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A system, ®, of different informational formulas, p, can possess various topological structures,
$). By this, topological informational spaces of the form (®,9) can be constructed and the
question arises: How can the topological structures be introduced reasonably for concrete systems

of informational formulas?

A topology causes certain other concepts, e.g., those concerning closed topology, connetedness,
continuum, interior, exterior, neighborhood, basis, subbasis, metric, space, etc. of systems, and
especially the concept of meaning as a kind of the informational accumulation point. The paper
treats topologies of three types of informational formula systems: ®,, ®¢,, and ®¢. An example
of bidirectional consciousness shell is presented enabling a complex engine modeling.

1 Introduction

A basic problem of topology® is to define a general
space. By topology a mathematical concept (struc-
ture, branch) is meant? giving sense to various intu-
itive notions. Topological notions can be innovatively
extended into realm of the informational, realizing one
of the significant features of the so-called informational
space. Such a space can be determined also from other
points of view concerning, for instance, the distribu-
tivity of informational entities (operands)—which can
proceed into different concepts of a vector space. In
general, a more complete theory of informational space
would need concepts of informational subtheories, such
of concerning informational topological space, infor-
mational vector space, and informational graph the-
ory.

Another, mathematically grounded view to the
problem of graph is the so-called topological graph the-
ory [14]. The primitive objective of this theory is to
draw a graph on a surface, so that no two edges (graph

1This paper is a private author's work and no part of it may be
used, reproduced or translated in any manner whatsoever without
written permission except in the case of brief quotations embodied
in critical articles.

2Qtherwisé, topology is a science of position and relation of
bodies in space. This paper concerns at least the following topolog-
ical topics: point system (set) topology (general topology), metric
space (e.g., meaning topology), and graph topology.

arrows representing informational operators) cross, an
intuitive geometric problem that can be solved by
specifying symmetries or combinatorial side-conditions
(surface graph-imbedding). Although potentially in-
teresting for the informational graph theory, this kind
of problem is not in the focus of informational graph
investigation. Informationally, graph is merely a pre-
sentation of formula or formula system potentiality
concerning the setting of the parenthesis pairs (paren-
thesizing®) in a formula or formula system.

Introducing the topology on (over) a system of in-
formational formulas means a challenge of logic—both
the informational and the philosophical one—which
comes close to some known metamathematical prob-
lems [30]. Just imagine a topology in the realm of
mathematical axiomatism where for a set of axioms a
topology of axiomatic statements (e.g., true formulas)
is constructed. Although topology is a general math-
ematical principle in the realm of the set and space
theory, it seems nonobviuously to take it as a set with
topology on the set of formulas.?

In mathematics, topology may be considered as an

3Parenthesizing (in German, Einklammerung) has also the philo-
sophical meaning in phenomenology, for instance, in Husserl [17].

4The author believes too that such an idea reaches beyond the
conventional horizon of a mathematician. However, he believes
that the following discussion will show the appropriateness of such
a trait.
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abstract study of the limit-point concept [16]. Which
factors could dictate the introduction of a topology for
a given system of informational formulas? In informa-
tional cases, different kinds of reasonable topologies,
corresponding intuitive ideas what an understanding,
interpretation, conception, perception and meaning
should be, are coming to the consciousness, that is,
into the modeling foreground.

In set theory, the concept of a set (collection, class,
family, system, aggregate) itself is undefined. Simi-
lar holds for an element z of the set X. The phrases
like is in, belongs to, lies in, etc. are used. In in-
formational theory, topology may be considered as an
abstract study of the concept of meaning [32, 35] (con-
cerning interpretation, understanding, conceptualism,
consciousness, etc. of the informational). Here, mean-
ing of something, of some formula or formula system,
functions as an informational limit point, to which it
is possible to proceed as near as possible by the addi-
tional meaning decomposition of something. The con-
cept of a set is replaced by the concept of a system of
informational formulas or/and informational formula
systems. In this respect, similar notions to those in
mathematics can be used, however, considering the in-
formational character of entities (operands) and their
relations (operators).

Introducing topological concepts in informational
theory, the reader will get the opportunity to experi-
ence what happens if the informational concepts, pri-
ory described by the author (e.g., [31, 32, 33, 34, 35,
36, 37, 38|, to mention some of the available sources)
are thrown into the realm of a topological informa-
tional space. In this view, informational serialism, par-
allelism, circularism, spontaneism, gestaltism, tran-
sitism, organization, graphism, understanding, inter-
pretation, meaning, and consciousness will appear un-
der various topological possibilities, complementing
the already previously presented informational prop-
erties, structure, and organization.

Mathematical topology, as presented for example in
[7, 8, 16, 18, 19, 21, 24, 25], roots firmly in the math-
ematical set theory [3, 6, 20]. In informational theory,
the set is replaced by the concept concerning a system
of informational formulas (system, informational sys-
tem or IS, in short). A system is—said roughly—a set
of informationally (operandly, through or by operands)
connected informational formulas. The question is,
which are the substantial differences occurring be-
tween the mathematical and the informational con-
ceptualism in concern to topological structure?

Elements of a mathematical set are elements deter-
mined by a logical expression (defining formula, rela-
tion, statement) and, for example, by notation of the
form

X ={21,22,... ,Zm}

which presents a concrete structure of the set by its
elements.
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In informational theory, instead of a set, there is a
system of informational formulas being elements of the
system. Formulas are active, emerging, changing, van-
ishing informational entities (by themselves) which can
inform in a spontaneous and circular manner. What
does not change is their informational markers distin-
guishing the entities. Notation of the form

©1;
¢ = 50,2; , Wwhere
o
D192+ Pm ™ P1L, P2, 1 Pm

presents,® in fact, only an instantaneous description
of the parallel system of markers ¢;, by a vertical pre-
sentation, denoting concrete formulas (or formula sys-
tems), and being separated by semicolons. These are
nothing else as a special sort of informational opera-
tors, e.g. |, meaning the parallel informing of for-
mulas of the system ®. Also, there is a substantial
difference between the symbols = and =; the second
one is read as ‘mean(s)’ and denotes meaning and not
the usual equality.

Another notions to be determined informationally
are informational union and informational intersection
of systems. It has to be stressed that formulas in a sys-
tem “behave” in the similar manner as the elements
in a set in respect to the union and intersection op-
eration. Thus, the same operators can be used as in
mathematics, without a substantial conceptual differ-
ence.

2 A Mathematical vs. Informa-
tional Dictionary

The presented dictionary should bring the mathemat-
ical feeling into the domain of informational theory. It
certainly concerns the topological terms priory. The
correspondence between set-theoretical and system-
informational terms yields the following comparative
table®:

rMATHEMATICAL VvS. INFORMATIONAL TOPOLOG\q
set X

system ®:

general formula system ®,;

transition formula system
(§€’=,’, and

operand formula system $;¢

set braces: {, } system parentheses: (,)

5For the system-conditional formula, ©1,02,... ,Pm & @1,
@2,..., pm see the discussion in Sect. 3.1.

6In this dictionary, the ‘formula ¢ of @' (¢ € ®) is to distinguish
from the informational speech convention where the meaning of
‘of' represents an informational function, that is, the informational
Being-of [29], e.g., ¢(a) for ‘¢ of a.
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vertical snake-form
operand-occurrence
braces [5, 6]

empty set @

set element z

z is an element of X,
z belongs to X,
zisin X, z € X;
negation: ¢ € X

subset A

A is a subset of X,
A is included in X,
ACX;
negation: A ¢ X

powerset of set X,
P(X) or 2%

union of sets, AU B

intersection of sets,
ANB

difference of sets ¥
and X, Y\ X

complement of set X,
Cx

complement of set X,

regarding set Y, by X

open set O

topology O

topological structure
0

topological space
(X,0), simply, X

carrier X

point x € X

formula operand occurrence
floor brackets: |, |

empty system {
system formula ¢
@ is a formula of @,
¢ belongs to @,
pisin ®, p € @;
negation: ¢ € ®
subsystem ¥
T is a subsystem of &,
¥ is included in &,
¥ C P,
negation: ¥ ¢ &
powersystem concerning
system ®, P|®] or P|P]
union of systems, ® U ¥;
or (®; ¥), informing of
both systems
intersection of systems,
$ N ¥ means, e.g.,
(2,00 ;T = @),
parallel informing of all
the systems’ components

_ difference of systems ¥

and &, ¥\ @
complement of system &,
Co
complement of system @,
regarding system ¥, g ®
open system O
informational topology O
informational topological
structure O
topological informational
space {®, D), simply, ®
informational carrier ®
informational point,
formula, formula system
ped

MATHEMATICAL VS. INFORMATIONAL GRAPH
THEORY [4, 35, 39]

vertex (apex, in Russ.,
Bepmura (39]), v
set of vertices, V
vertex connection
(rib, peGpo) u:
arc, loop, link [39]
set of ribs, U .
edge, unordered pair
€= {'Ul,’Uz}, or
ordered pair (vy,vs)
set of edges, E
(incidence function)
path (route, uens)
V1ULVQUY .« « - Up—1VUp

operand, operand point, £

system of operands, ®;
operator, operator arrow,
marked by = or by an
operator particularization
list of operator markers
basic transition, £ = 7,
with binary operator

system of basic transitions
Pey

informational route, path,
formula scheme
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LELE - FE&

informational graph, pre-
sented by ®¢,, derived
from an actual system &,

graph G = (V, E) [2]

Informational space shall mean a non-empty formula
system which possesses some type of informational
structure (and organization), e.g. metaphysicalism,
meaning, informational vector, informational metric
(in the form of informational distance) and/or infor-
mational topology. Within such a possible structure,
the elements in an informational space will be called
formulas or points (®,,®P¢=,) and, in a special case
(®¢), operands.

3 Systems and Subsystems of
Informational Formulas

3.1 Informationally Linked Formulas
in a System

Informational linkage of formulas in a formula sys-
tem deserves a special attention and theoretical treat-
ment. The consequence of formula linkages via com-
mon operands makes the difference between formulas
of a system on one side, and between the elements of
a set on the other one.

DEeFINITION 1 If in informational formulas 1 and w2
a common operand « appears, that is, o1]... ,q,...]
and p2|...,,...},7 respectively, notation

or, simply,

¥1 *3'*902 p1 & P2

will be used and read as formula y; informs formula
via operand « or, simply, formula ¢; is informationally
linked to formula 2. This operation is informationally
symmetric. Thus,

(1 o w2) = (2 s ©1)

Transitivity of operator e~ can ezist in the following
way: if a is common to p1 and @2, and 3 is common
to w2 and w3, that is,

ya,08,... Jand p3]...,B,...],
then @1 is linked informationally with @3. Formally,

o1l 0], 2l

(01« 93) A (193 o 03) = (1 &8 9)

Operator A denotes informational conjunction (in fact,
the operator of parallel informing, |=, or, usually,
semicolon *;’ [30]) and operator => informational im-

plication [30]. a
"It is to stress that a notation ¢|a@1,as,... ,an] means in-
formational operands a1, a2,...,a, occurring in formula ¢, and

does not represent the so-called functional form, that is, infor-
mational Being-of [29] in the form p(a1,02,...,ax5). Evidently,
(p(al,a2,--~,an)ﬁtptal,a2,---,anj. .
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Further, there can exist more than one common
operand, e.g., &, 0, Qg . . . , Oy I o1 and o in a tran-
sitive manner. In this case,

o .
P1 e Py
o
i o pj1;

N T T ar, .
(‘Pl P s (pz) = | P ™ P

Qm
(Pel Laaad So-z

Transitivity of operator «~ applies also to the case
of more than one common operator through several
formulas, and it can be defined from case to case.

Because common operands concern informing be-
tween formulas, the implication in the last definition
can be expressed by means of a parallel system

(@1 s ©2;

B
0 «E»ga >=:>(<P1g~>903)
2 3

Another significant feature follows from the last defi-
nition:
THEOREM 1 Let the linkages in a circular manner

P1 e P2,
pa e O3,

Pm—1 " Pm,
Pm & 01

be given. Then,

@102, 5, Pm & PO1L, P2, Pm

This feature is called the reflexivity of a circular infor-
mational linkage of formulas within (in the framework
of ) a formula system. O

Proor 1 We have to prove that

(01,02, -+ 1 Pm & V1, P2, ... ,Pm) = (i & P;);
1,7 €{1,2,...,m}

Within this conditionality also

pi ey 1€ {1,2,...,m}
holds in a transitive (consequently multiple-linkage)
manner.

Another evident meaning of the theorem result is

@i e 01,02, o, Tor alli € {1,2,... ,m}

It means that ¢; is informationally linked to each of
P1,92,-- -, Pm, including to itself (informational cir-
cularity). This proves the theorem. ]

A.P. Zeleznikar

3.2 Formula Systems

In informational theory, a system of informational for-
mulas corresponds to the notion of a set of elements
in mathematics. A fundamental concept of informa-
tional theory is that of the system (short for the system
of informational formulas).

DEFINITION 2 Intuitively, a system is a well-defined
list of informationally well-formed formulas (separated
by semicolons).

Formulas consist of operands, (binary) operators,
and parenthesis pairs.

In a system, formulas inform in parallel to each
other. In a proper system, formulas are information-
ally linked via common operands, directly or indirectly
(transitively), in such o way that each formula is, to
some extent, informationally linked with each other
formula of the system.

In an improper system, some formulas are informa-
tionally isolated.

Informationally, only proper systems appeor (in-
form) to be reasonable. Isolated formulas inform per
se, beyond the informational context of other formulas
or subsystems of formulas in a system. For the rest
of the system, such formulas are unobservable and do
not observe informationally other formulas or formula
subsystems. 0

The union of two systems ®; and &5, denoted by
®; U &5, means the system

(B, U D) = <p]£<p€ ‘I’l)V((pE‘bgl

S p—

system classifier

The union classifier can be expressed also as

_ (P €,
wewvea)= (43
which represents the so-called alternative system, us-
ing comma instead of semicolon between formulas [35).
The intersection of two systems ®; and ®,, denoted
by ®; N ®5, means the system

(an¢2): (‘P v € By

pE ‘I’l;>

If systems ®; and ®, do not have any formulas in
common, ®; N &, = @; they are said to be disjoint
systems.

The relative complement of a system ®; with respect
to a system @, denoted by Ce®1, or the difference of
® and ®;, denoted by ® \ @, is the system

2N & =(pl(peP)V(pg )

The complement of a system ®,, denoted by 0®,, is
the system

Lo, = (pl(p €TV (p & &)
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where T functions as a universal system. Evidently,
£®; = (T \ ®;). Usually, in a complex case, the for-
mula system ® has the role of the currently universal
system to which its subsystems can be compared.?

4 Topological Informational
Spaces

4.1 Definitions
4.1.1 Open Systems

DEFINITION 3 Let ® mark a reasonable® non-empty
system of informational formulas. A classt® (short for
informational class) O of subsystems of &, O C P|&],
is a topology on @ iff O satisfies the following azioms:

(Ty) The union of any number of systems in O be-
longs to O.
The intersection of any two systems in O be-
longs to O.

(Tr1) Systems ® and () belong to O.

The systems of O are then called O-open systems, or
simply open systems, and ® together with O, i.e. the
informational pair (®,0), is called the topological in-
formational space. 0

(T1u)

As we see, a topological space is defined as an ordered
pair between the carrier ¢ and its topology ©.

Let us formulate Def. 3 in another way to get a dif-
ferent experience of the meaning of an informational
topology. Topology can be determined by the follow-
ing four steps too:

1° A basic system @ of formulas 1, s, ...
ists.

sy Pm €T~

2% There exists a type characteristics'* O € P|P|2)].

3% The first aziom is:
For each system ', the informational implication

(D' € D) = (( U E) eo> and & € O hold.
2y’
40 The second aziom is:
For each Z; and each Zz, the informational impli-
cation (El € 9D;20 € D) = ((El n Ez) S D)
holds.

Such a structure family is called the topological struc-
ture, and the relation E € O can be expressed verbally
as: system Z is open in topology .12

8A complex system is, for example, that of informational con-
sciousness, in which several complex subsystems are imbedded.
However, it does not mean that, in a specific case, a subsystem
appears as a kind of universal to which its subsystems can be
system-complementally compared.

9 A reasonable system of informational formulas usually concerns
a concrete, cyclically structured informational graph [32, 35].

104 class (family, collection) of subsystems means a system of
subsystems.

12For more details see [6], p. 246. Evidently, the openness of a
system concerns its topology.
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ExaMpPLE 1 Topologies Deducible from Standardized
Metaphysicalism. Let the following classes of sub-
systems of the standardized metaphysicalistic system

[32, 35] MM = (p1;02;..- ;p6) of circular formulas!®
be given:
Dl » ¥y ))

(97 0; (¢
02 = (m7®7 (‘PS’(PG) (506»’
D3 = (miwi ((P47995) (‘Pﬁ))
D4 (fm,@,(#’ (105a(p6) ((Pﬁ))!
(“'Uta@a (‘Pla‘P%‘PBa‘PG ((p4>(p554P6) ((106))

For £33, the union

(43 105) U (6)) = (45 953 )

does not belong to 3. Evidently, O3 is not a topology
of IN. O

Formulas of a topological informational space are of-
ten called points. System &, in which a topology is
defined, is said to be the carrier of the topological
space (®,0). System ® can be the carrier of more
than one topological space. Thus, a system of differ-

ent topological spaces for ® is, for instance,

(®,01);

(@, O2);
(@, (D1;09;...;0. =1 .

(‘f,Dn)

ExXAMPLE 2 The carrier of a topological informational
space can be expressed in different ways, with different
structural and organizational'* consequences. Con-
ceptualizing an IS, at the first glance, usually, a system
of serial and serially circular informational formulas is
determined. According to [35], p. 114, such a system
includes serial formulas of the type!®

,on]; 1<i< N, N, = =2 (27)

n
,'90_, [.avalu"' nti\n

13fn this case, the following is meant:

— @1, @2, and 3 mark the short loops (£ = 2) of informing,
counterinforming and embedding, respectively;

— @4 and g5 denote the midle-size loops (£ = 4) for informing-
counterinforming and counterinforming-embedding, respec-
tively; and

— (py4 represents the long loop (£ =T17).

14|nformational organization always concerns the substantial, se-
mantic, meaning-like structure, the choice of entities and their de-
composition, the reasonable setting of parenthesis pairs (parenthe-
sizing), operational connections and informational loops, particular-
ization of informational operators, system parallelization (introduc-
tion of parallel interpretive, detailing, explaining, complementary
formulas and systems), etc. It concerns the significance, distin-
guishability, and specificity of a concrete structure representing a
contentional informational case.

15Here, the delimiters |, | are introduced to replace the paren-
theses (, ) when for wla] the occurrence (and not the func-
tional dependence—the informational Being-of [29]) of « in for-
mula ¢ is meant. Expression ¢|a1, -+ ,an] is read as formula ¢
with operands a1, -+ , an, or also, formula ¢ concerning operands
a1, - ,0n. The idea to introduce this sort of parentheses (floor
parentheses) comes from Bourbaki [5, 6] where the vertical snake-
form parentheses are used (not available in BTEX2¢).
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and circular serial formulas of the type

) . 0. A0 _ 1 am42
’a’njv 1S7‘SN_.’ N—p _m(:-l-l)

n+l O

0% Lo,
where n applies for different lengths of formulas en-
tering into the system. Thus, this kind of the system
includes the last two types of formulas.

Another possibility is to express the system in the
form of primitive informational parallelism, corre-
sponding to the expression of an informational graph
(for example, in (32, 35]). Such a system is obtained
by the parallelization (in fact, reduction of formulas
into primitive informational transitions [33]) of serial
and circular serial formulas given previously. Paral-
lelization is denoted by

n(p”l l_aaala"' ,an_l,an_j =
| o, Lo, s omog, a5
ol
n+l(pIl l_a,ala'“ ’an_l,an_l =
+1 O
H'l_" P, la, a1, ,an—l,anJJ

for the serial and circular serial case, respectively. The
parallel system is obtained by setting all the occurring
primitive transitions into the system. As we know,
such a primitive formula system represents the graph,
describing all the possible informational situations of
a system.

Different topologies can be constructed and studied
for both circular serial and circular primitive parallel
systems. We shall learn the essential differences and
possibilities for both types of systems. O

4.1.2 Further Examples and Definitions

(1) Discrete spaces. Let & be any formula system.
The system of all possible subsystems of system @,
P @], satisfies the axioms for the open systems and
is, in this sense, the topology in ®, called the discrete
topology on ®. If @ is topologized by its discrete
topology, it is called the discrete space.

(2) Indiscrete spaces. Let ® be any formula sys-
tem. A system (§,®) satisfles the axioms for the
open systems and is, in this sense, the topology on &,
called the indiscrete (or trivial) topology in ®. If @ is
topologized by its indiscrete topology, it is called the
indiscrete space.

(3) Basis of a topology. Basis B of a topology

O in ® is such a subsystem of family O (8 C )

that each open system Y in © (i € O) is a union of

some open systems 2; in B, that is, U ;. Said in
A;eB

another way: for each 4 € O and each point (formula)

@ € ®, 4, there exists such a system U € B that

pw€eW, BCY

A.P. Zeleznikar

Open systems of the given basis B are called basic
open systems of space (®, D).

(4) Subbasis of a topology. Subbasis of a topology O in
& consists of finite intersections (intersections of finite
families) of open systems in & in such a way that
these intersections constitute the basis of topology
9. Then, for each 4 € © and each ¢ € U there
exists a finite number of systems in &, for instance,
,...,20,, such that

we(@n...nW,); (Wn...NnW,)Ccl

Open systems in the given subbasis & are called the
subbasic open systems of space .

It is evident that a topology £ of space @ is
completely determined by the basis or subbasis of £.

(5) Topological cover. In general, we say that a
family of systems (Z,),er is a cover of system ¥, if
vC (ULGI 5")

Cover (Z,).cr of subsystem ¥ of topological infor-
mational space ® is called open, if all =, are open
systems in ®.

4.1.3 Interior, Exterior, and Boundary
Formulas {Points)

According to {13, 20], some further definitions could be
useful also for the purposes of informational topology.

DEFINITION 4 Let ® be a subsystem of system o in
topological space (o, D).

(1) A formula ¢ € ® is called interior formula (point)
of ® if v belongs to an open system ¥ € O con-
tained in ®, that is ¢ € ¥ and ¥ C @, where ¥
is open. The system of interior formulas of @,
denoted by ® , is called the interior of ®.

(2) A formula ¢ € @ is called exterior formula (point)
of ® if p belongs to an open system Z € O con-
tained in the complement [®, that is p € Z; Z C
C®, where = is open. The system of exterior for-
mulas of ®, denoted by ® , is called the exterior
of ®.

(8) A formula ¢ € o is called boundary formula
(point) of ® if in each neighborhood of ¢ formulas
of ® and C® occur. The system of all boundary
formulas is called the boundary and denoted by

Ble). o

The situation is presented diagrammatically in Fig. 1.
For the boundary, there is, evidently,

Ale] = (2\2)u(2\2)

A SIGNIFICANT COMMENT A formula system @ is open
iff each of its formula is an interior formula (point). A
formula system ¥ is closed iff its complement C¥ is an
open formula system. a
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Lo 1
r Ce
812 s = L o
¢\ -
L ¢ O
> D
]

Figure 1: Diagram presentation of formula system @,
its interior ®, exterior ®, and boundary B|®], within
a system o, where the complement of ®, denoted by
Co, appears together with the complement interior Lo,
exterior 0®, and boundary 8|0®] = 8| ®].

ExAMPLE 3 The connection of an informational loop
and to it belonging system, that is, circular formula
system, with the environment, can be realized by a
special formula, usually a simple transition formula,
e.g., a; = &; in Fig. 4. This formula belongs to @,
but is not an interior formula of ®,,, that is, of ®,. O

EXAMPLE 4 Let systems ®, B, ¥ form a topological
space {(® U B) U ¥), D), as presented in Fig. 2. How

& B v

Figure 2: Graphical presentation of formula system
o = (®; B; ), where each of the subsystems has its
interior ®, B, ¥, respectively.

can this system informational graph be interpreted in
different ways?

We must clarify more precisely what subsystems,
marked by ®, B, ¥, might represent. The aim of the
graph is to explicate the so-called interior and neigh-
borhood regions of subsystems in respect to informa-
tional formulas in general, their operands, and the so-
called primitive transitions, represented in-the form of
the graph route!®

EQEBEREAENE...

18|n literature, different names are given to the route. Informa-
tionally, the name informational scheme or, in short, scheme, is
used. The name edge denotes the edge (representing an operator)
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The route drawn in Fig. 2 runs through the operands

£1,81 € ®; 51,52,8 € B; B3,m € ¥

where
BLe®,B and f3€ B, ¥

According to Fig. 2, parts of system B function as
neighborhoods of & and ¥, respectively. System B as
the interior of B is represented by

B=(B\(¢nB)U(BNY))

that is, considering both systems ® and ¥. On the
other side, the exterior of ®, ®, could roughly be un-
derstood as the union ® U B and, adequately, ¥ as
¥ U B. In general, B is the neighborhood system for
both & and ¥. Further, evidently,

(d =BUY,; 0¥ = BU &,
(& =BuUY; (¥ =dUB;
F=0UB;, T=VUB

etc. This example shows the importance of distin-
guishing the three possible types of topological spaces:
(1) a space of circular/serial informational formulas of
arbitrary lengths, ®,; (2) a space of basic transition
formulas of length 1, ®;.,,; and (3) a space. of simple
informational operands (formula length 0), .. O

Another example shows the questionableness of a
unique determination of topological structures dealing
with different types of informational formula systems
(‘Ihp, (I)ﬂ:n, and ‘I’g).

Figure 3: Graphical presentation of formula system
(® UB)YUWY, including a circular path.

EXAMPLE 5 According to Fig. 3, let formula systems

of a graph polyhedron, to which a graph can be transformed. Path
instead of the graph route sounds also adequately.
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al (& EGE B E (8

(BUB)UT), = = E (v E Q)

a | &8 F B B B
B2 = B3; B3 | mi; )
mE™BTE

(2UB)UT): = (;&1; 615 B2 Bas s v; ---)

be given, where a € &; and v € ¥,. What is now evi-
dent {or not quite evident) from the topological graph
in Fig. 37 Can basic transition formula systems be
determined uniquely, and in which way?

The problem occurs at basic transitions crossing the
boundaries of systems ®, B and ¥. In Fig. 3 such tran-
sitions are & = B1, B3 = m, and v |= a. Evidently,
in a strict situation, it would be not possible to ex-
press the basic transition systems rigorously. Thus,
the compromise notation'?

ey = (F oy af= & & B B E);
Beey = (| B1; B = B2; B2 = Bas Bs B);
Cern=(FEBs BsEmMm; mEY: 7E)

can be accepted, where the transition v &= « comes
additionally. Further,

B¢ = (0;€81); Be = (B B2; B3); ¥e = (B35m57)
In this situation, Fig. 3 shows ($ N T) = §. O

(@UB)U D), =

The last example presents how basic transition for-
mula systems and operand systems derived from gen-
eral formula systems can offer various informational
interpretations.

4.1.4 Informational Neighborhood

Informational neighborhood (neighborhood, for short)
is both a metaphor and a formalistic structure con-
cerning various possibilities of informational relation-
ships between formulas and formula systems.

DEFINITION 5 Neighborhood of system = in a topolog-
ical space (®,90) is called each system which includes
an open system including Z. Neighborhoods of one-
formula system () are said to be also the neighbor-
hoods of formula . a

Let us present the last definition by other words.

(1) Let ¢ be a formula (point) of topological space (&,0),
that is, ¢ € ®. A subsystem = of ® (E C ®) is a neighborhood of

17The compromise notation is, for example, = @ and v =. Each
informational operator |= is a binary operator, dependent on both
operands. If one side of the operator is open, it is meant, that the
missing operand is not fixed yet.

A.P. Zeleznikar

@ iff Z is a supersystem of an open system ¥ (Z D ¥) containing
. Thus, [p € 9, %; UCE; EC®|.

Other possible interpretations of the neighbor-
hood definition are the following:

(2) A system Z in a topological space (®,D) is a neighbor-
hood (D-neighborhood) of a point (formula) ¢ iff £ contains an
open system ¥ to which ¢ belongs.

(3) in a topological space (®,0), the neighborhood of the
point ¢ € & is called each subsystem = C ®, including an open
system ¥ such that ¢ € ¥ and ¥ C Z. Then, the neighborhood
of subsystem Q C @ is each subsystem = C ¢ which includes
an open system ¥, that is, satisfies Q C ¥ and ¥ C Z. Thus,
[pee,w 9,5ce vCE acyl.

Evidently, each neighborhood of system = in &
is also a neighborhood of each system ¥ C = and, in
particular, of each formula in =Z. In turn, let = be
the neighborhood of each formula of system ¥ and
T be the union of all open systems included in Z;
then T C =, as well as each formula of ¥, belong to
an open system, included in E, that is, to ¥ C T;
but T is open according to (Ty); consequently, = is
the neighborhood of system ¥. In particular, the
following comes into the foreground:

SUPPOSITION 1 That a system is the neighborhood of
each its formula, it is necessary and sufficient for it to
be open.'® O

Let us mark by M|p]| the system of all neighbor-
hoods of formula . Systems in 9| ] possess the fol-
lowing properties:

(N1) Each subsystem of system ®, including a sys-

tem of N|p], belongs to N|¢p].

(Ni1) Intersection of o finite number of systems of
N(p| belongs to Nip].

(N1) Formula ¢ belongs to each system in M|¢p].

In fact, these three properties are a direct consequence
of Def. 5 and Ax. (Ty).

(Nrv) For each system N belonging to M| ], there
exists a system W belonging to M|}, such

18In the informational sense, the word “neighborhood” has a
meaning which points to the informational relationship, proximity,
similarity, closeness and the like, coming to the surface as a senseful
informational formula of intuitively clear situations, facts and prop-
erties. In this way, the choice of this term has the advantage to
make the speech figurative. For instance, Sup. 1 can be expressed
in the following manner: for a system = to be open, it is necessary
and sufficient that for an arbitrary ¢ € =, all the formulas being
sufficiently informationally close to @, belong to E. And, in gen-
eral, if a property is true for all the formulas of a neighborhood
of formula ¢, it is said that this property holds for alf the formu-
las, being sufficiently informationally close to ¢. As we shall learn,
informational closeness will concern, for instance, formulas of an
entirely circularly connected system, with several loop formulas.
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that N belongs to M|y for an arbitrary
YeW.

Evidently, considering Sup. 1, it suffices to take for W
an arbitrary system, including formula ¢, and being
included in N.1°

These four properties of system || are said to be
the neighborhood characteristics. Thus:

SUPPOSITION 2 If to each formula ¢ of system @,
a system MN|p| of subsystems of ® corresponds, and
properties (Ny), (M), (Nui) and (Nyy) hold, then in
® there exists a unique topological structure, for which
N serves as a system of all neighborhoods ¢ at an
arbitrary ¢ € ®. (]

If there exists the required topological structure, then,
by Sup. 1, as the system of all open systems of this
topology necessarily serves the system 9 of all those
systems = in @, for which E € M|¢] holds for each
¢ € Z; this is the reason of a unique topology, if it
exists.

4.1.5 Informational Bases and Subbases

The base B of a topological space ($, D) is a system
of formula systems B such that any formula ¢ of ®
belonging to subsystem B, B is a subsystem of & in
0.

DEFINITION 6 A class (system of subsystems) B of

open subsystems of ®, in topological space (®,0), is a -

base for the topology O iff (i) every open system & € O
is the union of members of B. Equivaelently, B C O
is a base for © iff (i) for any formula ¢ belonging to
an open system G, there exists B € B with ¢ € B and
B C 6. O

Let us examine the base B as a system of singleton
systems.

EXAMPLE 6 Let a topological formula space (®, ) be
given. Then the class B = (@) |¢ € ®) of all single-
ton subsystems of & is a base for formula topology §
on ®. Because each system (i) is F-open, each % C &
is §-open too. Furthermore, every system is the union
of singleton systems. Thus, any other class B* of sub-
systems of @ is a base for F iff it is a superclass of B,
that is, B* D B. O

Which are the necessary and sufficient conditions for
a class of systems to be a base for some informational
topology?

THEOREM 2 Let B be a system of subsystems of a

non-empty system ®. Then B is a base for topology
O on @ iff '

19This property can be additionally expressed by saying that a
neighborhood of formula ¢ is, besides, a neighborhood of all for-
mulas being sufficiently close to .
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(i e= U B and
BeB
(ii) for any B,B* €8, BNB* is the union of
members of systems of B, or, equivalently, if
@ € (BN B*) then there exists B, € B such that
¢ € By, and B, C (BN B*). O

Informational subbasis is another notion which could
become relevant in the topological investigation of in-
formational formula systems.

DEFINITION 7 In a topological space (®,9), a class &
of open formula subsystems of ®, that is, 8 C &, is a
subbasis for the topology £ on ® iff finite intersections
of members of & form a base B for O. 0

Any class % of formula subsystems of a non-empty
formula system @ is the subbasis for a unique topology
© on ®. Intersections of members of 2 form a base for
the topology © on &.

EXAMPLE 7 Let ® = (po;¢1;-.. ;¥), according to
the formula system, belonging to the graph in Fig. 4,
and % = {(p3;904); (pa;95); (pe). Finite intersec-
tions of members of ? gives the base

B = (p3;04); (04505); (pe); (pa); B; @)

By definition, & € B follows, since it is the empty
intersection of members of A-system. Considering
unions of members of B gives the family

D= (p3;04); (pa;05); (v6); (pa); 0; B

(03;04506); (04; 055 06); (@3304;95)

Formula system £ is the topology on ® generated by
formula system 2. O

4.1.6 Informational Accumulation Point

Accumulation point (also, limit point) is a well-known
term in mathematical topology. We need the notion
of informational accumulation point, for example, as
a formula or formula system approaching as close as
possible to the meaning of something. This means that
the final meaning of something can never be reached,
although the meaning of something can be expressed
by a formula system as close as required.

DEFINITION 8 If U is a subsystem of a formula sys-
tem ®, formula ¢ € ® is an accumulation point of %,
iff every open system & containing o contains a point
(formula) of AU different from ¢. There is,

( is open; p € &) = (AN (& () # 0)

The system of accumulation points of U, marked by
A', is called the derived system of system 2. - O

It usually happens that an accumulation point is in-
formationally inexpressible, although a formula system
as a point comes close and closest to the accumulation
point.
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4.1.7 Informational Connectedness and
Compactedness

Most of topological investigation concerns certain
topological properties as connectedness and compact-
edness. Intuitively, the connectedness of an informa-
tional space is a consequence of an adequate operand
distribution in informational formulas.

Two formula subsystems 2 and B of a topological
space (®,0) are separated if 2 and B are operand
disjoint and neither contains an accumulation point of
the other. This means %¢ N B, = 0.

A topological informational space (®,9) is discon-
nected iff ® is the union of two open, non-empty, dis-
joint subsystems of formulas, i.e.,

d=(AUB); A BecO; ANB=0; AB # §

DEFINITION 9 An informational graph is said to be
connected graph if there is a path (informational
scheme) between every pair of operands in the graph.
An informational graph is said to be circularly con-
nected graph if there is a circular path (circular infor-
mational scheme) between every pair of operands in
the graph. O

A connected graph represents an operand connected
formula system. How the connected formula systems
can be recognized topologically?

Because informational topology deals with formula
systems, the connectedness can be recognized by the
properties among formulas of a formula system. Visu-
ally, connectedness can be inspected by a graph, using
Def. 9. Because a graph is uniquely described by the
formula system ¢, deduced from the original for-
mula system @, connectedness is determined by the
adequate transitivity of formulas in the sense

(bELIAGLES)=
(bE&LE&GVEGE(EES)

If pi,0; € By, formulas ¢; and ¢; are connected iff
there exists an operand ¢ such that

ce (@g" n <I>:§")

This means that operand systems ®f' and ®/7, de-
rived from formulas ¢; and ¢;, respectively, have the
common operand ¢. This property coincides with the
concept of informationally linked formulas in a system,
discussed in Sect. 3.1.

The concept of cover [Sect. 4.1.2/(5)] is needed in
the definition of compactedness in the following sense.

DEFINITION 10 A subsystem ¥ of informational topo-
logical space {®,) is compact if every open cover of
¥ is reducible to a finite cover. ]

A.P. Zeleznikar

In another topological interpretation, if ¥ is com-
pact and ¥ C (U,¢; Z.), where Z, are open formula
systems, then it is possible to select a finite num-
ber of the open systems, say Z,,,...,Z, , so that
TC(E,U...UE, ).

4.2 Topologies Concerning Meaning

Let us present a direct generalization of the informa-
tional topology used in concern with the phenomenon
of meaning?® p, for instance, as it can emerge within
the various forms of understanding, interpretation,
conceptualization, perception, consciousness, and the
like.

DEFINITION 11 Let ® be a system of formulas, and
assume that there exists a meaning formula ple,¢]
on pairs of formulas @, € ® satisfying the following
conditions:

1. plo,v] 0

2. plp, ] E plel if and only if ¢ = 1;
8. ple, vl B uly,el;

4 (ple, ) B pld,w)) B ule,w)

(the informational transitional consequence)

We say that ® is a meaning space with meaning u, or
with meaning difference u. a

Condition 1 says that system ul¢p, 1] does not inform
to be empty. Thus, this condition has also the mean-
ing ply,v] # 0. Condition 2 says that meaning con-
cerning operands ¢ and % informs to be ulp] only
and only if ¢ is the same operand as 1. In this case,
also i, ¥| = ply|. By Condition 3, since meaning
concerning two operands, u{p, ], is a meaning differ-
ence between ¢ and 1, such a difference informs to be
ul, o], Thus, ple,¥] = ul,@]. It can certainly be
introduced a difference between the symmetrical cases
by the distinguishing @, ¥] # pl¢,¢]. Such a con-
dition would ruin the traditional convenience of space
metrication.

Meaning of something as an informational phe-
nomenon follows the possibilities of informational de-
composition and, in this sense, offers various possi-
bilities for the play with meaning topologies in infor-
mational spaces. The diversity of decomposition is
pointed out, for instance, by Haney [15], using the
term deconstruction®!. Meaning as informational de-
composition makes an informational space a contin-
uum, in which topological notions of open systems,

20informationally, meaning replaces the so-called metric in math-
ematics. The metric spaces (introduced by Fréchet in 1906 [12])
are based on the concept of distance [25]. Usually, a metric can
be introduced in real numbers and in other kinds of mathematical
spaces (e.g., in Hilbert space). A metric provides an easy way to
define a topology in a metric space. To the topologist, the partic-
ular metric used on a space is merely a convenient way to define
open sets [16].

21in Haney [15], the following is stated: ... it would be an over-
generalization to say, as the tendency is in ‘American deconstruc-
tion’, that all meaning is indeterminate, all presence illusory, all
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interior, exterior, boundary, neighborhood, accumu-
lation point, etc. become reasonable for a formalis-
tic and artificial construction (composition) of formula
systems.

4.3 Topologies Concerning Distrib-
uted (Parallel) Systems

DEFINITION 12 (Distributed System) A parallel infor-
mational space ® with operands (points, a kind of vec-
tors) 6 being distributed by their components (point co-
ordinates) &9, . .. ,Ef% 1s called the distributed informa-
tional space or D-space if:

1. A rule is given by which to each pair of points
d,€ of space ® the parallelism (8;¢) corre-
sponds.

2. This rule satisfies the following conditions:

a) (€;68) = (6;¢) (displacement law);

b) (6;e =) = (&;8) = (6;€)
(distributive law);

c) (ud;e) = u(d;e) for an arbitrary
functional operand p;

d) (6,6) £ 0 for 6 # 0 and (6,8) =0 for 6 =0.

By azioms b) and c) the general formula

(pluadi,. .. s ukde]i¥lnier, ... ,vmem]) =

wlpivi(815€1), pava(drsea), ..., pavm(b1iem),
pav1(82;€1), pava(d2;€2), - . ., patm(02;€m),

prv1(Or;€1), trva (k3 €2), -+ o ik ¥m (O3 €m)]

is obtained which holds for arbitrary vectors 61, ...,
Ok, €15 - s Em and arbitrary meanings pa, ..., Lk,
Vi, ««v s Um. O

To explicate the vector nature of points (formulas
and/or formula systems) in a distributed informational
space D, let us introduce the vector notation (of the
basic degree) of points in the form ||§) [32, 38]. The
question is which formula components constitute the
informational vector ||6)? Evidently, the structure of
an informational vector is not as simple as in a math-
ematical vector space. Let us discuss several formula
notations constituting a vector.

The basic constituent is obviously the system of all
simple operands appearing in a formula system 4 and
being denoted by

ol = (e 8)

theme of intention irrelevant, all reference a fiction, etc. (see At-
tridge [1] p. 12). That a text for Derrida, especially a literary text,
is always situated, read and re-read in a specific place and times
makes it ‘iterable’ or repeatable, the same but always different, and
therefore never reducible to an abstraction by theoretical contem-
plation (Derrida [11] pp. 172-97). A text is unique and repeatable,
concrete and abstract simultaneously. This coexistence lies in the
- heart of deconstruction and reflects the connectedness of the sub-
Jject and object in the experience of the self as pure consciousness.
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Besides, parallel components éf . ,Ef% can appear
and be distributed within different kinds of formulas,
or even form a serial or circular serial formula as a
whole, that is

“-lg, g | =g e | and/or
O SN e Ead AR

respectively. Vector ||0) corresponding to system § is
determined by

=50 | gd 5|,

5|'[€1""a£naJa
R g [ RPN F AR ¢ B N
O‘ max
608 L]t €123, 57)

The structure of vector ||0) needs to be additionally
explained. What does such a vector include and in
which sense the difference between the mathematical
and informational vector comes to the surface?

First, let us list all the components of vector ||&) in
concern to the origin system 4. System § is simply a
parallel system of serial and/or circular serial formulas.
But, in fact, this list is in no way a complete one in
regard to the complex parallelism hidden in particular
formulas of §. The reader should remind the axiomatic
approach of the informational where the fundamental
axiom is expressed by the implication

a;
(aEB=1| &5
al=p
If this rule is recursively applied to a serial
or circular serial formula :.'cp_, loya1,--- ,an] or
"tlcpj la, a1, ,an), respectively, then, evidently,

the application of the last axiom delivers all the sub-
formulas appearing in a serial and/or circular serial
formula, that is, in the serial case,

_'61(:1_6)51’”' aé.n_l )

n 1166 6l
o L6 € ) = :
P (AN
L 66, 1 6a)
and in the circular serial case,
76,16, €l
1168, sl
Tl 166, 6] = :
T8l
T 166 )
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1% = (n—1)* ="

where the asterisked markers :’6" N )
denote the systems of serial subformulas of lengths
1, ...,n—1,n conditionally in respect to operands
£,6, -+ ,& in floor parentheses. Namely, a sys-
tem -'6;* |€,&1,...,&]) includes only and only such
basic transitions of the form o; = a; (£ =1) which
appear in formula (p 1€, &, ,€n] or formula
AN L6 & - 6nl (as a whole), respectively. Similar
concerns lengths £ up to value n or n + 1, respectively.
A short analysis shows that in the serial and circular
serial case the number of all possible subformulas of a
given length can be evaluated by simple formulas. Let
£_., mark the length of a subformula in a serial formula
with the length Z_ . Then, evidently, the number of
such subformulas in a formula is
¢

. .
. T if £_ iseven

naub = _+1
=, if £, is odd

sub

In a circular case there is
¢

. .
o e—iwb , if £, is even
n =
ub —_
s £o—1

Y. if £, is odd

sub

5 Variants of Informational
Topologies

A topology © depends on the carrier system &, that
is, on the characteristic forms of its formulas. Which
kinds of formulas in ® can be distinguished?

The most usual system of formulas is composed of
different serial and circular-serial formulas. These for-
mulas emerge during the analysis of an informational
case, usually in a kind of top-down and bottom-up de-
composition of an initial (top) marker or an end (bot-
tom) marker, carrying implicitly a yet-not-determined
concept, proceeding stepwise into a more detail of the
case—a progressive case decomposition from different
points of view. This approach seems to be the most
natural one, seen from the human point of conscious-
ness. Just after of such a case identification more ab-
stract and convenient approach with possibilities can
be considered.

DEFINITION 13 The constructed system of formulas,
®, can take the following characteristic forms:

Qo= (ol bl bl s ol D
D = (&5 &25 .. 5 &ny ) U @& ]implicit operands];
Py = (L E&L LG b1 F &)U

®|¢; = &;limplicit basic transitions|

The first system, ®,, is an authentic, intuitively con-
structed representation of a real case. The second sys-
tem, ®¢, is strictly expressed by all the occurring sys-
tem operands as the title operands of a circular formula

A.P. Zeleznikar

system, each operand in at least one circular formula.
The third system, ®¢p, is the representative of all
possible situations occurring by all possible parenthesis
pairs displacements within the constructed (analyzed
and synthesized) system. 0O

As said, the originally conceptualized system (ob-
tained by the top-down or bottom-up approach or from
both of them) is ®,. Thus, the remaining two systems,
®¢ and ®¢|=,, evidently emerge from @, that is,
¢, — & and P, — P,y

where — denotes the corresponding derivation ap-
proach. On this basis, three different, topologies can be
determined, as formula, operand and basic-transition
topology, respectively. &, — ®¢p,, is the formal rep-
resentative of the corresponding informational graph
[35].

Now, let us show, how different topologies can be
defined on ®,, ®¢ and $¢, in a concrete case, and
how all they mirror one and the same informational
graph, with different possibilities in regard to various
parenthesis displacements in formulas of the system.
As an example we choose the metaphysicalistic case.

5.1 Topologies of a Simple
Metaphysicalism

Simple metaphysicalism is a basic scheme of informa-
tional invariance which can be further decomposed in
greater details during identification of the involved en-
tities, that is, a formula expressed in the metaphysi-
calistic form. Thus, the graph in Fig. 4 can be un-
derstood as a consequence of the circular metaphys-

o
kaO_,l.gijaajJ .
concerns the formula system component kjgoij,l_&j, a;)
of system &, e.g., j = 1,2,...,n. Subscript i con-

cerns the operand component &; of metaphysicalistic
formula system , ¢ qu,a] | € ®,. Subscript k; con-

icalistic formula system

Subscript j

cerns the parenthesis-pair combination 1 < k; < nsub P

of the formula subsystem system kj<p_,|_§ij,ajj, with

HV’L,J IZ,, +1 (2;;;] )

serial (input) and circular serial formulas of a system
of formula systems, where ¢;; denotes the length of the
formula in a formula subsystem.

altogether possibilities, considering

5.1.1 Topologles on the circular formula
SyStem kg (P Lg’u’aJJ

According to the graph in Fig. 4, one of the possible
formula systems can be constructed (reconstructed).
Let it be the consequent observing type of metaphysi-
calism for which the extreme left-parenthesis heaping
is characteristic, that is, k; = 1. In this case, the graph
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formula component component component
component informing counterinforming embedding

Figure 4: The graph representing the basic metaphysicalism of a formula system kjwf |&ij, 5] € @, component
&ij, impacted by something (interior and/or exterior) o;.

is interpreted by the one of possible formula systems,
that is,

[¢]
woléi, o] =

o | &ijs o]
((((((511 ‘: j&j) ': iﬁij) )= Q:Eij) ':: Cﬁij) 'Z l1]
e&ij) = e&j) = &ij

(((jEij }= iEij) |= szij) ': cﬁij) 'Z jEij; [2]
(((Q:Eij I‘: CEij) |= eﬁij) ‘: eEij) .: Q:E.'j; [03]
(jﬁﬁ l: iﬁij) '= jEi;,-; {p4]
(Q:Eij |= cE.‘j) |= Q:Eij; (03]
(e&j '= eE-‘j) }: e&ij [6]

(0) According to the preceding notation, there is &,

= 1903 [&ij,a;]. To be more transparent, let us replace
this system by the abbreviated one, in the form

©03
©13
©2;

Pe

representing the input transition formula and the six
circular formulas, respectively. Which kind of topolo-
gies on @, can then be defined in a meaningful way?

(1) Let topology O, 1, if possible, maintain the mean-
ing of the original formula system &,, in respect to the
graph in Fig. 4. Let the meaningful condition be

(901)7 ((192)9 (503)a (904)a (QDE))’ (906) € Dtp,l

by which all of the loops and the input transition enter
the topology. What are the consequences of such a
choice? First, the mutual intersections of formulas are
empty systems, that is,

(epNg) =0; p#4q; p,g=0,1,...,6

However, all the possible unions of formulas ¢g, 1,
2, V3, P4, @5, pe must enter O, 1. This condition

delivers together with # and ®, a topology which is
the power system of ®,, P [®,], called the discrete
topology D,,1 (see Sect. 4.1.2). The precept of this
example is that for all formulas ¢ € ®,, (¢) € O,
implies that O, is P | B, ].

(2) A look to the graph in Fig. 4 brings to the surface
another logic of topological understanding. Let us take
the main loop ¢; and one of the subloops, say .
In this case, further subsystems of topology O, 2 are
(1), (2), and (p1;¢2). Thus,

0;
(¢1)s
(v2);

(015 02);
@,

.Dwﬂ =

One sees that this type of topology emerges indepen-
dently on the chosen subloop. In case of two chosen
subloops, say s and @3, the topology becomes

0; (01); (2); (w3);

Dp3 = | (pr5902); (01508); (02508);
(1502, 033 ); By
Let &, include n, formulas, ¢1,... ,¢s,. Then, for a

topology 9, ;, implication

(((‘Pl)a (@2): o 7(901') € D‘ﬂ,i) A (Z < n)) =
(TLQ%.-) =2+ 1)

holds. Here, no,,; marks the number (cardinality) of
subsystems in O, ;.

(3) Other senseful topologies could consider specific
situations in respect to the graph in Fig. 4. In con-
structing a topology, one can proceed from the other
topological side, taking subsystems with more than
one formula. Certainly, any other topology O, on sys-
tem ®, is merely a subsystem of PP, |.

If the formula subsystems (@g;1;p2;¢3) and
(¢4; p5;6) (the split of system @) are joined ‘to
(0; ®,), no further subsystems are necessary for the
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topology (B; (wo;%1;02;03); (045 05;06); ). Fur-
ther, a characteristic implication is, for instance,

(w25 0a); (035 05); (p6) € Dy) =

(23 33 P43 53 ©6);
(25 035 P45 05);
(tp2; 43 ¥6);

(903; ©5; Ps)

€,

The initial intention (premise of the implication) is to
cover explicitly both subloops for J¢,. by ¢2 and ¢4,
respectively, and both subloops for €, by @3 and s,
respectively, including the covering of the main loop £
by ;. All these loops are implicitly covered by &,,.

5.1.2 Topologies on the system of operands
of the circular formula system

(o]
kP16 0]

Any system operand as such (as an entity) can explic-
itly be extracted (expressed) by means of the other
operands (including itself) of the system. There-
fore, one can imagine the operand system as the one
in which operands are representatives of their for-
mula systems, that is, specific formula system mark-
ers. For instance, instead of the circular formula
P E 1<P3|_§ij, aj], we can put explicitly,

g o [ ) Fie) €)= ) h)
v eEi;‘) |= eﬁij) |= 51'1'

etc. Thus, §;; marks a formula of the kind

O .
1§ij—>Laj’ Ei.ﬁ jﬁc’j s Yijs Q:Eij 1€ GE.']' s eE.’jJ

In this sense, an operand system does not differ
substantially from the formula system discussed in
Sect. 5.1.1. The difference is that instead of formulas,
the operands structuring them, come into the fore-
ground. Thus, the basic system for the case in Fig. 4
is

In this situation, additionally, different operand roles
can be explicated by means of different topologies. Ac-
cording to Fig. 4, some particularities can be stressed
which do not proceed directly from the graph. For
instance, topologically, a certain informational impact
can be expressed between operands being not directly
connected, for instance between J¢,; and €, that
is, the impacting of informing onto embedding. This
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means, (J¢;;,&;) € Og,;. Such a topological condi-
tion could lead to the request that J¢,; and &¢,; must
be explicitly expressed, for instance, applying the rota-
tion principle of operands in the main loop, and then
searching, how J¢,; depends informationally on €,,,
and vice versa. Namely, in a loop, cause and its con-
sequence depend on each other.

In case of an operand topology, operands must be
expressed explicitly, anyhow. The principle of operand
rotation must be applied for operands which do not
function as the main operands, that is, for J¢,,, ig;,
Ceiso Ceijr €y and eg,; .

Besides, all the loops in the graph must be cov-
ered consequently. The rotation principle is one of
the possibilities on this way. Let us rotate the embed-
ding operand e, , considering system ,(,03 |&;, 5], and
looking into the graph in Fig. 4. The result is, from
the consequent observational point of view,

ee; =
«((((eﬁij E: &J’) ,= jfij) ’: ifij) |= Qf-’j) l:' [p1]€
cE-‘j) |= efij) |= 23
(((eEij }: C&i;‘) ': cﬁu) |: efij) |= €giis [ps]®
(eﬁij "_‘ efij) = €Liis [ws]®

One can recognize how the rotation principle brings
a new understanding of the metaphysicalistic system
when new formula systems for metaphysicalistically in-
terior operands come into consideration, complexing
the system as a whole by detailing the before hidden
additional possibilities of the interior operands. The
last formula system is in its first part ([¢1]°, [¢3]°, and
[w6]°) informationally different to the adequate part of
ol o)

The topological concept concerning operand system
®¢,, requests a more complex system in regard to the
initial lgogLfij,ajj. Substantially, the graph in Fig. 4
must be covered systematically irrespective of the op-
erator rotation to the title (the leftmost) position of a
circular formula.

5.1.3 Topologies on system of basic
transitions of the circular formula

0
system , ¢ |&;j,0;5)

Finally we come to the most significant and attractive
form of topology determined on the system of basic
transitions, that is, on basic serial formulas with the
length £ =1 (e.g., of the form o }= 8). Why such a for-
mula system could be of the primary interest, and why
topologies on this formula system are informationally
significant to a substantial extent?

To come into the course of the relevant discussion
we have to remind on the informational equivalence
existing between the so-called informational graph [35]
and the corresponding parallel system of basic transi-
tions. For instance, parallelizing a serial or circular
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formula component component component
component informing counterinforming embedding

Figure 5: The graph representing the basic metaphysicalism of Fig. 4 in respect to primitive transitions i, Ay,

A2, Az, Ag, s, Ae, 1, Mo, P, M4, Ps, Ue-

serial formula means to decompose it into elementary
transitions. Parallelization of a lengthy formula occurs
by the following steps:

1. within a formula ¢, all parenthesis pairs are omit-
ted; what remains is called the route, sometimes
scheme, or also framed scheme [37] (in Russian,
mapwpym, in [39], p. 85);

2. from the route, the system of basic transitions
is constructed, moving from the left to the right
along the route, building basic transition formu-
las by taking the two operands, connected by the
operator between them in the route.

We see how the obtained paralleled system differs in-
formationally from the original formula. The substan-
tial difference occurs in the domain of informational
operators. In a lengthy formula, an operator can con-
nect two arbitrary subformulas which are not simple
operands. However, an informational operator (a bi-
nary operator in any case) is always a product of its
left and its right operand. Therefore the route must
be understood as a frame scheme which only fixes the
position of an operator (in the formula and then in
the route), but does not definitely determine the sub-
ject of a concrete operator. This is the price which
must be paid in any case of a formula reduction (in
this case, in fact, generalization) where a concrete for-
mula serves only as a sort of syntactical (structural,
organizational) template.

Aroute & E & = ... &1 E & is called infor-
mational chain (in Russian yens,[39], p. 90) if op-
erators = in the route are mutually different. In an
informational formula, informational operators are ax-
iomatically mutually different. In mathematics, on
contrary, equally denoted operators in the context
of a mathematical formula (with a unique meaning,
unique and firm definition) always represent equal op-
erations. Routes or chains, respectively, are usually
framed, to distinguish them clearly from formulas. For

instance, |§1 E&LE.. .Gl Fé | Such a notation

can be useful in cases where informational formulas
and chains are combined, to enable the expression of

parts where parenthesizing is let open. A formula with
framed routes is called framed informational formula.

The system from which the parallelization proceeds
is kjga_? |&:5, 5], where k; can be an arbitrary sub-
script in the interval concerning the formula system
kj(,@_'l_fij,ajJ. Thus, one can take ,Lp?,[&ij, a;} and par-
allelize it according to the rules discussed in the previ-
ous text. Sometimes, the parallelization of 1g03 (&5, ;]
into the system of primitive transition formulas is

marked by IT' (1(pj|_§ij,ajj). The result is
o of
' (1‘p_,L§ij)ajJ) = (P" l.gijyajJ
and, accordingly to Fig. 4, evidently,

o!
@ L& o] =

(Oéj E &ijs lh]

ij 363 Je; Eleiie; F ey [0l
Ce; Eeejite; F €y Cey F i)
eg,; = &ijs
C6i; = jEi,'; (2
€5 = Ce.ss [0
te; = Jys ]
Cei; l: Q:gij; {w%]
i; E: efij [‘Pg]}

An informational transition formula can appear in the
system only once. In this way, the last five rows include
only the remaining feedback transitions.

!
(0) Let us introduce the notation ®¢,, = (,o"O L&, ).
For a better transparency, we replace the upper system
!
Lpf 1&:j, 5] by the abbreviated

2 ' [‘PB]
A5 A2; Az Ag; Ass Aes 1 [wf]
H2; (24
ey = | 3 g
Ha; A
M55 (s

e A
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H1 —
4 M5 ke H
Dy pny 7y
A g A A A A
jEij I 2 | lEij ) 3 6&.’. Y 4 1 Cgl-j\r 5 164-'.1. s 6 1 eEij
fxg—\j,\g \\/Af;\(/xg—\/ké‘
H2 #5—
H3 u:(s—
bidirectional bidirectional bidirectional bidirectional
formula component component component
component informing counterinforming embedding

Figure 6: The bidirectional graph representing the metaphysicalism of Fig. 5 by considering the primitive onedi-
rectional and counterdirectional transition pairs (A, A7), (A2, A7), (A3,A57), (A, A7), (X5, A8), (Xs, A8),

(1, 6657), (pos 57), (uay pa37), (poas i), (s, 87), (e, 1§7).

respectively. The correspondence between transition

formulas in (Pfll_fij,ajj and their abbreviated nota-
tions in ®;, is evident. Notation ¢ marks the in-
put transition, A, (p = 1,...,6) the forward transi-
tion of the main loop, and p, (g =1,...,6) the feed-
back transition, corresponding to the graph in Fig. 4.
The transitional situation is presented in Fig. 5. Sys-
tems [p5],...,[w4] are already reduced by the com-
mon transitions within the main loop [¢}]. Which
kinds of senseful topologies can now be defined on

q>5|=n?

(1) The basic topological question could concern the
main loop in Fig. 5. The circular route of this loop is

gij |= jfij |= iEij |= c5-‘_1' |: Ceyj }: efij }= eys t= §ij l

To this route, evidently, the subsystem [p!], that is,

(A5 A2; Az; Ag; As; Aes 1) € Ogpenn

corresponds. If [p}] C ®¢,, is the only element be-
sides () and @, which has to enter in D¢y, 1, topol-
08y O¢pen, already satisfies the axioms (Tr), (Tm),
and (Trr). Thus, O¢py1 = (0;¢07; Pey)-

' (2) Let us study topology O¢rp2 in which the basic
transition systems, covering the loops in Fig. 4, are
included. Thus,

(A5 A2; Az; As Ass Aes 1),
(A2; Az; Ags p2), (Ad; As; Aes p3),
(A2; 1a); (M5 p5); (A6 ) € Ogena

This choice of topological subsystems causes the inclu-
sion of further subsystems. By the intersection axiom
(Ty1), there is

(A2;A334), (Ad; As; Ae), (A2), (M), (R6) € Ogpeny2

Evidently, these subsystems represent the common
parts of the loops. By the union axiom (Ti), elements

like
(Ats -+ 5 63 g1 25 135 Ha; s 16 ),
(Ars .-+ 5 Xes pas s 1435 as s ),
(A15 - v+ 5 X6; pns pos a; s e,
(A1s- -+ 5 Xes pas 3 fha; s Me),s
(A1;- -« 5 Aes o 13 fha; 1455 M),
(A1;- -+ 3 Ag; s pos 35 Ja),
(A15. .- 5 X6 1 pos M3),
(A5 5 X85 pas p2),
(A15- - 5 X6; 155 o)

etc. must additionally enter topology O¢ry2- Now,
again axiom (Tyr) has to be applied, etc. The number
of elements in D¢, » becomes enormous.

5.2 Topologies of a Bidirectional
Metaphysicalism

Bidirectionality in informational sense means intro-
ducing a strict counterdirectional path (reverse serial
or circular serial formula) in regard to the existing path
(initial formula). In a graph, this situation is evidently
visible by the occurrence of counterarrows or, in some
cases, by the operand connection lines with arrows on
both sides of the line.

The graph in Fig. 7 represents a conceptually in-
variant shell of the possible bidirectional artificial con-
sciousness. Bidirectionality is ensured in every point
of the informational structure. Further, the graph can
be used as a template for any formula system devel-
opment on one side, and as a individual semantic ap-
proach to the choice of vertical components in several
specific domains of the informational, that is, of the
conscious individualism, its structure and organization
on the other side. A suggestion for the choice of ver-
tical components is given in [36, 38]. Thus, vertical
components can fit best the specific field of research
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Figure 7: An initial informational shell of the generalized and standardized metaphysicalism of consciousness

system 3 (o kind of pure consciousness), exploring the bidirectional metaphysicalism.
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in respect to the function in the vertical metaphys-
icalistic scheme. On the other side, chosen vertical
components can be again metaphysically decomposed
in the horizontal direction.

In the framework of consciousness circumstances,
the stream of consciousness can be forced consciously
into the opposite direction within informational cy-
cles as shown in Fig. 6. A critical conscious informing
must investigate its own conscious stream (of inform-
ing, counterinforming, and informational embedding)
in one and the other direction, changing the causal
conditions circularly in the opposite direction. In an
unidirectional graph, each arrow, representing an op-
erator, is replaced by the bidirectional arrow, repre-
senting two operators, the direct and the reverse one.
Thus, in Fig. 7, a bidirectional arrow <—, marks
==>, meaning two separate and functionally (essen-
tially) different operands.

Topologically, each concrete case concerning the
graph in Fig. 6 can be informationally distinguished,
foe example, by a definite setting of the parenthesis
pairs in formulas. As mentioned frequently before,
the formula system &, is the originally conceptualized
model of a real informational situation. In this sense,
bidirectionality offers the possibility to investigate a
loop in one and the opposite direction. For a loop, for
instance, the principles of the pure observing and the
pure informing can be applied in one and the opposite
direction, simultaneously. For the case in Fig. 6, there
is, for example,

[¢]
Pl =

aj = &j; (o]
(& BEIe) Bie)) FCy) Eay) B [
eﬁii) |: eﬁi;‘) }: gij;

fij |= (eﬁij I= (eﬁij "_‘ (CE";' l: (cﬁi,‘ t=
(ie; F (Tei;) F & DD

(((jfij E i&,‘) = Q:fij) = c&ej) = Jeiss lp2]

Jei; = (Céij f: (Q:&.'j E (iEij = Jei; W; 2y

(((Q:E.'j t-_- cﬁij) |= eEij) |= eEij) ': Q:fij; [es]

[ei7]

€, (e, F (€ E (e F ) lef7]
(jﬁ-‘j }_—— iﬁij) l= 3&55 (4]
Jei; (e E e, )s les]
(Ce; = cei) F Ty ]
eﬁo’j = (cﬁij }: c{;,-)? (0]
(QEE.'J' ‘:' efij) |: eEi;‘ [06)
GE:‘;‘ |: (e&j l= e&e;‘) lwg]

This is the original (initial) formula system, a conse-
quently observing case in each system formula, from
which the graph in Fig. 6 was drawn, consistently fol-
lowing the rule of an arrow and its counterarrow. It
is clear that according to a specific informational case,
the parenthesis pairs can be set adequately (and dif-
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ferently), following the realistic circumstances for each
of the system formula. However, any other setting of
the parenthesis pairs in the system formulas does not
change the informational graph in Fig. 6. Maybe, in
a specific case, some direct and/or reverse paths can
even be omitted or left simply void for a later final
decision.

(0) Let us denote 85° =, , p°. Now, for the sake of
transparency, let be

©o;
P15 01

| e e
P; = | w35 95
va; 5

Ws; P55

©e; P&

representing the input transition formula ¢g (bringing
into the system the exterior object a at point &;;) and
the twelve circular formulas.

(1) To represent the variability of a formula system
rooting in the possibility of arbitrary parenthesis pairs
displacements in formulas, we can use the formal ex-
pression of informational schemes (the so-called graph
routes of graph paths) for Fig. 6, and write the graph
equivalent scheme in regard to the initial system <I>‘p‘_—'

.in the form
T 1=
o = &ij; (o] \
§ii F e Fley EC; Eeg, F [p1]
€., = ey &y
§ij e, E €y Feo; F Oy, E i)
ie; = Je; F &
Jei; Eiey; B €y E ey B Jeys (2]
T = Cei; F Ce,; = ig; F Jeiss lp5]
€y Eoey F €y e Qs [ipa]
C; e B Cyy ooy Qs (29
Jei; E ey B Iy 4]
Jei; gy E Jeys lef]
Ci; = eey F ey s
Ce,; = iy ey 23]
C; e E &y [e]
€y = e, = Cgy 2y /

In this formula system scheme, some directed and
counterdirected paths obtain equal formal expression,

eg. [lpal] and [lpf1} [lps]] and [leg]], and [ive]]
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and seem to be equal. However, it is to un-

derstand that they originate from different informa-
tional situations and, according to the original cir-
cumstances, they have different operators between the
equal operands??

(2) An interesting case occurs in dealing with the
operand system

Qé—w = (a’ 61]’ 511; ‘E ;) CEJ E‘EJ EzJ)
concerning the graph in Fig. 6 and with possible

topologies on this system.
First, let us explain in Wthh way the bidirectional

operands £7; Jg i i g (’26” g] 62‘] e‘?] are
formally and expilatly represented. Fig. 6 shows

how many causal circular paths (loops) pass a certain
operand. The following correspondence is evident:

& >—2j Je, P (i: i, » (i € > 8
Cei; > 8; (’E&j > 6; €. > 6

Operator » reads directly informs the number of loops.

How, for instance, operand QI?J is expressed explic-
itly by means of the loops passing it, using the so-called
operand rotation principle for each of particular loop,
and the informational path (scheme) form? The ad-
vantage of the path formula is that the setting of the
parenthesis pairs remains open, and in this case vari-
ous possibilities of the final setting of parenthesis pairs
can be considered. Evidently, the following comes out
from the graph in Fig. 6:

=

i |

Q:Eij i: C¢;; |: elE.'j I: €&y '= fz’j }:
jﬁij |= iEij |: c&.’_—;;

Q:Eij l= i&ij |= j&ij l= fij != €L l=
€. F ey F ey

Q:Eii ': 3 ’= jEij }: iEij ': Q:Eij;

Q:E.'j t: iEz‘j l: :’E.'j ‘: C¢i; }: sz‘j;

Cei; = ey E €5 Foee; B Ceys

H
el

5
56

—_— |l =
S < A
an || ~a |l e

Ceis b= eei; | €y ey F ey 3
Ceis F ey F Sy (23

Q:Eij I= Cei; l: cii;‘

E
s

220perator |= denotes a general informational joker. In two
cases, the equal transition formulas « = 8 and a = 8 can repre-
sent different transitions. For instance, between two substantives
different verb forms can be set. It means that in virtually equal for-
mal cases, the intention of a’s informing follows the first and then
the second verbal form. Finally, the cases are resolved as being
different by the particularization of operators.
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The last two paths are virtually equivalent (see the
footnote *?). Similar schemata can be obtained from
the graph-in Fig. 6 for the remaining operand systems
&G | 3‘5‘] e | e | ;] , and eg]_ . The rule
for an explicit expression of an operand out of given
formula system is to collect all the formulas in which
the operand occurs and then express these circular for-
mulas, according to the principle of an operand rota-
tion, in a way by which the operand comes to the title
position (the most left and the most right position in
a circular formula).

What can then be said to the topological outlook
of the obtained framed operand (in fact, a system of
informational paths) representing formula a system by
each of the system path? It is to stress that the graph

=

for the formula system scheme Qg,j (with 8 formula

paths) is a subgraph of the graph in Fig. 6 (merely the
local informing and embedding loops are missing).

In this sense we introduce a new concept of topol-
ogy consisting of informational paths (routes, marked
by p) instead of informational formulas ¢, represent-
ing p = [¢] Thus, instead of &, we introduce &, or

<I>. respectively. Each path (graph route) p repre-

sents potentially 2 z (¢ ) formulas if £, is the length of

the path correspondlng formula (number of the ade-
quate formula binary operators). In this way a new
sort of topological space is introduced, for instance
pertaining to Cé::,j,

€5y o
< ol D "> where
€ —
i - (3 -
1

- | [@n)s (s

s
Dp1’ =

[<P§:] )a a'nda e.g.,

=
s fij . o™
Evidently, Qp,lj — Q:ﬁ.'j'

(8) One could construct other reasonable topologies
s

being subsystems of 3 P J . But, the next provok-

ing question concerns a topology of formula systems
®,, (not just formulas ) and topologies of topological
spaces of the form (&, O).

Let @, mark a system of formula systems &, and
®3,,0,) & system of topological spaces (®,,D,), in
general. Let

®, € ¥, and (¥ € Dg,) = (¥ C o,)
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This structure delivers a system topological space
<‘I)q>¢ ! D ‘I’v: ) "

Another concept of topology of topological spaces
follows the condition

(@4, Dyp) € P(a,,0,) and
(Y€ D@,,0,) = (¥ C&e,0,)

delivering a topology topological space of the form
(2(2,,0,):9(2,,0,))-

5.3 Topological Informational Spaces
Possessing Informational Metrics

What kinds of informational metrics could come to
the surface, could be considered, and finally theoret-
ically (constructively) applied in artificial systems of
consciousness and other cognitive models? Which are
the possibilities of introducing various kinds of met-
rics concepts—the informationally static®® and infor-
mationally dynamic®* ones—into a topologically struc-
tured informational space?

Several candidates come into consideration as mea-
sures of the informational metrics. The properties of
such measures could be, for instance, meaningness,
understandingness, interpretativeness, perceptiveness,
conceptiveness, determinativeness, and several others.
If so, the corresponding decomposition and expres-
siveness of informational measures as entities must be
available.

Where could these measures reside within a meta-
physicalistic model? The answer is, anywhere. By the
principle of operand rotation in a circular formula, any
loop operand can be rotated to the initial {(main) posi-
tion of the loop and, by this, expressed by an adequate
informational formula in respect to the parenthesis-
pair setting in the formula. Meaning of something
as an informational measure can usually appear in
the embedding part of a metaphysicalistic loop. As
a meaning of something it could represent the infor-
mational value (informational length) of something. In
a similar manner, the informational distance between
two informational operands could be determined, im-
plicitly and explicitly, by a functionally inner and outer
informational difference, respectively.

Various concepts of understanding, conception, per-
ception, etc. can serve as special measures of meaning
(metrics). They can be placed constructively in any
part of the metaphysicalistic loop and, then, rotated to

23By an informationally static metrics, the most common con-
cepts of informing are meant, for instance, that of something's
meaning. Typical, purely static metrics concerns numerical or any
other value, distance, or any other geometrical measure.

24By informationally dynamic metrics, the individually organized
informational phenomena are meant, for instance that of an individ-
ual understanding structure, which has something in common with
the individual structures of others, and which is to some extent
structured invariantly (standardized) in concern to the meaning or
understanding.
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the main position of a formula and expressed explicitly
[32]). This kind of constructive approach must remain
within the reasonable limits, preserving the common
logical principles or direction.

6 Possible Geometry and Topo-
logy of the Informational

That what will be stressed in this section concerns
the interpretation possibilities of informational topolo-
gies by means of geometric bodies—their surfaces, in-
tersections, volumes, and arbitrary substructures oc-
curring interiorly, on the surface, and/or exteriorly of
these bodies. Interpretation ideas can be found in sev-
eral sources dealing with geometry [9, 22, 23, 26, 27].
Mathematica [9] seems to be the tool for an adequate
graphical presentation.

By such an interpretation of systems of informa-
tional formulas, geometrical bodies become also a
means for informationally semantic presentation of
modeled entities. For instance, a sphere—its interior,
surface and exterior—can be taken as a body of con-
sciousness (or a body of any other informational en-
tity). The surface of the sphere can represent topo-
logically that which is potentially possible to become
conscious, and a circle on the sphere surface can repre-
sent, the currently conscious. Such circles can expand
as parts of different toruses which intersect with the
sphere. They can represent different intentional in-
formings within the consciousness activity.

Further, the interior of the sphere can represent the
subconscious which can come to the surface. On con-
trary, the exterior of the sphere can be grasped as the
non-conscious and non-subconscious yet. Thus, a sys-
tem of spheres and toruses intersecting each other can
built a complex and to some degree globally transpar-
ent model of interacting consciousness systems.

Such a complex geometrical model can be particu-
larly, that is, additionally, characterized with specific
topologies, bringing into the modeling system an inter-
action of different topological spaces. In this context,
both informational topologies and geometrical bodies
can become a reasonable unit for complex informa-
tional investigation and experiments in the domain of
the informational, and particularly in the domain of
the conscious in an informational sense.

Geometrically interpreted, informational topologi-
cal spaces of informational topological spaces could get
a transparent view to an arbitrary (recurrent) depth.
Further, such interpreting geometrical structures can
behave variable in any possible aspect, for instance,
in moving of geometrical body intersections together
with bodies which can change also dimensions (vol-
umes, radii, sides, surfaces) to follow the dynamic pic-
ture of informational circumstances emerging, chang-
ing, and vanishing. Such problems of informational
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and consciousness geometry interpretation deserve a
special attention and will be treated somewhere else.

7 Conclusion

We see how the concept of mathematical topology
comes intuitively close to the informational topology.
However, the substantial differences occurring between
them, e.g. the nature of emergence of operands, opera-
tors, and formula systems, have to be stressed over and
over again. Some of the differences are already recog-
nized from the mathematical-informational dictionary
in Sect. 2, and other follow from the discussion and
examples in this paper. It is worth to refresh these
differences by the following list:

1. A formula system is obviously a set of interdepen-
dent formulas, irrespective, how it is expressed;
e.g., by (1) serial circular formulas of different
lengths, (2) primitive transition formulas, or (3)
informational operands that are in some way, by
some specific formula systems given on some other
places.

2. Formulas (elements) of an informational formula
system are directly dependent on each other
through the common operands. Thus, the change
of an operand in a given formula changes the same
operand in an other formula and, thus, changing
the informing of the other formula. As said, the
interdependence of formulas as system elements
is a rule, that is, a consequence of their formal
linkage through common formula operands. In
this respect, informational formulas as system el-
ements behave differently in respect to the ele-
ments of a mathematical set.

3. A consequence of the preceding item is that el-
ements of a set are meant as a sort of constant
determined engities, and are in this way repre-
sented as (fixed) set elements. On the other hand,
formulas as system elements possess their emerg-
ing nature in any respect: in emerging operands
and operators, in setting of parenthesis pairs in a
formula, and, most significantly, in expanding or
contracting a formula by the number of occurring
operands and operators, that is, in spreading and
narrowing the meaning power of a formula.

4. A concrete formula system can also emerge ac-
cording to the circumstances of its informing, for
instance, by adding the interpretational formulas
concerning the occurring operands, expressing the
operand properties by additional (new) formulas.
On the other side, a concrete mathematical set is
defined constantly, even its cardinality is infinite.
The elements of a set are determined by an un-
changeable rule (e.g., predicate) or by a sort of
concrete or recursive enumeration.
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By informational topology, a complex meaningly
structured grouping and coupling of formulas concern-
ing substantial informational spaces can formally be
expressed (implemented), keeping the entire, that is, a
non-reductional informational nature of involved enti-
ties as they perform in their reality. In this respect, a
topologized formula system is not a simplified model
for real informational situations, for instance in the
domain of cognitive science?s.

Tangled webs of causal influences are target phe-
nomena in recent biology and cognitive science [10].
Such twisted influences include both internal and ex-
ternal factors as well as patterns of reciprocal (also
bidirectional) interaction. The shell graph in Fig. 7
is a general scheme for the most pretentious infor-
mational modeling and experimenting, where the so-
called reductionist approach can be entirely circum-
vented. Such an initial informational shell can be used
as an informing model for any other problems beside
consciousness (e.g., in philosophy, cognitive science,
biclogy, psychology, psychiatry, language, on-line eco-
nomic simulation, etc., as shown in [32, 37] where ad-
ditional references are listed.). This points evidently
to the applicability of informational topology with its
deep intuitive background being appropriate for natu-
ral and artificial modeling of interactive philosophical
and scientific problems. _

An evident example of the informational metaphys-
icalism could be the so-called inner speech (talking to
oneself) {3]. Such a speech is constituted by the ex-
perienced meaning (informing), emergence of speech
(counterinforming), and logical articulation (informa-
tional embedding), respectively. But, all components
of this sort can emerge in a distributed form across the
inner speech informing. They can be treated (grasped,
understood) topologically as certain informational or
semantical unity through topological grouping by sub-
systems o, € Og,,, where 0, C & and (<I’,D¢¢) is the
corresponding topological informational space.
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