
https://doi.org/10.31449/inf.v46i1.3306 Informatica 46 (2022) 27–47 27

A Complete Traceability Methodology Between UML Diagrams and

Source Code Based on Enriched Use Case Textual Description

Wiem Khlif, Dhikra Kchaou and Nadia Bouassida

E-mail: Wiem.khlif@gmail.com, Dhikra.Kchaou@fsegs.rnu.tn, nadia.bouassida@isimsf.rnu.tn

Sfax University, Mir@cl Laboratory, Tunisia

Keywords: traceability, UML diagrams, use case, enriched textual description, control structure.

Received: September 9, 2020

Abstract: Traceability in software development proves its importance in many domains like change

management, customer's requirements satisfaction, model slicing, etc. Existing traceability techniques

trace either between requirement and design or between requirement and code. However, none of the

existing approaches achieved reliable results when dealing with traceability between requirements,

design models and source code. In this paper, we propose an improvement and an extension of our design

traceability approach in order to tackle the traceability between design, requirement and code. The fine-

tuning of our methodology stems from considering an expanded textual description. A pre-treatment step

is added in order to divide the textual description of system functionalities into different parts, each of

which represents a specific goal. In fact, the extension consists in extracting an expanded textual

description from a natural language text in order to trace between related elements belonging to

requirement, design and code while using an information retrieval technique. The proposed method is

based on different scenarios (nominal, alternatives and errors), particularly on concepts related to control

structures to establish the traceability between artefacts. Furthermore, we implemented our method in a

tool allowing the evaluation of its performance. The evaluation is performed on real existing applications

that consist in comparing results found by our approach with results found by experts. Our method

achieves an average precision of 0.84 and a recall of 0.91 in traceability between requirement, design

and code. Besides its promising performance outcomes, our automated method has the merit of generating

a traceability report describing the correspondence between different artefacts.

Povzetek: Prispevek opisuje novo metodo za sledenje povezavam med UML diagrami in izvirno kodo.

1 Introduction
Traceability quality is defined as the degree to which

existing artefacts of a software development project are

traceable as mandated by the project’s traceability

stakeholders. The Unified Modelling Language (UML) is

used for specifying, constructing, and documenting these

artefacts. It is composed of a set of diagrams grouping

structural and semantic dependencies between UML

elements [1]. Based on the unified process, UML

diagrams are produced iteratively and incrementally from

use case diagram (UCD) to code. An iteration generates a

baseline that comprises a partially complete version of the

final system. Each one results in an increment, which is a

release of the system that contains added or improved

functionality compared with the previous release. Each

iteration goes through five activities that specify what

needs to be done: requirements, analysis, design,

implementation and test. Requirements are modelled by

(UCD) and their textual descriptions while the design is

modelled through UML diagrams (class, sequence, etc.).

These diagrams are strongly related either within one

iteration or between iterations and consequently the lack

of traceability between them makes any change difficult

and expensive. Determining and keeping traceability

between UML models is important for many reasons. For

instance, in the context of change impact analysis, a

change in one iteration often leads to changes in the

following iterations. Certainly, the major challenge when

developing a requirement change consists in creating

traceability links between heterogeneous artefacts

produced at different abstraction levels [2]. For example,

adding data and actions in a use case (UC) description

leads to add the corresponding methods and attributes in

the class diagram and in the code. In fact, tracing change

inter-UML diagrams into the source code is crucial to

maintain the consistency and coherence. However,

creating accurate and complete traceability is costly and

remains a practical challenge [2]. In fact, we focus in this

paper on determining traceability by considering

structural and behavioural aspects. Furthermore, it is

crucial to keep traceability between UML models since it

allows checking the conformance between safety

requirements and design decisions through model slicing.

Thus, traceability definition is used to extract design slices

that filter out irrelevant design details and keep

information to inspect compliance between requirements

and design [3, 4]. The recent literature on traceability

shows two trends of approaches: those centred on

traceability inter-UML models [4, 5, 6, 7, 8, 9], and those

based on traceability from requirement and design to code

[10, 11, 12, 13, 14, 15]. The first type of approaches

28 Informatica 46 (2022) 27–47 W. Khlif et al.

tackles the traceability within a set of models elements,

particularly from requirements modelled by a UCD to

design diagrams [6]. For instance, [16] deals with

traceability between software architectural models and

extra-functional results such as performance and security.

Kchaou et al., [6] present traces between requirements

modeled by a UCD and UML design diagrams. On the

other hand, [4] illustrates the traceability between Use

Case Maps and UML diagrams and [8] identifies the

traceability between requirement and design models

modeled with SysML. The second type of traceability

approaches defines links between different models

(requirements, design, test cases, etc.) and source code.

These works differ in terms of the used techniques. These

traceability approaches use exclusively either information

retrieval techniques [17, 18, 19], a meta-model [20],

Natural Language Processing (NLP) techniques [21] or

machine learning techniques [22]. However, none of the

existing approaches deals with traceability between

requirements, design models and source code by covering

all the concepts that can be determined in all levels

(control structures, how activities are carried out, etc).

That is, the so-far proposed approaches neglect additional

semantic and/or structural information that can be

extracted. The lack of this information may reduce the

scope of possible analyses that can be made and possible

traceability links that may be found. In addition, in the

literature, traceability from requirement and design to the

source code is based generally on the class diagram, which

does not produce all necessary information such as control

structure. Consequently, class diagrams allow engineers to

understand its structure but it does not show the behavior

of the software [5]. To understand its behaviour, dynamic

models are needed, such as sequence, activity or state

transitions diagrams [1]. Moreover, while the existing

approaches use a semantic technique to compute

similarities between different artifacts based on specific

and common terms (e.g., actors, actions, etc), they do not

cover all kinds of terms like behavioral elements (Parallel,

alternative, loop, etc.), type of result, functional call, etc.

In this paper, we first show how the approach, initially

presented in [6], that traces the elements of design

diagrams, can be improved, fine-tuned and automated in

order to discover correlated structural and semantic

information and to trace between different UML

diagrams, and between these diagrams and the source

code. So, we have improved our previous work by

defining an Enriched Textual Description (ETD) of a UC.

The latter is extracted from a text written in a natural

language and describing a software. In addition, the

defined ETD allows tracing between the design and code.

Unlike existing works (e.g. [4, 8, 21], we propose a

method called TRADIAC Quality (TRAceability for

UML DIAgrams and Code) that proceeds in three phases:

“Pre-processing Natural language”, “Traceability Inter-

UML diagrams” and “Traceability from requirement and

design to code”. The “Pre-processing” phase receives as

input the whole textual description of a software written in

natural language. Then, the textual description is split into

parts that achieve a specific goal expressing each one a

functionality (use case). After that, each part is specified

by using an enriched template that encapsulates the

semantic information pertinent to the functional and

behavioural aspects. In this work, we enrich the used

textual description template [6] by basic control structures

(BCS) (loop, if, switch, etc.) and a set of key words (e.g.

PARALLEL expressing how activities are carried out)

which take into account many important concepts in the

design and code. This template is used for the

requirements specification as a mean to document a UC.

Compared to the presented template in [6], the enriched

one provides more comprehensive traceability. For

instance, in [6], the proposed approach does not determine

which UC corresponds to which function in the code. In

addition, it does not focus on details in alternative

behavioural elements such as control structures. The

second phase of our method “Traceability process inter-

UML diagrams” is composed of traceability rules

identification and similarity calculation. Traceability rules

detect the relationships between requirements and design

models. They distinguish between two traceability levels:

structural and semantic. Structural traceability determines

structural relationships between UML diagrams. Semantic

traceability, which discriminates our method, is useful by

considering that use case diagrams and their textual

descriptions are based on a well-structured text. It searches

the meaning of words contained in these descriptions and

their synonyms to find similarities with terms used in the

rest of UML diagrams. We note that the semantic

traceability between the enriched textual description

associated to a UC and other diagrams is based on an

information retrieval technique. More specifically, it uses

the Latent Semantic Indexing (LSI) similarity measure to

estimate the similarity between corresponding elements.

The choice of this measure is based on evaluations

presented in [6] which showed that LSI is better suited to

measure the semantic similarity. In its third phase, our

method determines the traceability from requirement and

design to code. It allows keeping traceability links from

requirements into design and code by adding

implementation details. To do so, it uses the traceability

process from requirement to code which applies the

defined traceability rules specific to details in the source

code and calculates the similarity between the selected

fragment in the textual description of a UC and code.

To show the advantages and limits of our method, we

conduct an experimental evaluation thanks to TRADIAC

(TRAceability for UML DIAgrams and Code) tool, which

implements all of the method phases. For the herein

presented evaluation, we applied a set of measurements

(precision, recall, F-measure) to examine the conformity

degree between corresponded elements generated by our

method with the corresponded elements where traceability

is evaluated by experts. This experimentation aims at

proving that these models have similar quality values. For

these quantitative evaluations, we used two case studies

related to different domains. Our method shows an

average precision of 84,1%, and an average recall of 91%.

The results showed the efficiency of our method in terms

of finding correct traceability reports.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 29

The remainder of this paper is organized as follows:

Section 2 overviews existing works that define traceability

relationships between requirement and other diagrams,

and from requirement and design to code. Section 3

presents our method in two subsections: the first

subsection presents the pre-processing phase and the

enriched textual description to document use cases based

on basic control structures. The second subsection is

composed of two parts: the first one identifies the

traceability rules to facilitate first the transition from the

requirement to design level by deriving other diagrams,

particularly dynamic diagrams, and then derive code. The

second part illustrates the LSI similarity which determines

traceability between UML diagrams. To show the

improvements gained by applying the traceability rules,

we evaluate in section 4 our method and we consider

threats to validity of the study and the results. Section 5

presents the tool support and illustrates the method

through an example. Finally, Section 6 summarizes the

presented work and outlines its extensions.

2 Related work
Several works cope with traceability based on different

axes: covered artefacts (e.g. Horizontal vs. vertical) [17,

24, 25] representing the purpose of the traceability (e.g.

finding inconsistency among artefacts, impact analysis,

knowing the dependencies among artefacts, reuse) [25, 26,

27, 28], challenges and solutions [14, 29, 30, 31], etc.

As highlighted in the introduction, existing

traceability approaches adopt either horizontal or vertical

approaches. Horizontal traceability determines artifact

dependencies at the same abstraction level (requirement,

or design or code), while vertical traceability traces

artifacts between different models at different abstraction

levels. In this paper, we focus on vertical traceability

which is classified into two categories: The first one

focuses on traceability inter-UML models (requirement

and design) and the second one determines traceability

between requirements, UML models and code.

2.1 Traceability inter-UML models

Traceability inter-UML models approaches tackles the

traceability within UML diagrams elements, particularly

from requirements to design diagrams.

Adopting this type of approach, [4] considers the

traceability relationships between Use Case Maps

(UCMs) and UML diagrams. The proposed approach

generates UML diagrams from UCMs notation to describe

the system at high abstraction level. This work neglects

several concepts that relate UML diagrams such as

repetitive and conditional treatment.

In [14], the authors present an approach that supports

the automatic maintenance of traceability relations

between requirements, analysis and design models of a

software systems expressed in UML. It followed two

major phases: Recognition phase and maintenance. The

first phase consists in capturing elementary changes to

model elements and recognizing the compound

development activity applied to the model element. The

second phase, “Maintenance” consists on updating the

traceability relations associated with the changed model

element. A prototype called Trace Maintainer has been

implemented to evaluate the approach.

In [32], an approach is presented to specify semantic

relationships between system-level requirements,

functional specifications, and architectures in terms of

their subsystem specifications. This approach is based on

logic predicate to present artifacts and their relations at

different abstraction levels (Requirements, specification

and architecture). The logical representation of each

artifact is used by the authors to formalize relationships

between these artifacts.

Adopting an abstract approach in defining traceability

between software requirements and UML design, [20]

proposes FUTOR (From Uml TO Requirement) guideline,

which includes meta-model and process step. The meta-

model expresses relationships between requirements and

the UML model at the meta-level. For each meta-

requirement, the author adds a “REQTYPE” attribute to

decide which UML diagram shall be used for the

traceability. Steps of the FUTOR guideline include: (1)

writing requirements (2) annotate the requirement (3) start

software design based on requirements, (4) check the

traceability between requirements and UML models. This

approach neglects information existing between

requirements presented as textual documents and UML

diagrams at the instance level.

In addition, [8] proposes a hybrid approach that

combines graphs and information retrieval techniques to

identify the requirement change impact on design models

modeled with Systems Modeling Language (SysML).

This approach is limited to traceability between

requirements modeled with SysML and behavioral

diagram modeled with the activity diagram. In addition,

many behavioral aspects in the activity diagrams are not

assigned like Join node, Fork node, etc.

For the purpose of reuse, [33] depicts an approach that

derives systematically a standard functional model from a

use case diagram, a structure diagram and a transition

diagram. By decomposing the existing functional model

into model components, traceability links are recovered

based on guidelines that allow a mapping of model

components to non-functional requirements. This

approach is limited to use cases names without referring

to use case descriptions.

Adopting an Information Retrieval (IR) technique to

identify traceability between requirement and design, [34]

proposes a method that uses graphs to model the structural

dependencies. The Information Retrieval technique is

used to handle the semantic traceability between the use

case documentation and the sequence diagram. This

approach is based on a structural textual description of a

use case to express requirements. However, this

description lacks structural controls which are used in

UML behavioural diagrams.

On the other hand, [6] proposes a method that uses

graphs to model the structural dependencies and an

information retrieval technique to handle the semantic

traceability between the use case documentation and the

sequence diagrams. This approach is based on a structural

30 Informatica 46 (2022) 27–47 W. Khlif et al.

textual description of a use case diagram to express

requirements; however, this description lacks structural

controls which are used frequently in the UML

behavioural diagrams. In fact, it is not possible to trace

between behavioural elements in design and control

structures in code functions such as loop, switch, etc.

Additionally, the limitation of this approach lies in its

incapability to determine the nature of functions/ methods

that corresponds to a use a case textual description.

Furthermore, several approaches adopt a Natural

language processing approach (NLP). For instance, [35]

determines basic elements of a class diagram from natural

language requirements. Requirements are presented in

English and the designed tool (Natural language

Processing for Class NLPC) applies NLP methods to

analyze the given input. Natural language text is

semantically analyzed to obtain classes, data members and

member functions. NLPC uses pre-processing, Part of

Speech (POS) Tagging, Class Identification, Attribute and

Function identification to plot the classes.

[5] extracts class diagrams from natural language

requirements using NLP techniques such as WordNet,

OpenNLP parser, class extraction engine, etc. Moreover,

the authors proposed a system based on rules to extract

details related to the object oriented concepts like

generalization, association and dependency from natural

language requirements specification.

Furthermore, [35] adopts a NLP approach to show

that natural language requirements are semantically

analysed to obtain classes, data members and member

functions.

Based on a combination between NLP and artificial

neural networks, [36] proposes a new approach to

automatically identify actors and actions in a natural

language based requirements description of a system.

They used an NLP parser with a general architecture for

text engineering, producing lexicons, syntaxes, and

semantic analyses. An artificial neural networks (ANN)

was developed using five different use cases, producing

different results due to their complexity and linguistic

formation.

2.2 Traceability from requirement and

design to code

Besides traceability inter UML models, the vertical

traceability approaches tackle also the relationships

between requirement, design and code [20, 37, 38, 39].

In this context, to support traceability between

requirement and source code, [20] proposes a meta-model

based approach that defines traceability links between

different artifacts (requirements, test cases, etc.) and

source code. The authors propose an editor to visualize

traceability between the source code stored as an Abstract

Syntax Tree (AST) and other possible artifacts. However,

the use of an AST causes foreign problems like the

existence of syntax errors and comments in the source

code which loses traceability links.

In [37], the focus is on the traceability between

requirement and source code in the context of version

control system. Specifically, the authors study the link

between issues (i.e. new requests), commits (change set),

and source code files. They train a classifier to identify

missing issue tags in commit messages to generate

missing links.

Besides, in the purpose of supporting traceability

between requirement and source code, [40] introduces a

solution for automating the evolution of bidirectional trace

links between source code classes or methods and

requirements. The solution depends on a set of heuristics

coupled with refactoring detection tools and informational

retrieval algorithms to detect predefined change scenarios

that occur across contiguous versions of a software

system.

To trace between requirements documents, UML

class diagrams, and source code, [41] [42] use graph and

XML format to capture links between artifact elements.

Based on a set of policies, [38] [39] describe an

approach which allows maintaining traceability of

evolving architecture to implementation links. They

develop a tool “ArchTrace” which maintain existing

traceability link. These links have to be created manually

by the developers or by a traceability recovery method. In

addition, the authors distinguish between four classes of

rules depending on the level where the change occurs. For

instance, architectural element evolution policies trigger

when an architect makes modifications to an architecture.

An example of an architectural policy is illustrated in the

case of creating a new version of an architectural element

[39]. This new version of this element should inherit all

traceability links from its ancestor based on a copy of all

traceability links from its previous version.

By referring to machine learning techniques, [22]

presents a process to recover traceability links between

Java programs entities and elements in a use case diagram.

This solution, which is called LEarning and ANAlyzing

Requirements Traceability (LeanArt), combines program

analysis, run-time monitoring, and machine learning to

search similarities between the names and values of

program entities, and the elements names of use case

diagrams. This work is only based on traceability between

use case name and source code. Nonetheless, it does not

take into account the different scenarios that can be found

in a use case textual description.

Likewise, [14] proposes an approach called TRAIL

(TRAceability lInk cLassifier) that applies Traceability

Link Recovery (TLR) as a binary classification problem

for automating traceability maintenance. It uses

historically collected traceability information (i.e.,

existing traceability links between pairs of artifacts) to

train a machine learning classifier which is then able to

classify the link between any new or existing pair of

artifacts as valid (i.e., the two artifacts are related) or

invalid (i.e., the two artifacts are unrelated) [29]. To

determine the validity of the link between two artifacts,

TRAIL introduces three types of features: IR Ranking,

Query Quality, and Document Statistics.

[43] proposes a neural network architecture that

utilizes word embedding and Recurrent Neural Network

(RNN) technique to automatically generate trace links.

Word embedding learns word vectors that represent

knowledge of the domain corpus and RNN uses these

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 31

word vectors to learn the sentence semantics of

requirements artifacts. The authors use an existing training

set of validated trace links from the domain to train the

RNN to predict the likelihood of a trace link existing

between two software artifacts. For each artifact (i.e.

requirement, source code file, etc.), each word is replaced

by its associated vector representation learned in the word

embedding training phase and then sequentially fed into

the RNN. The final output of RNN is a vector that

represents the semantic information of the artifact. The

tracing network then compares the semantic vectors of

two artifacts and outputs the probability that they are

linked.

IR techniques are used also to define traceability

between models and the source code. [17, 18, 19] use the

Latent semantic indexing (LSI) to recover traceability

between different artifacts. For instance, [17] uses LSI to

recover traceability links between software artefacts

produced during the different phases of a development

project (use case diagrams, interaction diagrams, test cases

and code). [7] utilizes comments and identifier names

within the source code to match them with sections of

corresponding documents. [13] establishes traceability

between requirement and other software elements (code

elements, API documentation, and comments) by taking

into account the change frequency, and the semantic

similarity (TF-IDF) between the requirement description

and the software element.

In order to improve IR-based traceability recovery,

[44] combines IR techniques with closeness analysis.

Specifically, the work quantifies and utilizes the

“closeness” for each call and data dependency between

two classes to improve rankings of traceability candidate

lists. In [45], the authors propose an improvement of the

previous approach by introducing user feedback into the

closeness analysis on call and data dependencies in code.

Specifically, the approach iteratively asks users to verify

a chosen candidate link based on the quantified functional

similarity for each code dependency (which they called

closeness) and the generated Information Retrieval values.

The verified link is then used as the input to re-rank the

unverified candidate links.

Based on NLP techniques, [25] defines an enhanced

framework of software artefact traceability management

which is implemented in the “SATAnalyzer” tool. NLP

techniques are used to extract information from artefacts

produced during software development process. The tool

supports the traceability between requirements, UML

class diagrams, and corresponding Java code. [15] extends

the SAT-Analyzer tool to consider traceability among

other stages of development life cycle such as testing and

deployment with enhanced visualization suitable for

DevOps practices and continuous integration.

In order to evaluate their graph-based traceability

approach, [46, 47] use also the SAT-Analyser tool with a

“Sale system Point” case. They present phases such as

software artefact identification, data preprocessing, data

extraction and traceability establishment methodologies

presented with a graph. The tool traces software

requirement artifact in natural language, only UML class

diagram as design artefact and the Java source code

artifact. The traceability graph construction is based on

similarity algorithms (Jaro Winkler Distance and

Levenshtein Distance) between requirements, classes,

methods, attributes and the relationships inheritance,

association and generalization.

Using a model-based approach, [25, 48] derive a

quality model to present traceability (Traceability

Assessment Model (TAM)) that specifies per element

(class, link, path) the acceptable state (Traceability Gate)

and unacceptable deviations (Traceability Problem) from

this state. The authors describe how both, the acceptable

states and the unacceptable deviations can be detected to

systematically assess their project’s traceability. In order

to improve the previous works, [2] defines a system

allowing to ensure that the software delivered meets all

requirements and thus avoids failures by using data

traceability management.

In summary, existing works tackled the traceability

either between UML diagrams at the same abstraction

level (or similar notations) or between UML models

(requirements, design, etc.) and the source code, at

different abstraction levels. However, none of the existing

approaches deal with traceability between requirements

presented with an enriched template that covers the whole

Figure 1: The proposed method for tracing UML code based on textual description of use cases.

32 Informatica 46 (2022) 27–47 W. Khlif et al.

concepts, design models and source code. In addition, all

traceability techniques [49, 50] rely on either the structural

and/or semantic information. For example, [20, 21, 41]

determine traceability between heterogeneous terms

existing in models (text in requirements, classes name,

methods name, etc.). These works are purely structure-

based; they ignore the remaining aspects of UML

diagrams elements, which do affect the traceability

between them.

The purpose of the proposed method focus on

enriching the requirement template presented in [6] to

cope with the control structures and orient our traceability.

Furthermore, it combines both structural and semantic

aspects in order to determine the traceability between all

elements at different abstraction levels and detects the

relationships between the requirements, design (modelled

with sequence (SD), class (CD), activity (AD) and state

transition (STD) diagrams (first phase), and the source

code (second phase).

3 A new traceability method
Figure 1 depicts our method for determining vertical

traceability. It followed three major phases: “Pre-

processing Natural language”, “traceability inter-UML

diagrams” phase and “traceability from requirement and

design to code” phase.

The “Pre-processing Natural language” phase during

which the software analyst receives a textual description

of a software written in a natural language. The description

is cleaned based on simple NLP technique (i.e. Stanford

CoreNLP tool) [51]. Then, the software analyst uses the

output to identify the goals that are used to divide the

textual description into different parts. The proposed

decomposition guides and improves the generation of

description parts and the corresponding fragments related

to design diagrams in a more systematic, rigorous, and

consistent way. For each description part, the software

analyst prepares its textual description according to a

specific template. To handle this requirement, we define

an enriched template that can be written in a specific

format. The template is used to generate its corresponding

XML file. The second phase, “Traceability inter-UML

diagrams” receives the produced file which will be

considered as the input to the traceability process.

The latter is composed of traceability rules

identification and similarity calculation between the

selected fragment in the use case and its corresponding in

UML design diagrams (class, sequence, activity and state

transition). This process uses the identification of

traceability rules and semantic traceability results. The

identification of traceability rules explicitly represents the

relationships (structural aspect) among the diagrams'

elements. It is based on an ontology for the semantic

analysis of the textual description template. To identify the

semantic traceability between the structured textual

documentation and UML design diagrams, traceability

process inter-UML diagrams apply the LSI technique.

The third phase is based on the traceability process

from requirement to code which apply the traceability

rules defined in the first phase on the code and calculate

the similarity between the selected fragment in UC and the

code.

3.1 Natural language pre-processing

The most important challenge we are facing when trying

to generate the enriched format from the textual

description is the complexity of natural language.

Consequently, we used natural language processing

concepts that are syntax parsing.

The syntax parsing consists in obtaining a structured

representation of the software knowledge. Therefore, the

software analyst has first to clean the textual description

by using the Stanford CoreNLP tool [51] and second to

organize it according to a specific template’s structure.

Stanford CoreNLP tool is used to obtain a more

manageable and readable text. The tool relies on the

following methods:

− Tokenization is the task of breaking a character

sequence up into pieces (words/phrases) called

tokens, and perhaps at the same time throw away

certain characters such as punctuation marks [52].

− Filtering aims to remove some stop words from the

text. Words, which have no significant relevance and

can be removed from the documents [53].

− Lemmatization considers the morphological analysis

of the words, i.e. grouping together the various

inflected forms of a word so they can be analysed as

a single item.

− Stemming aims at obtaining stem (root) of derived

words. Stemming algorithms are indeed language

dependent [54].

− Part of Speech Tagging tags for each word (whether

the word is a noun, verb, adjective, etc.), then finds

the most likely parse tree for a piece of text.

The cleaned file is then used to identify the goals. By goal,

we mean a collection of functionalities that are related to

describe a functional process of the software. Each goal

will correspond to a textual description of a use case.

To guide and improve the generation of a software in

a more systematic way, the software analyst associates to

each textual description of a part, a template that is

described by a set of linguistic patterns. The template is

easy to understand and validated by stakeholders. It covers

the semantic, behavioural, functional and organizational

information. It is composed of three blocks (See Table 1).

The first block gives an executive summary of the

textual description block in terms of the name of the UC,

purpose of the use case and actors. The second block

describes the main, alternative, and error scenarios. The

use case description contains also pre-condition for

execution, post-condition (success/failure), and

relationships with parts successors. These scenarios

respect a linguistic syntax pattern:

<NumAction><From Actor><To Actor> <Type of

Result> <Action Description> <In-Parameter><Out-

Parameter> <IsConsidered><IsIgnored> <IsNegative>

Table 1 depicts the expanded description template

with alternative behavioral elements based on control

structures such as IF-THEN statement and iterative

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 33

elements, e.g. <for><number of iterations>). In addition,

the extended template expresses how the actions are

executed: in a parallel <Parallel>, or sequence way

<Sequential>, etc. Besides the common elements, we

proposed an extension of the UC textual description with

behavioral elements and keywords, such as:

− <In-Parameter> and <Out-Parameter> expressing the

input and output of the action.

− <Type of Result > which determines if the result has

a simple value or it represents an entity. In the case of

a simple value, it can be represented as an attribute.

However, in the case of an entity, it can be

transformed to a class in the class diagram.

− <From Actor><To Actor> which represents the

sender and receiver of the action.

− <If><Else if><Else>represents a choice or behaviour

alternatives.

− <Parallel> expresses parallel execution of the actions.

− <For> <number of iterations> represents the loop

which is repeated a number of times.

− <Loop>: an iterative behaviour that englobes one or

several actions.

− <Break> represents an exceptional situation

corresponding to a scenario of rupture.

− <Functional Call> is an action that calls another

action or use case.

− <IsIgnored> reflecting that the actions types can be

considered insignificant and are implicitly ignored.

− <IsConsidered> determines which actions should be

considered within this textual description, meaning

that any other action will be ignored.

− <IsNegative> describes actions of traces that are

defined to be negative (invalid). Negative traces occur

when the system has failed. It can represent an

exception.

The added behavioral elements and keywords are

organized according to the use case scenario. The main

scenario contains sequential or parallel actions. It can also

contain a functional call; while the alternative and error

scenario are based on conditional (opt, If Else, etc.) or

iterative (Loop) control structures that can be expressed in

one or more levels (nested levels). For instance, it is

possible to determine an iterative block nested in a

conditional block and vice versa. These control structure

types can be followed by parallel or sequence blocs.
Name of the Use Case (UC):<unique name assigned to a use case>

Purpose of the use case:< a summary of a UC purpose>
Actors:<Primary actor>: actor that initiates the use case>

<Secondary actor>: actor that participate within the use case>

Pre-condition for execution:<A list of conditions that must be true to

initialize the UC>

Post-condition (success/failure):<state of the system if the goal is
achieved/abandoned>

Relationships: <include>: <UC in relation with this UC by include>

 <Extend>: < use cases in relation with this use case by “extend”>
 <Super use case>: <list of subordinate uses cases of this use case>

 <Sub use case>: <list of all uses cases that specialize this use case>
Begin

Main scenario <steps of the scenario to goal>

Begin
//sequential actions

<NumAction><From Actor><To Actor> <Type of Result> <Action

Description> <In-Parameter><Out-Parameter>
<IsConsidered><IsIgnored>

<IsNegative>
//parallel actions

Parallel

 <NumAction><From Actor><To Actor><Type of
Result ><Action Description><In-Parameter><Out-

Parameter><IsConsidered> <IsIgnored> <IsNegative>

 <NumAction><From Actor><To Actor><Type of Result ><Action
Description><In-Parameter><Out Parameter> <IsConsidered>

<IsIgnored> <IsNegative>

// Functional call
Functional Call

 <NumAction><From Actor><To Actor><Type of Result> <Action

Description> <In-Parameter> <Out-Parameter> <IsConsidered>
<IsIgnored> <IsNegative>

End

Alternative scenario
SA1

 Begin<Event, condition>

 begin at <Num “action number”> <Return “action number”>

 List of actions

 //sequential actions

 <NumAction><From Actor><To Actor><Type of Result>
<Action Description> <In-Parameter><Out-Parameter>

<IsConsidered> <IsIgnored><IsNegative>

//parallel actions
 <NumAction><From Actor><To Actor><Type of Result>

<Action Description> <In-Parameter><Out-Parameter>

<IsConsidered> <IsIgnored><IsNegative>
 <NumAction><From Actor><To Actor><Type of Result>

<Action Description> <In-Parameter><Out-Parameter>

<IsConsidered> <IsIgnored><IsNegative>
 //alternative control structure in the first level

 <IF><condition>

 <NumAction><From Actor><To Actor><Type of
Result ><Action Description><In-Parameter><Out Parameter>

<IsConsidered> <IsIgnored> <IsNegative>

 End IF
 //iterative control structure in the first level

 <Loop><Min Number of Iterationxfcyws, Max Number of

Iterations >
 <NumAction><From Actor><To Actor><Type of result ><Action

Description><In-Parameter><Out-Parameter><IsConsidered>

<IsIgnored> <IsNegative>
 End Loop

End SA1

SA2
Begin<Event, condition>

 begin at <Num “action number”> <Return “action number”>

 List of actions

// Loop nested in an alternative control structures

< IF><condition>
 <NumAction> <From Actor><To Actor><Type of

result ><Action Description><In-

Parameter><OutParameter><IsConsidered> <IsIgnored>
<IsNegative>

<Else>

 <Loop><Min Number of Iterations, Max Number of Iterations >
 <NumAction> <From Actor><To Actor><Type of

result ><Action Description><In- Parameter> <Out

Parameter><IsConsidered> <IsIgnored> <IsNegative>
 End Loop

End IF

<Functional Call>
<NumAction> <From Actor><To Actor><Type of Result ><Action

Description> <In-Parameter> <Out-Parameter> <IsConsidered>

<IsIgnored> <IsNegative>
End

End SA2

Error scenario
SE1// Treat the error and return to the action

 Begin<Event, condition>

 begin at <Num “action number”> <Return “action number”>
 List of actions

 <NumAction> <From Actor><To Actor><Type of

Result ><Action Description><In-

34 Informatica 46 (2022) 27–47 W. Khlif et al.

Parameter><OutParameter><IsConsidered> <IsIgnored>
<IsNegative>

 End SE1

End Use case

Critical situations of execution of the activity

Special requirement: <non Functional requirement><Project
requirement and constraints>

Table 1: Enriched textual description of a use case.

3.2 Traceability process

In this subsection, we define traceability rules which are

applicable to the first and second phase of our method.

They are used to determine correspondences between the

requirement modeled with the use case diagram based on

the enriched textual description and design diagrams

modeled with SD, CD, AD and STD.

3.2.1 Traceability rules

R1: For each <In-Parameter> and <Out-Parameter>

expressing the input and output of the action, there is:

− SD: an object in a sequence diagram.

− CD: a class corresponding to each parameter, and an

attribute corresponding to an argument.

− AD: an object node that corresponds to InputPin and

OutputPin. We note that InputPin and OutptPin can be

related to the same or more than one objectNode.

− Code: a class corresponding to <In parameter> and an

attribute corresponding to an argument.

R2: For each action’s sequence in a use case, there is:

− SD: a sequence of sent or received message which

preserves the action order in the scenario.

− AD: a sequence of ordered activities.

− STD: a sequence of ordered states in the state

diagram. If the action in a STD respects the renaming

pattern: « Action verb + DataObject| NominalGroup

», then the state of the action will be: Data object +

past participle.

− Code: a sequence of lines of code that respect the

ordered actions.

We note that this rule cannot be expressed in the CD.

R3: For each actor expressing the sender and the receiver

of the action in the use case scenario, there is:

− SD: an object corresponding to each participant

(actor) in the SD.

− CD: a class corresponding to each participant in the

CD.

− AD: a swimlane having the actor name which

performs a group of activities.

− STD: the actor has no corresponding in the STD.

− Code: a class in the code.

R4: For each action in the use case scenario, there is:

− SD: a message in a SD having a synonym name.

− CD: a method in a class corresponding to the action.

− AD: an executable node represented by ‘Action’

having the same name and the same parameters.

− STD: If the action in a textual description respects the

renaming pattern: « Action verb + Object | Nominal

Group », then the state will be : object + past

participle.

− Code: a method in the code having the synonym

name, the same parameters.

R5: For each pre-condition/post-condition of the use case

scenario, there is:

− SD: a precondition/post-condition of the first message

sent by an object in the sequence diagram.

− AD: a guard of the corresponding action [55]

− STD: a pre-condition associated to a transition which

is necessary to define a state.

− Code: a precondition under which a method may be

called and expected to produce correct results [56].

We note that the precondition and the post-condition have

no corresponding in the class diagram.

R6: For each parallel scenario (PARALLEL), there is:

− SD: a parallel combined fragment in a sequence

diagram.

− AD: a set of parallel actions between a fork node and

a join node.

− STD: a fork pseudo state vertices and a join state.

− Code: a multi-threaded program in java.

We note that the parallelism is not expressed in the CD.

R6 is illustrated in Table 2.

R7: For each alternative scenario in a use case where

instructions begin with alternative behavioural elements

(IF-THEN Statement ELSE Statement), there is:

Use case Sequence Diagram Activity Diagram State transition

diagram

Code

PARALLEL <

<NumAction><Pre-condition>

<From Actor><To Actor><Action
Type><Type of Result ><Action

Description> <In-Parameter> <Out-

Parameter> <IsConsidered>
<IsIgnored><IsNegative>

<NumAction><Pre-condition>
<From Actor><To Actor><Action

Type><Type of Result ><Action
Description> <In-Parameter> <Out-

Parameter> <IsConsidered>

<IsIgnored><IsNegative>>

public class
myClassimplements
Runnable{
Thread UnThread ;

MyClass ()
{//..initialisation

of myClass constructor
UnThread = new Thread (
this , "thread
secondaire");

 UnThread.start(); }

public void run () {
//....second thread
actions here

}}

Table 2: R6 illustration.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 35

− SD: an ALT combined fragment with the interaction

operator “ALT” and two alternative interactions in a

SD.

− AD: a decision node with two outgoing edges with

guards in the activity diagram or a conditional node is

a structured activity that represents an exclusive

choice between two alternatives.

− STD: a decision point leading to two different states

in the state transition diagram.

− Code: a basic control structure corresponding to “IF

condition THEN treatment 1 ELSE treatment2”.

R7 is illustrated in Table 3.

R7.1: For each alternative Scenario where instructions

begin with the alternative behavioral elements (<if >

condition <else if >…..<else if>…<else>…), (SWITCH),

there is:

− SD: an Alt Combined Fragments: Interaction operator

“alt” with more than two alternatives in a SD.

− AD: a decision node with more than two outgoing

edges in an activity diagram.

− STD: a decision point leading to n different states in

a STD or a conditional node is a structured activity

that represents an exclusive choice among some

number of alternatives.

− Code: a basic control structure corresponding to

switch.

R7.2: For each alternative scenario in a use case where

instructions begin with the alternative behavioral elements

(<if > condition <then> treatment.), there is:

− SD: an opt combined fragment in a sequence diagram.

We recall that the opt (optional) operator is a non-

alternative (otherwise) test statement.

− AD: a decision node with two outgoing edges: one to

execute an action and the second is related to the final

activity in the activity diagram.

− STD: a decision point leading to one state and one

final state.

− Code: a basic control structure corresponding to “IF

condition THEN treatment”.

R7.3: For each alternative scenario in a use case where

instructions contain the alternative behavioral elements

(<if > condition <break>) in an iterative bloc, there is:

− SD: a break combined fragment in a loop fragment

that belongs to a sequence diagram

− AD: a decision node which one is related to a final

activity by an outgoing edge and another outgoing

edge which is related to a final node in the alternative

scenario

− STD: a decision point leading to 1 state and one final

state (Transition to terminate pseudostate).

R7.4: For each error scenario in a use case where

instructions begin with the alternative behavioral elements

<IF><condition> Return, there is:

− SD: a break combined fragment in a sequence

diagram which can be used to express an error

scenario.

− AD: an interruptible region which contains activity

nodes in the error scenario

− STD: a decision point leading to 1 state and one final

state (Transition to terminate pseudostate). A break

can be also expressed by an Exit point pseudostate

which is an exit point of a state machine or composite

state.

The exit point is typically used if the process is not

completed but has to be escaped for some error or other

issue.

R7.4 is illustrated in Table 4.

R8: For each alternative/error Scenario in a use case

where instructions begin with the iterative behavioural

elements (<For><[num of iterations]>…), there is:

− SD: a loop combined fragment in a sequence diagram.

− AD: a decision node with one of the outgoing edges

is a precedent activity in an activity diagram.

− STD: a reflective transition or transition path.

− Code: a basic control structure corresponding to For-

do, DO while (post-test), While do (pre-test).

R8 is illustrated in Table 5.

R9: For each functional call (an action that calls another

action or use case), there is:

− SD: a ref fragment expressing the reference to an

interaction in another sequence diagram.

− AD: a call Behaviour: An activity is invoked by using

the ‘Call Behavior Action’ node, which means that the

invoked activity is defined in more details in another

AD.

− STD: A Composite state which encloses refinements

of the given state. We note that the composite state

corresponds to the object that can realize the

functional call or an entry point of a state machine or

composite state which allows you to specify an

activity that occurs when you enter the state.

Use case Sequence Diagram Activity Diagram State transition

diagram
Code

<IF><condition>

<NumAction><Pre-condition> <From

actor><To actor><Action Type><Type of
result ><Action Description> <In-

Parameter> <Out-Parameter>

<IsConsidered> <IsIgnored><IsNegative>
<Else >

<NumAction><Pre-condition> <From

actor><To actor><Action Type><Type of
result ><Action Description> <In-

Parameter> <Out-Parameter>

<IsConsidered><IsIgnored> <IsNegative>
END

If (condition)
{

operation 1;

else
operation 2;

}

Table 3: R7 illustration.

36 Informatica 46 (2022) 27–47 W. Khlif et al.

− Code: a call of a class or a method.

R10: For each action that represents an invalid

interaction/exception <IsNegative>, there is:

− SD: A Negative combined fragment in the sequence

diagram which defines invalid traces.

− AD: An event representing an error (exception) that

interrupts the flow or a break which are most

commonly used to model exception handling.

− STD: a transition to an error state. This error state

may be terminal, i.e. aborts further event handling.

− Code: a basic control structure corresponding to

“Exception”. This corresponds to a try-catch.

R11: For each action that should be considered

(respectively ignored) within the scenario, there is:

− SD: messages that are considered as significant

(respectively insignificant) within the “consider”

(respectively ignore) combined fragment.

− AD: considered (respectively ignored) messages are

shown in the activity diagram.

− STD: The states corresponding to the considered

(respectively ignored) actions.

− Code: The method should be considered (ignored) as

significant in the code.

3.2.2 Similarity calculation

Based on the proposed rules, we apply the similarity

measure “Latent Semantic Indexing” (LSI) which is

defined to the traceability process inter-UML diagrams

and to the traceability process from requirement to code.

The first step in calculating the LSI is to assign term

weights and construct the term-document matrix A and

query matrix. The m by n document-matrix A is presented

as follows where:

aij= wij= term weights (1)

In the second step, LSI applies singular value

decomposition (SVD) to the A matrix which consists in

decomposing the A matrix into three matrices: the U, S

and V. One component matrix describes the original row

entities as vectors of derived orthogonal factor values,

another describes the original column entities in the same

way, and the third is a diagonal matrix containing scaling

values such that when the three components are matrix-

multiplied, the original matrix is re-constructed. The third

step represents the dimensionality reduction, which

consists in computing Uk, Sk, Vk and Vk
T. For instance,

implementing a rank 2 Approximation (K=2) by keeping

the first two columns of U and V and the first two columns

and rows of S. The fourth step consists in finding the new

document vector coordinates in this reduced 2-

dimensional space. Rows of V hold eigenvector values.

These are the coordinates of individual document vectors.

The fifth step finds the new query vector coordinates in

the reduced 2-dimensional space as follows:

q = qT UkSk
-1 (2)

Finally, the last step ranks documents in order to

decrease the order of query-document cosine similarities

using the following equation:

sim (q,d)=
𝑞.𝑑

|𝑞| |𝑑|
 (3)

The document which has a higher score is closer to

the query vector than the other vectors.

We note that, in this paper, LSI is used to compute

similarities between the selected fragment in a use case

and the corresponding ones in other UML diagrams (SD,

CD, AD and STD), and then the corresponding fragment

in the code while in [6] the LSI is used only to compute

similarities between actions in UC and messages in

sequence diagrams. The choice of LSI amongst other

similarity measures is justified by its capacity in retrieving

hidden, semantic relations between terms when searching

Use case Sequence Diagram Activity Diagram State transition

diagram

Code

<IF><condition>

<NumAction><Pre-condition>

<From actor><To actor><Action
Type><Type of result ><Action

Description> <In-Parameter>

<Out-Parameter> <IsConsidered>
<IsIgnored><IsNegative>

<Else>

return

If
(condition1)

operation

1;
Else

 return;

Table 4: R7.4 illustration.

Use case Sequence Diagram Activity Diagram State transition

diagram

Code

<For><Min Number of Iterations,

Max Number of Iterations >
<NumAction><Pre-condition> <From
actor><To actor><Action Type><Type of

result ><Action Description> <In-

Parameter> <Out-Parameter>
<IsConsidered> <IsIgnored>

<IsNegative>

End For

For(i=1, i<=5,i++)

operation 1;

}

Table 5: R8 illustration.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 37

for similar terms between queries extracted from a

fragment in the UC and the documents containing the

information in other UML diagrams. In fact, LSI does not

rely on words but rather on concepts; that is, words having

same contexts can be revealed similar. This propriety

expresses the difference between LSI and other IR

techniques. Henceforth, the similarity measure can be

properly calculated between queries and documents even

when they do not share enough words.

4 Traceability evaluation
The evaluation phase expresses the performance of the

proposed method revealed by two steps: experimental

evaluation and result interpretation. The first step in the

evaluation phase compares corresponded elements

generated by our method with the corresponded elements

where traceability is evaluated by experts. Particularly, we

present two UML projects containing a set of UML

diagrams (including use cases and their textual

descriptions) and the source code (projects are

implemented using JAVA language) to five experts

having years of experience studying and developing UML

projects. The expert should determine traceability by

detecting the corresponding elements. The solution

presented by these experts was compared with our

solution (constructed by our tool). The projects source

codes are available as well as their design (i.e. UML

diagrams). Table 6 provides some information about these

projects. Besides, for experimental evaluation purposes,

we refer to the recall and precision measures:

Precision = TP/(TP+FP) (4)

Recall = TP/(TP+FN) (5)

where:

− True positive (TP) is the number of existing real

corresponded elements generated by our tool;

− False Positive (FP) is the number of non existing real

corresponded elements generated by our tool;

− False Negative (FN) is the number of existing real

corresponded elements not generated by our tool.

4.1 Evaluation results and interpretation

High scores for both ratios show that our traceability

approach returns both accurate corresponding elements of

UML diagram (high precision) and the majority of all

relevant corresponding elements (high recall). It means

that the generated traceability links cover the whole

domain precisely in accordance to the experts’

perspective.

As illustrated in Table 7, precision, whose average is

0.84, indicates that we found some false positive

corresponding elements (i.e. incorrect detected

corresponding elements). The false positives

corresponding elements are not significant value when we

compare them to the true positives found by our method.

The recall, whose average value is 0.91, expresses that

there are also some false negatives corresponding

elements (i.e. true corresponding elements are not

detected). These false negatives can be explained by the

fact that our method uses “threads” to detect parallelism in

the source code however parallelism in JAVA can be

implemented using different ways (fork/join framework,

threads, Agregate operations, etc.). Source code in the

used projects uses the aggregate operations and parallel

streams to express parallelism and our method uses

threads to detect parallelism. This is why parallel

fragments are not traced and we found some false

negatives.

The true positives and the false negatives are equal to

the total number of actual corresponding elements. All the

false negatives are corresponding elements associated to

elements in UC textual description diagram that have

corresponding impacts on other UML diagrams which are

not detected.

4.2 Threats to validity

This section discusses the potential issues that may

threaten the validity of our study, including the internal

and external validity [57].

The internal validity threats in the case of traceability

identification are related to user requirements [58]. They

are related to three issues: The first issue is due to the use

of the enriched textual description of a use case which may

not always be available. The second problem is addressed

when there is a diversity of requirements description. In

this case, which one can be used to describe the functional

requirements?

Furthermore, if the functional requirements are

clearly stated, then our method generates well matched

elements; otherwise, the quality of the derived traceability

elements is not guaranteed in terms of dependencies

between elements. The third issue is related to the impact

of an error-prone generation of UML diagrams and code.

This case may lead to inconsistency between the

requirement, design models and source code.

The external validity threats deal with the possibility

to generalize this study results to other case studies. The

limited number of case studies used to illustrate the

proposed approach could not generalize the results. In

addition, the traceability between all levels increases the

detection and localization of consistency errors.

5 TRADIAC tool
To facilitate the application of our method, we have

developed a tool for determining the traceability at

different abstraction levels, named TRADIAC Quality

(TRAceability for UML DIAgrams and Code). Our tool is

implemented as an EclipseTM plug-in [59]. It is composed

of four main modules (see Figure 2): Pre-processing

Natural language, Traceability inter-UML diagrams,

Traceability from requirement to code, and traceability

evaluator.

5.1 Pre-processing natural language

module

The pre-processing engine is composed of the cleaner and

the XML generator.

38 Informatica 46 (2022) 27–47 W. Khlif et al.

5.1.1 Cleaner

The cleaner uses as input the textual description of the

software written in a natural language. It cleaned the file

using the Stanford CoreNLP tool. The cleaned file is used

by the software analyst to define manually goals. Then,

the latter associates each goal to its corresponding textual

description part.

In order to illustrate the functioning of this module,

we apply it to the “make a reservation” textual description.

For instance, Figure 3 illustrates the goal definition and its

description. The software analyst creates the enriched

template corresponding to each textual description part.

Table 8 illustrates enriched textual description for the use

case "UC-ETD" “make a reservation” from a car rental

system [60].

5.1.2 XML generator

XML generator takes as input the enriched textual

description of UC introduced by the user. The purpose

interface of "UC-ETD" is presented in Fig. 4. It is

composed respectively of five tabs illustrating the

identification purposes "identification purpose", the

nominal scenario "Main Scenario", the alternative

scenario (s) "Alternative Scenario", the error scenario (s)

"Error scenario (s)" and the generator of the XML file

corresponding to the textual description. The

"identification purpose" tab contains the name of the UC,

its purpose, the primary and secondary list of the actors,

the pre-condition and the post-condition of the UC in the

textual description and the use case's relationships:

include, extend and generalize. The list expresses use

cases in relation with the corresponding one by “include”,

use cases in relation with the corresponding use case by

“extend”, subordinate uses cases of the super UC and the

list of all uses cases that specialize the sub use case. The

three other tabs express the details of the different UC

scenarios being documented. The last tab expresses the

XML file corresponding to the textual description of the

whole UC. In the rest of the section, we detail these tabs

through the use case “make a reservation” from the case

study “Car Rental” [60]. The enriched textual description

for the use case “make a reservation” is presented in Table

8 describing the purpose (See Figure 4) of the UC, Figure

5, Figure 6 and Figure 7 presenting respectively the main,

alternative and error scenarios, and Figure 8 illustrates the

corresponding XML file based on the enriched template of

the “make a reservation” UC.

− Addition a nominal scenario NS: The “Main

Scenario” (see Figure 5) shows the list of actions in

the main scenario which can be classified on two

blocs: sequential or parallel actions. Each bloc

indicates how these actions are executed.

It is composed of seven columns representing

respectively: a) NumAction that indicates an

automatic number identifying an action, b) Fom actor

and c)To actor which allows to specify who is

responsible for the action, d)Type of result which

determines if the result is a simple value or it

represents an entity, and e)Action description

representing a field specifying the action text, f) In-

PROJECT

NAME

#Use

cases

CLASSES

METHODS

KLOC

Car rental

system

9 98 252 108

Customer

Relationships

system

7 65 124 96

Table 6: Characteristics of the studied projects.

Evaluation

Measures

TP FP FN Precision=

TP/(TP+FP)

Recall=TP/

(TP+FN)

Results 62 9 5 0.84 0.91

Table 7: Evaluation results.

Figure 2: Software architecture of TRADICAC Quality

Tool.

Goals: The purpose is to make a reservation by a

customer from a car rental branch.

Textual description: The use case begins when a

customer decides to make a reservation and introduce

himself in the car rental branch to an available Clerk. The

clerk asks the customer for his/her ID and introduces it.

The system checks if the customer is a person who

has had contact with EU-Rent. If he/she exists, the system

verifies that the customer is not in the black list otherwise

it introduces a new EU-rent costumer/driver. The clerk

introduces the reservation ID, the period desired and

countries planned to visit. He specifies and verifies the

period validity and that there is no overlap with other

customer reservations and 3) the availability of the

specified car model for the period indicated.

If there are no cars to rent corresponding to the desired

model in the selected period, the system displays an error

message to the user and suggests if it is possible to change

the reservation period or the car type. The clerk asks the

customer to validate the reservation.

If the customer validates the reservation, the clerk

creates the reservation agreement and offers a discount to

the customer. The rental is confirmed and a new rental

agreement is created with the indicated parameters.

Figure 3: Goal definition.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 39

Name of the UC : <Make a reservation >

Purpose: <A customer makes a reservation from an EU-Rent branch >
Principal Actors : < Clerk > , <Secondary actor> : < Customer>

Pre-condition for execution:< when a customer decides to make a reservation and inform the clerk>

Post-condition (success): < The rental is confirmed and a new rental agreement is created with the indicated characteristics>

Post-condition (failure): <The indicated characteristics are not satisfied and a rental is canceled>
Relationships:

<include>: < Offer discount>< Offer special advantages>

<Extend>: < -- >;
<Super use case>: < -->;

<Sub use case>: <-->

Begin

Normal scenario

<steps of the scenario of the trigger to goal>

Begin NS

 <NumAction 1> < From Actor Clerk >< To Actor Customer> < Type of Result Simple: Integer> < Action Description Asks the custumer for

hisID > <In-Parameter: IDCustomer > <Out-Parameter IDCustomer >< IsConsidered 1>< IsIgnored 0>< IsNegative 0>

 <NumAction 2> < From Actor The Clerk >< To Actor The Customer > < Type of Result Simple: Boolean>< Action Description Checks
if the customer is a person who had contact with EU-Rent> <In-Parameter IDcustomer > <Out-Parameter Exists: Yes> < IsConsidered 1><

IsIgnored 0>< IsNegative 0>

 <NumAction 3>< From Actor Customer> < To Actor clerk>< Type of Result Entity>< Action Description Tells information about the
reservation to the clerk><In-Parameter Reservation (IDRes,StartResDat, End ResDat, DepartureCity, Arrival city)> <Out-Parameter Reservation

(IDRes , StartResDat, End ResDat, Departure/Arrival City, registration number car) >< IsConsidered 1>< IsIgnored 0><IsNegative 0>

 <NumAction 4> < From Actor Clerk >< To Actor The reservation> < Type of Result Entity>< Action Description Introduces the
reservation ID, the period desired and countries planned to visit ><In-Parameter IDRes, StartResDat, End ResDat, DepartureCity, Arrival city,

registration number car ><Out-Parameter Reservation (IDRes, StartResDat, End ResDat, Departure/ArrivalCity, registration number

car)> < IsConsidered 1>< IsIgnored 0>< IsNegative 0>
 <NumAction 5> < From Actor The Clerk >< To Actor The reservation><Type of Result Simple: boolean><Verify that the period is

correct, that there is no overlap with other reservations of the customer and the availability of the specified car model for the period indicated>

<In-Parameter: Reservation> <Out-Parameter availability car > < IsConsidered 1>< IsIgnored 0>< IsNegative 0>
 <Parallel>

 <NumAction 6>< From Actor The Clerk >< To Actor The agreement> < Type of Result Entity>< Action Description Create the

reservation agreement ><In-Parameter rental agreement: ID customer, price, ID reservation> <Out-Parameter Rental agreement >< IsConsidered
1>< IsIgnored 0>< IsNegative 0>

 <NumAction 7> < From Actor The Clerk >< To Actor The agreement>< Type of Result Entity>< Action Description Offer a discount to

the customer ><In-Parameter Discount rental agreement : Discount,ID agreement, ID customer> <Out-Parameter Discount rental agreement ><
IsConsidered 1>< IsIgnored 0>< IsNegative 0>

End

Alternative scenario

AS1

 Begin <Event, begin at Num 2 in SN>

<IF>< the customer does not exists >
 <NumAction 1> < From Actor Clerk >< To Actor customer> < Type of Result Customer (name, ID, birthdate, address, phone)>< Action

Description Introduce a new customer> <In-Parameter Customer (name, ID, birthdate, address, telephone)> <Out-Parameter Customer > <

IsConsidered 1>< IsIgnored 0>< IsNegative 0>
<Else > <restart at num 3 in SN>

End AS1

AS2
 <begin at Num 3 in SN>

<Do>

<NumAction 1>< From Actor clerk ><To Actor reservation><Type of Result Simple>< Action Description Specifies the period ><In Parameter
period > <Out-Parameter period >< IsConsidered 1>< IsIgnored 0>< IsNegative 0>

 <NumAction 2> < From Actor clerk><To Actor reservation> <Type of Result correct yes/no>< Action Description Verify the period>] [<In-

Parameter period>] [<Out-Parameter correct yes/no >]< IsConsidered 1>< IsIgnored 0> < IsNegative 0>
<While><period is correct &does not overlaps with other reservations >

<restart at Num “6” in SN>
End AS2

AS3

<begin at Num 5 in SN>
<Opt><needs confirmation>

 <NumAction 6> < From Actor Clerk ><To Actor Customer><Type of Result Simple: Boolean > <Action Description Asks the customer

if he validates the reservation> <In-Parameter Reservation><Out-Parameter IsValidated >< IsConsidered 1>< IsIgnored 0>< IsNegative 0>
 <restart at Num “6” in SN>

End AS3

*** Error scenario ***

ES1

<begin at Num “5”>

<IF><There is no cars to rent having the desired model in the selected period>
<NumAction 6> < From Actor The system >< To Actor The Clerk >< Type of Result Entity >< Action Description displays an error message

to the user and suggests if it is possible to change the reservation period or the car type ><In-Parameter: Car model, period > <Out-Parameter Error

message> < IsConsidered 0> < IsIgnored 0> < IsNegative 1>
Return

End

Table 8: Enriched textual description for the use case “make a reservation”.

40 Informatica 46 (2022) 27–47 W. Khlif et al.

Figure 4: UC-ETD “make a reservation” purpose interface.

Figure 5: Main scenario of the "make a reservation" use case.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 41

Parameter expressing the input of the action g)Out

Parameter expressing the output of the action, and h)

boolean value corresponding to each state of the

action that can be Considered, IsIgnored, IsNegative.

To add a nominal scenario in a specified bloc, click

on the "Add Parallel Actions" button or "Add

Sequential Actions" in the corresponding bloc.

− Addition of an alternative scenario and /or errors:

Figure 6 and Figure 7 illustrate, respectively, the

alternative and error scenarios. Each alternative or

error scenario is composed of two blocks where the

Figure 6: Alternative scenario of the "make a reservation" use case.

Figure 7: Error scenario of the "make a reservation" use case.

42 Informatica 46 (2022) 27–47 W. Khlif et al.

user enters the following information: The first bloc

contains the scenario title, guard condition of the

event triggering the scenario, the start action at the

alternative scenario level and the return action number

if it exists. We note that the alternative scenario may

contain conditional and/or iterative control structures.

In addition, it is possible to depict nested blocs. For

instance, an iterative control structures can be nested

in an alternative control structures and vice versa.

Besides, each bloc includes the list of actions

executed in a parallel or sequential way. For each

action, the user enters the corresponding information

as presented in the nominal scenario (from a to h).

To add a new alternative scenario, click on the "Add

Conditional Control Structures" button or "add

Iterative Control Structures". Similarly, to add an

error scenario, click on the "Add Error Structures"

button.

After entering the enriched textual description of the make

a reservation use case, the XML generator module

produces the XMI document as illustrated in Figure 8. To

generate the XML file corresponding to the obtained XMI

document, this module uses the standard template of Star

UML definition. For example, we present as follows the

generated XML file corresponding to the documentation

of the "Make a reservation" use case of our “Car rental”

case study.

5.2 Traceability process module

The traceability module is composed of two engines:

applicability of traceability rules and calculation

similarity.

5.2.1 Applicability of Traceability rules

In the traceability detection module, the user firstly

imports the UML project. In this step, the designer

chooses a UC from a list of use cases. Then, the designer

can choose a specific fragment to be traced from the

selected UC. The presented fragments represent specific

concepts which we added in the UC textual description

(e.g., parallel, sequence, loop, conditional, break, etc.).

For instance, the designer needs to trace the ‘parallel’

fragment in the enriched textual description by checking

the list of parallel fragments which are available in a list

box as shown in Figure 9. Next, we apply the similarity

measure LSI between the XML of the selected parallel

fragment and the related UML diagrams; and the source

code based on the defined traceability rules.

5.2.2 Similarity calculator

The similarity calculator uses the XML files to determine

the traceability inter-UML diagrams where the module

computes the similarity between the selected fragment and

other UML diagrams (CD, AD, STD and SD), and the

traceability between UML diagrams and code where the

module detects the corresponding elements between the

UML diagrams and the code.

We offer to the designer a pairwise traceability (two

by two) from the use case diagram to the other diagrams.

For instance, when the designer chooses Use case-

sequence, the system calculates the similarity between the

parallel fragment in the use case diagram and each parallel

fragment in the sequence diagrams. To end this purpose,

the similarity calculator determines the score of

resemblances between the fragment elements in the

enriched description and all the corresponding parallel

fragments in the sequence diagram (i.e., actor/action in a

use case diagram and object/message in the sequence

diagrams).

The fragment having a higher score is considered as

the most similar one. To decide upon the obtained score

value, the constant threshold of 0.70 is widely used in the

literature [17]. Consequently, we assume that a similarity

value greater than or equal to 0.7 indicates a high

similarity between fragments. Otherwise, the designer

should verify the quality of the corresponding UML-

diagrams. Besides, we calculate in the same manner the

similarity between the selected fragment in the use case

and the source code.

Figure 8: The generated XML file corresponding to the documentation of the "Make a reservation" use case.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 43

Table 9 presents the correspondence between control

structure fragments (OPT, ATL, WHILE, BREAK, ...) in

the use case, activity, sequence, state transition diagram

and code. Figure 10 shows traceability between the

selected parallel fragment in the main scenario which

includes the 6th and the 7th actions in the use case “make

a reservation” and its corresponding one in the sequence,

activity, class and state transition diagrams as well as the

source code.

6 Conclusion
In this paper, we proposed a new method that determines

the traceability at different abstraction levels. The

traceability is based on the mapping between an enriched

textual description of a use case and UML diagrams (class,

sequence, activity and state transition diagrams) and

between UML diagrams and the code. This

correspondence is focused on the control structures

defined in the use case textual description and the

combined fragment used in the sequence diagrams.

In our future works, the following points will be taken

into consideration:

− Representing data in textual description to derive

directly the object and class diagram.

− Studying the possibility to derive the implementation

diagrams from textual description.

− Determine the traceability from code to functional

requirements based on the code-Requirement

Traceability Matrix (CRTM) information.

References
[1] Y.Wang, Formal description of the UML architecture

and extendibility, in: journal L’object: Software,

Databases, Networks, 2000, Vol.6, No.3.

[2] P. Rempel, P. Mader, Continuous Assessment of

Software Traceability, in: 38th IEEE/ACM

Conference on Software Engineering Companion,

May, Austin, TX, USA, 2016, pp. 747-748, DOI:

http://dx.doi.org/10.1145/2889160.2892657

[3] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, T.

Yue, Traceability and SysML Design Slices to

Support Safety Inspections: A Controlled

Experiment, Simula Research Laboratory, in: journal

of ACM Transactions on Software Engineering and

Methodolog, February, 2014, No.9.

https://doi.org/10.1145/2559978

Figure 9: Traceability detection interface.

Figure 10: Traceability inter-UML Diagram.

44 Informatica 46 (2022) 27–47 W. Khlif et al.

[4] A. Lawgali, Traceability of unified modeling

language diagrams from use case maps, in:

international Journal of Software Engineering &

Applications (IJSEA), Vol.7, No.6, November, 2016,

pp.89-100.

doi:10.5121/ijsea.2016.7607

[5] V. Adhav, D. Ahire, A. Jadhav, D. Lokhande, Class

Diagram Extraction from Textual Requirements

Using NLP, in: Second International Conference on

Computer Research and Development, (2015),

vol.17, No 2, pp. 27-29.

DOI: 10.1109/ICCRD.2010.71

[6] D. Kchaou, N. Bouassida, H.Ben-Abdallah, Uml

models change impact analysis using a text similarity

technique. In journal of IET Software, Vol 11, Issue

1, No 2, February, 2017, pp. 27-37. DOI: 10.1049/iet-

sen.2015.0113

[7] P. Mader, O. Gotel, Towards automated traceability

maintenance, in: Journal of Systems and Software,

vol. 85, no. 10, 2012, pp. 2205–2227.

https://doi.org/10.1016/j.jss.2011.10.023

[8] S. Nejati, M. Sabetzadeh, C. Arora, L.C.Briand,

F.Mandoux, Automated change impact analysis

between sysml models of requirements and design, in:

Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering,

ACM, New York, USA, 2016, pp 242-253.

https://doi.org/10.1145/2950290.2950293

[9] Min, H.S.: 'Traceability Guideline for Software

Requirements and UML Design'. in: Journal of

Software Engineering and Knowledge Engineering,

26, (01), 2016, pp. 87-113.

[10] M. Rahimi, J. Cleland-Huang, Evolving software

trace links between requirements and source code, in:

international journal of Empirical Software

Engineering, Vol. 23, 2018, pp.2198–2231. DOI:

https://doi.org/10.1007/s10664-017-9561-x

[11] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and

E. Merlo, "Recovering traceability links between

code and documentation," in IEEE Transactions on

Software Engineering, vol. 28, no. 10, pp. 970-983,

Oct. 2002, doi: 10.1109/TSE.2002.1041053.

[12] A. Ghabi, A. Egyed, Exploiting traceability

uncertainty among artifacts and code, The Journal of

Systems and Software, Vol. 108, October 2015, pp.

178–192. http://dx.doi.org/10.1016/j.jss.2015.06.037

[13] A. Ghannem, H. Mohamed Salah, M. Kessentini,

H.A. Hany, Search-Based Requirements Traceability

Recovery: A Multi-Objective Approach, in: IEEE

Congress on Evolutionary Computation (CEC), San

Sebastian, Spain, 5-8 June, 2017,

DOI: 10.1109/CEC.2017.7969440

[14] C. Mills, C., J. Javier Escobar-Avila, S. Haiduc,

Automatic Traceability Maintenance via Machine

Learning Classification, in: IEEE International

Conference on Software Maintenance and Evolution,

Madrid, Spain, 2018, pp. 369-380. DOI:

10.1109/ICSME.2018.00045

[15] S. Palihawadana, C. H. Wijeweera, M. G. T. N.

Sanjitha, V. Liyanage, I. Perera, D. Meedeniya, Tool

support for traceability management of software

artefacts with DevOps practices, in: Proceedings of

the Moratuwa Engineering Research Conference,

IEEE, 2017, pp. 129-134. DOI:

10.1109/MERCon.2017.7980469

[16] C. Trubiani, A. Ghabi, A. Egyed, Exploiting

traceability uncertainty between software

architectural models and extra-functional results, in:

Journal of Systems and Software, Vol 125, March

2017, , 2017, pp.15-34.

https://doi.org/10.1016/j.jss.2016.11.032

[17] A. D. Lucia, , F.Fasano, , R.Oliveto, , G.Tortora,

Recovering traceability links in software artifact

management systems using information retrieval

methods, in: ACM Transactions on Software

Engineering and Methodology, Vol 16, No4, 2007,

pp.13-63. https://doi.org/10.1145/1276933.1276934

[18] M. Lormans, A. van Deursen, Can LSI help

Reconstructing Requirements Traceability in Design

and Test? In: Proceedings of the 10th European

Conference on Software Maintenance and

Reengineering, IEEE Computer Society, 2006, pp.

47-56. DOI: 10.1109/CSMR.2006.13

[19] A. Marcus, and J. I. Maletic, Recovering

documentation-to-source-code traceability links

using latent semantic indexing, in: Proceedings of the

25th International Conference on Software

Engineering, IEEE Computer Society, Washington,

USA, May, 2003, pp.125–135.

[20] M. Eyl, C. Reichmann, and K. Müller-Glaser,

Traceability in a Fine Grained Software

Configuration Management System, in: international

conference on software quality, LNBIP 269, 2017, pp.

15–29. DOI: 10.1007/978-3-319-49421-0_2

[21] A. Shanmugathasan, S., Ratnavel, S., Thiyagarajah,

V., Perera, I., Meedeniya, D., Balasubramaniam, D.:

'Support for traceability management of software

artefacts using Natural Language Processing'.

Moratuwa Engineering Research Conf., 2016. pp. 18-

23.

[22] M. Grechanik, KS. McKinley, DE. Perry, Recovering

and using use-case-diagram-to-source-code

traceability links, in: Proceedings of the 6th joint

meeting of the European software engineering

conference and the ACM SIGSOFT symposium on

The foundations of software engineering, September,

2007, pp.95–104,

https://doi.org/10.1145/1287624.1287640

[23] A. Cockburn, j. Highsmith, Agile Software

Development: The People Factor. EEE Computer,

Volume 34, 2001, pp. 131-133.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 45

[24] O. S. Dawood, A. E. K. Sahraoui, From Requirements

Engineering to UML using Natural Language

Processing – Survey Study. European Journal of

Engineering Research and Science, 2, (1), January,

2017, pp. 44-50.

[25] K. Swathine, N. Sumathi, Study on Requirement

Engineering and Traceability Techniques in Software

Artefacts, in: international Journal of Innovative

Research in Computer and Communication

Engineering, Vol. 5, Issue 1, January 2017. DOI:

10.15680/IJIRCCE.2017. 0501016

[26] H. Kaiya, A. Hazeyama, S. Ogata, T. Okubo, N.

Yoshioka, H. Washizaki,Towards A Knowledge Base

for Software Developers to Choose Suitable

Traceability Techniques, in: Proceedings of the 23rd

International Conference on Knowledge-Based and

Intelligent Information & Engineering Systems,

2019, pp. 1075-1084,

https://doi.org/10.1016/j.procs.2019.09.276

[27] H. Kaiya, R.Satoa, A.Hazeyamab, S.Ogatac,

T.Okubod, T.Tanakae, N.Yoshiokaf, H. Washizakig,

Preliminary Systematic Literature Review of

Software and Systems Traceability, in: 2th

International Conference on Knowledge Based and

Intelligent Information and Engineering of the 10th

European Conference on Software Maintenance and

Reengineering, IEEE Computer Society, 2006, pp.

47-56. DOI: 10.1109/CSMR.2006.13

[28] C. Trubiani, A. Ghabi, A. Egyed, Exploiting

traceability uncertainty between software

architectural models and extra-functional results, in:

Journal of Systems and Software, Vol 125, March

2017, , 2017, pp.15-34.

https://doi.org/10.1016/j.jss.2016.11.032

[29] S. Maro, A. Anjorin, R. Wohlrab, J.P. Steghöfer:

Traceability maintenance: factors and guidelines, in:

Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering,

Singapore, September 3-7, 2016, pp. 414-425.

[30] S. Maro, J.P. Steghöfer, M. Staron, Software

traceability in the automotive domain: Challenges and

solutions, in: Journal of Systems and Software, Vol

141, 2018, pp.85-110.

https://doi.org/10.1016/j.jss.2018.03.060

[31] R.Wohlrab, J.-P. Steghöfer, E. Knauss, S. Maro, A.

Anjorin: Collaborative Traceability Management:

Challenges and Opportunities, in: 24th IEEE

International Requirements Engineering Conference,

Beijing, China, September 12-16, 2016, pp. 216-225.

DOI: 10.1109/RE.2016.1

[32] M., Broy, A logical approach to systems engineering

artifacts: semantic relationships and dependencies

beyond traceability - from requirements to functional

and architectural views, in: journal of Software and

Systems Modeling, pp.365-393, Vol.17, Issue 2,

2018, pp. 365-393. https://doi.org/10.1007/s10270-

017-0619-4

[33] Yazawa, Y. , Ogata, S., Okano, K., Kaiya, H.,

Washizaki, H.: 'Traceability Link Mining - Focusing

on Usability'.41st IEEE Annual Computer Software

and Applications Conference, Italy, 2, 2017, pp 286-

287.

[34] K.S. Divya, R. Subha, , S. Palaniswami, Similar

words identification using naive and tf-idf method'.

Information Technology and Computer Science

Journal, pp. 42-47, 2014.

[35] Kothari, P.R.: 'Processing Natural Language

Requirement to Extract Basic Elements of a Class'.

Journal of Applied Information Systems, USA 3, (7),

2012, pp. 39-42.

[36] A. T. Imam, A. A. Hroob , R. A. Heisa, The use of

artificial neural networks for extracting actions and

actors from requirements document'. journal of

Information and Software Technology, 2018, pp.1-

15.

[37] Rath, M., Rendall, J., Guo, J. L.C., Cleland-Huang, J.,

Mader, P., 'Traceability in the Wild: Automatically

Augmenting Incomplete Trace Links'. IConf on

Software Engineering, May 27-June 3, Sweden, 2018,

pp. 834–845.

[38] L. G. P. Murta, A. van der Hoek, C. M. L.Werner,

Archtrace: policy-based support for managing

evolving architecture-to implementation traceability

links, in: 21st IEEE/ACM International Conference on

Automated Software Engineering, Tokyo, Japan,

2006, pp. 135–144. DOI: 10.1109/ASE.2006.16

[39] L. G. P. Murta, A. van der Hoek, C. M. L.Werner,

Continuous and automated evolution of architecture-

to-implementation traceability links, in: Automated

Software Engineering Journal, vol. 15, no. 1, 2008,

pp. 75–107. https://doi.org/10.1007/s10515-007-

0020-6

[40] I. D. D. Rubasinghe, A. Meedeniya, I. Perera,

Towards TraceabilityManagement in Continuous

Integration with SAT Analyser, in: Proceedings of the

3rd International Conference on Communication, and

Information Processing, 2017, ACM, Tokyo. DOI:

10.1145/3162957.3162985

[41] I, Pete, D., Balasubramaniam, Handling the

Differential Evolution of Software Artefacts A

Framework for Consistency Management, in: 22nd

IEEE International Conference on Software Analysis

Evolution and Reengineering, 2015, pp.599-600, doi:

10.1109/SANER.2015.7081889

[42] M. Grechanik, KS. McKinley, DE. Perry, Recovering

and using use-case-diagram-to-source-code

traceability links, in: Proceedings of the 6th joint

meeting of the European software engineering

conference and the ACM SIGSOFT symposium on

The foundations of software engineering, September,

46 Informatica 46 (2022) 27–47 W. Khlif et al.

2007, pp.95–104,

https://doi.org/10.1145/1287624.1287640

[43] Guo, J., Cheng, J. Cleland-Huang, J.: 'Semantically

Enhanced Software Traceability Using Deep

Learning Techniques'. Conf on Software

Engineering, May 2017, pp. 3-14.

[44] Kuang, H., Nie, J., Hu, H., Rempel, P., Lü, J., Egyed,

A., Mäder, P. : 'Analyzing Closeness of Code

Dependencies for Improving IR-Based Traceability

Recovery'. Software Analysis Evolution &

Reengineering, 2017, pp. 68-78.

[45] Kuang, H., Gao, H., Hu, H., Ma, X. , Lü, J., Mäder,

P. , Egyed, A.: 'Using Frugal User Feedback with

Closeness Analysis on Code to Improve IR-Based

Traceability Recovery'. IEEE/ACM 27th Inter. Conf.

on Program Comprehension, pp. 369-379, 2019.

[46] I. D. D. Rubasinghe, A. Meedeniya, I. Perera,

Towards TraceabilityManagement in Continuous

Integration with SAT Analyser, in: Proceedings of the

3rd International Conference on Communication, and

Information Processing, 2017, ACM, Tokyo. DOI:

10.1145/3162957.3162985

[47] I. D. D. Rubasinghe, A. Meedeniya, I. Perera,

Software Artefact Traceability Analyser: A Case-

Study on POS System, in: Proceedings of the 6th

International Conference on Communications and

Broadband Networking, February 24 - 26, 2018, pp.1-

5, DOI:10.1145/3193092.3193094

[48] H. Tufail, M. F. Masood, B. Zeb, F. Azam, A

Systematic Review of Requirement Traceability

Techniques and Tools, in: 2nd International

Conference on System Reliability and Safety

(ICSRS), 20-22 December, Milan, Italy, 2017, DOI:

10.1109/ICSRS.2017.8272863.

[49] O. Rahmaoui, K.Souali, M. Ouzzif, Improving

Software Development Process using Data

Traceability Management, in: international Journal of

Recent Contributions from Engineering, Science &

IT, 2019, pp.52-58.

https://doi.org/10.3991/ijes.v7i1.10113.

[50] K. Souali, O. Rahmaoui, M. Ouzzif, An overview of

traceability: Definitions and techniques. 4th IEEE

Colloquium on Information Science and Technology,

Morocco, October, 2016, pp.789-793.

[51] C.D Manning, M. Surdeanu, J. Bauer, J.R Jenny Rose

Finkel, S. Bethard, D. McClosk, The Stanford

CoreNLP Natural Language Processing Toolkit. In

Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, June 22-

27, 2014, pp.55-60.

[52] J.J. Webster, C. Kit, Tokenization as the initial phase

in nlp. In Proceedings of the 14th conference on

Computational linguistics, Association for

Computational Linguistics, Volume 4, 1992, pp.

1106-1110.

[53] H. Saif, M. Fernandez, Y. He, H. Alani, On

stopwords, filtering and data sparsity for sentiment

analysis of twitter'. In LREC’14 Proceedings of the

Ninth International Conference on Language

Resources and Evaluation, European Language

Resources

Association, Reykjavik, Iceland, May 26-31, 2014,

pp. 810-817.

[54] J.B. Lovins, Development of a stemming algorithm.

In Mechanical Translation and Computational

Linguistics, Vol 11, No.1-2, March, June, 1968, pp.

22-31.

[55] OMG-UML :OMG-UML, 2015. OMG Unified

Modeling Language (OMG UML). formal/2015-03-

01. [Online].

[56] D. Bailey, Java Structures: Data Structures in Java for

the Principled Programmer, 2end edition, (2007) pp.

528, McGraw-Hill Science/Engineering/Math.

[57] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B.

Regnell, A. Wesslén 'Experimentation in Software

Engineering: An Introduction, 2000.

[58] N. Mustafa, Y. Labiche, D. Towey, Mitigating

Threats to Validity in Empirical Software

Engineering: A Traceability Case Study. 43rd Annual

Computer Software and Applications Conference,

USA, July, 2019, pp. 324-329.

[59] Eclipse Specification. 2011, Available from:

http://www.eclipse.org/

[60] L. Frias, A. Queralt, A. Oliv, EU-Rent car rentals

specification. Technical report, 2003.

A Complete Traceability Methodology Between UML Diagrams and... Informatica 46 (2022) 27–47 47

U

S
E

 C
A

S
E

 D
IA

G
R

A
M

A

C
T

IV
IT

Y
 D

IA
G

R
A

M

S
E

Q
U

E
N

C
E

 D
IA

G
R

A
M

S

T
A

T
E

T

R
A

N
S

IT
IO

N

D
IA

G
R

A
M

C

o
d

e

OPT
<

O
p

t>
<

n
eed

s co
n

firm
atio

n
>

<
N

u
m

A
ctio

n
 6

>
 <

 F
ro

m
 A

cto
r T

h
e C

lerk
 >

<
T

o
 A

cto
r

C
u

sto
m

er>
<

T
y

p
e o

f R
esu

lt S
im

p
le: B

o
o

lean
 >

 <
A

ctio
n

D
escrip

tio
n

 A
sk

s th
e cu

sto
m

er if h
e/sh

e w
an

ts to
 g

u
aran

tee th
e

reserv
atio

n
>

 <
In

-P
aram

eter R
eserv

atio
n

>
 <

O
u

t-P
aram

eter

IsV
alid

ated
 >

<
 IsC

o
n

sid
ered

 1
>

<
 IsIg

n
o

red
 0

>
<

 IsN
eg

ativ
e 0

>

<
restart at N

u
m

 “6
” in

 S
N

>

I
f

(
r
e
n
t
a
l
c
o
n
f
i
r
m
e
d
)

{

g
u
a
r
a
n
t
e
e
r
e
n
t
a
l
(
)
;

ALT

B
eg

in
 <

E
v

en
t, b

eg
in

 at N
u

m
 2

 in
 S

N
>

<
IF

>
<

 th
e cu

sto
m

er d
o

es n
o

t ex
ists>

<
N

u
m

A
ctio

n
 1

>
 <

 F
ro

m
 A

cto
r T

h
e C

lerk
 >

<
 T

o
 A

cto
r T

h
e

cu
sto

m
er>

<
 T

y
p

e o
f R

esu
lt C

u
sto

m
er (n

am
e, ID

, b
irth

d
ate,

ad
d

ress, telep
h
o

n
e)>

<
 A

ctio
n

 D
escrip

tio
n

 In
tro

d
u

ce a n
ew

co
stu

m
er>

 <
In

-P
aram

eter C
u

sto
m

er (n
am

e, ID
, b

irth
d

ate, ad
d

ress,

telep
h

o
n

e)>
 <

O
u

t-P
aram

eter C
u

sto
m

er >
<

 IsC
o

n
sid

ered
 1

>
<

IsIg
n

o
red

 0
>

<
 IsN

eg
ativ

e 0
>

<
E

lse >
 <

restart at n
u

m
 3

 in
 S

N
>

S
t
r
i
n
g

u
s
e
r
n
a
m
e
,

p
w
o
r
d
;

i
f

(
u
s
e
r
O
b
j
.
g
e
t
T
y
p
e
(
)

!
=
U
s
e
r
T
y
p
e
.
M
E
M
B
E
R
)

{

i
n
t
r
o
d
u
c
e
c
u
s
t
u
m
e
r
(
)
;

e
l
s
e

C
o
n
f
i
r
m
l
o
g
i
n
(
)
;
}

Do while

<
b

eg
in

 at N
u

m
 3

 in
 S

N
>

 <
D

o
>

<
N

u
m

A
ctio

n
 1

>
<

 F
ro

m
 A

cto
r th

e clerk
 >

<
T

o
 A

cto
r th

e

reserv
atio

n
>

<
T

y
p

e o
f R

esu
lt S

im
p

le>
<

 A
ctio

n
 D

escrip
tio

n

S
p

ecifies th
e p

erio
d
 >

<
In

-P
aram

eter p
erio

d
 >

 <
O

u
t-P

aram
eter

p
erio

d
 >

<
 IsC

o
n

sid
ered

 1
>

<
 IsIg

n
o

red
 0

>
<

 IsN
eg

ativ
e 0

>

<
N

u
m

A
ctio

n
 2

>
 <

 F
ro

m
 A

cto
r T

h
e clerk

>
<

T
o

 A
cto

r T
h

e

reserv
atio

n
>

<
T

y
p

e o
f R

esu
lt co

rrect y
es/n

o
>

<
 A

ctio
n

 D
escrip

tio
n

V
erify

 th
e p

erio
d

>
] [<

In
-P

aram
eter p

erio
d

>
] [<

O
u
t-P

aram
eter

co
rrect y

es/n
o

 >
]<

 IsC
o
n

sid
ered

 1
>

<
 IsIg

n
o

red
 0

>
<

 IsN
eg

ativ
e 0

>

<
W

h
ile>

<
p

erio
d

 is co
rrect an

d
 d

o
es n

o
t o

v
erlap

s w
ith

 o
th

er

reserv
atio

n
s >

<
restart at N

u
m

 “6
” in

 S
N

>

 D
o

S
p
e
c
i
f
y
p
e
r
i
o
d
(
)
;

V
e
r
i
f
y
p
e
r
i
o
d
(
)
;

W
h
i
l
e

(
p
e
r
i
o
d

i
s

c
o
r
r
e
c
t

a
n
d

d
o
e
s

n
o
t

o
v
e
r
l
a
p
s

w
i
t
h

o
t
h
e
r

r
e
s
e
r
v
a
t
i
o
n
s
)

PARALLEL

<
P

arallel>

 <
N

u
m

A
ctio

n
 6

>
<

 F
ro

m
 A

cto
r T

h
e C

lerk
 >

<
 T

o
 A

cto
r T

h
e

ag
reem

en
t>

 <
 T

y
p

e o
f R

esu
lt E

n
tity

>
<

 A
ctio

n
 D

escrip
tio

n
 C

reate

th
e reserv

atio
n
 ag

reem
en

t >
<

In
-P

aram
eter ren

tal ag
reem

en
t: ID

cu
sto

m
er, p

rice, ID
 reserv

atio
n

>
 <

O
u

t-P
aram

eter R
en

tal

ag
reem

en
t >

<
 IsC

o
n

sid
ered

 1
>

<
 IsIg

n
o

red
 0

>
<

 IsN
eg

ativ
e 0

>

<
N

u
m

A
ctio

n
 7

>
 <

 F
ro

m
 A

cto
r T

h
e C

lerk
 >

<
 T

o
 A

cto
r T

h
e

ag
reem

en
t>

<
 T

y
p

e o
f R

esu
lt E

n
tity

>
<

 A
ctio

n
 D

escrip
tio

n
 O

ffer a

d
isco

u
n

t to
 th

e cu
sto

m
er >

<
In

-P
aram

eter D
isco

u
n

t ren
tal

ag
reem

en
t : D

isco
u

n
t,ID

 ag
reem

en
t, ID

 cu
so

tm
er>

 <
O

u
t-P

aram
eter

D
isco

u
n

t ren
tal ag

reem
en

t >
<

 IsC
o

n
sid

ered
 1

>
<

 IsIg
n

o
red

 0
>

<

IsN
eg

ativ
e 0

>

p
u
b
l
i
c

c
l
a
s
s

r
e
n
t
a
l
a
g
r
e
e
m
e
n
t
T
h
r
e
a
d

i
m
p
l
e
m
e
n
t
s

R
u
n
n
a
b
l
e

{

T
h
r
e
a
d

r
e
n
t
a
l
a
g
r
e
e
m
e
n
t
T
h
r
e
a
d
;

P
u
b
l
i
c

r
e
n
t
a
l
a
g
r
e
e
m
e
n
t
T
h
r
e
a
d

(
i
n
t

a
g
r
e
e
m
e
n
t
,

i
n
t

I
D
l
o
c
,

i
n
t

I
D
M
A
T
,

d
a
t
e

d
a
t
)

{
t
h
i
s
.
a
g
r
e
e
m
e
n
t
=

a
g
r
e
e
m
e
n
t
;

T
h
i
s
.
i
d
l
o
c
=
I
D
l
o
c
;

T
h
i
s
.
I
D
M
A
T
;

T
h
i
s
.
d
a
t
=
d
a
t
;
}

r
e
n
t
a
l
a
g
r
e
e
m
e
n
t
T
h
r
e
a
d

=

n
e
w

T
h
r
e
a
d

(

t
h
i
s

,

"

O
f
f
e
r
D
i
s
c
o
u
n
t
t
h
r
e
a
d
"
)
;

U
n
T
h
r
e
a
d
.
s
t
a
r
t
(
)
;

}

p
u
b
l
i
c

v
o
i
d

r
u
n

(

)

{

/
/
.
.
.
.
s
e
c
o
n
d

t
h
r
e
a
d

a
c
t
i
o
n
s

h
e
r
e

p
u
b
l
i
c

O
f
f
e
r
P
o
i
n
t
s
P
a
y
m
e
n
t
(
)
;

}
}

T

ab
le 9

: T
raceab

ility
 b

etw
een

 co
n

tro
l stru

ctu
re frag

m
en

ts in
 th

e u
se case, A

ctiv
ity

, seq
u

en
ce state tran

sitio
n
 d

iag
ram

s an
d

 co
d

e

48 Informatica 46 (2022) 27–47 W. Khlif et al.

