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A systein, $, of difFerent informational formulas, ip, can possess various topological structures, 
O. By this, topological informational spaces of the form ($,D) can be constructed and the 
guestion arises: How can the topological structures be introduced reasonably for concrete systems 
of informational formulas? 
A topology causes certain other concepts, e.g., those concerning closed topology, connetedness, 
continuum, interior, exterior, neighborhood, basis, subbasis, metric, space, etc. of systems, and 
especiaUy the concept of meaning as a kind of the informational accumulation point. The paper 
treats topologies ofthree types of informational formula systems: $^, ${|=,,, and ${. An example 
of bidirectional consciousness shell is presented enabling a complex engine modeling. 

1 Introduction 
A basic problem of topology^ is to define a general 
space. By topology a mathematical concept (struc-
ture, branch) is meant^ giving sense to various intu-
itive notions. Topological notions can be innovatively 
extended into realm of the informational, realizing one 
of the significant features of the so-called informational 
space. Such a space can be determined also from other 
points of view concerning, for instance, the distribu-
tivity of informational entities (operands)—which can 
proceed into different concepts of a vector space. In 
general, a more complete theory of informational space 
would need concepts of informational subtheories, such 
of concerning informational topological space, infor­
mational vector space, and informational graph the-
ory. 

Another, mathematically grounded view to the 
problem of graph is the so-called topological graph the-
ory [14]. The primitive objective of this theory is to 
draw a graph on a surface, so that no two edges (graph 

•̂ This paper is a private author's work and no part of it may be 
used, reproduced or transiated in any manner vvhatsoever without 
written permission except in the čase of brief quotations embodied 
in critical articies. 

^Othervvise, topology is a science of position and relation of 
bodies in space. This paper concerns at least the follovving topolog­
ical topics: point system (set) topology (general topology), metric 
space (e.g., meaning topology), and graph topology. 

arrows representing informational operators) cross, an 
intuitive geometric problem that can be solved by 
specifying symmetries or combinatorial side-conditions 
(surface graph-imbedding). Although potentially in-
teresting for the informational graph theory, this kind 
of problem is not in the focus of informational graph 
investigation. Informationally, graph is merely a pre-
sentation of formula or formula system potentiality 
concerning the setting of the parenthesis pairs (paren-
thesizing^) in a formula or formula system. 

Introducing the topology on (over) a system of in­
formational formulas means a challenge of logic—both 
the informational and the philosophical one—which 
comes close to some known metamathematical prob-
lems [30]. Just imagine a topology in the realm of 
mathematical axiomatism where for a set of axioms a 
topology of axiomatic statements (e.g., true formulas) 
is constructed. Although topology is a general math­
ematical principle in the realm of the set and space 
theory, it seems nonobviuously to take it as a set with 
topology on the set of formulas.'* 

In mathematics, topology may be considered as an 

^Parenthesizing (in German, Einklammerung) has also the philo­
sophical meaning in phenomenology, for instance, in HusserI [17]. 

''The author believes too that such an idea reaches beyond the 
conventional horizon of a mathematician. Hovvever, he believes 
that the follovving discussion will show the appropriateness of such 
a trait. 
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abstract study of the Umit-point concept [16]. Which 
factors could dictate the introduction of a topology for 
a given system of informational formulas? In informa­
tional cases, different kinds of reasonable topologies, 
corresponding intuitive ideas what an understanding, 
interpretation, conception, perception and meaning 
should be, are coming to the consciousness, that is, 
into the modeling foreground. 

In set theory, the concept of a set (collection, class, 
family, system, aggregate) itself is undefined. Simi-
lar holds for an element x of the set X. The phrases 
like is in, belongs to, iies in, etc. are used. In in­
formational theory, topology may be considered as an 
abstract study of the concept of meaning [32, 35] (con­
cerning interpretation, understanding, conceptualism, 
consciousness, etc. of the informational). Here, mean­
ing of something, of some formula or formula system, 
functions as an informational limit point, to which it 
is possible to proceed as near as possible by the addi-
tional meaning decomposition of something. The con­
cept of a set is replaced by the concept of a system of 
informational formulas or/and informational formula 
systems. In this respect, similar notions to those in 
mathematics can be used, however, considering the in­
formational character of entities (operands) and their 
relations (operators). 

Introducing topological concepts in informational 
theory, the reader will get the opportunity to experi-
ence what happens if the informational concepts, pri-
ory described by the author (e.g., [31, 32, 33, 34, 35, 
36, 37, 38], to mention some of the available sources) 
are thrown into the realm of a topological informa­
tional space. In this view, informational serialism, par-
allelism, circularism, spontaneism, gestaltism, tran-
sitism, organization, graphism, understanding, inter­
pretation, meaning, and consciousness will appear un-
der various topological possibilities, complementing 
the already previously presented informational prop-
erties, structure, and organization. 

Mathematical topology, as presented for example in 
[7, 8, 16, 18, 19, 21, 24, 25], roots firmly in the math­
ematical set theory [5, 6, 20]. In informational theory, 
the set is replaced by the concept concerning a system 
of informational formulas (system, informational sys-
tem or IS, in short). A system is—said roughly—a set 
of informationallp (operandly, through or by operands) 
connected informational formulas. The question is, 
which are the substantial differences occurring be-
tween the mathematical and the informational con­
ceptualism in concern to topological structure? 

Elements of a mathematical set are elements deter-
mined by a logical expression (defining formula, rela-
tion, statement) and, for example, by notation of the 
form 

X = {xi,X2,... ,Xm} 

which presents a concrete structure of the set by its 
elements. 

In informational theory, instead of a set, there is a 
system of informational formulas being elements of the 
system. Formulas are active, emerging, changing, van-
ishing informational entities (by themselves) which can 
inform in a spontaneous and circular manner. What 
does not change is their informational markers distin-
guishing the entities. Notation of the form 

$ ^ 

1^1,1^2, 

\'PnJ 

where 

Vl,V2, ,V»i 

presents,^ in fact, only an instantaneous description 
of the parallel system of markers ipi, by a vertical pre-
sentation, denoting concrete formulas (or formula sys-
tems), and being separated by semicolons. These are 
nothing else as a special sort of informational opera­
tors, e.g. ||=, meaning the parallel informing of for­
mulas of the system $. Also, there is a substantial 
difference between the symbols = and ;=i; the second 
one is read as 'mean(s)' and denotes meaning and not 
the usual equality. 

Another notions to be determined informationally 
are informational union and informational intersection 
of systems. It has to be stressed that formulas in a sys-
tem "bebave" in the similar manner as the elements 
in a set in respect to the union and intersection op-
eration. Thus, the same operators can be used as in 
mathematics, without a substantial conceptual differ­
ence. 

2 A Mathematical vs. Informa­
tional Dictionary 

The presented dictionary should bring the mathemat­
ical feeling into the domain of informational theory. It 
certainly concerns the topological terms priory. The 
correspondence between set-theoretical and system-
informational terms yields the following comparative 
table^: 

MATHEMATICAL VS. INFORMATIONAL TOPOLOGV 

set X system $: 
general formula system $,^; 
transition formula system 

$^(=^; and 
operand formula system $^ 

set braces: {,} system parentheses: (,) 

^For the system-conditional formula, ipi,(p2,--- ,<Pm *"^ Vii 
ipa, • • • , Vm see the discussion in Sect. 3.1. 

^In this dictionary, the 'formula ip of * ' {ip 6 $) isto distinguish 
from the informational speech convention where the meaning of 
'of represents an informational function, that is, the informational 
Being-of [29], e.g., (^(a) for 'ip of a. 
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vertical snaJte-form 
operand-occurrence 
braces [5, 6] 

empty set 0 
set element x 
X is an element of X, 

X belongs to X, 
a; is in X, o; 6 X; 
negation: x ^ X 

subset A 
A is a subset oi X, 

A is included in X, 
ACX-
negation: A (^ X 

powerset of set X, 
<P(X) or 2^ 

union of sets, AU B 

intersection of sets, 
ADB 

difference of sets Y 
and X,Y\X 

complement of set X, 
Cx 

complement of set X, 
regarding set Y, GYX 

open set O 
topology O 
topological structure 

O 
topological space 

(X, O), simply, X 
carrier X 
point X £ X 

formula operand occurrence 
floor brackets: [, J 

empty system 0 
system formula (/? 
(/3 is a formula of $, 

if belongs to $, 
(̂  is in $ , (/J 6 # ; 
negation: </? ^ $ 

subsystem ^ 
$ is a subsystem of $, 

^ is included in $, 
* C $; 
negation: $ (Z! $ 

powersystem concerning 
system $, *P[$J or ^ [ ^ J 

union of systems, # U *; 
or (#; ^), informing of 
both systems 

intersection of systems, 
$ n * means, e.g., 

parallel informing of ali 
the systems' components 

difference of systems * 
and $, $ \ $ 

complement of system $, 
c$ 

complement of system $, 
regarding system * , C*$ 

open system O 
informational topology D 
informational topological 

structure D 
topological informational 

space {$,!)), simply, $ 
informational carrier $ 
informational point, 

formula, formula system 
(̂  e $ 

g r a p h G = ( y , ^ ) [ 2 ] 
a N 6 N • • • N n̂ 

informational graph, pre-
sented by ${|=r,, derived 
from an actual system $^, 

MATHEMATICAL VS. INFORMATIONAL GRAPH 
THEORV [4, 35, 39] 

vertex (apex, in Russ., 
BepmHHa [39]), v 

set of vertices, V 
vertex connection 

(rib, pe6po) u: 
are, loop, link [39] 

set of ribs, U . 
edge, unordered pair 

e = {wi,U2}, or 
ordered pair («1,^2) 

set of edges, E 
(incidence function) 

path (route, uent) 
V1U1V2U2 . . . U „ _ i U „ 

operand, operand point, ^ 

system of operands, $^ 
operator, operator arrow, 

marked by |= or by an 
operator particularization 

list of operator markers 
basic transition, ^ \= TJ, 
with binary operator 

system of basic transitions 

informational route, path, 
formula scheme 

Informational space shall mean a non-empty formula 
system which possesses some type of informational 
structure (and organization), e.g. metaphysicalism, 
meaning, informational vector, informational metric 
(in the form of informational distance) and/or infor­
mational topology. "VVithin such a possible structure, 
the elements in an informational space will be called 
formulas or points ($y,$j)=^) and, in a special čase 
($j), operands. 

3 Systeins and Subsystenis of 
Informational Formulas 

3.1 Informationally Linked Formulas 
in a System 

Informational linkage of formulas in a formula sys-
tem deserves a special attention and theoretical treat-
ment, The consequence of formula linkages via com-
mon operands makes the difference between formulas 
of a system on one side, and between the elements of 
a set on the other one. 

DEFINITION 1 If in informational formulas (fii and 1^2 
a common operand a appears, that is, ipil- •• , a , . . . J 
and (̂ 2 L- • • ! ô ! • • • J / respectively, notation 

(fii <~̂  (p2 or, simply, (fi *^^ (p2 

will be used and read as formula ip\ informs formula (/?2 
via operand a or, simply, formula ^pi is informationally 
linked to formula ip2- This operation is informationally 
symmetric. Thus, 

{ipi * ^ (P2) ^ ((/32 *-^ </3i) 

Transitivity of operator <^̂  can exist in the following 
way: if a is common to </?i and (p2, and /3 is common 
to ip2 and <p3, that is, 

y)i [... , a , . . . J, ¥32 L- • • . a, /?, • • • J and 9?3 [... , / 3 , . . . J, 

then ifi is linked informationally with (^3. Formally, 

(((/3l <^ ip2) Ai'P2 < ^ Vs)) {tpi <~v̂  (^3) 

Operator A denotes informational conjunction (in fact, 
the operator of parallel informing, \\=, or, usually, 
semicolon ';' [30]) and operator => informational im-
plication [30]. D 

'̂ It is to stress that a notation (p[ai,a2,. • • ,an j means in­
formational operands Q I , Q 2 On occurring in formula (p, and 
does not represent the so-called functional form, that is, infor­
mational Being-of [29] in the form 1^(01,02,... ,an). Evidently, 
ip{ai,a2,--. ,an) => «^["1102 »n j . 
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Further, there can exist more than one common 
operand, e.g., ai,aj,ak • • • , ctm in <{>i and (/?2 in a tran-
sitive manner. In this čase, 

) -

Vi ^i ' ; \ 
Vi' * ^ v^j'; 

<Pj' •'"^ ¥'*;'; 

Cim 

\ fV *-^ V2 / 

Transitivity of operator <~̂  applies also to the čase 
of more than one common operator through several 
formulas, and it can be defined from čase to čase. 

Because common operands concern informing be-
tween formulas, the implication in the last definition 
can be expressed by means of a parallel system 

V2 

V2\ (<pi <w» y,3) 

Another significant feature follows from the last defi­
nition: 

THEOREM 1 Let the linkages in a circular manner 

ipl <~^ yj2; 
ip2 «~^ (^3, 

</'m-l <~^ Vm, 

he given. Then, 

V i ) V 2 , - • • ,<fm <~^ V l ) V 2 , - - • , V m 

This feature is called the reflexivity of a circular infor-
mational linkage of formulas within (in the framemork 
of) a formula system. D 

P R O O F 1 We have to prove that 

{'Pl,'P2,--- ,<Pm <~^ V 1 . V 2 , - - - ,'Pm) = > (Vi <^ 'Pj)', 
i,j e {1 ,2 , . . . ,m} 

Within this conditionality also 

(Pi*^(fii; i 6 {1 ,2 , . . . ,m} 

holds in a transitive (consequently multiple-linkage) 
manner. 

Another evident meaning of the theorem result is 

tpi <~-> ipi,ip2,... ,ipm for alH € {1,2 , . . . ,m} 

It means that cpi is informationally linked to each of 
ipi,(fi2,--- jfm, including to itself (informational cir-
cularity). This proves the theorem. D 

3.2 Formula Systems 
In informational theory, a system of informational for­
mulas corresponds to the notion of a set of elements 
in mathematics. A fundamental concept of informa­
tional theory is that of the system (short for the system 
of informational formulas). 

DEFINITION 2 Intuitively, a system is a well-defined 
list of informationally well-formed formulas (separated 
by semicolons). 

Formulas consist of operands, (binary) operators, 
and parenthesis pairs. 

In a system, formulas inform in parallel to each 
other. In a proper system, formulas are information-
ally linked via common operands, directly or indirectly 
(transitively), in such a way that each formula is, to 
some extent, informationally linked with each other 
formula of the system. 

In an improper system, some formulas are informa-
tionally isolated. 

Informationally, only proper systems appear (in­
form) to be reasonable. Isolated formulas inform per 
se, beyond the informational context of other formulas 
or subsystems of formulas in a system. For the rest 
of the system, such formulas are unobservable and do 
not observe informationally other formulas or formula 
subsystems. D 

The union of two systems $ i and $2, denoted by 
$1 U $2, means the system 

( $ 1 U # 2 ) ^ \<p\ {^ £ ^ 1 ) V ( v g ^ 2 ) 

\ system classifier 

The union classifier can be expressed also as 

((<^ S $ 1 ) V (v? e $2)) 
ip e $2 

which represents the so-called alternative system, us-
ing comma instead of semicolon between formulas [35]. 

The intersection of two systems #1 and #2, denoted 
by $1 n $2, means the system 

(#1 n #2) . ( . ve *i; 
(^ € # 2 

If systems $1 and #2 do not have any formulas in 
common, $1 n $2 ^ 0; they are said to be disjoint 
systems. 

The relative complement of asystem $1 with respect 
to a system $, denoted by C*#i, or the difference of 
$ and #1, denoted by $ \ $1, is the system 

$ \ $1 ;=i ((^ |(V? € $) V ((^ ^ $1)) 

The complement of a system $ i , denoted by C#i, is 
the system 

C $ i ^ ( ( p | ( ( / p € T ) v ( ( p ^ $ i ) ) 
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where T functions as a universal system. Evidently, 
C$i ^ (T \ $ i ) . Usually, in a complex čase, the for­
mula system $ has the role of the currently universal 
system to which its subsystems can be compared.^ 

4 Topological Informational 
Spaces 

4.1 Definitions 
4.1.1 Open Systems 

DEFINITION 3 Let $ mark a reasonahle^ non-empty 
system of informational formulas. A class^° (short far 
informational class) O of subsystems o / $ , D C ^L$J, 
is a topology on^ iff D satisfies the following axioms: 

( T I ) The union of any numher of systems in O be-
longs to O. 

(Tn) The intersection of any two systems in D he-
longs to D. 

(Tni) Systems $ and 0 helong to O. 

The systems of O are then called D-open systems, or 
simply open systems, and $ together with D, i.e. the 
informational pair (# ,D), is called the topological in­
formational space. D 

As we see, a topological space is defined as an ordered 
pair between the carrier # and its topology O. 

Let us formulate Def. 3 in another way to get a dif-
ferent experience of the meaning of an informational 
topology. Topology can be determined by the follow-
ing four steps too: 

l'' A basic system $ of formulas (fi,(p2, • •. , (fm sx-
ists. 

2° There exists a type characteristics^^ D 6 ^L^L^JJ-
3° The first axiom is: 

For each system D', the informational implication 

(D' e D) = ^ ( [ U E J e D J and $ € D hold. 

4° The second axiom is: 
For each Ei and each E2, the informational impli­
cation (Si 6 D; E2 e D) = ^ ((Ei n S2) £ D) 
holds. 

Such a structure family is called the topological struc-
ture, and the relation E E D can be expressed verbally 
as: system S is open in topology D}^ 

®A complex system is, for example, that of informational con-
sciousness, in which several complex subsystenns are imbedded. 
Hovvever, i t does not mean that, in a specific čase, a subsystem 
appears as a kind of universal to which its subsystems can be 
system-complenrientally compared. 

^A reasonable system of informational formulas usually concerns 
a concrete, cyclically structured informational graph [32, 35]. 

• ' " A class (family, coilection) of subsystems means a system of 
subsystems. 

^^For more details see [6], p. 246. Evidently, the openness of a 
system concerns its topology. 

ExAMPLE 1 Topologies Deducible from Standardized 
Metaphysicalism. Let the following classes of sub-
systems of the standardized metaphysicalistic system 
[32, 35] VJl ^ {tpi; <p2;.. • iVe) of circular formulas^^ 
be given: 

Di;=±(9Jl;0;(<^6)); 
D2^(fOT;0;((p5;¥'6);(</'6)); 

D4 ^ (9JI; 0; (ipi-, (ps; Ve); i^e)); 
O5 ^ (aJt;0;(i^i;v?2;¥'3;</56);(</'4;<y25;</'6);(</'6)) 

For O3, the union 

does not belong to O3. Evidently, D3 is not a topology 
of«H. D 

Formulas of a topological informational space are of-
ten called points. System $, in which a topology is 
defined, is said to be the carrier of the topological 
space ( $ , 0 ) . System $ can be the carrier of more 
than one topological space. Thus, a system of differ-
ent topological spaces for # is, for instance, 

/ ( * , O i ) ; \ 

{^,02); 
($ , (Di ;D2; . . . ;0„));=± . 

ExAMPLE 2 The carrier of a topological informational 
space can be expressed in different ways, with different 
structural and organizational^'' consequences. Con-
ceptualizing an IS, at the first glance, usually, a system 
of serial and serially circular informational formulas is 
determined. According to [35], p. 114, such a system 
includes serial formulas of the type^^ 

>_, [a,au- ••,an\;l<i<N^;N,= ^C^) 

^^In this čase, the follovving is meant: 
- ipi, ip2, and 1̂33 mark the short loops ((. = 2) of informing, 

counterinforming and embedding, respectively; 

- 1̂ 4 and ipi denote the midle-size loops {I — 4) for informing-
counterinforming and counterinforming-embedding, respec-
tively; and 

- (p4 represents the long loop (i = 7). 

^^Informational organization always concerns the substantial, se-
mantic, meaning-like structure, the cholce of entities and their de-
composition, the reasonable setting of parenthesis pairs (parenthe-
sizing), operational connections and informational loops, particular-
ization of informational operators, system parallelization (introduc-
tion of parallel interpretive, detailing, explaining, complementary 
formulas and systems), etc. It concerns the significance, distin-
guishability, and specificity of a concrete structure representing a 
contentional informational čase. 

^^Here, the delimiters [,J are introduced to replace the paren-
theses (, ) when for ip[a\ the occurrence (and not the func-
tional dependence—the informational Being-of [29]) of a in for­
mula (p is meant. Expression iplai, • • • ,an\ is read as formula (p 
with operands o i , • • • , a n , or aiso, formula tp concerning operands 
Q i , • • • ,an. The idea to introduce this sort of parentheses (floor 
parentheses) comes from Bourbaki [5, 6] vvhere the vertical snake-
form parentheses are used (not available in |ATEX2g). 
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and circular serial formulas of the type 
n + l O I ,Q„J; l < i < i V _ N^ = 1 t2n+2\ 

n+2 \ n+1 / 

where n applies for difFerent lengths of formulas en-
tering into the system. Thus, this kind of the system 
includes the last two types of formulas. 

Another possibility is to express the system in the 
form of primitive informational parallelism, corre-
sponding to the expression of an informational graph 
(for example, in [32, 35]). Such a system is obtained 
by the parallelization (in fact, reduction of formulas 
into primitive informational transitions [33]) of serial 
and circular serial formulas given previously. Paral­
lelization is denoted by 

n'L"v'_ L«,«!,--- ,Q;„_I,Q:„JJ ; 
n+1 0 ' | 

ip La,ai, 
n'[^" .ip^ [ a , a i , - - - ,a„_i ,a„JJ 

for the serial and circular serial čase, respectively. The 
parallel system is obtained by setting ali the occurring 
primitive transitions into the system. As we know, 
such a primitive formula system represents the graph, 
describing ali the possible informational situations of 
a system. 

Different topologies can be constructed and studied 
for both circular serial and circular primitive parallel 
systems. We shall learn the essential differences and 
possibilities for both types of systems. D 

4.1.2 Further Examples and Definitions 

(1) Discrete spaces. Let $ be any formula system. 
The system of ali possible subsystems of system $, 
^ [ $ J , satisfies the axioms for the open systems and 
is, in this sense, the topology in #, called the discrete 
topology on #. If # is topologized by its discrete 
topology, it is called the discrete space. 

(2) Indiscrete spaces. Let $ be any formula sys-
tem. A system (0, #) satisfies the axioms for the 
open systems and is, in this sense, the topology on #, 
called the indiscrete (or trivial) topology in $ . If $ is 
topologized by its indiscrete topology, it is called the 
indiscrete space. 

(3) Basis of a topology. Basis S of a topology 
D in # is such a subsystem of family O (58 C D) 
that each open system it in D (il £ D) is a union of 
some open systems 2lj in *8, that is, M 21 j . Said in 

another way: for each i l e D and each point (formula) 
ip G ̂ , i l , there exists such a system 23 € *8 that 

(̂  e 93; 93 C il 

Open systems of the given basis 58 are called basic 
open systems of space {^,0). 

(4) Subbasis of a topology. Subbasis of a topology O in 
$ consists of finite intersections (intersections of finite 
families) of open systems in 6 in such a way that 
these intersections constitute the basis of topology 
D. Then, for each il G D and each (̂  e il there 
exists a finite number of systems in 6 , for instance, 
233i,... ,2IF„, such that 

ipeiWin...nWn); (2lJin...n2}3„) cil 
Open systems in the given subbasis 6 are called the 
subbasic open systems of space $ . 

It is evident that a topology D of space $ is 
completely determined by the basis or subbasis of D. 

(5) Topological cover. In general, we say that a 
family of systems (BJig/ is a cover of system $ , if 

*c(a,,5.). 
Cover (Ht)jg/ of subsystem * of topological infor­

mational space $ is called open, if aH E^ are open 
systems in $. 

4.1.3 Interior, Exterior, and BoundEiry 
Formulas (Points) 

According to [13, 20), some further definitions could be 
useful also for the purposes of informational topology. 

DEFINITION 4 Let ^ be a subsystem of system a in 
topological space (cr,D). 

(1) A formula tp E. ̂  is called interior formula (point) 
of ^ if (f belongs to an open system ^ £ D con-
tained in $, that is ip E ^ and "̂  C $ , vuhere * 
is open. The system of interior formulas of $ , 
denoted by $ , is called the interior o / $ . 

(2) A formula ip e ^ is called exterior formula (point) 
of ^ if (p belongs to an open system E G O con-
tained in the complement C$, that is (p E.E; E C 
C$, where S is open. The system of extenor for­
mulas of $, denoted by $ , is called the exterior 
of^. 

(3) A formula (p & a is called boundary formula 
(point) of $ if in each neighborhood of ip formulas 
of § and C# occur. The system of ali boundary 
formulas is called the boundary and denoted by 

The situation is presented diagrammatically in Fig. 1. 
For the boundary, there is, evidently, 

^L*J^P\*)u($\#)) 

A SiGNiFiCANT COMMENT A formula system $ is open 
iff each of its formula is an interior formula (point). A 
formula system * is closed iff its complement C* is an 
open formula system. D 
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Figure 1: Diagram presentation of formula system $, 
its interior $ , exterior $, anrf boundarjj /3[$J, ivithin 
a system a, where the complement of $, denoted by 
C$, appears together tuith the complement interior C#, 
exterior C#, anrf boundary /3[C$J ?=i /^L^J-

ExAMPLE 3 The connection of an informational loop 
and to it belonging system, that is, circular formula 
system, with the environment, can be realized by a 
special formula, usually a simple transition formula, 
e.g., aj \= £,ij in Fig. 4. This formula belongs to $,^, 
but is not an interior formula of $< ,̂ that is, of #^ . D 

EXAMPLE 4 Let systems $ ,B , $ form a topological 
space ((($ U J5) U * ) ,D) , as presented in Fig. 2. How 

Figure 2: Graphical presentation of formula system 
a ^ ( # ; B ; ^ ) , uihere each of the subsystems has its 
interior $, B_, Ž , respectively. 

can this system informational graph be interpreted in 
different ways? 

We must clarify more precisely what subsystems, 
marked by $ , 5 , $ , might represent. The aim of the 
graph is to explicate the so-called interior and neigh-
borhood regions of subsystems in respect to informa­
tional formulas in general, their operands, and the so-
called primitive transitions, represented in the form of 
the graph route-'^ 

^^In literature, different names are given to the route. Informa-
tionally, the name informational scheme or, in short, scheme, is 
used. The name edge denotes the edge (representing an operator) 

The route drawn in Fig. 2 runs through the operands 

where 

/ 3 i € $ , 5 and /33 € B, * 

According to Fig. 2, parts of system B function as 
neighborhoods of $ and $ , respectively. System B_ as 
the interior of B is represented by 

5 ^ (J5 \ (($ n JB) U (5 n *))) 

that is, considering both systems # and ^. On the 
other side, the exterior of $, $, could roughly be un-
derstood as the union $ U B and, adequately, ^ as 
* U B. In general, B is the neighborhood system for 
both $ and * . Further, evidently, 

G^^BU^; C * ^ B U $ ; 

etc. This example shows the importance of distin-
guishing the three possible types of topological spaces: 
(1) a space of circular/serial informational formulas of 
arbitrary lengths, $,^; (2) a space of basic transition 
formulas of length 1, ${|=,,; and (3) a space. of simple 
informational operands (formula length 0), #{. • 

Another example shows the questionableness of a 
unique determination of topological structures dealing 
with different types of informational formula systems 

Figure 3: Graphical presentation of formula system 
($ U B) U $ , including a circular path. 

EXAMPLE 5 According to Fig. 3, let formula systems 

of a graph polyhedron, to vvhich a graph can be transformed. Path 
Instead of the graph route sounds aiso adequately. 
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(̂  iff H is a supersystem of an open system * (E D * ) containing 

(($ UB)U * ) ^ ^ 

'«N(6N(/?iN(^2N(/33^ 
N (m N (7 N «)))))); 

v?. Thus, ¥>€*,*; *CE ; E C * 

/aN6;6N/3i ;ANi32; \ 
( ( # u 5 ) u * ) 5 ^ ^ ;-i /J2 Ni33;;33 h m ; ; 

V m l=7;7N"; ••• / 

( ( #UB)U* )« ;= i (a ;6 ; ^ i ; / 02 ; / 33 ;?? i ; 7 ; •••) 

be given, where a e $^ and 7 S 2^ . What is now evi­
dent (or not quite evident) from the topological graph 
in Fig. 3? Can basic transition formula systems be 
determined uniquely, and in which way? 

The problem occurs at basic transitions crossing the 
boundaries of systems $, B and $ . In Fig. 3 such tran­
sitions are ^1 [= /?i, /̂ 3 h '/ii and 7 |= a. Evidently, 
in a strict situation, it would be not possible to ex-
press the basic transition systems rigorously. Thus, 
the compromise notation^'^ 

$j^„;=±(ha; a h 6; 6t=/?i; /3i H i 
B^^^ ^ (H /Si; A \= P2; ^2 \= /931 /33 N); 
*£!=„ ^ (N ^3; /33 N r?i; »?i N 7; 7 N) 

can be accepted, where the transition •j \= a comes 
additionally. Further, 

$5 ^ (a;^;/3i); B^ ^ {^i;p2\Pz)\ *c ^ (^3;r?;7) 

In this situation, Fig. 3 shows (# n *) ^ 0. D 

The last example presents how basic transition for­
mula systems and operand systems derived from gen­
eral formula systems can offer various informational 
interpretations. 

4.1.4 Informational Neighborhood 

Informational neighborhood (neighborhood, for short) 
is both a metaphor and a formalistic structure con-
cerning various possibilities of informational relation-
ships between formulas and formula systems. 

DEFINITION 5 Neighborhood of system H in a topolog­
ical space ($,£)) is called each system which includes 
an open system including S. Neighborhoods of one-
formula system {ip) are said to be also the neighbor­
hoods of formula (p. D 

Let us present the last definition by other words. 

(1) Let tp he a formula (point) of topological space ($ ,0 ) , 

that is, (p 6 $. A subsystem H of $ (H C * ) is a neighborhood of 

'̂̂ The compromise notation is, for example, (= a and 7 |=. Each 
informational operator [= is a binary operator, dependent on both 
operands. If one side of the operator is open, it is meant, that the 
missing operand is not fixed yet. 

Other possible interpretations of the neighbor­
hood definition are the following: 

(2) A system E in a topological space <*,0) is a neighbor­

hood (O-neighborhood) of a point (formula) (p Iff E contains an 

open system * to vvhich ip belongs. 

(3) In a topological space ( * , 0 ) , the neighborhood of the 

point ip e ^ IS called each subsystem E c * , including an open 

system * such that ¥> G * and * C E. Then, the neighborhood 

of subsystem n C * is each subsystem E C * which includes 

an open system * , that is, satisfies fž C * and * C E. Thus, 

¥>£*,*; n . E C ^ ; * C E ; n c * 

Evidently, each neighborhood of system S in $ 
is also a neighborhood of each system * C H and, in 
particular, of each formula in H. In turn, let S be 
the neighborhood of each formula of system $ and 
T be the union of ali open systems included in E; 
then T C 5!, as well as each formula of ^, belong to 
an open system, included in S, that is, to $ C T; 
but T is open according to (Ti); consequently, 3 is 
the neighborhood of system ^. In particular, the 
following comes into the foreground: 

SUPPOSITION 1 That a system is the neighborhood of 
each its formula, it is necessarg and sufficient for it to 
be open}^ D 

Let us mark by O L̂̂ J the system of aH neighbor­
hoods of formula (fi. Systems in 0̂ [v?J possess the fol-
lowing properties: 

(NI) Each subsystem of system $ , including a sys-
tem of^lifj, belongs to ^[(p\. 

(Nii) Intersection of a finite number of systems of 
^[fj belongs to O^LvJ-

(Niii) Formula ip belongs to each system in ^[(p\. 

In fact, these three properties are a direct consequence 
of Def. 5and Ax. (Tu). 

(Niv) For each system N belonging to 0^[vJ, there 
exists a system W belonging to 91 [(p\, such 

^*ln the informational sense, the word "neighborhood" has a 
meaning vvhich points to the informational relationship, proximity, 
similarity, closeness and the like, coming to the surface as a senseful 
informational formula of intuitively clear situations, facts and prop­
erties. In this way, the choice of this term has the advantage to 
make the speech figurative. For instance, Sup. 1 can be expressed 
in the follovving manner: for a system E to be open, it is necessary 
and sufficient that for an arbitrary ip 6 S, ali the formulas being 
sufficiently informationally dose to ip, belong to E. And, in gen­
eral, if a property is true for ali the formulas of a neighborhood 
of formula ip, it is said that this property holds for ali the formu­
las, being sufficiently informationally dose to ip. As we shall learn, 
informational closeness vvill concern, for instance, formulas of an 
entirely circularly connected system, with several loop formulas. 
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that N belongs to 9T[^J for an arbitrary 
rpEW. 

Evidently, considering Sup. 1, it sufifices to take for W 
an arbitrary system, including formula ip, and being 
included in N}^ 

These four properties of system Ot[9jJ are said to be 
the neighborhood characteristics. Thus: 

SUPPOSITION 2 / / to each formula ip of system $, 
a system 7l[(p\ of subsystems of $ corresponds, and 
properties (Ni), (Nu), (Nm) and (Njv) hold, then in 
$ there exists a unique topological structure, for which 
^Ifl serves as a system of ali neighborhoods (p at an 
arbitrary v' € $ . D 

If there exists the required topological structure, then, 
by Sup. 1, as the system of aH open systems of this 
topology necessarily serves the system O of aH those 
systems B in $, for which E 6 Ô Lv̂ J holds for each 
(̂  6 S; this is the reason of a unique topology, if it 
exists. 

4.1.5 Informational Bases and Subbases 

The base 03 of a topological space ( $ , 0 ) is a system 
of formula systems B such that any formula î  of $ 
belonging to subsystem B, B is a subsystem of <5 in 
D. 

DEFINITION 6 A class (system of subsystems) 03 of 
open subsystems of^, in topological space ($ ,D) , is a 
base for the topology D iff (i) every open system 6 € O 
is the union of members of !8. Equivalently, 05 C O 
is a base for O iff (ii) for any formula ip belonging to 
an open system 0, there exists B € S with ip £ B and 
B c<5. D 

Let us examine the base !B as a system of singleton 
systems. 

ExAMPLE 6 Let a topological formula space (#, 3") be 
given. Then the class 03 ;=i {{ip) | tp £ $) of ali single­
ton subsystems of $ is a base for formula topology 5 
on $. Because each system {ip) is g^-open, each S2l C $ 
is 5^-open too. Purthermore, every system is the union 
of singleton systems. Thus, any other class S* of sub-
systems of $ is a base for ^ iS it is a superclass of S , 
that is, <8* D *B. D 

Which are the necessary and sufficient conditions for 
a class of systems to be a base for some informational 
topology? 

THEOREM 2 Let ^ be a system of subsystems of a 
non-empty system $ . Then 03 is a base for topology 
D on ^ iff 

^^This property can be additionally expressed by saying that a 
neighborhood of formula (p is, besides, a neighborhood of aH for-
mulas being sufficiently close to ip. 

(i) $ — \J B and 
Bes 

(ii) for any B,B* £^, BO B* is the union of 
members of systems of *8, or, equivalently, if 
i/J S {B DB*) then there exists B^ 6 S such that 
ipeB^ and B^C{BnB*). D 

Informational subbasis is another notion which could 
become relevant in the topological investigation of in­
formational formula systems. 

DEFINITION 7 In a topological space ( * , 0 ) , a class & 
of open formula subsystems of $ , that is, & C ^, is a 
subbasis for the topology D on ^ iff finite intersections 
of members of © form a base 03 for D. D 

Any class 21 of formula subsystems of a non-empty 
formula system $ is the subbasis for a unique topology 
D on $. Intersections of members of 2t form a base for 
the topology D on $. 

ExAMPLE 7 Let $ ?=i {ipQ]ipi;... ](pe), according to 
the formula system, belonging to the graph in Fig. 4, 
and 21 ^ (((p3;<^4); ((/J4;y5); (i^e))- Finite intersec­
tions of members of 2t gives the base 

^^{{^3\^A)\ {v>i]Vh); (v-e); ('/'4); 0; *) 

By definition, # £ !8 follows, since it is the empty 
intersection of members of 2l-system. Considering 
unions of members of 03 gives the family 

^ ^ ((¥'3;¥'4); (V4;¥'5); (ve); (^4); 0; *; 
(v3;</'4;(/'6); {v>iWh;v6); {vz^i;^^)) 

Formula system D is the topology on $ generated by 
formula system 21. D 

4.1.6 Informational Accumulat ion Point 

Accumulation point (also, limit point) is a well-known 
term in mathematical topology. We need the notion 
of informational accumulation point, for example, as 
a formula or formula system approaching as close as 
possible to the meaning of something. This means that 
the final meaning of something can never be reached, 
although the meaning of something can be expressed 
by a formula system as close as required. 

DEFINITION 8 / / 21 is a subsystem of a formula sys' 
tem $ , formula ep £ ^ is an accumulation point of 21, 
iff every open system & containing ip contains a point 
(formula) of 21 different from (p. There is, 

{(& is open; p € ©) = ^ ((2t n (© \ {(p))) ^ 0) 

The system of accumulation points of 21, marked by 
21', is called the derived system of system 21. • D 

It usually happens that an accumulation point is in-
formationally inexpressible, although a formula system 
as a point comes close and closest to the accumulation 
point. 



296 Informatica 22 (1998) 287-308 A.P. Železnikeir 

4.1.7 Informational Connectedness and 
Compactedness 

Most of topological investigation concerns certain 
topological properties as connectedness and compact­
edness. Intuitively, the connectedness of an informa­
tional space is a consequence of an adequate operand 
distribution in informational formulas. 

Two formula subsystems 21 and *B of a topological 
space ($,£>) are separated if 21 and ^ are operand 
disjoint and neither contains an accumulation point of 
the other. This means 21̂  n 03^ ^ 0. 

A topological informational space ($ ,0} is discon-
nected iff $ is the union of two open, non-empty, dis­
joint subsystems of formulas, i.e., 

$ ^ (21U S ) ; 21, B € D; 21 n OS ^ 0; 21, <B ^ 0 

DEFINITION 9 An informational graph is said to be 
connected graph if there is a path (informational 
scheme) betuueen every pair of operands in the graph. 
An informational graph is said to be circularly con­
nected graph if there is a circular path (circular infor­
mational scheme) betuieen every pair of operands in 
the graph. O 

A connected graph represents an operand connected 
formula system. How the connected formula systems 
can be recognized topologically? 

Because informational topology deals with formula 
systems, the connectedness can be recognized by the 
properties among formulas of a formula system. Visu-
ally, connectedness can be inspected by a graph, using 
Def. 9. Because a graph is uniquely described by the 
formula system $j|=,, deduced from the original for­
mula system $^, connectedness is determined by the 
adequate transitivity of formulas in the sense 

Ui N 6) A (6 N 6)) ^ 
Ui \= 6) N 6) v (?i N (6 \= 6)) 

If (pi,<Pj G ^^, formulas ^pt and tpj are connected iff 
there exists an operand C such that 

This means that operand systems # | ' and $^% de-
rived from formulas cpi and ipj, respectively, have the 
common operand C- This property coincides with the 
concept of informationally linked formulas in a system, 
discussed in Sect. 3.1. 

The concept of cover [Sect. 4.1.2/(5)] is needed in 
the definition of compactedness in the following sense. 

DEFINITION 10 A subsystem $ of informational topo­
logical space ( $ , 0 ) is compact if every open cover of 
$ is reducible to a finite cover. D 

In another topological interpretation, if 9 is com­
pact and * C (Ute/ •='t)' where Ei are open formula 
systems, then it is possible to select a finite num-
ber of the open systems, say E n , . . . , 2^^ , so that 
* C ( E , , U . . . U 5 , „ ) . 

4.2 Topologies Concerning Meaning 

Let us present a direct generalization of the informa­
tional topology used in concern with the phenomenon 
of meaning^" fi, for instance, as it can emerge within 
the various forms of understanding, interpretation, 
conceptualization, perception, consciousness, and the 
like. 

DEFINITION 11 Let ^ be a system of formulas, and 
assume that there exists a meaning formula tJ-[<f,tp\ 
on pairs of formulas ^p,%j} £ <^ satisfying the follouiing 
conditions: 

2. /i[<^, •̂ J 1= IJL\}P\ if and only if (/? ̂  ij); 
3. ML¥'>^J \=f^[ip,¥>\; 
4- (ML¥',V'J 1= MLV' ,WJ) 1= /u[< ,̂u;J 

(the informational transitional consequence) 

We say that ^ is a meaning space with meaning fj,, or 
with meaning difference /i. D 

Condition 1 says that system /i[(/9,V'J does not inform 
to be empty. Thus, this condition has also the mean­
ing fJ,[^p,^p\ ^ 0. Condition 2 says that meaning con­
cerning operands ip and V informs to be /i[<^J only 
and only if </? is the same operand as ij). In this čase, 
also ij,[ip,ip\ ^ fj,[ip\. By Condition 3, since meaning 
concerning two operands, fi[ip, ̂ J , is a meaning differ­
ence between tp and ip, such a difference informs to be 
lilil),ip\. Thus,/^[(/3, V'J ^ M L ^ ) < / ' J - It can certainly be 
introduced a difference between the symmetrical cases 
by the distinguishing/i[(p, i/jj ^ (j,[tp,(fi\. Such a con­
dition would ruin the traditional convenience of space 
metrication. 

Meaning of something as an informational phe­
nomenon follows the possibilities of informational de-
composition and, in this sense, offers various possi­
bilities for the play with meaning topologies in infor­
mational spaces. The diversity of decomposition is 
pointed out, for instance, by Haney [15], using the 
term deconstruction^^. Meaning as informational de­
composition makes an informational space a contin-
uum, in which topological notions of open systems, 

^"Informationallv, meaning replaces the so-called metric in math-
ematics. The metric spaces (introduced by Fržchet in 1906 [12]) 
are based on the concept of distance [25]. Usually, a metric can 
be introduced in real numbers and in other kinds of mathematical 
spaces (e.g., in Hilbert space). A metric provides an easy way to 
define a topology in a metric space. To the topologist, the partic-
ular metric used on a space is merely a convenient way to define 
open sets [16]. 

^^In Haney [15], the following is stated: . . . it would be an over-
generalization to say, as the tendency is in 'American deconstruc-
tion', that ali meaning is indeterminate, ali presence illusory, ali 
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interior, exterior, boundary, neighborhood, accumu-
lation point, etc. become reasonable for a formalis-
tic and artificial construction (composition) of formula 
systems. 

4.3 Topologies Concerning Distrib­
uted (Parallel) Systems 

DEFINITION 12 (Distributed System) A parallel infor-
mational space S) with operands (points, a kind of vec-
tors) S being distributed by their components (point co-
ordinates) ^ i , . . . , ̂ ^ is called the distributed informa-
tional space or 1)-space if: 

1. A rule is given by which to each pair of points 
S, e of space S) the parallelism {S; e) corre-
sponds. 

2. This rule satisfies the following conditions: 
a) {e; 6) ^ {S; e) (displacement tatu); 
h) (5;et=C)^P;e)t=('S;0) 

(distributive law); 
c) {iJ,5; e) ^ fi{S; e) for an arbitrarg 

functional operand fi; 
d) (6,6) \jt%for5^fh and [5,6] -HjforS^H). 

By axioms h) and c) the general formula 

(yj[^i(5i,... ,Hk5k\]ip[viei,... ,i'mem\) ^ 

a;[/xiz/i(5i;ei),/xiJ/2(^i;e2),-.. ,Pi^'m(^i;em), 

. . . , 
Mfc'^i(^fc;£i)i/^fcJ'2(4;e2), • • • ,/ijti^m(^*;em)J 

is obtained which holds for arbitrary vectors 5\, . . . , 
8k, ei, ••• , Em o,nd arbitrary meanings yui, . . . , /ifc, 
J/l, . . . , i/„. D 

To explicate the vector nature of points (formulas 
and/or formula systems) in a distributed informational 
space S), let us introduce the vector notation (of the 
basic degree) of points in the form \\6) [32, 38]. The 
question is which formula components constitute the 
informational vector \\6)7 Evidently, the structure of 
an informational vector is not as simple as in a math-
ematical vector space. Let us discuss several formula 
notations constituting a vector. 

The basic constituent is obviously the system of aH 
simple operands appearing in a formula system 6 and 
being denoted by 

^5° SI) • • • 1 Snj J ^~ I f 1' • • • ' Srij J 

theme of intention irrelevant, ali reference a fiction, etc. (see At-
tridge [1] p. 12). That a text for Derrida, especially a literary text, 
is always situated, read and re-read in a specific plače and times 
makes it 'iterable' or repeatable, the same but always different, and 
therefore never reducible to an abstraction by theoretical contem-
plation (Derrida [11] pp. 172-97). A text is unigue and repeatable, 
concrete and abstract simultaneously. This coexistence lies in the 
heart of deconstruction and reflects the connectedness of the sub-
ject and object in the experience of the self as pure consciousness. 

Besides, parallel components ^f,... ,^* can appear 
and be distributed within different kinds of formulas, 
or even form a serial or circular serial formula as a 
whole, that is 

respectively. Vector \\5) corresponding to system S is 
determined by 

/ 

l l<5) [̂ 1̂  
'<r[^f^ 

The structure of vector \\6) needs to be additionally 
explained. What does such a vector include and in 
which sense the difference between the mathematical 
and informational vector comes to the surface? 

First, let us list aH the components of vector \\6) in 
concern to the origin system S. System S is simply a 
parallel system of serial and/or circular serial formulas. 
But, in fact, this list is in no way a complete one in 
regard to the complex parallelism hidden in particular 
formulas of 5. The reader should remind the axiomatic 
approach of the informational where the fundamental 
axiom is expressed by the implication 

(«N/3) 

If this rule is recursively applied to a serial 
or circular serial formula .(fi_^[a,ai,-• • ,anj or 
" . (/? [Q!,QI,-• • ,Q:„J, respectively, then, evidently, 
the application of the last axiom delivers ali the sub-
formulas appearing in a serial and/or circular serial 
formula, that is, in the serial čase, 

"<P_U,Cl>--- ,^nj = > 

/ ^ L e . a , . . -
y;[uu.. 

- » s - ( " - i ) * l t C 

V "¥'^L^>6,--

and in the circular serial čase. 

/ " * < L ? , 6 , . . 
y*i^.ci,-

y\^,^u-
"+1 0 1 . . 

,^nl; \ 
^snJ j 

• • ^ SnJ j 

•,U1 J 

•,^nl;\ 

• > s n j i 

• > snJ i 

•••,^n\J 
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where the asterisked markers .6 ,... ,7<5 " , .5" 
denote the systems of serial subformulas of lengths 
1, . . . ,n — l,n conditionally in respect to operands 
^ i ^ i j ' " j ^ n in floor parentheses. Namely, a sys-
tem '*6 [̂ , ^ 1 , . . . , ^n\ includes only and only such 
basic transitions of the form ai \= Oj {i — 1) which 
appear in formula ,.<̂ _̂  L^,^i, • • • ,^nj or formula 
" i V L̂> ^1 > • • • ) ^nj (as a whole), respectively. Similar 
concerns lengths (. up to value n o r n + 1, respectively. 

A short analysis shows that in the serial and circular 
serial čase the number of aH possible subformulas of a 
given length can be evaluated by simple formulas. Let 
ž̂ î̂  mark the length of a subformula in a serial formula 
with the length £_. Then, evidently, the number of 
such subformulas in a formula is 

n , = 
8 u b 

if ^_ is even 

if i^ is odd 

In a circular čase there is 

= < 
if L IS even 

fazi if L^ is odd 

system, each operand in at least one circular formula. 
The third system, ${|=,j, is the representative of ali 
possible situations occurring by ali possible parenthesis 
pairs displacements within the constructed (analyzed 
and synthesized) system. D 

As said, the originally conceptualized system (ob-
tained by the top-down or bottom-up approach or from 
both of them) is ^^. Thus, the remaining two systems, 
$4 and $̂ t='?> evidently emerge from $^, that is, 

$ . $f and ^^ $ i\=r, 

where —> denotes the corresponding derivation ap­
proach. On this basis, three different topologies can be 
determined, as formula, operand and basic-transition 
topology, respectively. $^ —>• $£}=,, is the formal rep­
resentative of the corresponding informational graph 
[35]. 

Now, let us show, how different topologies can be 
defined on #,^, $5 and $4t=»? ^^ ^ concrete čase, and 
how aH they mirror one and the same informational 
graph, with different possibilities in regard to various 
parenthesis displacements in formulas of the system. 
As an example we choose the metaphysicalistic čase. 

5 Variants of Informational 
Topologies 

A topology D depends on the carrier system $, that 
is, on the characteristic forms of its formulas. Which 
kinds of formulas in $ can be distinguished? 

The most usual system of formulas is composed of 
different serial and circular-serial formulas. These for­
mulas emerge during the analysis of an informational 
čase, usually in a kind of top-down and bottom-up de-
composition of an initial (top) marker or an end (bot-
tom) marker, carrying implicitly a yet-not-determined 
concept, proceeding stepwise into a more detail of the 
čase—a progressive čase decomposition from different 
points of view. This approach seems to be the most 
natural one, seen from the human point of conscious-
ness. Just after of such a čase Identification more ab-
stract and convenient approach with possibilities can 
be considered. 

DEFINITION 13 The constructed system of formulas, 
$, can take the foUowing characteristic forms: 

* v — (¥'L---'^i---J; ¥'L---6---J; •••; vl--U---\y, 
*e ^ (Ci; 6 ; ••• ; ^n;)U$[Ci|implicitoperandsJ; 

*5^„ ^ (6 \= 6 ; 6 N 6 ; • • • ; ^n-i N U) u 
$[^j \= ^j|implicit basic transitionsj 

The first system, $^, is an authentic, intuitively con­
structed representation of a real čase. The second sys-
tem, #5, is strictly expressed by ali the occurring sys-
tem operands as the title operands of a circular formula 

5.1 Topologies of a Simple 
Metaphysicalism 

Simple metaphysicalism is a basic scheme of informa­
tional invariance which can be further decomposed in 
greater details during Identification of the involved en-
tities, that is, a formula expressed in the metaphysi-
calistic form. Thus, the graph in Fig. 4 can be un-
derstood as a conseguence of the circular metaphys-

icalistic formula system ^.^^V^ij^^^il • Subscript j 

concerns the formula system component ^.vj[£,ij,cij\ 
of system $^, e.g., j = 1,2,... ,n. Subscript i con­
cerns the operand component £,i of metaphysicalistic 
formula system fcV^L^ji^jJ € ^ v Subscript kj con­
cerns the parenthesis-pair combination 1 <kj < n^^^^ . 
of the formula subsystem system fc.¥'_LC^j^Q:jJ^ with 

altogether n Vi J Uj+1 
Jii_ mu CS) possibihties, considering 

serial (input) and circular serial formulas of a system 
of formula systems, where £ij denotes the length of the 
formula in a formula subsystem. 

5.1.1 Topologies on the circular formula 
system. ^.ip'^[^ij,aj\ 

According to the graph in Fig. 4, one of the possible 
formula systems can be constructed (reconstructed). 
Let it be the consequent observing type of metaphysi-
calism for which the extreme left-parenthesis heaping 
is characteristic, that is, kj = 1. In this čase, the graph 
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Figure 4: The graph representing the basic metaphrjsicalism of a formula system », .<P_,L ĵj, Q:_,J € $,p component 
^ij, impacted by something (interior and/or exterior) aj. 

is interpreted by the one of possible formula systems, 
that is, 

/ " j 1= ^ij; M \ 

(0) According to the preceding notation, there is $^ 
^ i¥'_^L^y, a j j . To be more transparent, let us replace 
this system by the abbreviated one, in the form 

Vi; 
V2\ 

representing the input transition formula and the six 
circular formulas, respectively. Which kind of topolo-
gies on ^^ can then be defined in a meaningful way? 

(1) Let topology Dy,,i, if possible, maintain the mean-
ing of the original formula system $,^ in respect to the 
graph in Fig. 4. Let the meaningful condition be 

ivi), M, im), iv^i), iv^s), i<P6) 6 D ,̂i 

by which aH of the loops and the input transition enter 
the topology. What are the consequences of such a 
choice? First, the mutual intersections of formulas are 
empty systems, that is, 

((/jp n v?,) ^ 0; p 7̂  g; p, g = 0 , 1 , . . . , 6 

However, aH the possible unions of formulas ifo, Vi, 
V2, VSJ '/'4) ¥'51 Ve must enter D,^,i. This condition 

delivers together with 0 and $,^ a topology which is 
the power system of #^, ^ ["^^J, called the discrete 
topology D^p.i (see Sect. 4.1.2). The precept of this 
example is that for ali formulas ip € $,p, (v) S D^ 
implies that D^p is ^ [#(^J. 

(2) A look to the graph in Fig. 4 brings to the surface 
another logic of topological understanding. Let us take 
the main loop ĉ i and one of the subloops, say 1̂ 2-
In this čase, further subsystems of topology 0^^2 are 
{<Pi), {f2), and {'Pi;ip2)- Thus, 

/0; \ 
0^,2 ^ (</'2); 

{vi;v2); 
) 

One sees that this type of topology emerges indepen-
dently on the chosen subloop. In čase of two chosen 
subloops, say <~p2 and iy?3, the topology becomes 

/ 0 ; ((^1); {ip2)\ iVs); 
0^,3^ i'Pi;V2); iviivs); ('̂ 2;v3); 

\i'Pi;<f2;v3;); * v 

Let $^ include n^ formulas, tpi,. 
topology D^,i, imphcation 

,(pn^. Then, for a 

( n o , , ) = 2̂  + 1) 

holds. Here, H O , , marks the number (cardinality) of 
subsystems in D^^i. 

(3) Other senseful topologies could consider specific 
situations in respect to the graph in Fig. 4. In con-
structing a topology, one can proceed from the other 
topological side, taking subsystems with more than 
one formula. Certainly, any other topology D^ on sys-
tem $^, is merely a subsystem of ^ [$<^J. 

If the formula subsystems {'Pojfi>'P2','Ps) and 
{(fi;ips; (fe) (the split of system #,^) are joined to 
(0;$^), no further subsystems are necessary for the 
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topology (0; {(po\V>i\V2;^i)\ {v>i;V&\^&)\ *v)- Fur-
ther, a characteristic impHcation is, for instance, 

((</52;v4);(¥'3;¥'5);(¥'6) e O^) 

'7(¥'2;(/'3;9'4;¥'5;v'6);\ 

(¥'2;¥'4;<^6); 
\V(<y53; Vsilile) 

e£). 

/ / 

The initial intention (premise of the implication) is to 
cover explicitly both subloops for 3i_.. by tp^ and ipA, 
respectively, and both subloops for (Ŝ ,.̂ . by ^pz and (/35, 
respectively, including the covering of the main loop ^ 
by (^1- Ali these loops are implicitly covered by $,,. 

5.1.2 Topologies on the system of operands 
of the circular formula system 

Any system operand as such (as an entity) can explic-
itly be extracted (expressed) by means of the other 
operands (including itself) of the system. There-
fore, one can imagine the operand system as the one 
in which operands are representatives of their for­
mula systems, that is, specific formula system mark-
ers. For instance, instead of the circular formula 
Vi € l¥'_LCij^"jJI we can put explicitly. 

^ i i 

etc. Thus, £,ij marks a formula of the kind 

In this sense, an operand system does not differ 
substantially from the formula system discussed in 
Sect. 5.1.1. The difference is that instead of formulas, 
the operands structuring them, come into the fore-
ground. Thus, the basic system for the čase in Fig. 4 
is 

Viij ) 

In this situation, additionally, different operand roles 
can be explicated by means of different topologies. Ac-
cording to Fig. 4, some particularities can be stressed 
which do not proceed directly from the graph. For 
instance, topologically, a certain informational impact 
can be expressed between operands being not directly 
connected, for instance between 3 ;̂̂ . and C^jj, that 
is, the impacting of informing onto embedding. This 

means, Oin^^ia) € ^i^- Such a topological condi-
tion could lead to the request that 3̂ ,.̂ . and C .̂̂  must 
be explicitly expressed, for instance, applying the rota-
tion principle of operands in the main loop, and then 
searching, how 3 ;̂̂ . depends informationally on £ .̂̂ ., 
and vice versa. Namely, in a loop, cause and its con-
sequence depend on each other. 

In čase of an operand topology, operands must be 
expressed explicitly, anyhow. The principle of operand 
rotation must be applied for operands which do not 
function as the main operands, that is, for 3 ,̂.̂ ., \^^-, 
<^«ii' Ha-- €€o-,andcf,.. 

Besides, ali the loops in the graph must be cov­
ered consequently. The rotation principle is one of 
the possibilities on this way. Let us rotate the embed­
ding operand tf^^., considering system ^_X^ij-,OLj\, and 
looking into the graph in Fig. 4. The result is, from 
the consequent observational point of view, 

/((((((e«.-, N in) N %i) N i«J N ̂ i.d N [̂ '1̂  \ 

One can recognize how the rotation principle brings 
a new understanding of the metaphysicalistic system 
when new formula systems for metaphysicalistically in-
terior operands come into consideration, complexing 
the system as a whole by detailing the before hidden 
additional possibilities of the interior operands. The 
last formula system is in its first part ([<pi]°, [1̂ 3]° j and 
[(̂ 6]°) informationally different to the adequate part of 

The topological concept concerning operand system 
^iij requests a more complex system in regard to the 
initial ^ L^ijjOjJ- Substantially, the graph in Fig. 4 
must be covered systematically irrespective of the op­
erator rotation to the title (the leftmost) position of a 
circular formula. 

5.1.3 Topologies on systein of basic 
transitions of the circular formula 
sys tem ^.^^l^iij.OLj] 

Finally we come to the most significant and attractive 
form of topology determined on the system of basic 
transitions, that is, on basic serial formulas with the 
length i=\ (e.g., of the form a |= /3). Why such a for­
mula system could be of the primary interest, and why 
topologies on this formula system are informationally 
significant to a substantial extent? 

To come into the course of the relevant discussion 
we have to remind on the informational equivalence 
existing between the so-called informational graph [35] 
and the corresponding parallel system of basic transi­
tions. For instance, parallelizing a serial or circular 
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Figure 5: The graph representing the basic metaphysicalism of Fig. 4 in respect to primitive transitions i, Ai, 
A 2 , A 3 , A 4 , A 5 , A g , ^ 1 , H2, IJ-3, fJ-4, 1^5, Me-

serial formula means to decompose it into elementary 
transitions. Parallelization of a lengthy formula occurs 
by the following steps: 

1. within a formula ip, ali parenthesis pairs are omit-
ted; what remains is called the route, sometimes 
scheme, or also framed scheme [37] (in Russian, 
Mapmpym, in [39], p. 85); 

2. from the route, the system of basic transitions 
is constructed, moving from the left to the right 
along the route, building basic transition formu-
las by taking the two operands, connected by the 
operator between them in the route. 

We see how the obtained paralleled system differs in-
formationalIy from the original formula. The substan-
tial difference occurs in the domain of informational 
operators. In a lengthy formula, an operator can con-
nect two arbitrary subformulas which are not simple 
operands. However, an informational operator (a bi-
nary operator in any čase) is always a product of its 
left and its right operand. Therefore the route must 
be understood as a frame scheme which only fixes the 
position of an operator (in the formula and then in 
the route), but does not definitely determine the sub-
ject of a concrete operator. This is the priče which 
must be paid in any čase of a formula reduction (in 
this čase, in fact, generalization) where a concrete for­
mula serves only as a sort of syntactical (structural, 
organizational) template. 

A route ^1 |= 2̂ |= • • • fn-i H ?n is called infor­
mational chain (in Russian t(en6,[39], p. 90) if op­
erators 1= in the route are mutually different. In an 
informational formula, informational operators are ax-
iomatically mutually different. In mathematics, on 
contrary, equally denoted operators in the context 
of a mathematical formula (with a unique meaning, 
unique and firm definition) always represent equal op-
erations. Routes or chains, respectively, are usually 
framed, to distinguish them clearly from formulas. For 
instance, ^1 |= C2 N • • -^n-i [== ^n • Such a notation 
can be useful in cases where informational formulas 
and chains are combined, to enable the expression of 

parts where parenthesizing is let open. A formula with 
framed routes is called framed informational formula. 

The system from which the parallelization proceeds 
is kf^l^iji^j\j where kj can be an arbitrary sub-
script in the interval concerning the formula system 
k -f^l^ij !^j\- Thus, one can take ^(p_^[^ij, aj\ and par-
allelize it according to the rules discussed in the previ-
ous text. Sometimes, the parallelization of i</'̂ L6j> < ĵj 
into the system of primitive transition formulas is 
marked by ^'[i(p_^[^ij,Cij\]- The result is 

and, accordingly to Fig. 4, evidently, 

foij\=^ij; [¥'o]\ 

C^6.Nc?.,;c5,, N ««,,;£€,, Ne«.-,; 

Ha N^y; 
Ha N^c.-,-; [v'2' 

e«.iN«!:«o-; K 
i £ o N % i ; W 

An informational transition formula Ccin appear in the 
system only once. In this way, the last five rows include 
only the remaining feedback transitions. 

(0) Let us introduce the notation ^^\=r, ^ f.. [^ij, »j j • 
For a better transparency, we replace the upper system 
ip [^ij,aj\ by the abbreviated 

^i^n-

(r, 
Ai; A2; A3; A4; A5; Aei^i ; 

)"2; 

/^3; 

/^4; 

Ms; 
\M6 

•H]\ 
[vil 
(vi'] 
[•p'^] 

1'fi'i] 
['p'^] 

K]J 
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Figure 6: The bidirectional graph representing the metaphysicalism of Fig. 5 by considering the primitive onedi-
rectional and counterdirectional transition pairs (Ai,AJ~), (A2,A2"), (A3,A3~), (A4,A4"), (A5,A5"), (A6,Ag~), 

{fj-i,f^t)> {(^2,nt)> (M3,Mr)» (M4,A'r)> (/^5,Mr)> (Me.^r)' 

respectively. The correspondence between transition like 
o' 

formulas in (p [^ij,aj\ and their abbreviated nota-
tions in ${)=,, is evident. Notation t marks the in-
put transition, Ap {p = 1 , . . . ,6) the forward transi­
tion of the main loop, and fig {q = 1,... ,6) the feed-
back transition, corresponding to the graph in Fig. 4. 
The transitional situation is presented in Fig. 5. Sys-
tems [¥'2]>--- '['Pe] ^^^ already reduced by the com­
mon transitions within the main loop [ifi^]. Which 
kinds of senseful topologies can now be defined on 

(1) The basic topological question could concern the 
main loop in Fig. 5. The circular route of this loop is 

6i N 3«,, N ko- N êco- N c?.,- N <£«o- N HU \= ^i: 
To this route, evidently, the subsystem [(fi[], that is, 

(Ai; A2; As; A4; As; Aei/ii) € O^^^^i 

corresponds. If [cp'i] C ${|=i; is the only element be-
sides 0 and $^t=^ which has to enter in D^j^^^i, topol-
ogy 0 |̂=:̂ _i already satisfies the axioms (Ti), (Tu), 
and (Tiii)'. Thus, D^^r,,i ^ {<D;^'{;^i^^). 

(2) Let us study topology 0^[=^,2 in which the basic 
transition systems, covering the loops in Fig. 4, are 
included. Thus, 

(Ai; A2; A3; A4; A5; Ae; //1), 
(A2; A3; A4;/U2), (A4; A5; A6;/i3), 
(A2;M4); (A4;/^5); (A6;/i6) € D |̂=^,2 

This choice of topological subsystems causes the inclu-
sion of further subsystems. By the intersection axiom 
(Tn), there is 

(A2;A3;A4), (A4; A5; Ae), (A2), (A4), (Ae) € Dj|=^,2 

Evidently, these subsystems represent the common 
parts of the loops. By the union axiom (Ti), elements 

( A i ; . . . 

( A i ; . . . 

( A i ; . . . 

( A i ; . . . 
( A i ; . . . 

( A i ; . . . 
( A i ; . . . 

( A i ; . . . 

Ae 
As 
Ae 
Ae 
Ae 
Ae 
Ae 
Ae 

/ i i ; 

Mi; 
Mi; 
Mi; 
M2; 
Mi; 
Mi; 
Mi; 

M2;M3;M4;M5;M6), 

M2;M3;M4;M5)> 

M2;M4;M5;M6), 

Ms; M4; Ms; Me), 
M3;M4;M5;M6)I 

M2;M3;M4), 

M2;M3), 

M2), 

(Ai; . . . ; Ae;/i5;^6) 

etc. must additionally enter topology Dj|=j,,2- Now, 
again axiom (Tu) has to be applied, etc. The number 
of elements in Dj|=,,,2 becomes enormous. 

5.2 Topologies of a Bidirectional 
Metaphysicalisni 

Bidirectionality in informational sense means intro-
ducing a strict counterdirectional path (reverse serial 
or circular serial formula) in regard to the existing path 
(initial formula). In a graph, this situation is evidently 
visible by the occurrence of counterarrows or, in some 
cases, by the operand connection lines with arrows on 
both sides of the line. 

The graph in Fig. 7 represents a conceptually in-
variant shell of the possible bidirectional artificial con-
sciousness. Bidirectionality is ensured in every point 
of the informational structure. Further, the graph can 
be used as a template for any formula system devel-
opment on one side, and as a individual semantic ap-
proach to the choice of vertical components in several 
specific domains of the informational, that is, of the 
conscious individualism, its structure and organization 
on the other side. A suggestion for the choice of ver­
tical components is given in [36, 38]. Thus, vertical 
components can fit best the specific field of research 
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Figure 7: An initial informational shell of the generalized and standardized metaphysicalism of consciousness 
system i (a kind of pure consciousness), ezploring the bidirectional metaphysicalism. 
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in respect to the function in the vertical metaphys-
icalistic scheme. On the other side, chosen vertical 
components can be again metaphysically decomposed 
in the horizontal direction. 

In the framework of consciousness circumstances, 
the stream of consciousness can be forced consciously 
into the opposite direction within informational cy-
cles as shown in Fig. 6. A critical conscious informing 
must investigate its own conscious stream (of inform­
ing, counterinforming, and informational embedding) 
in one and the other direction, changing the causal 
conditions circularly in the opposite direction. In an 
unidirectional graph, each arrow, representing an op­
erator, is replaced by the bidirectional arrow, repre­
senting two operators, the direct and the reverse one. 
Thus, in Fig. 7, a bidirectional arrow -<—«-, marks 
=3=*, meaning two separate and functionally (essen-
tially) different operands. 

Topologically, each concrete čase concerning the 
graph in Fig. 6 can be informationally distinguished, 
foe example, by a definite setting of the parenthesis 
pairs in formulas. As mentioned frequently before, 
the formula system ^^ is the originally conceptualized 
model of a real informational situation. In this sense, 
bidirectionality offers the possibility to investigate a 
loop in one and the opposite direction. For a loop, for 
instance, the principles of the pure observing and the 
pure informing can be applied in one and the opposite 
direction, simultaneously. For the čase in Fig. 6, there 
is, for example. 

(k., NPfJHe«.-)))))); 

(((£c.vt=c«JNe«o)Ne€.,)N£€.,; M 

This is the original (initial) formula system, a conse-
quently observing čase in each system formula, from 
which the graph in Fig. 6 was drawn, consistently fol-
lowing the rule of an arrow and its counterarrow. It 
is clear that according to a specific informational čase, 
the parenthesis pairs can be set adequately (and dif-

ferently), following the realistic circumstances for each 
of the system formula. However, any other setting of 
the parenthesis pairs in the system formulas does not 
change the informational graph in Fig. 6. Maybe, in 
a specific čase, some direct and/or reverse paths can 
even be omitted or left simply void for a later final 
decision. 

(0) Let us denote $ ^ ^^^^ ip_,. Now, for the sake of 
transparency, let be 

representing the input transition formula ipo (bringing 
into the system the exterior object a at point ^jj) and 
the twelve circular formulas. 

(1) To represent the variability of a formula system 
rooting in the possibility of arbitrary parenthesis pairs 
displacements in formulas, we can use the formal ex-
pression of informational schemes (the so-called graph 
routes of graph paths) for Fig. 6, and write the graph 
equivalent scheme in regard to the initial system $ ^ 

. in the form 

/Vo 
Vi 
^2 

^ 3 
ifi 

V>5 
K^Pe 

\ 
<Pt\ 
¥>2'> 

Va"; 
ftl 
vt; 
Ve"/ 

* : 

'^j p sij i 

ĉ coNcfo- N%, Ne«., Nĉ «.-,; 

%iNi«oN^co-; 

[fo] 

[<Pi] 

[ft 

[V2 

[v5 
[V3] 

[¥-3* 

[Vi] 

[vj 
[V5 

[ft 
[V6 

H 

In this formula system scheme, some directed and 
counterdirected paths obtain egual formal expression, 
e.g. [iP4] and [ip^-] , [vs] and [ifi^] , and [vJe] 
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and [ip^] seem to be equal. However, it is to un-
derstand that they originate from different informa-
tional situations and, according to the original cir-
cumstances, they have different operators between the 
equal operands^^. 

(2) An interesting čase occurs in dealing with the 
operand system 

$ : ( " ; Cj 'in' %j ^Z; ^. fc' Ha '^Zi'' ^\ = ) 

concerning the graph in Fig. 6 and with possible 
topologies on this system. 

First, let us explain in which way the bidirectional 
operands ^rr-, J^ • i^.; C^.; c^.; e^,- ê T. are 
formally and explicitly represented. Fig. 6 shows 
how many causal circular paths (loops) pass a certain 
operand. The following correspondence is evident: 

C • 2; a,t- • 6; i^^ • 6; €^^ • 8; 
cf. • 8; ef . • 6; ef. • 6 iti iii < i j 

Operator • reads directly informs the numher of loops. 
How, for instance, operand €7.. is expressed explic-

itly by means of the loops passing it, using the so-called 
operand rotation principle for each of particular loop, 
and the informational path (scheme) form? The ad-
vantage of the path formula is that the setting of the 
parenthesis pairs remains open, and in this čase vari-
ous possibilities of the final setting of parenthesis pairs 
can be considered. Evidently, the following comes out 
from the graph in Fig. 6: 

'iii 

I 

êcu- N kij \= ^iii N ê i N H^J N 

<^i<i\=^iii N^c., \=kii h^ii/, 

<Ĵ€u \=kii N^^cohcc,, Nc^c.,; 
<^iii h^iij N%-; Ne?,, Nê «<,; 

<^i<j Nc«o- He:«^,; 
<^i<j \= cco- N e:?., 

V 

H] 

[fl] 

[vi] 

[ff] 

[vi] 

Ivi] 
[vf] 

[vfl 

^^Operator \= denotes a general informational joker. In two 
cases, the equal transition formulas a f= /3 and Q [= /3 can repre-
sent different transitions. For instance, betvveen two substantives 
different verb forms can be set. It means that in virtually equal for-
mal cases, the intention of a's informing follovvs the first and then 
the second verbal form. Finally, the cases are resolved as being 
different by the particularization of operators. 

The last two paths are virtually equivalent (see the 
footnote ^^). Similar schemata can be obtained from 
the graph in Fig. 6 for the remaining operand systems 

The rule f? ) -'iij ) £ 5 C ) , and 'Z 
for an explicit expression of an operand out of given 
formula system is to collect ali the formulas in which 
the operand occurs and then express these circular for­
mulas, according to the principle of an operand rota­
tion, in a way by which the operand comes to the title 
position (the most left and the most right position in 
a circular formula). 

What can then be said to the topological Outlook 
of the obtained framed operand (in fact, a system of 
informational paths) representing formula a system by 
each of the system path? It is to stress that the graph 
for the formula system scheme €T. (with 8 formula 
paths) is a subgraph of the graph in Fig. 6 (merely the 
local informing and embedding loops are missing). 

In this sense we introduce a new concept of topol-
ogy consisting of informational paths (routes, marked 
by p) instead of informational formulas (p, represent­
ing p ^ r^ . Thus, instead of ^^ we introduce $p or 
$r—n, respectively. Each path (graph route) p repre-

sents potentially j-^^'') formulas if tp is the length of 
the path corresponding formula (number of the ade-
quate formula binary operators). In this way a new 
sort of topological space is introduced, for instance 
pertaining to €T., 

* M " . ^ I ' I " ) . where 

^p'i ^ fll^; [kfi];--- ; [ j ^ ) , and,e.g.. 

Q^UJ 
^ / 9 , 1 

Evidently, $p 

/0; \ 

\^:n) 
.1 ^ Ha • 

J 

(3) One could construct other reasonable topologies 

being subsystems of *p $ -«i j 
p . i . But, the next provok-

ing question concerns a topology of formula systems 
$,p (not just formulas </?) and topologies of topological 
spaces of the form (#,D). 

Let $$^ mark a system of formula systems $y, and 
^($y,Dv) ^ system of topological spaces ($y,D,^), in 
general. Let 

#^ e $*^ and (* e O*^) = > (* C $ $ J 
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This structure delivers a system topological space 

Another concept of topology of topological spaces 
follows the condition 

(#,„Dy) e $($^,o^) and 

delivering a topology topological space of the form 

5.3 Topological Informational Spaces 
Possessing Informational Metrics 

What kinds of informational metrics could come to 
the surface, could be considered, and finally theoret-
ically (constructively) applied in artificial systems of 
consciousness and other cognitive models? Which are 
the possibilities of introducing various kinds of met­
rics concepts—the informationally static^^ and infor-
mationally dynamic^'' ones—into a topologically struc-
tured informational space? 

Severa! candidates come into consideration as mea-
sures of the informational metrics. The properties of 
such measures could be, for instance, meaningness, 
understandingness, interpretativeness, perceptiveness, 
conceptiveness, determinativeness, and sever al others. 
If so, the corresponding decomposition and expres-
siveness of informational measures as entities must be 
available. 

Where could these measures reside within a meta-
physicalistic model? The answer is, anywhere. By the 
principle of operand rotation in a circular formula, any 
loop operand can be rotated to the initial (main) posi­
tion of the loop and, by this, expressed by an adequate 
informational formula in respect to the parenthesis-
pair setting in the formula. Meaning of something 
as an informational measure can usually appear in 
the embedding part of a metaphysicalistic loop. As 
a meaning of something it could represent the infor­
mational value (informational length) of something. In 
a similar manner, the informational distance bet\veen 
two informational operands could be determined, im-
plicitly and explicitly, by a functionally inner and outer 
informational difference, respectively. 

Various concepts of understanding, conception, per-
ception, etc. can serve as special measures of meaning 
(metrics). They can be placed constructively in any 
part of the metaphysicalistic loop and, then, rotated to 

^*By an informationally static metrics, the most common con­
cepts of informing are meant, for instance, that of something's 
meaning. Typical, purely static metrics concerns numerical or any 
other value, distance, or any other geometrical measure. 

^*By informationally dynamic metrics, the individually organized 
informational phenomena are meant, for instance that of an individ-
ual understanding structure, vvhich has something in common with 
the individual structures of others, and vvhich is to some extent 
structured invariantly (standardized) in concern to the meaning or 
understanding. 

the main position of a formula and expressed explicitly 
[32]. This kind of constructive approach must remain 
within the reasonable limits, preserving the common 
logical principles or direction. 

6 Possible Geometry and Topo-
logy of the Informational 

That what will be stressed in this section concerns 
the interpretation possibilities of informational topolo-
gies by means of geometric bodies—their surfaces, in-
tersections, volumes, and arbitrary substructures oc-
curring interiorly, on the surface, and/or exteriorly of 
these bodies. Interpretation ideas can be found in sev-
eral sources dealing with geometry [9, 22, 23, 26, 27]. 
Mathematica [9] seems to be the tool for an adequate 
graphical presentation. 

By such an interpretation of systems of informa­
tional formulas, geometrical bodies become also a 
means for informationally semantic presentation of 
modeled entities. For instance, a sphere—its interior, 
surface and exterior—can be taken as a body of con­
sciousness (or a body of any other informational en-
tity). The surface of the sphere can represent topo-
logically that vvhich is potentially possible to become 
conscious, and a circle on the sphere surface can repre­
sent the currently conscious. Such circles can expand 
as parts of different toruses which intersect with the 
sphere. They can represent different intentional in-
formings within the consciousness activity. 

Further, the interior of the sphere can represent the 
subconscious which can come to the surface. On con-
trary, the exterior of the sphere can be grasped as the 
non-conscious and non-subconscious yet. Thus, a sys-
tem of spheres and toruses intersecting each other can 
built a complex and to some degree globally transpar­
ent model of interacting consciousness systems. 

Such a complex geometrical model can be particu-
larly, that is, additionally, characterized with specific 
topologies, bringing into the modeling system an inter-
action of different topological spaces. In this context, 
both informational topologies and geometrical bodies 
can become a reasonable unit for complex informa­
tional investigation and experiments in the domain of 
the informational, and particularly in the domain of 
the conscious in an informational sense. 

Geometrically interpreted, informational topologi­
cal spaces of informational topological spaces could get 
a transparent view to an arbitrary (recurrent) depth. 
Further, such interpreting geometrical structures can 
bebave variable in any possible aspect, for instance, 
in moving of geometrical body intersections together 
with bodies which can change also dimensions (vol­
umes, radii, sides, surfaces) to follow the dynamic pic-
ture of informational circumstances emerging, chang-
ing, and vanishing. Such problems of informational 
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and consciousness geometry interpretation deserve a 
special attention and will be treated somewhere else. 

7 Conclusion 

We see how the concept of mathematical topology 
comes intuitively close to the informational topology. 
However, the substantial differences occurring between 
them, e.g. the nature of emergence of operands, opera-
tors, and formula systems, have to be stressed over and 
over again. Some of the differences are already recog-
nized from the mathematical-informational dictionary 
in Sect. 2, and other follow from the discussion and 
examples in this paper. It is worth to refresh these 
differences by the following list: 

1. A formula system is obviously a set of interdepen-
dent formulas, irrespective, how it is expressed; 
e.g., by (1) serial circular formulas of different 
lengths, (2) primitive transition formulas, or (3) 
informational operands that are in some way, by 
some specific formula systems given on some other 
places. 

2. Formulas (elements) of an informational formula 
system are directly dependent on each other 
through the common operands. Thus, the change 
of an operand in a given formula changes the same 
operand in an other formula and, thus, changing 
the informing of the other formula. As said, the 
interdependence of formulas as system elements 
is a rule, that is, a consequence of their formal 
linkage through common formula operands. In 
this respect, informational formulas as system el­
ements bebave differently in respect to the ele­
ments of a mathematical set. 

3. A consequence of the preceding item is that el­
ements of a set are meant as a sort of constant 
determined entities, and are in this way repre-
sented as (fixed) set elements. On the other hand, 
formulas as system elements possess their emerg-
ing nature in any respect: in emerging operands 
and operators, in setting of parenthesis pairs in a 
formula, and, most significantly, in expanding or 
contracting a formula by the number of occurring 
operands and operators, that is, in spreading and 
narrowing the meaning power of a formula. 

4. A concrete formula system can also emerge ac-
cording to the circumstances of its informing, for 
instance, by adding the interpretational formulas 
concerning the occurring operands, expressing the 
operand properties by additional (new) formulas. 
On the other side, a concrete mathematical set is 
defined constantly, even its cardinality is infinite. 
The elements of a set are determined by an un-
changeable rule (e.g., predicate) or by a sort of 
concrete or recursive enumeration. 

By informational topology, a complex meaningly 
structured grouping and coupling of formulas concern­
ing substantial informational spaces can formally be 
expressed (implemented), keeping the entire, that is, a 
non-reductional informational nature of involved enti­
ties as they perform in their reality. In this respect, a 
topologized formula system is not a simplified model 
for real informational situations, for instance in the 
domain of cognitive science^^. 

Tangled webs of causal influences are target phe-
nomena in recent biology and cognitive science [10]. 
Such twisted influences include both internal and ex-
ternal factors as well as patterns of reciprocal (also 
bidirectional) interaction. The shell graph in Fig. 7 
is a general scheme for the most pretentious infor­
mational modeling and experimenting, where the so-
called reductionist approach can be entirely circum-
vented. Such an initial informational shell can be used 
as an informing model for any other problems beside 
consciousness (e.g., in philosophy, cognitive science, 
biology, psychology, psychiatry, language, on-line eco-
nomic simulation, e tc , as shown in [32, 37] where ad­
ditional references are listed.). This points evidently 
to the applicability of informational topology with its 
deep intuitive background being appropriate for natu-
ral and artificial modeling of Interactive philosophical 
and scientific problems. 

An evident example of the informational metaphys-
icalism could be the so-called inner speech (taJking to 
oneself) [3]. Such a speech is constituted by the ex-
perienced meaning (informing), emergence of speech 
(counterinforming), and logical articulation (informa­
tional embedding), respectively. But, ali components 
of this sort can emerge in a distributed form across the 
inner speech informing. They can be treated (grasped, 
understood) topologically as certain informational or 
semantical unity through topological grouping by sub-
systems a^ € £)$^, where cr̂  C $ and ($ ,0$^ ) is the 
corresponding topological informational space. 
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