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The target visitation problem (TVP) is concerned with finding a route to visit a set of targets starting
from and returning to some base. In addition to the distance traveled a tour is evaluated by taking also
preferences into account which address the sequence in which the targets are visited. The problem thus
is a combination of two well-known combinatorial optimization problems: the traveling salesman and the
linear ordering problem. In this paper we point out some polyhedral properties and develop a branch-and-
cut algorithm for solving the TVP to optimality. Some computational results are presented.

Povzetek: Prispevek obravnava iskanje poti v grafu, kjer je potrebno obiskati več ciljev v najboljšem
vrstnem redu.

1 Introduction
Let Dn+1 = (Vn+1, An+1) be the complete digraph on
n + 1 nodes where we set Vn+1 = {0, 1, . . . , n}. Fur-
thermore let two types of arc weights be defined: weights
dij (distances) for every arc (i, j), 0 ≤ i, j ≤ n, and
weights pij (preferences) associated with every arc (i, j),
1 ≤ i, j ≤ n. The target visitation problem (TVP) consists
of finding a Hamiltonian tour starting at node 0 visiting all
remaining nodes (called targets) exactly once in some order
and returning to node 0. Every tour can be represented by
a permutation π of {1, 2, . . . , n} where π(i) = j if target j
is visited as i-th target. For convenience we also define
π(0) = 0 and π(n+ 1) = 0.

So we are essentially looking for a traveling salesman
tour, but for the TVP the profit of a tour depends on the
two weights. Namely, the value of a tour is the sum of
pairwise preferences between the targets corresponding to
their visiting sequence minus the sum of distances traveled,
i.e., it is calculated as

n−1∑
i=1

n∑
j=i+1

pπ(i)π(j) −
n∑
i=0

dπ(i)π(i+1),

and the task is to find a tour of maximum value. So we have
a multicriteria objective function.

The TVP was introduced in [4] and combines two clas-
sical combinatorial optimization problems: the asymmetric
traveling salesman problem (ATSP) asking for a shortest
Hamiltonian tour and the linear ordering problem (LOP)
which is to find an acyclic tournament of maximum weight.
(There is an obvious 1–1 correspondence between acyclic
tournaments and linear orders of the node). Computational
results of a genetic algorithm for problem instances with up
to 16 targets have been reported in [1]. The original appli-
cation of the TVP is the planning of routes for UAVs (un-

armed aerial vehicles). But there is a wide field of applica-
tions, e.g. the delivery of relief supplies or any other routing
problem where additional preferences should be considered
(town cleaning, snow-plowing service, etc.).

Obviously, the TVP is NP-hard because it contains the
traveling salesman problem (p ≡ 0) and the linear ordering
problem (d ≡ 0) as special cases.

In this paper we present first polyhedral results for the
TVP and develop an algorithm for solving it to optimality.
In section 2 we introduce an integer programming model.
Section 3 discusses some structural properties of the associ-
ated polytope. A branch-and-cut algorithm based on these
results is described in section 4. The algorithm is then ap-
plied to a set of benchmark problems and the computational
results are presented in section 5. A few remarks conclude
the paper.

2 An integer programming model
for the TVP

For convenience we first transform the problem to a Hamil-
tonian path problem and also get rid of the special base
node. This transformation is well-known for the ATSP [7]
and can be adapted for the TVP as follows.

The key idea is to exploit the fact that each tour has to
start at the base and return to it and that no preferences
are to be taken into account for the base. In the TVP-path
model we leave out this node and just search for a Hamil-
tonian path which visits all targets exactly once.
Following [7] we make the following modifications.

(i) Transform the distance matrix by setting d′ij = dij −
di0 − d0j , for all pairs i and j of nodes, 1 ≤ i, j ≤
n i 6= j.
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(ii) Change the computation of the distance part of the ob-
jective function to

n−1∑
i=1

d′π(i)π(i+1) −
n∑
i=1

di0 −
n∑
i=1

d0i.

The preferences are not affected by this change. From now
on we consider the TVP as finding a Hamiltonian path in
the complete digraph Dn = (Vn, An) with additional pref-
erence costs to be taken into account. The path is described
by a permutation π of {1, . . . , n} where π(k) is the node at
position k.

We introduce two types of variables. The sequence in
which the targets are visited is represented by binary ATSP
variables xij for 1 ≤ i, j ≤ n, i 6= j, with the interpreta-
tion

xij :=


1 if i = π(k) and j = π(k + 1)

for some 1 ≤ k ≤ n− 1,

0 otherwise.

The fact that some target i is visited before some target j
is modeled with binary LOP variables wij for 1 ≤ i, j ≤
n, i 6= j, with the definition

wij :=


1 if i = π(k) and j = π(l)

for some 1 ≤ k < l ≤ n,
0 otherwise.

An obvious idea for obtaining an IP model of the TVP
is to combine well-known IP formulations for the ATSP
and the LOP. This combination gives the following integer
programming model.

max

n∑
i=1

n∑
j=1
j 6=i

pijwij −
n∑
i=1

n∑
j=1
j 6=i

dijxij (1)

n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (2)

∑
i∈S

∑
j∈S
j 6=i

xij ≤ |S| − 1,

S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1, (3)
n∑
i=1
i 6=j

xij ≤ 1, 1 ≤ j ≤ n, (4)

n∑
j=1
j 6=i

xij ≤ 1, 1 ≤ i ≤ n, (5)

wij + wjk + wki ≤ 2, 1 ≤ i, j, k ≤ n, i 6= j 6= k,
(6)

wji + wij = 1, 1 ≤ i, j ≤ n, i 6= j (7)
xij − wij ≤ 0, 1 ≤ i, j ≤ n, i 6= j (8)

xij ∈ {0, 1}, 1 ≤ i, j ≤ n, i 6= j (9)
wij ∈ {0, 1}, 1 ≤ i, j ≤ n, i 6= j (10)

Constraints (2)–(5) model the directed Hamiltonian
paths where inequalities (3) are the subtour elimination
constraints. Acyclic tournaments are modelled by the 3-
dicycle inequalities (6) and the tournament equations (7).
Inequalities (8) connect the solutions of both problems. To-
gether with the integrality conditions (9) and (10) this ob-
viously constitutes a 0/1 model of the TVP.

At first want to prove the correctness of the model.

Lemma 1. The model presented in (1) - (10) is a correct
IP model for the TVP).

Proof. At first we have to prove that every feasible solution
fulfills the model. Since (2) - (5), (9) is a well known model
for the ATSP and (6) - (7), (10) is a well known model for
the LOP it is sufficient to show that the values of xij do
match with the values wij or in equal that both types of
variables describe the same TVP-path. To assure this it is
sufficient to prove the following two facts:

a) xij = 1⇒ wij = 1

b) wij = 1 ⇒ i must be visited before j in the path
describe by the x-variables

Because (8) must be fulfilled a) is obvious. To prove b)
we assume j is visited before i in the path. That means the
are existing indizees k1, . . . , kl so that j, k1, . . . , kn, i is a
part of the path. So it follows that xj,k1 = xk1,k2 = · · · =
xkl,i = 1. With a) we get that wj,k1 = wk1,k2 = · · · =
wkl,i = 1 . Because of (6) and (7) we can than iteratively
conclude that wj,k2 = 1, wj,k3 = 1, . . . , wj,i = 1. But
this is a contradiction to our assumption.

It remains to show that every feasible solution of (1) -
(10) is a correct TVP-path. It is clear that every feasible
integer solution must induce a feasible linear ordering and
a feasible TSP tour. Because of the facts we mentioned
above it is clear that the two feasible solutions must match
which each other.

As an interesting fact we note that the subtour elimina-
tion constraints are actually not needed. If (w, x) satis-
fies (2) and (4)–(10), but not all inequalities (3) then there
is some subtour on k ≥ 2 nodes. W.l.o.g. we can as-
sume that the node set is {1, 2, . . . , k} and the subtour
is given as {(1, 2), (2, 3), . . . , (k − 1, k), (k, 1)}. Hence
x12 = x23 = ... = xk−1,k = xk1 = 1, implying because
of (8) that w12 = w23 = ... = wk−1,k = wk1 = 1. This
is a contradiction to the requirement that the w-variables
represent an acyclic tournament.

So we can eliminate the exponentially many con-
straints (3) and obtain a TVP formulation with a polyno-
mial number (cubic in n) of constraints.

For our algorithm it will be useful to calculate the posi-
tion of a node i in the path. This can easily be done using
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the LOP variables. The value n−
n∑
j=1
j 6i

wij gives the position

of node i.
Note that because of the tournament equations we can

substitute an LOP variable wij , j > i, by 1−wji. Now the
3-dicycle inequalities are turned into 1 ≥ wij + wjk −
wik ≥ 0 for all 1 ≤ i < j < k ≤ n and the
part of the objective function for the LOP variables reads∑n−1
i=1

∑n
j=i+1[(pij − pji)wij + pji].

2.1 Extended formulation of the basic model
The use of extended formulations is a common technique
with is used to strengthen the LP Formulation of a com-
binatorial optimization problem. The key idea of this ap-
proach is to add new variables and constraints to a given IP
formulation so that the gap between the solution of the LP
relaxation and the optimal integral solution becomes much
smaller.

In the case of TVP we can obtain an extended formula-
tion for the TVP by adding three-indexed variables, which
are a generalization of the linear ordering variables to the
standard model. In detail this new variables wijk are than
defined as follows:

wijk :=


1 if i = π(a), j = π(b) and k = π(c)

for some 1 ≤ a < b < c ≤ n− 1 ,

0 otherwise.

So as one see this new type of variables is a straight for-
ward extension of the wij-variables. In the objective func-
tion we assign zero coefficients to the new variables. In
order to extend our standard model we also need to intro-
duce two new classes of constraints to make sure that the
solution of the new variables match with the old xij and
wij variables. In detail the extended formulation looks a
follows:

max

n∑
i=1

n∑
j=1
j 6=i

pijwij −
n∑
i=1

n∑
j=1
j 6=i

dijxij (11)

s.t.
n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (12)

n∑
i=1

xij ≤ 1, 1 ≤ j ≤ n, (13)

n∑
j=1

xij ≤ 1, 1 ≤ i ≤ n, (14)

∑
i∈S

∑
j∈S
j 6=i

xij ≤ |S| − 1,

S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1, (15)
wij + wjk + wki ≤ 2,

1 ≤ i, j, k ≤ n, i < j, i < kj 6= k, (16)
wij + wjik + wjki + wkji = 1

1 ≤ i, j, k ≤ n, i < j (17)
xij − wijk − wkij ≤ 0 1 ≤ i, j, k ≤ n, i < j (18)

xij − wij ≤ 0, 1 ≤ i, j ≤ n, (19)
xij ∈ {0, 1}, 1 ≤ i, j ≤ n, (20)
wij ∈ {0, 1}, 1 ≤ i, j ≤ n. (21)

wijk ∈ {0, 1}, 1 ≤ i, j, k ≤ n. (22)

3 The edge-node-formulation
The key idea of the next model is to combine the w and x
variables of the -Model to new three index variables which
states the relation between a node n and an fixed edge (i, j).
More precisely we define:

wkij :=


1 if k = π(a), i = π(b) and j = π(b+ 1)

for some 1 ≤ a < b ≤ n− 1 ,

0 otherwise.

and analogously :

wijk :=


1 if i = π(a), j = π(a+ 1) and k = π(b)

for some 1 ≤ a < b ≤ ,
0 otherwise.

A first IP-Model can then be develop out of the ba-
sic model by transforming the inequalities/equations to in-
equalities/equations with the new variables:

max

n∑
i=1

n∑
j=1,i6=j

pij(

n∑
m=1,m 6=j

wimj) +
n∑
i=1

n∑
j=1

dij(w
Ω
ij + wijΩ )

(23)

s.t.
n∑
i=1

n∑
j=1

(wΩ
ij + wijΩ ) = n− 1 (24)

n∑
i=1

(wΩ
ij + wijΩ ) ≤ 1 j ∈ V (25)

n∑
j=1

(wΩ
ij + wijΩ ) ≤ 1 i ∈ V (26)

n∑
l=1

wilj +

n∑
l=1

wjlk +

n∑
l=1

wkli + (wΩ
ik + wikΩ ) ≤ 2 i, j, k ∈ V

(27)

(28)

Please note that that Ω ∈ V and it could be chosen arbi-
trarily for each summand in (23) -(26) but 6= j and 6= i. It
is the same in (27) but here Ω must not be equal i or k
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4 Three distance model
Another idea for constructing an IP-model for the TVP has
been made by Prof. E. Fernandez from the UPC Barcelona.
The key idea of this approach is the use of distance vari-
ables. In Detail we define Variables ztij which describe the
fact whether there is as path of length t between i an j or
not. More formally we state:

ztij =


1 if i the solution contains a path with t arcs

from i to j,
0 otherwise.

The advantage of this model is that we only have to deal
here with one type of variables. Since we are not longer dis-
tinguish between distance and ordering variables we have
to adjust the coefficients in the following way:

wtij =

{
cij − dij if t = 1,
cij otherwise.

With are now able to formulated a TVP model with dis-
tance variables:

The formulation is:

max
∑
i∈N

∑
j∈N\{i}

∑
t∈N\{n}

wtijz
t
ij −

∑
i∈N

(di0 + d0i) (29)

n∑
i=1

z1
ij ≤ 1 j ∈ N, (30)

n∑
j=1

z1
ij ≤ 1 i ∈ N, (31)

n∑
i=1

n∑
j=1

zkij = n− k k ∈ V (32)

zt1ij + zt2jk ≤ zt1+t2
ik + 1,

i, j, k ∈ N, t1, t2 ∈ N \ {n},
i 6= j, j 6= k, i 6= k, t1 + t2 < n, (33)

n−1∑
t=1

ztij + ztji = 1 i, j ∈ N, i 6= j, (34)

ztij ∈ {0, 1} i, j ∈ N, i 6= j, t ∈ N \ {n}. (35)

Also we only have one Type of variable now the z1
i,j vari-

ables still play a special role, for example in the objective
function. On the other hand we again have a cubic number
of variables

5 Conclusions
The target visitation problem turned out to be a very dif-
ficult and therefore challenging problem. The present pa-
per gives some first results. More research is needed. An

improvement of the simple heuristic used here can be ac-
complished along well-known lines. It is more interest-
ing to find ways for improving the upper bound. The IP
model already seems to be at its limits for fairly small
problem instances unless some additional insight into the
polyhedral structure can be obtained. Alternate optimiza-
tion approaches like branch-and-bound with combinatorial
bounds, dynamic or semidefinite programming should be
devised and their limits should be explored. Furthermore
it should be investigated further how the balance between
the distance and the preference part of the object function
influences the difficulty of problem instances.
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