska porocila o plazovih ter skalnih podo­rih na širšem obmocju Tržica. Za analizo zgodovinskih ekstremnih dogod­kov na obmocju porecja Tržiške Bistrice, dojema­nja naravnih nesrec in varovanja pred njimi so bili uporabljeni zgodovinski viri iz arhiva Trži­škega muzeja in iz monografij o življenju na tem obmocju. Rezultati Ekstremni vremenski dogodek oktobra 2018 Povišana vodostaj in pretok Tržiške Bistrice sta ob mocnih padavinah v jesenskem obdobju pogosta pojava, ki obicajno povzrocata spremem­be struge reke, redko pa gmotno škodo. Po ujmi v noci z 29. na 30. oktober 2018 se je postavilo vprašanje, v cem je bil ta dogodek poseben, da je povzrocil škodo z razsežnostjo, kakršno opisujejo le še nekateri zgodovinski zapisi. ARSO je v sistemu Meteoalarm za ponedeljek, 29. 10. popoldan in ponoci izdal vremenska opo­zorila najvišje (rdece) stopnje za mocne nalive, veter in dež za obmocje celotne zahodne Sloveni­je (ARSO, 2018a). Geološki zavod Slovenije pa je v sistemu Masprem izdal opozorilo za povecano verjetnost pojavljanja plazov (Geološki zavod Slo­venije, ekipa MASPREM, 29.10.2018). Padavinski podatki Najbližja padavinska postaja za obravnavano obmocje stoji prav v Jelendolu (763 m) (sl. 1). Me­ritve te samodejne merilne postaje kažejo tri zelo mocne nalive. V prvih dveh med 19.30 in 21.00 je skupaj v dveh urah padlo 54 mm dežja, v tretjem med 23. in 24. uro, pa je v eni uri padlo 35,7 mm dežja. V tem casu je skupaj v samo petih urah padlo kar 103,4 mm dežja (ARSO, 2018c). Ugoto­vimo lahko, da je bil prav ta, zelo kratek interval mocnega naliva prvi vzrok za izstopajoci ekstre­mni dogodek. Kolicina 122 mm padavin v 24 urah, kolikor je izmerila samodejna postaja v Jelendolu, je gle­de na dolgoletni niz meritev ena od najvišjih, ni pa rekordna vrednost. Od leta 1961 je bilo tam najvec padavin izmerjenih 18. septembra 2007 – 161,7 mm, 22. avgusta 1969 – 152 mm in 5. sep­tembra 2009 – 137,8 mm (Vertacnik, 2008; ARSO, 2018a). Izracunane povratne dobe za ekstremne nali­ve v obdobju 1977–2012 za sicer višje ležeci ob­mocji Javorniški Rovt (940 m) in Zgornje Jezer­sko (875 m) pokažejo, da se nalivi s 122 mm v 24 urah pojavljajo pogosteje od vsakih 5 let, nalivi s 103,4 mm v petih urah pa s povratno dobo 100 let (ARSO, 2018c). Zgovoren je tudi podatek, da se je kar pet ekstremnih nalivov (2003, 2007, 2009, 2010 in zadnji 2018), ki se uvršcajo med tiste s povratno dobo 50 ali 100 let, zgodilo v zadnjih 16 letih. Hidrološki podatki Še bolj kot padavinski podatki so za primerja­vo obravnavanega dogodka s preteklimi ekstrem­nimi padavinskimi dogodki relevantni podatki o pretoku in vodostaju Tržiške Bistrice. Najvec ško­de je reka z njenimi hudourniškimi pritoki na­redila ob strugi z mocno erozijo ter nanašanjem velikih kolicin grušca/proda in drugega plavja s strmih pobocij v dolino. Tržiška Bistrica ima od izvira do sotocja v Medvodju, kjer vanjo pritekata potoka Stegov­nik in Košutnik, velik strmec, saj se spusti za vec kot 750 m, od tu naprej se ji strmec precej zmanjša in tece po nekoliko širši dolini skozi na­selje Jelendol, skoraj ves cas po triasnih dolomi­tih in lastnih prodnih nanosih. S strmih pobocij se vanjo stekajo številne kratke in strme grape, ki so ob izstopu v glavno dolino nasule manjše vršaje, ter z desne dva vecja pritoka: Zali po­tok in Dolžanka. V naselju Dolina je struga vse strmejša, nato pa se zoži v ozko Dovžanovo sote­sko. Na tem odseku reka precka dober kilometer širok pas zgornjepaleozojskih kamnin (kreme­nov pešcenjak, kremenov konglomerat, plastnati apnenec, trbiška breca), ima zelo velik strmec in se v manjših slapovih preliva prek velikih po­dornih skalnih blokov kremenovega konglome­rata pod Borovo pecjo. Pod Dovžanovo sotesko se dolina razširi v srednjepermskih rdecih klastic­nih kamninah (meljevcu, pešcenjaku in konglo­meratu) in po ozki naplavni ravnici do Cadovelj se tok nekoliko umiri (Mrak, 2003; Novak, 2007). Pretok zgornjega toka Tržiške Bistrice je do leta 1966 merila vodomerna postaja v Jelendo­lu, od takrat deluje samo še vodomerna postaja Preska v Bistrici pri Tržicu, ki pa meri tudi po­datke za oba vecja pritoka Tržiške Bistrice, Lom­šcico in Mošenik (sl. 1). Meritve pretoka Tržiške Bistrice med 29. in 31. oktobrom kažejo, da je bila najnižja (rumena) opozorilna vrednost pretoka (60 m3/s) presežena 29. 10. ob 22.30 uri. Med 23. in 24. uro je pretok presegel še oranžno (90 m3/s) in rdeco (120 m3/s) stopnjo opozorilnih vrednosti in 30. 10. ob 00.35 uri dosegel maksimalno vrednost 195.35 m3/s, kar je vrednost, višja od še ene višine opozorilne stop­nje (sl. 2). Okrog 1 ure zjutraj, 30. 10., se je v Tržicu zato sprožil alarm. Vrednosti pretoka in vodosta­ja sta se potem do 2.30 znižali pod rdeco opozoril­no vrednost in do jutra postopoma upadali. Naj­višja izmerjena vrednost vodostaja je bila 316 cm, dosežena 30. 10. ob 00.35 (ARSO, 2018c). Primerjava hidroloških podatkov s padavin­skimi pokaže, da so viški vodostaja in pretoka zelo hitro (s pribl. 1,5 urnim zamikom) sledili viškom padavin med nalivi. Zaradi ozkega zgor­njega dela porecja in velikih strmin pobocij je odziv recnega pretoka na mocnejše padavine izje­mno hiter, o cemer prica tudi zelo velik specificni odtok (39,3 l/s/km2) in tudi visok odtocni kolic­nik Tržiške Bistrice (63,5 %)(Frantar, 2008). Na hudourniški znacaj Tržiške Bistrice poleg tega kažejo tudi velike razlike med najvecjimi in naj­manjšimi ter povprecnimi pretoki. Na vodomerni postaji v Preski so v obdobju 1958–2016 izmerili najmanjše pretoke ob hudi suši poleti 1993 (14. 7.: 0,731 m3/s), najvecje pretoke pa ob poplavah 18. 9. 2007 (155 m3/s), 28. 8. 1986 (133 m3/s) in 1. 11. 2003 (115 m3/s). Povprecni pretok je 5,06 m³/s (vir: ARSO, 2018b). Na podlagi teh podatkov lahko ugotovimo, da sta bila tako najvišji izmerjeni vodostaj v obrav­navanem dogodku (316 cm) kot najvecji izmerje­ni pretok (195,35 m3/s), rekordna (Novak & Mrak, 2019). Posledice dogodka Ekstremni padavinski dogodek in posledicno silovit porast vodostaja Tržiške Bistrice s pritoki je povzrocil predvsem velike spremembe v strugi in na poplavni ravnici ter škodo na infrastruk­turi. Stranski pritoki so nanašali velike kolicine grušca, proda in lesnega plavja v dolino, kar je povzrocilo prestopanje in spreminjanje struge Tr­žiške Bistrice. Naselje Jelendol je z velikimi kolicinami grušca in proda zasipal stranski hudourniški pritok Dol­žanke. Škodo na bivalnih objektih ter kmetijskih in gozdnih površinah je utrpelo 32 gospodinjstev in privatna ribogojnica. Najvec škode je bilo na infrastrukturi (asfaltna in gozdne ceste, mostovi, zidovi, ograje, kanalizacija) in na vodotokih (jezo­vi, pregrade, obrežja), 187 vašcanov pa je bilo ne­kaj casa odrezanih od sveta (Obcina Tržic, popis škode; Porenta, 2019). Pobocnih masnih premikov je bilo ob tem dogodku malo. Sprožila sta se dva manjša preperinska plazova. Ocena nastale škode presega 15 milijonov evrov, odprava posledic bo terjala vecletno sanacijo (Porenta, 2019). V Dovžanovi soteski je izredno mocan tok Tr­žiške Bistrice spodjedal brežine, kar je povzrocilo unicenje oz. poškodbe treh mostov, usade asfaltne ceste na petih mestih in poškodbe sprehajalnih poti (sl. 3). Posledice ujme niso samo tiste, ki so nastale v casu ujme, ampak ima slednja tudi dol­gotrajnejši vpliv. Primer je velik skalni blok v brežini Tržiške Bistrice pred cestnim predorom, ki se je v prvem tednu maja 2019 na erozijsko na­ceti podlagi spodmaknil in poškodoval cestišce (Porenta, 2019). Zgodovinske vremenske ujme so na tem obmo­cju predvsem zaradi gospodarske dejavnosti vele­posestnika, barona Carla Borna, zelo dobro doku­mentirane. Zanimivo je primerjati opis posledic lanskoletnega dogodka z zgodovinskimi zapisi, ki so si vsi med seboj zelo podobni. Knific (2016) po­roca, da so bile mocnejše povodnji leta 1907, 1922, 1934, 1938, 1940, vse v jesenskih mesecih. V na­daljevnju je odlomek iz opisa najhujše med njimi v casopisu Amerikanski Slovenec, 22. novembra 1938: »Nenavadno hitro je postala struga Tržiški Bistrici pretesna. Po nocnem nalivu je pricela že zjutraj svoje pogubno delo, ki ga nadaljuje od ure do ure. Cesta v Puterhof (op.: danes Jelendol) je na mnogih mestih v velikih dolžinah dobesedno odrezana. Mostove in jezove je voda gladko od­nesla. Po vodi se valijo velike množine lesa. Naj­vecje je razdejanje v Puterhofu, kjer se ob žagah barona Borna nabirajo ogromne množine hlodov, tramov in desk. Vsa ta zaloga lesa unicuje ceste in naprave. Voda si je marsikje izbrala popolnoma novo strugo. Veliko škodo bo trpel Born, pa tudi številni delavci in vozniki, ki ne bodo našli prej zaslužka, dokler ne bodo naprave in ceste zopet urejene. Bistrica odnaša tudi mostove, ki vodijo do raztresenih kmeckih domov v Dolini, in uni­cuje jezove kmeckih žag...« (Amerikanski Slove­nec 1938, št. 241) (iz: Knific, 2016). Spremembe recne struge Za spremljanje sprememb okolja po izrednih vremenskih dogodkih je obmocje Dovžanove so­teske še posebej zanimivo, saj ni veliko obmo­cij, ki bi bila tako redno foto-dokumentirana. V Dovžanovi soteski so najlepši motivi, npr. slapišce in najožji del ob cestnem predoru, zelo pogosto fotografirani tako rekoc z istih stojišc. To omo­goca natancno analizo sprememb struge Tržiške Bistrice, predvsem premike velikih blokov kre­menovega konglomerata na obmocju slapišca pod zaselkom Na Jamah in dolvodno v strugi Tržiške Bistrice proti naselju Cadovlje pri Tržicu. Pri pro­storninski masi kremenovega konglomerata ok­rog 2700 kg/m3 najvecji bloki presegajo težo 3 ton, težo povprecno velikih blokov pa lahko ocenimo na 2 toni. Na zaporednih fotografijah so oznacene spremembe v razlicnih delih struge v Dovžano­vi soteski od zgoraj navzdol. Z rumeno barvo so oznaceni skalni bloki, ki jih na naslednjem po­snetku ni vec, z rdeco pa tisti, ki jih na prejšnjem posnetku še ni bilo oz. so bili v zelo drugacni legi (sl. 4–8). Iz slik je razvidno, da je lanskoletni dogodek v vecjem delu struge povzrocil velike spremembe. Struga je predvsem nad slapišcem in med predo­roma zelo spremenjena, medtem ko je najožji del soteske ostaja nespremenjen. Najvecje spremem­be so tam, kjer je energija recnega toka najmanj­ša, torej tam, kjer je struga najširša in/ali ima najmanjši strmec. V delih z najvišjo energijo toka (velik strmec in/ali ozka struga) reka sediment hitro odnese in sproti prazni recno korito. Metoda primerjave ortofoto posnetkov razlic­nih datumov za spremljanje sprememb drugih delov površja, predvsem pobocij, ima v Dovžano­vi soteski zelo omejeno uporabno vrednost. Raz­log je v mocni porašcenosti pobocij z gozdom in zelo redkih posnetkih v zimskih obdobjih. Na teh se pokažejo samo manjše spremembe v grapah hudourniških pritokov. Diskusija Vzroki za veliko gmotno škodo Porecje Tržiške Bistrice je obmocje velike reli­efne energije, velike energije površinskih (hudo­urniških) voda in pobocnih procesov. Pomemben dejavnik je tudi tektonska energija, saj se obmo­cje nahaja v aktivni transpresivni coni Periadri­atskega prelomnega sistema (Jamšek Rupnik et al., 2012), kjer so kamnine posledicno mocno tek­tonizirane, razpokane in prelomljene. Vsako viso­koenergijsko okolje je podvrženo relativno hitrim spremembam oz. naravnim procesom, ki jih samo prisotnost cloveka prevrednoti v naravne kata­strofe z gmotno škodo. Prevladujoci naravni vzrok za gmotno škodo, ki je posledica opisanih geološko-geomorfolo­ških lastnosti, je neustrezna podlaga za gradnjo in temeljenje infrastrukturnih objektov. Na sliki 3B–D je vidno, da podlago poškodovane infra­strukture povsod v celoti gradijo nesprijet poboc­ni grušc in recne naplavine Tržiške Bistrice. Tako podlago hudourniški tok odnaša in spodjeda te­melje objektov, ki jih v tej ozki dolini ni mogoce umestiti drugam, kot tik ob strugo. Veliko neposrednih vzrokov za povzroceno škodo lahko pripišemo antropogenim dejavnikom. Med najbolj ocitnimi je neprimerno gospodarjenje z gozdom, kar pomeni ne-sonaravno izrabo gozda z goloseki, neurejen gozd po poseku (velike kolicine ostankov vejevja in drugih lesnih ostankov), prav tako pa tudi gradnja številnih gozdnih cest in vlak v preteklih letih, ki so mocno pospeševali erozijo strmih pobocij. Velike kolicine erodiranega kamninskega gradiva so vodotoki ob tem dogodku naplavili v dolino, plavje (predvsem hlodovina) pa je pripomoglo k spremembam recne struge (sl. 3E, F ). Dojemanje naravnih nesrec in varovanje pred njimi Prebivalci naselja Dolina v Dovžanovi so­teski so zelo dobra potrditev rezultatov mnogih socioloških raziskav o clovekovem dojemanju in zgodovinskem spominu naravnih nesrec. Polic in sodelavci (1995) npr. porocajo, da se vcasih prebi­valci krajev, kjer so naravne nesrece pogoste, nic bolj ne brigajo za nevarnost, kot tisti iz varnej­ših obmocij. Skoraj neverjetne se zdijo ugotovitve anket, da kmetovalci razmeroma tocno ocenjujejo nevarnost poplav, kadar so te pogoste (enkrat na leto ali dve), ce pa se te pojavljajo “samo” na šest let, nevarnost poplav zanje skoraj ali sploh ni bila pomembna (Whyte, 1986; Polic et al., 1995). Ozka soteska z zelo strmimi pobocji, ki plazi­jo ali pa se lomijo in rušijo, in z edino prevozno povezavo s svetom skozi ozek prehod, skozi ka­terega tece hudourniška reka in nad katerim se dvigajo navpicne razpokane skalne stene, ni var­no obmocje za poselitev. O tem pricajo tudi karte erozijske in poplavne nevarnosti obcine Tržic za to obmocje (Natek et al., 2010) (sl. 9). Na vrtovih hiš v zaselku Na Jamah v osrcju Dovžanove soteske so podorni bloki kremenovega konglomerata z Borove peci nad zaselkom. Neka­teri bloki presegajo premer 10 m (sl. 10). Za dva, ki ležita na vrtu Bencetove domacije (Dolina 1), celo vedo, da sta tja priletela leta 1944 (Koder, 2014), pri cemer je eden od njiju unicil gospodarski del hiše, ki je nekoc stala pred Bencetovo, a vendar se ljudje v dveh domacij ne cutijo zelo ogroženi pred novimi skalnimi podori iz mocno razpokane skalne pecine. Poleg skalnih podorov z Borove peci je na ob­mocju Dovžanove soteske nevarno tudi obsežno obmocje aktivnih masnih premikov pod Kušpe­garjevo domacijo na vzhodnem pobocju Dovža­nove soteske (Natek et al., 2010; Mrak et al., 2012)(sl. 11). V tem, t. i. Kušpegarjevem plazu, po za vodo slabo prepustni podlagi zdrobljenih zgor­njekarbonskih skrilavih glinavcev in meljev­cev drsi kamninski drobir in veliki skalni bloki kremenovega konglomerata in pešcenjaka ter apnenca. Na tem kompleksnem plazu deluje vec tipov pobocnih premikanj od manjših zemeljskih plazov preperinskega pokrova do drobirskih in blatnih tokov v grapah ter pocasnega lezenja tal na položnejšem pobocju v zgornjem delu plazu. Po sestavi, mehanizmih transporta in sedimen­tacijskih procesih je Kušpegarjev plaz najbolj podoben plazovoma Cikla in Urbas, ki lahko kot aktivni drobirski tok ogrozita naselje Koroška Bela (Jemec Auflic et al., 2018; Peternel et al., 2018). Podobne kompleksne plazove najdemo tako v recentnih, kot tudi fosilnih plazovih v številnih predelih Slovenije. Tak primer je plaz Stogovce, ki je odložen na flišni podlagi, njegove drsne last­nosti materiala, naklon pobocja in hidrografsko zaledje pa kažejo, da se plaz lahko preobliku­je v hiter drobirski tok (Petkovšek et al., 2011). Kompleksni fosilni plazovi, ki so se iz translacij­sko-rotacijskih plazov preoblikovali v drobirske tokove, so znani tudi iz geološke preteklosti. V Vipavski dolini številna kvartarna sedimentna telesa in njihovi geomorfološki elementi kažejo lastnosti drobirskih in blatno-drobirskih tokov (Popit et al., 2013, 2014; Verbovšek et al., 2017; Popit, 2017). Celotna prostornina pocasi plazecega telesa Kušpegarjevega plazu grozi, da se ob mocnem deževju v obliki drobirskega toka sproži v doli­no in strugo Tržiške Bistrice ter povzroci veliko škodo na širšem obmocju. Ob oktobrski ujmi je hudourniški potok iz glavne grape, v katerem se material akumulira, nanesel samo grušc, z njim zamašil odtocni jašek in ga raznesel po cesti (sl. 3E). Kljub opozorilom strokovnjakov in jasnim znakom nevarnosti v obliki poškodb na stari Kušpegarjevi hiši in manjšim premikom znotraj plazovitega telesa v preteklosti (Ocepek, 2005), na tem plazu ne izvajajo nobenih preventivnih ukrepov. Pri tem je zanimivo, da namenjajo veliko po­zornosti in sredstev zmanjševanju nevarnosti padanja kamenja na manj nevarnih odsekih. Z zašcitnimi in lovilnimi mrežami so ograjene tako rekoc vse skalne stene in grape ob in nad glavno cesto ter sprehajalnimi potmi (sl. 12). Naštetim naravnim nevarnostim je nemogoce kljubovati in nemogoce je prepreciti zelo podob­ne posledice ob naslednjem ekstremnem vremen­skem dogodku, saj je jasno, da celo opisanih an­tropogenih vzrokov za nastalo škodo ni mogoce odpraviti, ker domacini ne morejo opustiti gospo­darjenja z gozdom in drugih dejavnosti. Nujno pa je premišljeno upravljanje z naravnimi viri, pred­vsem z gozdom, kar lahko bistveno pripomore k zmanjševanju gmotne škode na infrastrukturi (Horvat, 1995; Komac & Zorn, 2007; Fidej et al., 2018). Ugotovitvi, da se je kar pet ekstremnih na­livov (2003, 2007, 2009, 2010 in zadnji 2018), ki se uvršcajo med tiste s povratno dobo 50 ali 100 let, zgodilo v zadnjih 16 letih, in da so opisi nasta­le gmotne škode ter njenega odpravljanja v vseh primerih zelo podobni, kažeta na to, da bo treba v strategijah prilagajanja na podnebne spremem­be upoštevati zgodovinske in novejše podatke, jih med seboj primerjati in odpraviti ponavljanje enakih odzivov nanje. Varovanje cloveka in naravnega okolja v naravnih spomenikih Pri obravnavanju opisane problematike se ni mogoce izogniti problematiziranju antropogenih vplivov na obmocju Dovžanove soteske. Ta je na­mrec od leta 1988 razglašena za naravni spome­nik tako zaradi izjemnih geoloških in geomorfo­loških razmer, ki so posebne tako v Sloveniji, kot tudi na svetovni ravni. V odredbah o varovanih obmocjih je za naravne spomenike vzpostavljen poseben varstveni status z namenom ohranitve obmocja v obstojecem naravnem stanju oziroma dopustitve odvijanja naravnih procesov (Vidic, 2007). Naravni gravitacijski pobocni procesi in vo­dotoki najbolj intenzivno oblikujejo površje v Dovžanovi soteski, kjer se izmenjujejo klasticne sedimentne kamnine s karbonatnimi in plastnate z masivnimi, zaradi cesar je odvisnost površin­skih oblik od litološke sestave in geoloških struk­tur še posebej lepo izražena (Novak & Mrak, 2013). V poseljenih naravnih spomenikih in ti­stih, skozi katere vodijo prometne povezave ali druga infrastruktura, kot je to v Dovžanovi so­teski, v te procese kot sestavni del okolja posega tudi clovek. Vecina cloveških posegov te procese pospešuje. Po ekstremnih vremenskih dogodkih so velike spremembe opazne strokovni javnosti, prebivalcem in obiskovalcem. Prav te spremem­be so lahko dober pokazatelj vzrokov in posledic nepremišljenih clovekovih posegov v okolje. Pri tem postaja Dovžanova soteska zelo dober štu­dijski in ucni poligon za proucevanje odnosa med naravnim okoljem in clovekovimi posegi in pri­lagoditvami ter kljubovanji takemu, za poselitev marsikje neprimernemu okolju. Žal pa je zaradi antropogenih posegov zelo ogrožen njen status naravnega spomenika. Poseg v naravo je opredeljen kot poseg v okolje po predpisih o varstvu okolja (ARSO, 2017). Za­kon o varstvu okolja opredeljuje poseg v okolje kot vsako trajno ali zacasno clovekovo dejanje ali opustitev ravnanja, ki s svojim vplivom lah­ko ogrozi ali ogroža zdravje ali okolje in ima za posledico njegovo umetno spremembo, obreme­nitev ali zaviranje njegovih naravnih sprememb, nanaša pa se zlasti na izkorišcanje in uporabo naravnih dobrin, posege v prostor, proizvodne in druge dejavnosti, promet in porabo blaga in emisije v vodo, zrak ali tla, odlaganje in kopicen­je odpadkov ter druge vplive na okolje (ARSO, 2017). Za naravne vrednote se šteje, da so unice­ne, ce prenehajo fizicno obstajati ali ne izkazujejo vec vrednostnih lastnosti, zaradi katerih so bili ti deli doloceni za naravno vrednoto. Razlog za unicenje je lahko poseg, dejavnost ali ravnanje cloveka ali naravni proces. Ce so naravne vred­note delno fizicno unicene oz. so delno prizadete njihove vrednostne lastnosti, se šteje, da so po­škodovane (Vidic, 2007; ARSO, 2017). Vprašanje je, ali je obmocje Naravnega spome­nika Dovžanova soteska sploh še upraviceno do svojega statusa kategorije IUCN III (IUCN, 2019), saj clovek z gospodarsko dejavnostjo, še bolj pa z zašcitnimi ukrepi (npr. postavitvijo mrež za pa­dajoce kamenje) v njem ruši ravnovesje med an­tropogenimi vplivi in ohranjanjem zavarovanih naravnih vrednot ter procesov. Da se tega dob­ro zavedajo tudi domacini, je pokazala anketa. Vecina anketirancev (74 %), se je strinjala, da je dejavnosti v Dovžanovi soteski potrebno razvi­jati do razumne meje, ki ne škodi naravi. 78 % anketirancev je ponosnih, da živijo v Dovžanovi soteski oziroma v njeni neposredni bližini, 63 % pa življenje na zavarovanem obmocju razume kot priložnost in ne oviro (Kuralt, 2012). Ob tem avtorja pozivava k bolj premišljenemu in bolje nacrtovanemu sonaravnemu gospodar­jenju z gozdovi, ki imajo velik varovalni ucinek (Firm & Rugani, 2013; Fidej et al., 2018), urejan­jem hudournikov ter prostorskemu nacrtovanju na obmocju porecja Tržiške Bistrice in še posebej na obmocju Naravnega spomenika Dovžanova soteska, ki mu sicer po navedenih opredelitvah grozita trajno poškodovanje in unicenje. Vsi po­segi v varovana obmocja se morajo nacrtovati in izvajati tako, da ne okrnijo narave do mere poru­šitve ravnotežja med naravnimi procesi in antro­pogenimi vplivi. Zahvala Avtorja sva za natancen pregled, kriticne pripom­be in predloge, ki so nama pomagale izboljšati prispe­vek hvaležna anonimnima recenzentoma. Del razi­skav je sofinancirala Javna agencija za raziskovalno dejavnost RS v okviru Raziskovalnega programa P1-0011 Regionalna geologija, ki se izvaja na Geološkem zavodu Slovenije. Literatura ARSO, 2017: Zavarovana obmocja v Sloveniji. (http://www.arso.gov.si/narava/zavarovana%20obmo%C4%8Dja/) ARSO, 2018a: Obilne padavine in mocan veter od 27. do 30. oktobra 2018 (http://meteo.arso.gov.si/met/sl/climate/natural-hazards). ARSO, 2018b: Visoke vode in poplave rek med 27. in 31. oktobrom 2018, (http://www.arso.gov.si/vode/porocila%20in%20publikacije). ARSO, 2018c: Arhiv opazovanih in merjenih me­teoroloških podatkov po Sloveniji (http://me­teo.arso.gov.si/met/sl/archive). Fidej, G., Mikoš, M., Jež, J., Kumelj, Š. & Diaci, J. 2018: Presoja varovalnega ucinka gozda pred drobirskimi tokovi = Assessment of fo­rest protective function against debris-flows. Gozdarski vestnik: Slovenska strokovna re­vija za gozdarstvo, 76/4: 167–180. Firm, D. & Rugani, T. 2013: Varovalni gozdovi in naravne nevarnosti v Sloveniji. Proteus, 75/9-10, 404–416. Frantar, P. (ur.) 2008: Vodna bilanca Slovenije 1971-2000 = Water balance of Slovenia 1971-2000. Ministrstvo za okolje in prostor, ARSO, Ljubljana: 119 str. Geološki zavod Slovenije, ekipa MASPREM, 29.10.2018: ALADIN sprožilne kolicine 1, po­vecana nevarnost plazov za datum 29.10.2018 (popoldanski izracun). Horvat, A. 1995: Urejanje hudourniških in erozij­skih obmocij. Ujma, 9: 243–248. IUCN, 2019: https://www.iucn.org/theme/ protected-areas/about/protected-area- categories. Jamšek Rupnik, P., Benedetti, L., Bavec, M. & Vrabec, M. 2012: Geomorfni indikatorji kvartarne aktivnosti Savskega preloma med Golnikom in Preddvorom = Geomorphic in­dicators of Quarternary activity of the Sava fault between Golnik and Preddvor. RMZ-mater. geoenviron., 59/2-3: 299–314. Jemec Auflic, M., Kumelj, Š., Peternel, T. & Jež, J. 2018: Understanding of landslide risk through learning by doing: case study of Koroška Bela community, Slovenia. Landslides: Journal of the international consortium on landslides, 10 p. Knific, B. 2016: Bornovi v Tržicu: pricevanja o življenju tržiških baronov. Založba Narava, Kranj: 409 p. Koder, J. 2014: O Dolini in Dolincih: pripovedi Zdravka Dovžana in drugih Dolincev o lju­deh in življenju, ki izginja. Ljudska univerza Tržic: 155 p. Komac, B. & Zorn, M. 2007: Pobocni procesi in clovek. Geografija Slovenije 15, Geografski inštitut Antona Melika, ZRC SAZU. Kuralt, S. 2012: Vrednotenje naravne dedišcine svetovnega pomena na primeru Dovžanove so­teske. Magistrsko delo. Univerza v Ljubljani, Biotehniška fakulteta. Mrak, I. 2003: Sledovi pleistocenske morfogeneze v porecju Tržiške Bistrice. Magistrsko delo. Oddelek za geografijo, Filozofska fakulteta, Univerza v Ljubljani, Ljubljana: 113 p. Mrak, I., Natek, K., Repe, B., Stepišnik, U. & Novak, M. 2012: Kataster zemeljskih plazov, hudournikov in snežnih plazov v obcini Tržic: elaborat. Oddelek za geografijo Filozofske fa­kultete Univerze v Ljubljani: 298 p. Natek, K., Krevs, M., Lampic, B., Mrak,.I, Ogrin, D., Repe, B. & Stepišnik, U. 2010: Karte ero­zijske in poplavne nevarnosti, plazljivosti in nevarnosti snežnih plazov za obmocje ob­cine Tržic: elaborat. Oddelek za geografijo Filozofske fakultete Univerze v Ljubljani: 97 p. Novak, M. 2007: Biostratigrafija mlajšega pa­leozoika Dovžanove soteske. Doktorska di­sertacija. Naravoslovnotehniška fakulteta, Univerza v Ljubljana: 159 p. Novak, M. & Mrak, I. 2013: Naravni spomenik Dovžanova soteska: geologija in površje. Obcina Tržic: 37 p. Novak, M. & Mrak, I. 2019: Ujma v porecju Tržiške Bistrice 29. 10. 2018: dogodek, posle­dice in vzroki. Ujma, št. 33 (sprejeto v tisk). Ocepek, D. 2005: Geološko-geotehnicno mnenje o potrebnih ukrepih in možnosti sanacije pla­zov na obmocju obcine Tržic. Geoinženiring d.o.o., Ljubljana: 5 p. Peternel, T., Jež, J., Milanic, B., Markelj, A. & Jemec Auflic, M. 2018: Engineering-geological conditions of landslides abo­ve the settlement of Koroška Bela (NW Slovenia) = Inženirskogeološke znacilnosti plazov v zaledju naselja Koroška Bela (SZ Slovenija). Geologija, 61/2: 177–189. https://doi.org/10.5474/geologija.2018.012 Petkovšek, A., Fazarinc, R., Kocevar, M., Macek, M., Majes, B. & Mikoš, M. 2011: The Stogovce landslide in SW Slovenia triggered during the September 2010 extreme rainfall event. Landslides: Journal of the international con­sortium on landslides, 8/4: 499–506. Polic, M., Tušak, M., Zabukovec, V. & Kline, M. 1995: Zaznava ogroženosti zaradi nesrec. Ujma, 9: 166-171. Popit, T., Košir, A. & Šmuc, A. 2013: Sedimentological Characteristics of Quaternary Deposits of the Rebrnice Slope Area (SW Slovenia). V: Knjiga sažetka. 3. znastveni skup Geologija kvartara u Hrvatskoj s medunarodnim sudjelovanjem, Zagreb, 21st-23rd March 2013. Popit, T., Rožic, B., Kokalj, Ž., Šmuc, A., Verbovšek, T. & Košir, A. 2014: A LIDAR, GIS and basic spatial statistic application for the study of ravine and palaeo-ravine evolu­tion in the upper Vipava valley, SW Slovenia. Geomorphology, 204: 638–645. Popit, T. 2017: Origin of planation surfaces in the hinterland of Šumljak sedimentary bodies in Rebrnice (upper Vipava valley, SW Slovenia) = Nastanek reliefnih izravnav v zaledju sedi­mentnih teles Šumljak na Rebrnicah (zgorn­ja Vipavska dolina, SW Slovenija). Geologija, 60/2: 297–307. https://doi.org/10.5474/geologija.2017.021 Porenta, J. 2019: Ujma unicevala ceste, a poveza­la krajane. Jelendol pol leta pozneje. Delo, 9. maj 2019, str. 1, 5. Verbovšek, T., Košir, A., Teran, M., Zajc, M. & Popit, T. 2017: Volume determination of the Selo landslide complex (SW Slovenia) : in­tegrating field mapping, ground penetra­ting radar and GIS approaches. Landslides: Journal of the international consortium on landslides, 14/3: 1265–1274. https://doi.org/10.1007/s10346-017-0815-x Vertacnik, G. 2008: Klimatološki opis izjemnega padavinskega dogodka 18. septembra 2007. Ujma, 22: 58–64. Uprava RS za zašcito in re­ševanje, Ljubljana. Vidic, P. (ur.). 2007: Sistem varstva narave v Sloveniji. Ministrstvo za okolje in prostor RS: 128 p. Whyte, A.V.T. 1986: From Hazard Perception to Human Ecology. In: Kates R.W. & Burton I. (eds.): Themes from the work of Gilbert F. White, volume 2: Geography, resources, and environment. University of Chicago Press, Chicago: 240–271. 124 Matevž NOVAK & Irena MRAK 125 Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska Sl. 1. Osrednji del porecja Tržiške Bistrice z mestoma padavinske postaje Jelendol (zgoraj) in vodomerne postaje Preska v Bistrici pri Tržicu (spodaj) (po podatkih ARSO; podlaga: Geopedija). Fig. 1. The central part of the Tržiška Bistrica river basin with locations of the Jelendol weather station (above) and the water gauging station Preska in Bistrica pri Tržicu (below) (according to the ARSO; base map: Geopedija). 126 Matevž NOVAK & Irena MRAK Sl. 2. Pretok in vodostaj Tržiške Bistrice v Preski med 29. in 31. 10. 2018 z opo­zorilnimi vrednostmi preto­ka (vir: ARSO, 2018c). Fig. 2. Tržiška Bistrica ri­ver flow and water level at Preska between 29 and 31 October 2018 with warning values of water level (source: ARSO, 2018c). 127 Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska Sl. 3. Posledice ujme v Dovžanovi soteski: A) poplavljena ravnica v Cadovljah; B) erodiran desni breg Tržiške Bistrice in poškodbe sprehajalne poti pri Cadovljah; C) erodiran desni breg in podrt most pred vhodom v Dovžanovo sotesko; D) udori ceste na erodirani brežini; E) kamninski drobir s Kušpegarjevega plazu; F) lesno plavje na cesti v Dolini (D, E: foto Primož Štamcar, GRS Tržic). Fig. 3. The consequences of the extreme weather event in Dovžan Gorge: A) a flooded plain in Cadovlje; B) eroded right bank of Tržiška Bistrica and damaged walking path near Cadovlje; C) eroded right bank and damaged bridge in front of the entrance to the Dovžan Gorge; D) Damages on the road on the eroded bank; E) rock debris from the Kušpegar landslide; F) floating wood on the road in Dolina (D, E: photo Primož Štamcar, GRS Tržic). 128 Matevž NOVAK & Irena MRAK Sl. 4. Struga Tržiške Bistrice nad slapišcem. A) maj 2012; B) november 2018. Fig. 4. Tržiška Bistrica riverbed above the waterfall. A) May 2012; B) November 2018. Sl. 5. Slapišce z mostu. A) okrog leta 1910 (iz arhiva Tržiškega muzeja); B) julij 2009; C) april 2016; D) november 2018. Fig. 5. Cascading waterfall from the bridge. A) around 1910 (from the archives of the Tržic Museum); B) July 2009; C) April 2016; D) November 2018. 129 Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska Sl. 6. Struga Tržiške Bistrice pod slapišcem. A) april 2014; B) november 2018. Fig. 6. Tržiška Bistrica riverbed below the waterfall. A) April 2014; B) November 2018. Sl. 7. Struga med cestnim predorom in malim predorom na desni strani struge (A in B – pogled s severa; C in D – pogled z juga). A) april 2014; B) november 2018; C) oktober 2008; D) november 2018. Fig. 7. Riverbed between the road tunnel and the small tunnel on the right side of the riverbed (A and B – north view, C and D – view from the south). A) April 2014; B) November 2018; C) October 2008; D) November 2018. 130 Matevž NOVAK & Irena MRAK Sl. 8. Najožji del soteske. A) leta 1918; B) april 1982 (foto Stanko Buser); C) november 2008; D) november 2018. Fig. 8. The narrowest part of the gorge. A) in 1918; B) April 1982 (photo by Stanko Buser); C) November 2008; D) November 2018. 131 Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska Sl. 9. Izsek karte erozijske nevarnosti za obravnavano obmocje (vir: Natek et al., 2010). Fig. 9. A section of the erosion hazard map for the area under consideration (source: Natek et al., 2010). Sl. 10. Podorni bloki kremenovega konglomerata pred Bencetovo domacijo Na Jamah. Fig. 10. Rockfall blocks of quartz conglomerate in front of the Bence’s homestead at Na Jamah. 132 Matevž NOVAK & Irena MRAK Sl. 11. Obmocje plazen­ja Kušpegarjevega plazu v Dolini (vir: Mrak et al., 2012). Fig. 11. The area of the Kušpegar landslide at Dolina (source: Mrak et al., 2012). 133 Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska Sl. 12. Zašcitne mreže, velike lovilne konstrukcije in visoke zašcitne ograje v najlepših delih soteske. (A: foto Tadeja Šubic, ZRSVN). Fig. 12. Protective wire meshes, large catching structures and high protective fences in the most beautiful parts of the gorge. (A: photo Tadeja Šubic, ZRSVN). 134 Matevž NOVAK & Irena MRAK 135 Pogledi na posledice ekstremnega vremenskega dogodka v Naravnem spomeniku Dovžanova soteska GEOLOGIJA 62/1, 136-137, Ljubljana 2019 Nove knjige Tea KOLAR-JURKOVŠEK & Bogdan JURKOVŠEK, 2019: Konodonti Slovenije. Geološki zavod Slovenije, Ljubljana, 259 str. (Conodonts of Slovenia. Geological Survey of Slovenia, Ljubljana, 259 p.) Sredi pomladi leta 2019 je luc sveta ugledala zelo pomembna težko pricakovana znanstvena monografija z naslovom Konodonti Slovenije av­torjev Tee Kolar-Jurkovšek in Bogdana Jurkov­ška. Knjiga, ki sta jo oblikovala z vso skrbnostjo in strokovnostjo, predstavlja vrhunec njunega vec deset let dolgega raziskovalnega dela. V njej se zrcali tisoce ur terenskega in laboratorijskega dela, izjemno poznavanje konodontov in geologi­je Slovenije ter nenazadnje tudi pritajen obcutek, ki pride z desetletji izkušenj. Monografija je pos­vecena pregledu dosedanjih raziskav konodontov na obmocju Slovenije in njihovi stratigrafski upo­rabnosti. Ceprav so vkljuceni tudi rezultati dru­gih raziskovalcev, glavnino raziskav predstavlja­jo podatki, ki sta jih tekom vec desetletij zbirala avtorja sama. Na zacetku avtorja na kratko predstavita ko­nodonte, njihov razvoj od kambrija do konca tri­asa in njihov pomen v geologiji. Sledi poglavje, ki je v celoti posveceno pregledu pomembnejših pa­leogeografskih, klimatskih in evolucijskih dogod­kov v paleozoiku in triasu. Za vsako od period je podana še biostratigrafska vrednost konodontov. Sledi pregled rezultatov konodontnih raziskav, ki so bile opravljene na ozemlju Slovenije med leti 1968 in 2018. Vecinoma gre za izvirne raziskave avtorjev knjige, vkljucene pa so tudi dolocitve Antona Ramovša in Katerine Krivic. Konodontne združbe so naštete po starosti formacij, v kate­rih so bile najdene, nahajališca pa razporejene po strukturnih enotah, kar bralcu olajšuje nadaljnje iskanje informacij. Za lažjo predstavo o geograf­ski in sedanji strukturni legi so vsa navedena na­hajališca prikazana tudi na preglednih zemljevi­dih. Posebna pozornost je posvecena raziskavam permsko-triasne meje v Sloveniji, ki naravoslovce zanima predvsem zaradi množicnega izumrtja v tistem obdobju. Avtorja sta se odlocila obdržati iz­virne dolocitve, zato je pomembno, da so primerki prikazani tudi na tablah. V zadnjem poglavju so nanizane in podrobneje opisane konodontne bio­cone za obdobje triasa, ki so bile vzpostavljene na podlagi dolgoletnih izkušenj avtorjev. Na splošno velja, da je paleobiogeografska razširjenost kono­dontnih vrst razmeroma slabo poznana, zato pri stratigrafskih razponih nekaterih vrst konodon­tov v globalnem, vcasih tudi že v širšem regional­nem merilu, prihaja do znatnih razlik. Vpeljava in izpopolnitev konodontne conacije, ki temelji na raziskavah »domacih« geoloških profilov, je zato izjemno pomembna. Knjiga je opremljena z nazornimi risbami, ki prispevajo k lažjemu razumevanju besedila, ter številnimi fotografijami izdankov. Priznana aka­demska slikarka Barbara Jurkovšek je pripravila izvirni rekonstrukciji morskega dna iz casa mlaj­šega perma in mlajšega triasa. Za specialiste naj­pomembnejši del predstavlja 44 tabel z izborom posnetkov devonskih, karbonskih, permskih in triasnih konodontov, najdenih na obmocju Slove­nije. Vecino prikazanih primerkov sta pridobila avtorja sama. Besedilo je napisano v slovenskem in angleškem jeziku, zato je knjiga zanimiva tudi za bralce izven meja Slovenije. Besedišce je strokovno, a avtorja ne pretiravata z izrazi, ki se uporabljajo pri taksonomskih opisih. Med litera­turnimi viri najdemo najnovejše objave, saj sta avtorja brez prekinitve aktivno udeležena pri ra­zvoju njunega strokovnega podrocja tudi v sve­tovnem merilu. Predstavitev lahko sklenem z mislijo, da je knjiga Konodonti Slovenije namenjena širokemu krogu strokovnjakov, deloma pa tudi ljubiteljem geologije. Nedvomno sodi na polico stratigrafa, regionalnega geologa in paleontologa. Marsikate­ri študent in ljubitelj geologije bo uporabno vred­nost našel v omenjenem pregledu razvoja biosfere in geosfere. Najbolj pa bodo delo cenili sedanji in bodoci raziskovalci konodontov. V našem pro­storu je pricujoca monografija temelj, na katerem bodo grajene morebitne prihodnje konodontne raziskave, medtem ko za konodontne specialiste v tujini knjiga predstavlja pomemben katalog vrst te davno izumrle skupine. Luka Gale 137 GEOLOGIJA 62/1, 138-145, Ljubljana 2019 Poro~ila Porocilo Slovenskega geološkega društva za leto 2018 Branka BRACIC ŽELEZNIK1 & Matevž NOVAK2 1JP VOKA SNAGA d.o.o., Vodovodna cesta 90, SI-1000 Ljubljana; e-mail: branka.bracic.zeleznik@vokasnaga.si 2Geološki zavod Slovenije, Dimiceva ul. 14, SI–1000 Ljubljana; e-mail: matevz.novak@geo-zs.si Slovensko geološko društvo (SGD) s sedežem na Dimiceva ul. 14 v Ljubljani je strokovno zdru­ženje slovenskih geologov. Društvo je bilo usta­novljeno leta 1951 in povezuje raziskovalce, uci­telje, druge poklicne geologe in ljubitelje stroke. Cilj SGD s statusom društva, ki deluje v javnem interesu, je napredek znanosti in prakse na po­drocju vseh vej geologije. Društvo organizira javna predavanja, stro­kovne ekskurzije, razstave, znanstvene sestanke in delavnice, skrbi za popularizacijo geologije in za vkljucevanje geoloških ved v osnovnošolske in srednješolske ucne programe, sodeluje pri priza­devanjih za varstvo okolja in pri izdelavi zakon­skih aktov in normativov s podrocja geologije. Skozi vsa leta društvo deluje v skladu z dolo­cili statuta in s programom dela, ki je sprejet na sejah IO društva v vsakem koledarskem letu. Na rednem obcnem zboru SGD, 4. oktobra 2018 v Velenju, je bila sprejeta razrešnica doteda­njim organom društva. Ker ni nihce vložil kandi­dature za novo sestavo društvenih organov, so bili ti izvoljeni na izredni volilni skupšcini SGD, 10. januarja 2019 v Ljubljani. Novi organi društva so: B. Bracic Železnik (predsednica), M. Novak (pod­predsednik), N. Rman (tajnica), A. Torkar (blagaj­nicarka), R. Brajkovic (clan IO), M. Križnar (clan IO), L. Gale (clan IO) in U. Pavlic (clanica IO). V okviru društva delujejo naslednje sekcije: Sekci­ja za sedimentarno geologijo (predsednik A. Ko­šir), Sekcija za geokemijo (predsednica M. Gosar), Sekcija za mineralogijo (predsednik M. Jeršek) in Sekcija za geološko dedišcino (predsednica M. Stupar). Na obcnem zboru v Velenju so bile for­mirane še: Sekcija za promocijo geološke znanosti (predsednica P. Žvab Rožic), Terminološka komi­sija (vodstvo izbere na prvem sestanku) in Strati­grafska komisija (predsednik B. Rožic). Najave in porocila o društvenih aktivnostih redno objavljamo na spletni strani www.geo­loskodrustvo.si. Strokovna predavanja Bálazs Székely (Univerza Eötvös Loránd v Budimpešti), »Attempts to integrate David with Goliath: lessons learnt on differential uplift in a flatland«, 14. marec 2017 ob 17. uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11. Martin Gaberšek in Klemen Teran (Geološki zavod Slovenije) »Prah – dragocen vir geokemicnih informacij o okolju«, 22. marec 2018 ob 17.30 uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predavalnici P-02. Tina Peternel (Geološki zavod Slovenije) »Spremljanje pobocnih masnih premikov na primeru plazov Urbas in Cikla (SZ Slovenija)« 29. marec 2018 ob 17.30 uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predavalnici P-02. Teja Ceru (Oddelek za geotehnologijo, rudar­stvo in okolje NTF) »Uporaba georadarja pri ge­omorfoloških raziskavah na krasu« 12. april 2018 ob 17. uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predavalnici P-02. Lada Hýlova (Univerza Palacký v Olomoucu, Ceška) »The Petrkovice Member (Ostrava For­mation, Mississippian) of the Upper Silesian Ba­sin (Czech Republic and Poland)« 19. april 2018 ob 17.30 uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predavalnici P-02. Blaž Vicic (Univerza v Trstu, Italija) »Epizodicna aktivnost Idrijskega prelomnega sistema« 24. april 2018 ob 18. uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predaval­nici P-02. Predavanje je bilo izvedeno tudi v okvi­ru seminarja doktorskega študija Grajeno okolje. Daniela Rehákova (Univerza v Bratislavi, Slo­vaška) »Calcareous microplankton in the Upper Jurassic/Lower Cretaceous pelagic sediments of the Western Carpathians – a tool for stratigrap­hical and paleoenvironmental interpretation« 26. april 2018 ob 17.30 uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predavalnici P-02. Predavanji o dveh evropskih projektih, v kate­rih sodeluje Slovensko geološko društvo: Snježana Miletic (Geološki zavod Slovenije) je predstavila projekt INFACT – Prihodnost razi­skovanja mineralnih surovin v Evropi. Timotej Verbovšek (Oddelek za geologijo Naravoslovno­tehniške fakultete) je predstavil projekt UNEX­MIN – Podvodni robot za raziskovanje zalitih ru­dnikov. Predavanji sta bili 15. maja 2018 ob 18. uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predavalnici P-02. Lan Zupancic (študent geologije na NTF) »Geološki potopis s poletne šole o kamninskih plazovih in z njimi povezanih pojavih v Kirgizistanu 2018« 29. november 2018 ob 17. uri v Ljubljani na Oddelku za geologijo NTF, Aškerce­va 12, v predavalnici 210. 5. slovenski geološki kongres Slovensko geološko društvo je z Geološkim za­vodom Slovenije soorganiziralo 5. slovenski geo­loški kongres. Kongres, ki je potekal med 3. in 5. oktobrom 2018 v Velenju, je bil za SGD najvecji in najpomembnejši dogodek leta 2018. Partnerji pri organizaciji so bili Premogovnik Velenje, Fakul­teta za gradbeništvo in geodezijo, Slovensko ru­darsko društvo inženirjev in tehnikov (SRDIT), Društvo slovenski komite mednarodnega združe­nja hidrogeologov (SKIAH) in Mestna obcina Ve­lenje. Kongres je bil ob izmenjavi novih razisko­valnih rezultatov posvecen pomenu geoznanosti za širšo družbo in njen razvoj. Na kongresu je sodelovalo 191 udeležencev iz 18 držav. Predstavili so 169 prispevkov, od tega 112 predavanj in 57 posterjev, ki so pokrivali vsa podrocja temeljne in aplikativne geologije. Štiri plenarna predavanja so povezovala rdeco nit le­tošnjega kongresa, temo »Geologija in družba«. Osrednji dogodek v okviru kongresa je bila okro­gla miza »Ali je Slovenija pripravljena na uporabo geološkega znanja pri svojem razvoju?«. Na njej smo soocili razlicne poglede in izkušnje predstav­nikov geoznanosti in uporabnikov geoloških po­datkov glede vloge in pomena zbiranja, interpre­tiranja in javne dostopnosti geoloških podatkov za razvoj družbe. Kongres so sklenile tri celodnevne kongresne ekskurzije in ena tridnevna pokongresna ekskur­zija. Spremljalo ga je veliko dogodkov v organiza­ciji SGD: Dan geologije z delavnicami, fotograf­ski natecaj in fotografska razstava ter GeoTEK. Vec informacije o kongresu in kongresna gra­diva so na spletni strani www.geo-zs.si/5SGK. Dan geologije Skupina za popularizacijo geologije SGD je v okviru dejavnosti, ki so spremljale 5. slovenski geološki kongres v Velenju izvedla prvi Dan ge­ologije. Geološke delavnice na temo Geologija v vsakdanjem življenju za ucence in dijake osnov­nih in srednjih šol so potekale 2. oktobra 2018 v sodelovanju z Visoko šolo za varstvo okolja v Ve­lenju. Na delavnice se je prijavilo skupaj kar 150 ucencev in dijakov. Nacrtujemo, da bi Dan geo­logije postal tradicionalen dogodek z vkljuceva­njem cim vecjega števila inštitucij. Fotografski natecaj in fotografska razstava SGD je v okviru 5. slovenskega geološkega ko­-ngresa razpisalo nagradni fotografski natecaj Geoznanost za družbo. Na njem je sodelovalo 15 avtorjev, ki so poslali skupaj 41 fotografij. Oce­njevalna komisija je med njimi izbrala 12 fotogra­fij. Zmagovalne fotografije natecaja in fotografije strokovnjakov Geološkega zavoda Slovenije, ki tematsko dopolnjujejo predstavitev razlicnih vej geoznanosti in podrocij njihovih raziskav, so do aprila 2019 razstavljene v velenjski Galeriji na prostem. Strokovna posvetovanja, seminarji in okrogle mize SGD je skupaj z društvom SKIAH organizira­lo delavnico na temo priprave zakonske uredbe na podrocju geologije, ki je potekala 29. maja 2018 v Ljubljani na Oddelku za geologijo NTF, Privoz 11. SGD je skupaj z Oddelkom za geologijo Naravoslovnotehniške fakultete soorganiziralo posvetovanje »Vloga in pomen geologije v formal­nem izobraževanju«, ki je potekalo v okviru tedna Univerze v Ljubljani, 5. decembra 2018 s pricet­kom ob 17. uri. Posvetovanje s štirimi predstavit­vami in diskusijo je bilo na Oddelku za geologijo NTF, Aškerceva 12, v predavalnici 210. SGD je v sodelovanju z Geološkim zavodom Slovenije organiziralo strokovni posvet »Na poti do ureditve pridobivanja, zbiranja, interpretira­nja in dostopnosti geoloških podatkov«. Na posve­tu smo predstavili problematiko v Sloveniji in dve razlicni sodobni ureditvi tega podrocja iz Švice (dr. Oliver Lateltin, direktor Swisstopo, Geolo­škega zavoda Švice) in z Nizozemske (dr. Michi­el van der Meulen, glavni geolog, Geološki zavod Nizozemske), ki bi v zasnovah lahko bila primerni tudi za ureditev tega podrocja v Sloveniji. Posvet je bil 19. decembra 2018 od 10.30 do 12.30 v pre­davalnici Geološkega zavoda Slovenije, Dimiceva ul. 14, Ljubljana. Delovna akcija cišcenja geološkega profila V soboto, 1. decembra 2018 smo izvedli tradi­cionalno delovno akcijo cišcenja zarasti na geo­loških naravnih vrednotah v sodelovanju z Za­vodom RS za varstvo narave (ZRSVN). Akcija je potekala na obmocju Socka – soteska Hudinja. GeoTEK Slovensko geološko društvo je 2. oktobra 2018 organiziralo tretji tradicionalni GeoTEK, tokrat okrog Škalskega jezera v Velenju. Udeležilo se ga je 26 clanov in simpatizerjev. Sodelovanje na domacih dogodkih in druge aktivnosti Z razstavo in delavnico Periadriatski prelo­mnin sistem smo z Oddelkom za geologijo NTF in GeoZS sodelovali na tradicionalnih 46. medn­arodnih dnevih mineralov, fosilov in okolja MIN­FOS v Tržicu, 12. in 13. maja 2018 v Dvorani tržiških olimpijcev. Z delavnico Razsekana Slovenija so clani SGD z GeoZS in Oddelka za geologijo NTF sodelova­li na prireditvi Vrt eksperimentov. Dogodek je organizirala Hiša eksperimentov v okviru 10. Znanstivala, 2. in 3. junija 2018 od 10. do 18. ure na Stritarjevi ulici v Ljubljani Mednarodno delovanje SGD in clanstvo v tujih in domacih zvezah SGD je vclanjeno v tuje zveze: European Fe­deration of Geologists (EFG), International Union for Quaternary Research (INQUA), European As­sociation for the Conservation of the Geological Heritage (ProGeo), European Mineralogical Uni­on (EMU) in International Mineral Association (IMA). Vclanjeni smo tudi v Slovensko inženirsko zvezo (SIZ). Clan SGD Marko Komac je bil novembra 2018 izvoljen za predsednika EFG, 24 naših clanov pa sodeluje v strokovnih svetovalnih telesih EFG. Kot clan Evropskega združenja geologov (Eu­ropean Federation of Geologists – EFG) SGD od leta 2015 sodeluje v evropskih projektih Obzorje 2020 (Horizon 2020). Skupaj z vec drugimi nacio­nalnimi geološkimi društvi sodelujemo kot neod­visni partner preko pogodbe z EFG kot vodilnim projektnim partnerjem. V letu 2018 smo uspešno zakljucili aktivnosti v projektu KINDRA – Zbir­ka znanja za hidrogeološke raziskave (Knowledge Inventory for Hydrogeology Research), nadaljuje pa se sodelovanje v projektih UNEXMIN – Pod­vodni raziskovalec potopljenih rudnikov (An Au­tonomous Underwater Explorer for Flooded Mi­nes) in CHPM 2030 – Soproizvodnja toplotne in elektricne energije ter pridobivanje kovin (Com­bined Heat, Power and Metal extraction from ul­tra-deep ore bodies) ter v projektu INFACT – Ino­vativna, neinvanzivna in popolnoma sprejemljiva tehnologija raziskovanja (Innovative, Non-Inva­sive and Fully Acceptable Exploration Technolo­gies). SGD je tudi clan Slovenske inženirske zveze – SIZ. S tem je izpolnjen pogoj o obveznem clan­stvu SGD v SIZ za pridobitev naziva Evro inženir (EUR ING). V letu 2019 so nacrtovane in delno že izvedene naslednje dejavnosti društva: Strokovna predavanja Matija Križnar (Prirodoslovni muzej) »Pozab­ljeni rajski otoki – geološko naravoslovni sprehod po Makarenskih otokih« 23. marec 2019 ob 17.00 uri v Ljubljani na Geološkem zavodu Sloveni­ja, Dimiceva ulica 14, velika predavalnica v VI. nadst. prof. Alfred Uchman (Institute of Geological Sciencies, Jagiellonian Univerza, Polska) »Deep­-see trace fossils –insight into hidden palaeoenvi­ronment« 28. marec 201 ob 17. uri v Ljubljani na Oddelku za geologijo NTF, Privoz 11, v predaval­nici P-02. Blaž Miklavcic (Oddelek za geologijo NTF) z naslovom »Bo dovolj vode za vse« 18. aprila 2019 ob 17. uri v Ljubljani na Oddelku za geologijo NTF, Aškerceva 12. Polona Kralj (Geološki zavod Ljubljana) in Ta­nja Lukežic (Zavod RS za varstvo narave) z nas­lovom »Vulkanske kamnine Stopnika 24. aprila 2019 ob 17. uri v Ljubljani na Oddelku za geologi­jo NTF, Aškerceva 12. Predavanje Mateje Gosar (Geološki zavod Slo­venije) z naslovom »Tla Slovenije: geokemicno ozadje in zgornja meja naravne variabilnosti za kemicne elemente« 29.maj 2019 ob 17. uri v Lju­bljani na Oddelku za geologijo NTF, Aškerceva 12. V septembru 2019 bo predavanje o prof. Ivanu Rakovcu ob 120 letnici njegovega rojstva. Strokovne ekskurzije V oktobru 2019 je predvidena dvodnevna stro­kovna ekskurzija v Geopark Karavanke pod vod­stvom Darje Komar in Walterja Poltniga. Konec jeseni 2019 je predvidena strokovna pa­leontološka ekskurzija. Strokovna posvetovanja in okrogle mize Slovensko geološko društvo bo v sodelovanju s Slovenskim mednarodnim komitejem za hidro­geologijo (SKIAH) organiziralo l. 2022 6. Slov­enski geološki kongres. V letu 2019 bodo potekale pripravljalne aktivnosti. SGD bo v sodelovanju z Geološkim zavodom Slovenije sodeloval pri izvedbi 7th Symposium on Mezozoic and Cenozoic Decapod Crustaceans, ki bo od 17.6. -21.6.2019 v Ljubljani. SGD bo v sodelovanju z Oddelkom za geologijo, NTF soorganizator 24. posvetovanja slovenskih geologov, ki bo v novembru 2019 v Ljubljani. SGD bo v sodelovanju z Oddelkom za geologi­jo, NTF soorganizator okrogle mize na temo ge­oloških vsebin v formalnem izobraževanju v de­cembru 2019 v Ljubljani. GeoTEK Cetrti tradicionalni GeoTEK Slovensko geolo­ško društvo bo organiziran v oktobru 2019. Trasa GeoTEKA, bo na Sitarevec. Sodelovanje na domacih dogodkih in druge aktivnosti v letu 2019 Geološki pojav leta – v letu 2019 bo to 100 let poucevanja geologije na Univerzi v Ljubljani. Ak­tivnosti bodo potekale celo leto 2019: predavanja, fotonatecaj Sodelovali bomo na dogodkih za promocijo geološke znanosti: 11. in 12.5.2019 na MINFOS v Tržicu, 31.5.2019 na Dnevu za Savinjo v Ljublnem ob Savinji, 1. in 2.6.2019 na Znanstivalu v Ljublja­ni in avgusta 2019 na Kolišcarskem dnevu na Igu. Avgusta 2019 bomo ponovno sodelovali pri iz­vedbi Kolišcarskega dneva v Dragi pri Igu. Organizirali bomo Dan geologije. Lokacija in datum, še niso doloceni. Jeseni 2019 bomo organizirali okroglo mizo, kjer bodo sodelovali strokovnjaki razlicnih vej geološke stroke pri izdelavi osnutka Zakona o ge­osferi. Konec leta 2019 bomo izdali bilten o delovanju društva. 139 140 141 6. evropski geotermalni kongres v Haagu (Nizozemska) 11. – 14. junij 2019 Dušan RAJVER & Nina RMAN Geološki zavod Slovenije, Dimiceva ul.14, SI-1000 Ljubljana; e-mail: dusan.rajver@geo-zs.si, nina.rman@geo-zs.si V Haagu je junija 2019 potekal 6. evropski geotermalni kongres. Zadnji štirje evropski ge­otermalni kongresi so se odvijali v organizaciji Evropskega sveta za geotermalno energijo (Eu­ropean Geothermal Energy Council, EGEC), tok­ratni pa tudi v soorganizaciji nizozemske nepro­fitne organizacije Stichting Platform Geothermie ter podjetja Bodem EnergieNL. Glavni sponzor je bilo podjetje v energetskem sektorju Energie Be­heer Nederland B.V. (EBN), ostali sponzorji pa so bili še proizvajalci geotermalnih elektrarn Tur­boden SpA (Italija), in vrtalne ter druge opreme Huisman Geo (Nizozemska), Baker Hughes (GE družba) in NALCO Water (Ecolab družba). Prej­šnji kongresi so se odvijali neenakomerno, namrec septembra 2016 v Strasbourgu, junija 2013 v Ita­liji (Pisa), maja-junija 2007 v Nemciji (Unterha­ching pri Munchenu), maja 2003 na Madžarskem (Szeged) in septembra 1999 v Švici (Basel), zad­nji trije omenjeni pod okriljem evropske veje IGA in EGEC. Pred tem pa so se odvijali t.i. evropski geotermalni seminarji (International Seminar on the Results of EC Geothermal Energy Research) v organizaciji Evropske Komisije z delovnim nas­lovom »European Geothermal Update«, in sicer aprila 1989 v Italiji (Firence), pod isto organiza­cijo pa tudi novembra 1983 v Nemciji (Munchen), marca 1980 v Franciji (Strasbourg) in prvi že de­cembra 1977 v Belgiji (Bruxelles). Tokratni kongres je zbral 872 udeležencev in 46 razstavljalcev. Nizozemska se je v neposredni rabi geotermalne energije (GE) povzpela na šes­to mesto v Evropi, tako iz globokih geotermalnih sistemov, z zmogljivostjo 186 MWt in 1.011 GWh izkorišcene geotermalne toplote, kakor tudi s teh­nologijo toplotnih crpalk na plitvo GE z zmoglji­vostjo 2775 MWt in s 3.052 GWh izkorišcene toplo­te. Na Nizozemskem ni geotermalnih elektrarn, saj do sedaj niso še zajeli dovolj pretoka termalne vode (ali dvofaznega fluida) primerne temperatu­re. V tej proizvodnji v Evropi prednjacijo Turcija, Italija in Islandija, ki imajo ugodnejše geološke pogoje. Vseeno pa je Nizozemska kongres upravi­ceno organizirala s predstavitvijo uresnicevanja ciljane nacionalne strategije rabe geotermalne energije, s prikazom tehnološkega in znanstveno sodobnega stanja v razvoju geotermalnih polj in izkorišcanju geotermalne energije. Za kongres je bilo sprejeto 280 prispevkov iz skoraj vseh evropskih držav in tudi nekaterih drugih (Indonezija, Maroko, Mehika, Nova Ze­landija, itd.), od teh je bilo 119 posterjev. Pod okriljem kongresa se je prvi dan dopol­dne odvijala otvoritvena sekcija z uvodnimi predstavitvami (M. Antics, predsednik EGEC, S. Gaastra, generalni direktor Climate and Energy, A. Richter, predsednik IGA) ter predavanji po­membnih politicnih gostov (F. Schoof, predse­dujoci Stichting Platform Geothermie, L. van Tongeren, županja mesta Haag, T. Kockelkoren, generalni rudarski inšpektor Nizozemske) in po­membnimi deležniki iz industrije (E. Hoos, DG za energijo iz evropske komisije, J.W van Hoogstra­ten, direktor podjetja EBN, A. Magalini, prodajni direktor podjetja Turboden, P. de Vin, operativni direktor podjetja Huisman Geo). Popoldne prvega dne kakor tudi drugi in tretji dan so se odvijale vzporedne sekcije s predstavitvami in z vodilnimi semi-plenarnimi predavanji. Te so vsebinsko zaje­le naslednjo tematiko: (1) tehnološki trendi v glo­boki geotermiji, (2) tehnološki trendi v plitvi ge­otermiji, (3) povzetek o stanju v rabi GE v Evropi (Country updates), (4) perspektive za geotermalni trg in (5) od znanosti k podjetništvu: perspektive globokih geotermalnih raziskav. Od prvega dne je potekala tudi posterska sekcija. Predstavitve, bodisi kot predavanja ali poster­ji, so bile v sekcijah porazdeljene na štiri glavne skupine, (1) Porocila držav o stanju in razvoju v geotermiji (Country Updates) (2) Politika (Policy), (3) Tehnologija (Technology) in (4) Znanost (Sci­ence). Med njimi je bilo uvršcenih 13 semi-plenar­nih predavanj. Porocila držav o najnovejšem sta­nju izkorišcanja in razvoja geotermalne energije (Country Update reports) so bila predstavljena le kot posterji, 32 držav pa je porocalo s prispevki. V okviru naslednjih omenjenih treh skupin (2 – 4) so bile predstavitve porazdeljene na vec tema­tik. Skupina (2) Politika je vsebovala podsklopa: A) dojemanje javnosti in socialni vidiki (Public perception and social aspects) z 8 prispevki in B) financiranje (Financing) z 10 prispevki. Skupi­na (3) Tehnologija je zajela naslednje podsklope: A) raziskovanje in nacrtovanje (Exploration & Planning) z 12 prispevki, B) delovanje (Operation) z 11 prispevki, C) korozija in lušcenje (Corrosion & Scaling) s 5 prispevki, D) elektricna zmoglji­vost (Power) z 9 prispevki, E) tehnologije ogreva­nja in hlajenja (Heating & Cooling technologies) z 10 prispevki, F) tehnologije in inovacije (Tech­nologies & Innovation) s 6 prispevki, G) podze­mno skladišcenje toplotne energije (Underground Thermal Energy Storage, UTES) s 14 prispev­ki, H) geotermalne toplotne crpalke (Geother­mal Heat Pumps) s 13 prispevki ter I) vplivi na okolje in rešitve (Environmental Impacts & So­lutions) s 3 prispevki. Skupina (4) Znanost pa je vsebovala podsklope: A) razvrstitev virov (Reso­urces Classification) s 4 prispevki, B) raziskova­nje: regionalna ocena (Exploration: regional as­sessment) s 4 prispevki, C) raziskovanje: Zgornji renski jarek (Exploration: Upper Rhine Grabben) s 5 prispevki, D) raziskovanje v klasticnih kamni­nah (Exploration (clastic)) s 5 prispevki, E) raz­iskovanje v karbonskih kamninah (Exploration (carboniferous)) s 4 prispevki, F) raziskovanje v magmatskih kamninah (Exploration (magmatic)) s 5 prispevki, G) raziskovanje (tipi torišc razi­skav) (Exploration (play types)) s 4 prispevki, H) raziskovanje (Exploration) s 53 prispevki, I) geo­termalne vrtine (Geothermal Wells) z 10 prispev­ki, L) inženiring rezervoarjev (Reservoir engine­ering) z 18 prispevki, M) stimulacija (Stimulation) z 9 prispevki, N) inducirana seizmicnost (Induced seismicity) z 10 prispevki, O) pretvorba elektrike in toplote (Power & Heat conversion) s 6 prispev­ki ter P) evropske raziskave in razvoj (European Research & Development) s 6 prispevki. Aktualne geotermalne téme, izjemni predava­telji in aktivna izmenjava mnenj udeležencev je pripomogla k uspešnosti kongresa v celoti. Poka­zalo se je, da so posredne in površinske metode (geofizika, geokemija in geologija) še vedno zelo pomembne v raziskavah in upravljanju geoter­malnih virov. Številni referati o raziskavah ka­žejo, kako dejavno je še naprej tudi iskanje novih virov. Pri predstavitvah je potrebno poudarjati zanesljivost in lokalnost oskrbe z GE ter nizke emisije toplogrednih plinov pri njeni rabi. Na Ni­zozemskem so dosegli klimatski dogovor, da bodo brez CO2 v ogrevanju stavb do leta 2050, kar po­meni, da potrebujejo 700 novih dubletov (proizvo­dna in povratna vrtina) oziroma 2 nova projekta na leto. Predstavili so nizozemsko zagotovilo kva­litete (quality assurance): delajo lahko le vrtal­ci z licenco in le po navodilih, zasebna podjetja izvajajo certificiranje. Leta 2021 bo v zakonoda­ji Evropske Skupnosti prvic omenjeno hlajenje z obnovljivimi viri (renewable cooling) (Internet 1). Evropski svet EGEC še ni razmišljal, da bi nare­dil kakšne informativne ucne modele o geotermiji za splošno javnost, a bi to lahko razvijali v pro­jektih za promocijo oziroma sprejemljivost rabe. Tematske sekcije so vkljucevale nove pristope k oceni virov, za DARLINGe je pomembna UNFC klasifikacija. Veliko poudarka je bilo na zagota­vljanju iskanja sprejemljivosti geotermije s strani splošne javnosti ter zagotavljanju varnega obrato­vanja elektrarn. Poudarek je bil še na naslednjem: spodbuja se dekarbonatizacija energetskega sek­torja in decentralizacija virov, upoštevajo se viso­ki okoljski standardi in družbena sprejemljivost. Veliko predavanj je imelo poudarek na rabi geofizike v kombinaciji s stratigrafijo za izdelavo 3D modelov, smiselno pa je uporabiti tudi Mon­te Carlo pristop za oceno negotovosti kvalitete rezervoarja. V laboratoriju že potekajo testira­nja izluževanja kovin iz geotermalnih fluidov, kar nekaj raziskav pa se ukvarja z vtiskovanjem CO2 nazaj v vodonosnik, bodisi za preprecevanje obarjanja v njem ali pa zaradi vecje okoljske spre­jemljivosti. Med kongresom se je odvijalo nekaj pomemb­nih stranskih dogodkov: -- delavnica »Renewable Heating & Cooling RHC-ETIP: Geothermal technology Work­shop«. -- delavnica »Workshop on shallow geother­mal mapping«. Na semi-plenarni sekciji »od znanosti k pod­jetništvu: perspektive za globoke geotermalne raziskave« je G. Johannesson (vodja SET plana, Implementation working group on Deep Geother­mal) dejal, da je realno pricakovati 20 % pokritost potreb po ogrevanju iz GE za celo Evropo v letu 2050. F. Batini (ETIP-DG Technology Roadmap for Deep Geothermal) je poudaril potrebo po vec­ji promociji koristi GE, to isto je poudarila tudi I. Berre (vodja JPG, European Energy Research Alliance), saj so viri GE vecinoma last državnih organov. Pregledna predavanja so povzela evrop­ski pregled stanja, ki kažejo narašcanje rabe GE, tudi v proizvodnji elektrike. Zadnji dan kongresa, 14. junija, je bil izveden mednarodni kratki tecaj Geotrainet o napredkih v tehnologiji in izvedbah rabe plitve GE (Geotra­inet International short course on advances in shallow geothermal technology and implementa­tion), posvecen nacrtovalcem in inštalaterjem pri izkorišcanju plitve geotermalne energije s tehno­logijo toplotnih crpalk. Organizatorji so istega dne izvedli tri terenske ekskurzije: (1) obisk dveh geotermalnih toplotnih postaj v krajih Koppert Cress in Aardwarmte Vogelaer južno od Haaga za rastlinjake, (2) obisk geotermalne vrtine Leyweg v JZ predelu Haaga, (3) obisk podjetja Huisman Geo v Schiedamu pri Rotterdamu z demonstracijo vrtalnega stolpa in vrtine pod njim. Gre za podje­tje, ki je specializirano v izdelavi vrtalnih stolpov (posebno za najvecje vrtalne stolpe za vrtanje na morskem dnu) in velikih žerjavov za pristanišca. Kongres v Haagu je prikazal velik potencial za nadaljno rast rabe GE in geotermalnega ra­zvoja, predvsem neposredne rabe, tako iz termal­ne vode kot tudi iz plitve geotermalne energije. Skupno 32 držav je porocalo o izkorišcanju GE za proizvodnjo elektrike ali za neposredno rabo toplote iz termalnih fluidov ali za oboje. V nada­ljevanju navajamo nekaj skupnih bilanc. Izredno je napredovala raba plitve geotermalne energije s tehnologijo geotermalnih toplotnih crpalk (GTC). Skupno število enot delujocih GTC znaša danes v Evropi cca 2 milijona. Med kategorijami rabe termalne vode iz globokih vodonosnikov pa pre­vladuje daljinsko ogrevanje pred rabo za kopanje in plavanje v bazenih (in balneologijo) ter za ra­stlinjake. Instalirana zmogljivost geotermalnih elek­trarn se je povecala za 29 % glede na stanje poro­cano na EGC 2016 in to zavoljo znatnega porasta v Turciji. Velik potencial, ki bi ga lahko nudila tehnologija vzpodbujenih geotermalnih sistemov (angl. EGS) (prim. Geoelec, 2013), se ne odraža v pricakovani rasti do leta 2025. Vecina porocane in pricakovane proizvodnje elektrike iz GE temelji na trenutno razpoložljivih visoko entalpijskih vi­rih in nizko-do-srednje temperaturnih binarnih elektrarnah. Rast po letu 2025 bi lahko izgledala drugace; za uresnicitev tega cilja pa bi bila pot­rebna obsežna razvojna naloga za EGS. Izkori­šcanje GE v Sloveniji je še vedno le v neposredni rabi toplote. Instalirana kapaciteta za neposred­no rabo znaša 247,47  MWt, letna izkorišcena ge­otermalna energija pa 1516,79 TJ ali 421,33 GWh (stanje na 31. dec. 2018), vkljucno z geotermalnimi toplotnimi crpalkami na toploto plitvega podze­mlja (Rajver et al., 2019). Prispevek geotermalnih toplotnih crpalk, ki se neprestano viša, znaša na­mrec 185,04 MWt oziroma 938,23 TJ/leto (260,62 GWh) izkorišcene plitve GE. Razlicne vrste upo­rabe zajemajo: ogrevanje individualnih prostorov, priprava sanitarne tople vode, daljinsko ogreva­nje, klimatizacijo/hlajenje, ogrevanje rastlinja­kov, kopanje in plavanje z balneologijo, taljenje snega ter raba plitve GE (s tehnologijo GTC), po­gosto kot zaporedno rabo. Iz Slovenije sva se kongresa udeležila avtorja tega prispevka, sodelavci iz GeoZS pa smo bili av­torji oziroma soavtorji v skupno sedmih predsta­vitvah (Ádám et al., 2019; Herms et al., 2019; Ná­dor et al., 2019; Rajver et al., 2019; Rman, 2019; Rman et al., 2019; Rotár-Szalkai et al., 2019). V sklopu kongresa je potekala še razstava nekaterih najbolj znanih razvojnih inštitucij ter proizva­jalcev in serviserjev raziskovalne in proizvodne opreme (za vrtine, cevovode, toplotne postaje, itd.) v geotermalnih raziskavah in razvoju ter izkori­šcanju geotermalne energije. Viri: Ádám, L., Farnoaga, R., Jolovic, B., Lapanje, A., Markovic, T., Milenic, D., Nádor, A., Rotár-Szalkai, A. & Samardžic, N. 2019: Application of a novel geological risk mitigation scheme in the Danube Region. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 5 p. Antics, M., Bertani, R. & Sanner, B. 2013: Summary of EGC 2013 Country Update Reports on Geothermal Energy in Europe. Proceedings, European Geothermal Congress 2013, Pisa, Italy, EGEC, UGI, IGA, 18 p. Antics, M., Bertani, R. & Sanner, B. 2016: Summary of EGC 2016 Country Update Reports on Geothermal Energy in Europe. Proceedings, European Geothermal Congress 2016, Strasbourg, France, EGEC, AFPG, IGA, 16 p. Geoelec, 2013: A prospective study on the ge­othermal potential in the EU, D2.5, Geoelec, Brussels, 1-97. Herms, I., Goetzl, G., Borovic, S., García-Gil, A., Ditlefsen, C., Boon, D., Veloso, F., Petitclerc, E., Janža, M., Erlström, M., Klonowski, M., Holecek, J., Hunter Williams, N.H., Vandemeijer, V., Cernak, R. & Malyuk, B. 2019: MUSE- Managing Urban Shallow ge­othermal Energy. A GeoERA geo-energy project. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 6 p. Nádor, A., Kumelj, Š., Rotár-Szalkai, A., Lapanje, A., Rman, N., Medgyes, T., Markovic, T., Jolovic, B., Samardžic, N., Milenic, D., Vijdea, A.M., Balan, L.L., Hribernik, K., Sorés, L. & Krunic, O. 2019: Danube Region Geothermal Strategy and information system to support the decarbonisation of the heating sector. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 7 p. Rajver, D., Lapanje, A., Rman, N. & Prestor, J. 2019: Geothermal energy use, Country up­date for Slovenia. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 16 p. Rman, N. 2019: Efficient monitoring of wells used for direct use. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 3 p. Rman, N., Balan, L.L., Bobovecki, I., Gál, N., Jolovic, B., Lapanje, A., Markovic, T., Milenic, D., Skopljak, F., Rotár-Szalkai, A., Samardžic, N., Szocs, T., Šolaja, D., Toholj, N., Vijdea, A.M. & Vranjes, A. 2019: Assessment of ther­mal water utilization in the southern part of the Pannonian basin. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 4 p. Rotár-Szalkai, A., Zilahy-Sebess, L., Gulyás, A., Kun, E., Maros, G., Nádor, A., Ádám, L., Rajver, D., Lapanje, A., Markovic, T., Vranješ, A, Farnoaga, R., Olah, S., Samardžic, N. & Jolovic, B. 2019: New harmonized method for outlining transboundary geothermal reser­voirs and resource assessment. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 9 p. Sanner, B. 2019: Summary of EGC 2019 Country Update Reports on Geothermal Energy in Europe. Proceedings, European Geothermal Congress 2019, Den Haag, The Netherlands, EGEC, 14 p. Internet 1 (dostopno dne 04.07.2019): http://www.thinkgeoenergy.com/geovision-re­port-deployment-potential-for-geothermal­-in-u-s/ 142 143 Tabela 1. Sedanje stanje izkorišcanja GE v Evropi, s podatki porocanimi za kongres v letu 2019 (stanje dne 31. dec. 2018) in primerjava s podatki za kongresa v letu 2013 (stanje dne 31. dec. 2012) in v letu 2016 (stanje dne 31. dec. 2015) (Antics et al., 2013; 2016; Sanner, 2019). Leto EGC 2013 EGC 2016 EGC 2019 Proizvodnja elektrike Instalirana kapaciteta (MWe) 1847,9 2050 2960,8 Proizvedena elektrika (GWh/leto) 12158,3 13997,3 18302,6 Faktor obremenitve 75,1 77,9 70,6*** Število držav 9 8* 10* Neposredna raba: srednje do nizko temperaturni viri Instalirana kapaciteta (MWt) 7800,3 9264,2 10612 Izkorišcena energija (GWh/leto) 18763,9 31199,1 35292 Koeficient izkoristka Število držav 28 32 27 Neposredna raba: plitva geotermija (GTC) in UTES Instalirana kapaciteta (MWt) 16506,4 22891,4 26923 Izkorišcena energija (GWh/leto) 34898,9 49366,4 59438 Poprecje na enoto GTC 58,7 22,2 21 Število enot GTC na plitvo geotermijo > 1,33 milijona > 1,71 milijona > 1,9 milijona Število držav 32 31** 31** *Rusija ni zajeta v tem porocanju. **Estonija ni zajeta v tem porocanju. ***malo nižji od pricakovanega, ker vse elektrarne niso delovale v polnem delovanju (zacetek delovanja geoterm. elektrarne na Hrvaškem šele v dec. 2018) in zaradi težav v zagonu novih elektrarn. 144 145 GEOLOGIJA 62/1, 146, Ljubljana 2019 Navodila avtorjem GEOLOGIJA objavlja znanstvene in strokovne clanke s podrocja geologije in sorodnih ved. Revija izhaja dvakrat letno. Clanke recenzirajo domaci in tuji strokovnjaki z obravnavanega podrocja. Ob oddaji clankov avtorji predlagajo tri recenzente, uredništvo si pridržuje pravico do izbire recenzentov po lastni presoji. Avtorji morajo clanek popraviti v skladu z recenzentskimi pripombami ali utemeljiti zakaj se z njimi ne strinjajo. Avtorstvo: Za izvirnost podatkov, predvsem pa mnenj, idej, sklepov in citirano literaturo so odgovorni avtorji. Z objavo v GEOLOGIJI se tudi obvežejo, da ne bodo drugje objavili prispevka z isto vsebino. Avtorji z objavo prispevka v GEOLOGIJI potrjujejo, da se strinjajo, da je njihov prispevek odprto dostopen z izbrano licenco CC-BY. Jezik: Clanki naj bodo napisani v angleškem, izjemoma v slovenskem jeziku, vsi pa morajo imeti slovenski in angleški izvlecek. Za prevod poskrbijo avtorji prispevkov sami. Vrste prispevkov: Izvirni znanstveni clanek Izvirni znanstveni clanek je prva objava originalnih razisko-valnih rezultatov v takšni obliki, da se raziskava lahko ponovi, ugotovitve pa preverijo. Praviloma je organiziran po shemi IMRAD (Introduction, Methods, Results, And Discussion). Pregledni znanstveni clanek Pregledni znanstveni clanek je pregled najnovejših del o dolocenem predmetnem podrocju, del posameznega razisko-valca ali skupine raziskovalcev z namenom povzemati, analizirati, evalvirati ali sintetizirati informacije, ki so že bile publicirane. Prinaša nove sinteze, ki vkljucujejo tudi rezultate lastnega raziskovanja avtorja. Strokovni clanek Strokovni clanek je predstavitev že znanega, s poudarkom na uporabnosti rezultatov izvirnih raziskav in širjenju znanja. Diskusija in polemika Prispevek, v katerem avtor ocenjuje ali komentira neko delo, objavljeno v GEOLOGIJI, ali z avtorjem strokovno polemizira. Recenzija, prikaz knjige Prispevek, v katerem avtor predstavlja vsebino nove knjige. Oblika prispevka: Besedilo pripravite v urejevalniku Micro-soft Word. Prispevki naj praviloma ne bodo daljši od 20 strani formata A4, v kar so vštete tudi slike, tabele in table. Le v izjemnih primerih je možno, ob predhodnem dogovoru z uredništvom, tiskati tudi daljše prispevke. Clanek oddajte uredništvu vkljucno z vsemi slikami, tabelami in tablami v elektronski obliki po naslednjem sistemu: - Naslov clanka (do 12 besed) - Avtorji (ime in priimek, poštni in elektronski naslov) - Kljucne besede (do 7 besed) - Izvlecek (do 300 besed) - Besedilo - Literatura - Podnaslovi slik in tabel - Tabele, Slike, Table Citiranje: V literaturi naj avtorji prispevkov praviloma upoštevajo le objavljene vire. Porocila in rokopise naj navajajo le v izjemnih primerih, z navedbo kje so shranjeni. V seznamu literature naj bodo navedena samo v clanku omenjena dela. Citirana dela, ki imajo DOI identifikator (angl. Digital Object Identifier), morajo imeti ta identifikator izpisan na koncu citata. Za citiranje revije uporabljamo standardno okrajšavo naslova revije. Med besedilom prispevka citirajte samo avtorjev priimek, v oklepaju pa navajajte letnico izida navedenega dela in po potrebi tudi stran. Ce navajate delo dveh avtorjev, izpišite med tekstom prispevka oba priimka (npr. Plenicar & Buser, 1967), pri treh ali vec avtorjih pa napišite samo prvo ime in dodajte et al. z letnico (npr. Mlakar et al., 1992). Citiranje virov z medmrežja v primeru, kjer avtor ni poznan, zapišemo (Internet 1). V seznamu literaturo navajajte po abecednem redu avtorjev. Imena fosilov (rod in vrsta) naj bodo napisana poševno, imena višjih taksonomskih enot (družina, razred, itn.) pa normalno.Imena avtorjev taksonov naj bodo prav tako napisana normalno, npr. Clypeaster pyramidalis Michelin, Galeanella tollmanni (Kristan), Echinoidea. Primeri citiranja clanka: Mali, N., Urbanc, J. & Leis, A. 2007: Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environ. geol., 51/8: 1401–1412. https://doi.org/10.1007/s00254-006-0437-4 Plenicar, M. 1993: Apricardia pachiniana Sirna from lower part of Liburnian beds at Divaca (Triest-Komen Plateau). Geologija, 35: 65–68 Primer citirane knjige: Flügel, E. 2004: Mikrofacies of Carbonate Rocks. Springer Verlag, Berlin: 976 p. Jurkovšek, B., Toman, M., Ogorelec, B., Šribar, L., Drobne, K., Poljak, M. & Šribar, Lj. 1996: Formacijska geološka karta južnega dela Tržaško-komenske planote – Kredne in paleogenske kamnine 1: 50.000 = Geological map of the southern part of the Trieste-Komen plateau – Cretaceous and Paleogene carbonate rocks. Geološki zavod Slovenije, Ljubljana: 143 p., incl. Pls. 23, 1 geol. map. Primer citiranja poglavja iz knjige: Turnšek, D. & Drobne, K. 1998: Paleocene corals from the northern Adriatic platform. In: Hottinger, L. & Drobne, K. (eds.): Paleogene Shallow Benthos of the Tethys. Dela SAZU, IV. Razreda, 34/2: 129–154, incl. 10 Pls. Primer citiranja virov z medmrežja: Ce sta znana avtor in naslov citirane enote zapišemo: Carman, M. 2009: Priporocila lastnikom objektov, zgrajenih na nestabilnih obmocjih. Internet: http://www.geo-zs.si/UserFiles/1/File/Nasveti_lastnikom_objektov_na_nestabilnih_tleh.pdf (17. 1. 2010) Ce avtor ni poznan zapišemo tako: Internet: http://www.geo-zs.si/ (22. 10. 2009) Ce se navaja vec enot z medmrežja, jim dodamo še številko: Internet 1: http://www.geo-zs.si/ (15. 11. 2000) Internet 2: http://www.geo-zs.si/ (10. 12. 2009) Slike, tabele in table: Slike (ilustracije in fotografije), tabele in table morajo biti zaporedno oštevilcene in oznacene kot sl. 1, sl. 2 itn., oddane v formatu TIFF, JPG, EPS ali PDF z locljivostjo 300 dpi. Le izjemoma je možno objaviti tudi barvne slike, vendar samo po predhodnem dogovoru z uredništvom. Ce avtorji oddajo barvne slike bodo te v barvah objavljene samo v spletni razlicici clanka. Pazite, da bo tudi slika tiskana v sivi tehniki berljiva. Graficni materiali naj bodo usklajeni z zrcalom revije, kar pomeni, da so široki najvec 172 mm (ena stran) ali 83 mm (pol strani, en stolpec) in visoki najvec 235 mm. Vecjih formatov od omenjenega zrcala GEOLOGIJE ne tiskamo na zgib, je pa možno, da vecje oziroma daljše slike natisnemo na dveh straneh (skupaj na levi in desni strani) z vmesnim "rezom". V besedilu prispevka morate omeniti vsako sliko po številcnem vrstnem redu. Dovoljenja za objavo slikovnega gradiva iz drugih revij, publikacij in knjig, si pridobijo avtorji sami. Ce je clanek napisan v slovenskem jeziku, mora imeti celotno besedilo, ki je na slikah in tabelah tudi v angleškem jeziku. Podnaslovi naj bodo cim krajši. Korekture: Avtorji prejmejo po elektronski pošti clanek v avtorski pregled. Popravijo lahko samo tiskarske napake. Krajši dodatki ali spremembe pri korekturah so možne samo na avtorjeve stroške. Prispevki so prosto dostopni na spletnem mestu: http://www.geologija-revija.si/ Oddaja prispevkov: Avtorje prosimo, da prispevke oddajo v elektronski obliki na naslov uredni{tva: GEOLOGIJA Geolo{ki zavod Slovenije Dimi~eva ulica 14, SI-1000 Ljubljana bernarda.bole.geo-zs.si ali urednik.geologija-revija.si Uredni{tvo Geologije GEOLOGIJA 62/1, 147, Ljubljana 2019 Instructions for authors Scope of the journal: GEOLOGIJA publishes scientific papers which contribute to understanding of the geology of Slovenia or to general understanding of all fields of geology. Some shorter contributions on technical or conceptual issues are also welcome. Occasionally, a collection of symposia papers is also published. All submitted manuscripts are peer-reviewed. When submitting paper, authors should recommend at least three reviewers. Note that the editorial office retains the sole right to decide whether or not the suggested reviewers are used. Authors should correct their papers according to the instructions given by the reviewers. Should you disagree with any part of the reviews, please explain why. Revised manuscript will be reconsidered for publication. Author’s declaration: Submission of a paper for publication in GEOLOGIJA implies that the work described has not been published previously, that it is not under consideration for publication elsewhere and that, if accepted, it will not be published elsewhere. Authors agree that their contributions published in GEOLOGIJA are open access under the licence CC-BY. Language: Papers should be written in English or Slovene, and should have both English and Slovene abstracts. Types of papers: Original scientific paper In an original scientific paper, original research results are published for the first time and in such a form that the research can be repeated and the results checked. It should be organised according to the IMRAD scheme (Introduction, Methods, Results, And Discussion). Review scientific paper In a review scientific paper the newest published works on specific research field or works of a single researcher or a group of researchers are presented in order to summarise, analyse, evaluate or synthesise previously published information. However, it should contain new information and/or new interpretations. Professional paper Technical papers give information on research results that have already been published and emphasise their applicability. Discussion paper A discussion gives an evaluation of another paper, or parts of it, published in GEOLOGIJA or discusses its ideas. Book review This is a contribution that presents a content of a new book in the field of geology. Style guide: Submitted manuscripts should not exceed 20 pages of A4 format including figures, tables and plates. Only exceptionally and in agreement with the editorial board longer contributions can also be accepted. Manuscripts submitted to the editorial office should include figures, tables and plates in electronic format organized according to the following scheme: - Title (maximum 12 words) - Authors (full name and family name, postal address and e-mail address) - Key words (maximum 7 words) - Abstract (maximum 300 words) - Text - References - Figure and Table Captions - Tables, Figures, Plates References: References should be cited in the text as follows: (Flügel, 2004) for a single author, (Plenicar & Buser, 1967) for two authors and (Mlakar et al., 1992) for multiple authors. Pages and figures should be cited as follows: (Plenicar, 1993, p. 67) and (Plenicar, 1993, fig. 1). Anonymous internet resources should be cited as (Internet 1). Only published references should be cited. Manuscripts should be cited only in some special cases in which it also has to be stated where they are kept. Cited reference list should include only publications that are mentioned in the paper. Authors should be listed alphabetically. Journal titles should be given in a standard abbreviated form. A DOI identifier, if there is any, should be placed at the end as shown in the first case below. Taxonomic names should be in italics, while names of the authors of taxonomic names should be in normal, such as Clypeaster pyramidalis Michelin, Galeanella tollmanni (Kristan), Echinoidea. Articles should be listed as follows: Mali, N., Urbanc, J. & Leis, A. 2007: Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environ. geol., 51/8: 1401–1412. https://doi.org/10.1007/s00254-006-0437-4 Plenicar, M. 1993: Apricardia pachiniana Sirna from lower part of Liburnian beds at Divaca (Triest-Komen Plateau). Geologija, 35: 65–68. Books should be listed as follows: Flügel, E. 2004: Mikrofacies of Carbonate Rocks. Springer Verlag, Berlin: 976 p. Jurkovšek, B., Toman, M., Ogorelec, B., Šribar, L., Drobne, K., Poljak, M. & Šribar, Lj. 1996: Formacijska geološka karta južnega dela Tržaško-komenske planote – Kredne in paleogenske kamnine 1: 50.000 = Geological map of the southern part of the Trieste-Komen plateau – Cretaceous and Paleogene carbonate rocks. Geološki zavod Slovenije, Ljubljana: 143 p., incl. Pls. 23, 1 geol. map. Book chapters should be listed as follows: Turnšek, D. & Drobne, K. 1998: Paleocene corals from the northern Adriatic platform. In: Hottinger, L. & Drobne, K. (eds.): Paleogene Shallow Benthos of the Tethys. Dela SAZU, IV. Razreda, 34/2: 129–154, incl. 10 Pls. Internet sources should be listed as follows: Known author and title: Carman, M. 2009: Priporocila lastnikom objektov, zgrajenih na nestabilnih obmocjih. Internet: http://www.geo-zs.si/UserFiles/1/File/Nasveti_lastnikom_objektov_na_nestabilnih_tleh.pdf (17. 1. 2010) Unknown authors and title: Internet: http://www.geo-zs.si/ (22.10.2009) When more than one unit from the internet are cited they should be numbered: Internet 1: http://www.geo-zs.si/ (15.11. 2000) Internet 2: http://www.geo-zs.si/ (10.12. 2009) Figures, tables and plates: Figures (illustrations and photographs), tables and plates should be numbered consecutively and marked as Fig. 1, Fig. 2 etc., and saved as TIFF, JPG, EPS or PDF files and submitted at 300 dpi. Colour pictures will be published only on the basis of previous agreement with the editorial office. If, together with the article, you submit colour figures then these figures will appear in colour only in the Website version of the article. Be careful that the grey scale printed version is also readable. Graphic materials should be adapted to the journal’s format. They should be up to 172 mm (one page) or 83 mm wide (half page, one column), and up to 235 mm high. Larger formats can only be printed as a double-sided illustration (left and right) with a cut in the middle. All graphic materials should be referred to in the text and numbered in the sequence in which they are cited. The approval for using illustrations previously published in other journals or books should be obtained by each author. When a paper is written in Slovene it has to have the entire text which accompanies illustrations and tables written both in Slovene and English. Figure and table captions should be kept as short as possible. Proofs: Proofs (in pdf format) will be sent by e-mail to the corresponding author. Corrections are made by the authors. They should correct only typographical errors. Short additions and changes are possible, but they will be charged to the authors. GEOLOGIJA is an open access journal; all pdfs can be downloaded from the website: http://www.geologija-revija.si/en/ Submission: Authors should submit their papers in electronic form to the address of the GEOLOGIJA editorial office: GEOLOGIJA Geological Survey of Slovenia Dimi~eva ulica 14, SI-1000 Ljubljana, Slovenia bernarda.bole.geo-zs.si or urednik.geologija-revija.si The Editorial Office 2019 | št.: 62/1 GEOLOGIJA št.: 62/1, 2019 www.geologija-revija.si 5 7 61 75 89 103 123 2019 | št.: 62/1 ISSN 0016-7789