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In this paper, an improvement of the particle swarm optimization (PSO) algorithm is proposed. The aim 
of this algorithm is to iteratively resolve the cost problem of the Multivariable Generalized Predictive 
Control (MGPC) method under multiple constraints previously reduced. An ill-conditioned chemical 
process modelled by an uncertain Multi-Input & Multi-Output (MIMO) plant is controlled in order to 
verify the validity and the effectiveness of the proposed algorithm. The performances obtained are 
compared with those given by the MGPC method using the standard PSO algorithm. The simulation 
results shows that the proposed algorithm outperforms standard PSO algorithm in terms of performance 
and robustness. 

Povzetek: Predstavljena je metoda optimiranja z roji za nadzor s splosnim napovedovanjem in vec 
spremenljivkami. 

1 Introduction 
Multivariable generalized predictive control (Morari & 
Lee, 1999) is a very powerful method. It has been the 
subject of many researches during the last few years and 
it was applied successfully in industry, particularly in 
chemical processes. It is based on MIMO predictive 
model [1], [2] where the expected behaviour of the 
system can be predicted in the extended time horizon. 
The MGPC law is obtained by minimizing linear or non-
linear criterion (Magni, 1999, Duwaish, 2000). This 
criterion is composed by the sum of the square prediction 
errors between the predicted and desired outputs, the 
weighted sum of the square change-controls (control-
increments) and others [3]. The constraints inclusion (as 
mathematical inequalities type) distinguishes most 
clearly MGPC from other process control paradigms as 
suggested in (Richalet, 1993, Qin 1997, Rawlings, 1999). 
These constraints are imposed in order to ensure a better 
stability and performance robustness (Al Hamouz and 
Duwaish, 2000, Imsland, 2005). The MGPC method 
formulates the constraint optimization problem at every 
step time for solving the optimal control move vector [4]. 
At the next sampling time, a new process measurement is 
received, the process is updated, and a new constraint 
optimization problem is solved for the next control move 
vector. An efficient randomized constraint optimization 
algorithm is suggested to the MGPC method named by 

PSO algorithm (Rizvi & al, 2010, Yousuf & al, 2009, Al 
Duwaish, 2010). This algorithm explores the search 
space using a population of particles, each one with a 
particle or an agent, starting from a random velocity 
vector and a random position vector. Each particle in the 
swarm represents a candidate solution (treated as a point) 
in an n-dimensional space for the constraint optimization 
problem, which adjusts its own "flying" according to the 
other particles [5]. The PSO algorithm can resolve 
successively various constraint optimization problems, 
such as linear or non-linear, convex or non-convex 
problems. Unfortunately, it cannot provide satisfactory 
results when the MGPC method is applied to poorly 
modelled processes [6] operating in ill-defined 
environments. This is, as often, the case when the plant 
has different gains for the operational range designed by 
user's trial-and- error. In addition, the PSO algorithm's 
convergence cannot satisfy multiple time domain 
specifications if the process (to be controlled) is 
constrained by a high number of hard constraints 
(Leandro dos Santos Coelho & al, 2009). Several 
heuristic algorithms have been developed in recent years 
to improve the performance and set up the parameters of 
the PSO algorithm [7].This paper investigates the 
analysis of the above mentioned problems. Two main 
contributions are proposed in this paper in order to 
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improve the performances of the MGPC method. The 
first one consists to reduce (if possible) the imposed 
inequality constraints which are reformulated as 
boundary constraints. The second one is to resolve the 
bounds constraints optimization problem by the 
improved PSO algorithm. 

2 Unconstrained MGPC Method 
All the considered matrices are in discrete time domain. 

A CARIMA (Controller Auto Regression Integrated 
Moving Average) model for an m inputs and m outputs 
multivariable process can be expressed by [8]: 

A(q-1)Ay(t ):= B(q ~X)Au(t-1) + C(q ^ ( t ) (1) 
Where 

y(t) e ^ m x 1 : = [ y 1 ( t ) y 2 ( t ) ••• ym(t)T 

u(t) e ^ m x 1 : = [ M l ( t ) «2(t) ••• «m(t)Y 

A(q-1), B(qand C(q_1)are m x m monic 

polynomial matrices^ Set C(qequal to the unity 

diagonal matrix^ £( t ) is an uncorrelated random process 

and A ( q = 1 - q_1, this form enables to introduce an 
integrator in the control law^ Without lost of generality 
one can suppose A as diagonal polynomial matrix^ 

yi (t) e ^ , ui (t) e ^ denotes respectively, the 
process output and the control input of the channel 
number ' i \ q 1 denotes the backward shift operator The 

role of A ( q i s to ensure an integral action of controller 
in order to cancel the effect of the step varying output in 
the channel ' i \ 

As in all receding horizon predictive control 
strategies, the control law provides that, for each channel 
'i ' , the control-increment Aui (t) which minimizes the 
following unconstraint cost problem of the MGPC 
method [8]: 

m f N2 N« 
J : = Z i [y ( t + j /1) - w (t+j)}2+Ai £ K ( t + j -1)]2 

j=1 j = 1 

(2) 
Where 
yi (t + j ) e ^ is an optimum j-step-ahead prediction 

of the system output vector on data up to time t, 
therefore, the expected value of the output vector at time 
t if the past input vector, the output vector, and the future 
control sequence are knowa Noting that yt (t + j ) is 
depending to the control-increment Aui from resolving 
two Diophantine equations (more details are available in 
the reference [9]) 

wi (t) e ^ is the future set-point or the reference 

sequence for the output yi (t) • 
N2, N'u (with respect: N'u < N2) denotes 

respectively, the maximum output prediction horizon 

(assumed equal to N2 e ) and the maximum control 

prediction (assumed equal to Nu e ) for each channel 

'/"• A e denotes the positive parameter weighting the 
control input for each channel ' i \ 

3 Classification of Constraints and 
Problem Formulation 

In constrained control, a set of inequality constraints may 
be set as addition of the control objective and the 
variation limits of certain variables to the given ranges: 

vi < vi (t + j ) < vi, with i := 1,2,„m and 

j := N
Sl,•••,N

s2 • 

Where 
vi (t + j ) e ^ is a variable under restriction, 
vi e ^ and vi e ^ are the lower and the upper 

boundaries, 
Ns1 and Ns2 are the lower and the upper constraint 

horizons respective^ 
The two main objectives of constrained predictive 

control are set-point tracking and prevention / reduction 
of constraint transgressions^ These constraints can be 
imposed (with respect to the time index) on the control-
increment vector, or/and on the control vector as follows: 

- Constrained on the control-increment: 
u <Aui (t + j ) < Aui (3) 
Where i = 1,2,,,m and j = 0V„, Nu - 1 • 

- Constrained on the control: 
ut < ui (t + j ) < ui (4) 

Where i = 1,2,,,m and j = 0V„, Nu - L 
By using: 

j 
ui (t + j ) := ui (t -1) + £ Aui (t + k) (5) 

k=0 

The control constraints (4) becomes as follow: 
j _ 

u - ui (t -1 ) < £ Aui (t + k) < ui - ui (t -1) (6) 
k=0 

The constraints on the control vector and the rate of 
control changes, with respect to the batch index, can be 
easily combined together: 

(7) Amq 'AU < Bmq 

Where 

AU, 

f AU (t) ^ 

AU (t +1) 
(m-Nu )x1 • denotes the design 

VAU(t + Nu - 1 ) , 

parameter vector which will be determined later by the 
PSO algorithm, it contains the future control- increment 
vector (AU (t + j))mx1 of each channel as: 

f Au1(t + j ) ^ 

AU (t + j ):= 
Au2(t + j ) 

Aum (t + j ) / j = 0 , 1 , - , N „ -1 

1=1 
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(Amq ) > {Binq inqj(4.m.nu)y.(m.Nu) , \Btnq j ( 4 m N )x1
 3 1 6 d e f i n e d by: 

( diag(Imxm
 ) ^ 

À : = inq • 
- diag(Imxm ) 

t r i l ( I mxm ) 

- tril(Imxm ) . 

Where 

diag (Imxm) e ^ ( m N " ) x ( m N " ) denotes the unity diagonal 

matrix, and tril(Imxm) e ^ ( m N " ) x ( m N " ) denotes the lo 

triangular matrix of the unity diagonal matrix ( I m x m ) . 

B : 
inq ~ 

K 1 
-[Au 

l(m-Nu )x1 

i J(m-Nu )x1 

[ u i - U i ( t - 1 ) ] ( m , 

- [ U i - u i
 ( t - 1)], 

l(m-N„ )x1 

( m - N u )x1 

as: 
J (AU, t ) :_AUT - Q 2 -AU + QT -AU + Q0 

Where Q2 :_ G T • G + A , QT :_ 2(r - W)T G and 

Qo : _ ( r - W ) T - ( r - W ) 
A :_ A-1 (m - N )x(m - N ) is diagonal matrix weighting 

projected set-point vector. 
l are the polynomial matrices 

min J (AU, t) : _ A U t -Q2 - AU + QT - AU + Q0 
AU 

Is.t: À inq A U — Binq 

(9) 

propose a systematic method that determines the 
minimum set vector of limiting constraints. The lower 
and the upper bounds of the feasible region are given as 
below: 
For each channel i := 1, —, m , the control-increment 
Aui (t) is simultaneously constrained by: 
1- For the control prediction horizon j = 0 : 

(10) 

The cost index (2) can be expressed in matrix form 

(8) J — 

I Au- < Aui (t) < Aui 

[ui - u(t -1 ) < Aui(t) < ui - u(t - 1 ) 

It is easy to see that the new lower and upper bounds are 
determined by: 

v i( t ) < AU- (t) < V(t) (11) 

Where 

vi (t) := max{Aui ui - u (t -1)} 

Vj (t) := min{Au, ut - u ( t -1)} 

2- For the control prediction horizon j = 1: 

Aui < Aui (t +1) < Au-

(12) 

(13) 

(14) 
I ui - u(t -1) < Aui (t +1) + Aui (t) < u- - u(t -1) 

The new lower and upper bounds are determined for 
j =1 by: 

Vi (t +1) — AM1 (t +1) — Vi (t +1) (15) 
the control-increment vector, and W(m N2)x1 is the Wh e r e 

G(m-N2)x(m-Nu), T(m-N2)x1 

which are determined by the recursively resolution of the 
two Diophantine equations [9]. 
The cost index (8) and the inequality constraints (7) 
formulate the following constraint optimization problem 
as: 

vi (t +1) :_ max{AM1 {ui - u(t - 1 ) } - vi (t)} 

Vj (t +1) :_ min{Au i {ui - u(t -1)} - Vi (t)} 

(16) 

(17) 
This procedure is repeated until the control prediction 
horizon j = Nu - 1 . Therefore the control-increment 
Aui (t + Nu -1) is constrained by the new bounds: 

Nu-2 

Vi (t + Nu -1) := max{Aui {ui - u ( t - 1 ) } - ^ v t (t + k)} 

Now, an optimal control vector is given by the PSO 
algorithm. This algorithm should minimize the objective 
function (8) under 4 x m x Nu inequality constraints. The 
computational requirements of the PSO algorithm 
depend heavily on the number and the type of the 
constraints to be satisfied. An efficient off-line constraint 
PSO algorithm, suggested by Ichirio & al, 2009, can 
resolve this problem [10]. Unfortunately, this algorithm 
is difficult to extend to the MGPC method for two 
reasons: the first one is due to a large dimension of the 
inequality constraints which needs excessive 
computation time. The second one is due to a real-time 
output feedback implementation of the MGPC method 
which requires a minimum consuming time. To resolve 
these above problems, the inequality constraints should 
be reduced, for each step time, and reformulated as 
bounds constraints type. Only those constraints (which 
limit the feasible region) must be taken into account. The 
efficiency of the PSO algorithm can be increased if the 
superfluous constraints (which do not limit the feasible 
region) should be eliminated [11]. In this paper we 

k _0 

Nu-2 
(18) 

vi (t + Nu -1) :_ min{Aui {ui - u(t -1)} - ^Vi (t + k)} 
k _0 

(19) 
Then, for each step time valuet0 ,tj ,---,tmax , the feasible 

region D(i, j, t):_ (vt (t + j) vt (t + j)) j_0,-Nu -
i_1,-" ,m 

j can be 

determined by the following proposed algorithm: 

3.1 Reduced constraints algorithm 
For each point time t0, t1, , t„ the feasible region is 
determined by the followings steps: 
[Step 1]: Set the first counter i ^ 1 which denotes the 
number of channels, and go to the next step. 
[Step 2]: Set the second counter j ^ 0 which denotes the 
control horizon prediction, and go to the next step. 
[Step 3]: Set the parameters hmax ^ 0, hmin ^ 0 and go 
to the next step. 
[Step 4]: Build the followings ranges: 
bound_maxi- := {Au-- {u- - u t ( t - 1 ) } - h m a x } . 
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bound _ min i := {Au, {ui - ui (t -1)} - hmin }. 
[Step 5]: Calculate the new upper and the new lower 
bounds which limit the control- increment Aui (t + j ) by: 

vi (t + j) := min{bound _ max,} 

vi (t + j ):= max{bound _min i } 
From these above bounds, the feasible region is 
determined as follow: 
D(i, j, t ) := v (t + j) vt(t + j)) 

[Step 6]: Update the parameters: hmin , h max as follows 

h m a x ^ h max + v , ( t + j K 

h m i n ^ h m i n + v, (t + j ) , and go to the next step 
[Step 7]: Update the second counter j ^ j +1 and go 
back to the step 4 if j -< Nu - 1 . Otherwise, go to the next 
step. 
[Step 8]: Update the first counter i ^ i +1 and stop 
algorithm if i := m . Otherwise go back to the step 2. 
From this above algorithm, the constraint optimization 
problem (9) under inequality constraints is reformulated 
as the bounds optimization problem: 
| m i n J (AU, t) : = A U t • Q2 •AU + QT •AU + Q0 

j A U (20) 
[s.t: AU < AU < AU 

Where AU , AU denotes respectively, the new lower and 
the new upper bounds vector which limit the feasible 
region D(m,Nu>2 := (AU, AU) , with: 

( M > . N u ) x 1 := (v, ( 0 £ ( t + 1) . . . v , ( t + Nu - \ ) ) T = h 2 . . . m 

( A U ) ( m . N u ) x 1 : = f ~ ( / ) v,(t + 1) . . . 7 f t + Nu - 1))T=1,2..m 

From (20), it is easy to see that the inequality constraints 
number is reduced to m x Nu constraints at each step 
time. This dramatic reduction has a capital importance 
for the success of the PSO algorithm. 
Now, we are able to find the optimal control of the 
MGPC law. The new constraint optimization problem 
(20) should be resolved for each step time 
t := t 0 , t j , . - . , tm a x , its solution vector AU * denotes the 
optimal design parameter vector. Only the first m rows 

of AU * is used to obtain the optimal desired control-
increment vector of each channel (' i '). The optimal 
control vector is obtained by adding the previous control 
vector to the optimal control-increment vector as follow: 
ui (t ):= ui (t -1) + Au*(t) (21) 

4 Improved PSO Algorithm [6] 
Particle swarm optimization algorithm, introduced first 
by Kennedy and Eberhart in (1995), is one of the modern 
heuristic algorithms which belong to the category of 
Swarm Intelligence method (Kennedy, 2001). The PSO 
algorithm uses a swarm consisting of Np e K particles for 

each control-increment vector (Au, (t + j ) ) j = 0 1 . N - 1 to 
,=1,2,.-m 

get an optimal solution Au* (t + j ) which minimizes the 
optimization problem (20). The position of ( ith ) particle 
and its velocity are respectively denoted as [12]: 

AUi (t + j ) : = ( A u u ( t + j ) Au i , 2 ( t + j ) — Aui,Np (t + j)f 

Wi (t + j ) : = W i , i ( t + j ) Wi,2 (t + j ) V, N, (t + j ) f 

Then, the position of the ( ith) particle, Au, (t + j ) , is 
based on the following update law: 

for £ = 1,2,...£max , which indicates the iteration 
number [12] 

Vi 
f+1 := c W + cirfi ( h ^ - Auf )+ ^ ( ^ i " Auf 1 

2 2,A swarm 

Auf+1 := Auf + v f + 1 

(22) 

(23) 
Where c1 and c2 are respectively, the cognitive 

(individual) and the social (group) learning rates and are 
both positive constants. The value of cognitive parameter 
c1 signifies a particle's attraction to a local best position 
based on its past experience. The value of social 
parameter c2 determines the swarm's attraction towards a 
global best position. 

c0 e is the inertia weight factor whose value 
decreases linearly with the iteration number (Shi & 
Eberhart, 1999) as [13]: 

C0 : = ^max 

fe -e . ^ max min 

fmax 
(24) 

Where dmax and 0mm are the initial and the final IIldA II11I1 
values of the inertia weight, respectively. The values of 
dmax = 0.9 and dmm = 0.4 are commonly used [13]. 

The random numbers r1 ,i and r2 ,i are uniformly 

distributed in [0,1]. 

Hbest,£ and h^L denotes respectively, the best 
previously obtained position of the ( ith ) particle (the 
position giving the lower value of the objective criterion) 
and the best position in the entire swarm at the current 
iteration £ [10]: 

r (25) Hbest:= argmin{J (Auf ),0 < r < f} 
Aui 

hWi := argmm{J(Au f ),Vi} 
Auf 

(26) 

From equation (23), some current position of ( ith ) 
particle (in each dimension) can exceed the 
corresponding lower bound or upper bound of the 
feasible region. Consequently, the given optimal control 
vector of the MGPC method cannot satisfy some 
specifications and also some constraints are non-
satisfactoriness' in some range time. To avoid, we should 
improve the convergence of PSO algorithm by adjusting 
only the corrupted position of ( ith ) particle with the 
region around the current established solution, if it is too 
smaller than the corresponding lower bound, its value v, 
should be replaced. If it is too higher than the 
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corresponding upper bound, then its value is replaced by 
Vj . The proposed modification can be formulated as 
follows: 

Let consider: 
AM/ (t + j ) : The corrupted position of ( ith) particle 

given at current iteration £ := q. 

Vi (t + j ) , vi (t + j ) : The lower bound and upper 
bound which are determined by the reduced constraints 
algorithm. So that, the above corrupted position can be 
adjusted by using the following inequalities: 

fvi (t + j ) : if AM/ (t + j) X Vi (t + j) 

5 Simulation Results and Discussion 
In this section, a multivariable generalized predictive 
control method using a modified particle swarm 
optimization algorithm is applied to a distillation column 
which is MIMO plant with two input and output vectors 
(benchmark problem, see [14]). The two inputs are the 
reflux and the vapour boil up rate and the outputs are the 
distillate and the bottom product. The results are 
compared with those given by the MGPC method using 
the standard PSO algorithm. The mathematical model is 
given by [14]: 

A u f (t + j):=< G(s) := 
1 

k (t + j) : if Auf (t + j ) y vt (t + j ) 75s +1 

0.878 - 0.864 

1.082 -1.096 
Ke 

(27) 
Consequently, from the equation (23), the current 

velocity should be limited by the following bounds: 

vt - A u f 1 X v~ - Am^1 (28) 
Now, the modified current positions with their 

modified velocity are used to improve the next best 
position and their velocity vector for the next iteration as 
follow: 

Ki(i=1,2) e[0.8 1.2], Ti(i=12) e[0.0 1.0]. 

0 

(31) 

W?+ï := coWf + crf \Hr,q -Au 1r1f (H 
best ,q )+ c rq (hbest,q - A u f 

/ + c 2 r 2 , i Vhswarm Aui 

Auf+1 := Auf + W
f+X 

(29) 
(30) 

The improved PSO algorithm consists of the 
following steps: 

4.1 Proposed algorithm 
For each step time t := t0,t1,—,tmax the optimal control-
increment is determined by the following steps: 

[Step 1]: Determine the lower bound and the upper 

boundvi (t + j ) ,Vj (t + j ) which are corresponding the 

design parameter [AM, (t + j)]i:=i/--,»N ^. 

[Step 2]: Initialize random swarm positions and 
velocities: 

initialize a population (array) of particles with 
random positions and velocities (array) from the search 
domain D := (AU, AU). 

Set the counter £ ^ 1 and go to the next step. 
[Step 3]: Evaluate the objective criterion (20) and 

obtain Hbest'£, h^ti according to (25) and (26). 
[Step 4]: Update of a particle's velocity and its 

position according to (22) and (23). 
[Step 5]: Check each parameter of the particle's 

position by the following corresponding lower bound and 
upper boundvt (t + j ) , vi (t + j ) . Replace only those 

exceeding these above bounds. 
[Step 6]: Update the counter £ ^ £ +1 and go back 

to the step 3 if £ X £ max . Otherwise, stop algorithm and 
take the best position vector as an optimal solution which 
minimize the constrained optimization problem (20). 

¿(¿=1,2) 

Where 
ri, Ki denotes respectively, the uncertainty 

temperatures and uncertainty gains of the process. 
The time domain specifications are formulated, for 

the time range t e [0,400] minutes, as below: 

\ a- For the first set-point reference vector: w = (1 0)7 

\ the first and the second output channels yjand y2must 
satisfy[14]: 

(51): y j (t) > 0.9 in more than 30 minutes. 

(52): y1(t) < 1.1: the maximum over-shoot 
corresponding the first output channel cannot exceed 
11% for all range time t e [0,400]. 

(53): 0.99 < y^t») < 1.01: the static error value 

cannot exceed 1% (\y1 (») - wx ( » ) < 1%). 
(54): y2( t) < 0.5: the maximum over-shoot of the 

second output channel cannot exceed to 50% for all 
range time t e [0,400]. 

(55):For t ^ » : -0.01 <y 2 ( t ) < 0.01: the static error 
value cannot exceed 1%. From another word: 

|y2 (») - w2 ( » ) < 1% . 

(56):Closed loop stability. 
(57):Control signals should be limited by 

[ - 200 + 200]. 
(58):Control-increment signals should be limited by 

[-12 +12]. 

For the set-point reference vector: w = (1 0 f , the 
sampling time Te = 1 minute is used to determine a 
CARIMA predictive model of the chemical process for 
two followings parameters cases [14]: 

K 1 2 = r u = 1 and K1 = 1.2, K 2 = 0.8, r u = 1. 

b-The same previous time domain specifications 
should be satisfied for the second set-point reference 

vector w = (0 corresponding to the low gains 

direction K1 = K2 = 0.8 and the same time delay 
constants z1 = T2 = 1. 

Xi s 

K,e ~r2S 0 2 

q 
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The MGPC method is tuned by choosing: 
(N2, N'u , A ) i = 1 , 2 = (8,6,0^01) at time range t := [0,400] 
minutes^ 

For each step time: t := t 0 , t 1 , - , 4 0 0 , the feasible 
region is determined from the following constraints: 

-200 < ut (t + j ) j=0 - 5 < +200 • 
i =1,2 

-12 <Aut (t + j ) j=0,- ,5 < +12 • 
i =1,2 

From the reduced constraints algorithm (see section 3J) , 
these above inequality constraints are reduced in order to 
determine the search space D at each step time^ The 
constrained optimization problem is resolved by standard 

and improved PSO algorithms according to the following 
parameters: 

- Swarm size: Np := 24 • 

- Maximum iteration: £ max := 100 • 

- Cognitive and social learning rates: c1 = c2 := 1 • 

For the set-point reference vector: w = (1 0)T and 
the parameter system's: K1 2 = z1 2 = 1, the figures L1 to 
L3 shows the results given by the MGPC method using 
the standard PSO algorithm (dashed curves), and the 
MGPC method using the improved PSO algorithm (line 
curves) The table1 summaries the results obtained by the 
two algorithms^ 
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Figure L1: Set-point tracking results with standard and improved PSO algorithms for w = (1 0)T and K 1 2 = r1,2 = 1 • 

Figure L2: Control effort results with standard and improved PSO algorithms for w = (1 0)T and K 1 2 = r 1 2 = 1 • 
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Figure 1.3: Control-increment results with standard and improved PSO algorithms for w = (1 0)T and K 1 2 = r1,2 = 1. 

Specifications (S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) Decision 
(Sk): yi(30) yi(400) y(400) stable 

/ 
Unsatisfactory/ 

satisfactory 
Unsatisfactory/ 

satisfactory 
& 

reasons 
Algorithms: max(yi) time m a x ( y 2 ) time unstable constraints constraints 

Standard 1.010 1.074 23 1.010 0.343 8 0.006864 stable unsatisfactory unsatisfactory Rejected 
PSO -9.1<u1<349.3 

-9.9<U2<351.4 
-44<Au1<93 
-44<JU2<91 

algorithm 
(S7),(S8) 

Improved 0.990 1.096 40 0.9975 0.4846 13 0.002512 stable Satisfactory Satisfactory Accepted 
PSO -20.1 <u i<200 -12<Auj<12 algorithm 

-20.3<U2<199 -12<Au2<12 -20.3<U2<199 -12<Au2<12 

Table 1: Summary of the results (unsatisfactory performances are in bold) for the nominal model and the set-point 

reference w = (1 0 ^ . 

According to the figure 1.1, we can see that, the tracking 
dynamic of set-point reference vector found by MGPC 
method based on a standard PSO algorithm is better than 
the other algorithm but unfortunately, the time domain 
specifications: (S7) and (S8) are not satisfied. 

In the figure 1.2, the obtained control signals of the 
MGPC method based on standard PSO algorithm exceed 
the constraint ranges at t := {5,6,-15} minutes such as: 
u1max (9) = 349.3 and u2max (9) = 351.4 . In addition, the 

control-increment signals presented in the figure 1.3 also 
violate the constraint ranges at times: 

t := {(2 - 5), (7-11) , (13 - 22)} minutes. 
Consequently, the performance robustness of this method 
is very poor in comparison with the MGPC method using 
the improved PSO algorithm which is capable to satisfy 
all time domain specifications. These results confirm the 
usefulness and the robustness of the proposed algorithm. 

Figures 2.1, 2.2, 2.3 and table 2 give the results of 
the MGPC method with the following parametric 
changes in the process: (K1 = 1.2,K2 = 0.8,z12 = 1) for 

the set-point reference vector w = (1 0 ^ . 

According to the figures 2.1 to 2.3, the better results are 
obtained by the improved PSO algorithm which satisfies 
all time specifications (S1 to S8). These results can be 
explained by the best stability robustness against the 
process parametric disturbances. Furthermore, the control 
and the control-increment signals from the standard PSO 
algorithm show a dramatic oscillation at transient time 
region and exceed the constraint ranges. In fact, this 
algorithm cannot fulfill the three followings time domain 
specifications: (S2) withmax(y1) = 11.124%, (S7) with 
u1max = 251, u 2 m a x = 374 and(S8)with 
-26.4 < Au1 = 70.76 , -39.7 < Au2 = 99.05 , which can 
be explained by a high sensitivity to the parametric 
process variations. Thus, from these figures and table 2, 
we confirm the superiority of the proposed algorithm. 

Figures 3.1, 3.2, 3.3 and table 3 give the results of 
the MGPC method using both algorithms when low gains 
directions of the process and set-point reference vector 

change simultaneously as follows: 
( K = 0 .8 ,K 2 = 0 . 8 , r u = 1), w = (0 1)T . 
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Figure 2.1: Set-point tracking results with standard and improved PSO algorithms for w = (1 0 f and 
K = 1.2, K 2 = 0.8, r u = 1). 
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Figure 2.2: Control effort results with standard and improved PSO algorithms for w = (1 0 f and 
( K = 1.2, K 2 = 0.8, Tj,2 = 1). 

These above figures clearly show the performance 
superiority of the proposed PSO algorithm over standard 
PSO. For this case, the time domain specifications: S2 , S7 

and S8 are satisfied with the proposed PSO algorithm, 
while the same specifications are not satisfactoriness 
with standard PSO. In addition, the obtained outputs by 
the standard PSO algorithm converge to the set-point 
references but unfortunately, two other specifications 
cannot be satisfied at time t = 208 minutes which are: 

(S3): |>"2(208) - w2(208)| = 5%. 
(S5): |>1 (208) - wx(208)| = 3%. 

6 Conclusion 
In this study, we proposed an improvement of the PSO 
algorithm, it has been introduced and applied to solve the 

constrained MGPC problem. In order to find a feasible 
region, the constraints on the controls and their 
increments have been previously reduced at each step 
time, the obtained convergences by improved PSO 
algorithm are well improved in comparison with the 
standard PSO algorithm. The efficient of the proposed 
algorithm is clearly shown and the performances 
robustness and the stability robustness are guaranteed 
with little still sensitivity to a set-point references 
changes and parametric model uncertainties. The results 
of the proposed algorithm justifies its efficiency and 
presents quite promising results and can be a subject of 
an interesting investigations. 
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Figure 2.3: Control-increment results with standard and improved PSO algorithms for w = (1 0 f and 

K = 1.2, K 2 = 0.8, r u = 1). 

Specifications (S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) Decision 
(Sk): yi(30) yi(400) yi(400) stable Satisfactory/ Satisfactory/ for 

/ unsatisfactory unsatisfactory reasons (St) 
max(yi) time max(y2) time unstable constraints constraints 

reasons (St) 

Algorithms: 
Standard 1.061 1.1124 24 0.9953 0.2562 8 0.006142 stable unsatisfactory unsatisfactory Rejected 

PSO -19.2<u1<251 -26.4<Au1<70.76 algorithm 
-29.4<u2<374 -39.7<Au2<99.05 (S2).(S7).(S8) 

Improved 0.920 1.054 40 0.9953 0.493 12 0.006142 stable Satisfactory Satisfactory Accepted 
PSO -3.5<ui<133.5 -8.38<Au,<12 algorithm 

-6.4<u2<199 -12<Au2<12 -6.4<u2<199 -12<Au2<12 

Table 2: Summary of the results (unsatisfactory pe 
(K = 1.2, K 2 = 0.8, r 1 2 = l) and the set-point reference w = (l 
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Figure 3.3: Control-increment results with standard and improved PSO algorithms for w = (0 i f and 
( K = 0.8,K2 = 0.8, z ^ = i ) . 

Specifications (S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) Decision 
(Sk): y2(30) yi(400) yi(400) stable Satisfactory/ Satisfactory/ for 

/ unsatisfactory unsatisfactory reasons 
max(y2) time max(yi) time unstable constraints constraints (Sk) 

Algorithms: 
Standard 1.046 1.167 21 0.9985 0.202 8 -0.003 stable unsatisfactory unsatisfactory Rejected 

PSO -379.7<uj<56 -97.7<Ju,<62.4 algorithm 
-383<u2<55.3 -99.2<Ju2<62.5 (S2).(S7).(S8) 

Improved 1.032 1.10 40 1.005 0.345 12 0.0009 stable Satisfactory Satisfactory Accepted 
PSO -199<u1<20.3 -12<Au1<12 algorithm 

-200<U2<19.9 -12<Au2<12 -200<U2<19.9 -12<Au2<12 

Table 3: Summary of the results (unsatisfactory performances are in bold) for the uncertainty model 

K i = 0.8,K2 = 0.8, T 2 = i)and the change set-point reference w = (0 l ) 7 . 
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