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Abstract. Within the framework of quark mass matrices with a democratic texture, the
unitary rotation matrices that diagonalize the quark matrices are obtained by a specific
parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. Different forms of
democratic quark mass matrices are derived from slightly different parametrizations.

Povzetek. Avtorica predstavi masne matrike kvarkov s skoraj demokratičnimi matrikami.
Izbere različno parametrizacijo, ki preko unitarne transformacije vodijo do izmerjene
mešalne matrike Cabibba-Kobayashija-Maskawe. Komentira sprejemljivost različnih parametrizacij.

12.1 Introduction

A main weakness of the Standard Model is the large number of free parameters.
There is at present no explanation for their origin, and we don’t know if there is
some connection between them.

Most of the free parameters reside in “flavour space” - with six quark masses,
six lepton masses, four quark mixing angles and ditto for the leptonic sector, as
well as the strong CP-violating parameter Θ̄. The structure of flavour space is
determined by the fermion mass matrices, i.e. by the form that the mass matrices
take in the “weak interaction basis” where mixed fermion states interact weakly,
in contrast to the “mass bases”, where the mass matrices are diagonal.

One may wonder how one may ascribe such importance to the different bases
in flavour space, considering that the information content of a matrix is contained
in its matrix invariants, which in the case of aN×NmatrixM are theN sums and
products of the eigenvalues λj, such as traceM, detM,

I1 =
∑
j λj = λ1 + λ2 + λ3...

I2 =
∑
jk λjλk = λ1λ2 + λ1λ3 + λ1λ4 + ...

I3 =
∑
jkl λjλkλl = λ1λ2λ3 + λ1λ2λ4 + ...

...
IN = λ1λ2 · · · λN

(12.1)

These expressions are invariant under permutations of the eigenvalues, which in
the context of mass matrices means that they are flavour symmetric, and obviously
independent of any choice of flavour space basis.

? astri@snofrix.org



i
i

“proc15” — 2015/12/9 — 10:51 — page 144 — #160 i
i

i
i

i
i

144 A. Kleppe

Even if the information content of a matrix is contained in its invariants, the
form of a matrix may also carry information, albeit of another type. The idea -
the hope - is that the form that the mass matrices have in the weak interaction
basis can give some hint about the origin of the unruly masses. There is a certain
circularity to this reasoning; to make a mass matrix ansatz is in fact to define what
we take as the weak interaction basis in flavour space. We denote the quark mass
matrices of the up- and down-sectors in the weak interaction basis byM andM ′,
respectively. We go from the weak interaction basis to the mass bases by rotating
the matrices by the unitary matrices U and U ′,

M→ UMU† = D = diag(mu,mc,mt) (12.2)

M ′ → U ′M ′U ′† = D ′ = diag(md,ms,mb)

The lodestar in the hunt for the right mass matrices is the family hierarchy,
with two lighter particles in the first and second family, and a much heavier
particle in the third family. This hierarchy is present in all the charged sectors,
with fermions in different families exhibiting very different mass values, ranging
from the electron mass to the about 105 times larger top mass. It is still an open
question whether the neutrino masses also follow this pattern [1].

12.2 “Democratic” mass matrices

In the “democratic” approach [2], [3], [4] the hierarchical pattern is taken very
seriously. The basic assumption is that in the weak interaction basis the fermion
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12 A Democratic Suggestion 145

mass matrices are next to “democratic”, in the sense that they have a structure
close to the S(3)L × S(3)R symmetric “democratic” matrix

N = k



1 1 1

1 1 1

1 1 1


 (12.3)

The underlying philosophy is that in the Standard Model, where the fermions
get their masses from the Yukawa couplings by the Higgs mechanism, there is no
reason why there should be a different Yukawa coupling for each fermion. The
couplings to the gauge bosons of the strong, weak and electromagnetic interactions
are identical for all the fermions in a given charge sector, it thus seems like a natural
assumption that they should also have identical Yukawa couplings. The difference
is that the weak interactions take place in a specific flavour space basis, while the
other interactions are flavour independent.

The democratic assumption is thus that the fermion fields of the same charge
initially have the same Yukawa couplings. With three families, the quark mass
matrices in the weak interaction basis then have the (zeroth order) form

M(0) = ku



1 1 1

1 1 1

1 1 1


 , M ′(0) = kd



1 1 1

1 1 1

1 1 1


 (12.4)

where ku and kd have dimension mass. The corresponding mass spectra (m1,m2,m3) ∼
(0, 0, 3kj) reflect the family hierarchy with two light families and a third much
heavier family, a mass hierarchy that can be interpreted as the representation
1⊕ 2 of S(3). In order to obtain realistic mass spectra with non-zero masses, the
S(3)L × S(3)R symmetry must obviously be broken, and the different democratic
matrix ansätze correspond to different schemes for breaking the democratic sym-
metry.

12.2.1 The lepton sector

We can apply the democratic approach to the lepton sector as well, postulating
democratic (zeroth order) mass matrices for the charged leptons and the neutrinos,
whether they are Fermi-Dirac or Majorana states,

M
(0)
l = kl



1 1 1

1 1 1

1 1 1


 , M(0)

ν = kν



1 1 1

1 1 1

1 1 1


 (12.5)

Relative to the quark ratio ku/kd ∼ mt/mb ∼ 40− 60, the leptonic ratio kν/kl <
10−8 is so extremely small that it seems unnatural. One way out is to simply
assume that kν vanishes, meaning that the neutrinos get no mass contribution
in the democratic limit [5]. According to the democratic philosophy, then there
would be no reason for a hierarchical pattern à la the one observed in the charged
sectors; the neutrino masses could even be of the same order of magnitude.
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146 A. Kleppe

Data are indeed compatible with a much weaker hierarchical structure for
the neutrino masses than the hierarchy displayed by the charged quark fermion
masses.

Unlike the situation for the quark mixing angles, in lepton flavour mixing
there are two quite large mixing angles and a third much smaller mixing angle,
these large mixing angles can be interpreted as indicating weak hierachy of the
neutrino mass spectrum. The neutrino mass spectrum hierarchy could even be
inverted; if the solar neutrino doublet (ν1, ν2) has a mean mass larger than the
remaining atmospheric neutrino ν3, the hierarchy is called inverted, otherwise it
is called normal.

Supposing that the neutrino masses do not emerge from a democratic scheme,
a (relatively) flat neutrino mass spectrum could be taken as a support for the idea
that the masses in the charged sectors emerge from a democratic scheme.

12.3 The democratic basis

At the level of the zeroth order mass matrices the quark mixing matrix is V =

UU ′† = UdemU
†
dem = 1, where

Udem =
1√
6



√
3 −
√
3 0

1 1 −2√
2
√
2
√
2


 (12.6)

We use this to define the the democratic basis, meaning the flavour space basis
where the mass matrices are diagonalized by (12.6) and the mass Lagrangian is
symmetric under permutations of the fermion fields (ϕ1, ϕ2, ϕ3) of a given charge
sector.

In the democratic basis the mass Lagrangian

Lm = ϕ̄M(democratic basis)ϕ = k

3∑
jk=1

ϕ̄jϕk

is symmetric under permutations of the fermion fields (ϕ1, ϕ2, ϕ3), while in the
mass basis with

M(mass basis) =



λ1
λ2
λ3




the mass Lagrangian has the form

Lm = λ1ψ̄1ψ1 + λ2ψ̄2ψ2 + λ3ψ̄3ψ3 (12.7)

which is clearly not invariant under permutations of the eigenvalues, nor under
permutations of (ψ1,ψ3,ψ3). We can perform a shift of the democratic matrix, by
just adding a unit matrix diag(a, a, a), so we getM0 →M1,

M1 = k



1 1 1

1 1 1

1 1 1


+



a

a

a


 =



k+ a k k

k k+ a k

k k k+ a


 (12.8)
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12 A Democratic Suggestion 147

corresponding to the mass spectrum (a, a, 3a+ 3k). The matrixM1 has a demo-
cratic texture, both because it is diagonalized by Udem, and because the mass
Lagrangian is invariant under permutations of the quark fields,

LM1
= (k+ a)

∑
ϕ̄jϕj + k

∑
j6=k

ϕ̄jϕj (12.9)

.
If M1 and M ′1 both have a texture like (12.8), there is no CP-violation. This

is independent of how many families there are, because of the degeneracy of the
mass values. CP-violation only occurs once there are three or more non-degenerate
families, because only then the phases can no longer be defined away.

We can repeat the democratic scheme with a number n of families, where
the fermion mass matrices again are proportional to the S(n)L × S(n)R symmetric
democratic matrix which is diagonalized by a unitary matrix analogous to Udem
in (12.6). To the n× n-dimensional democratic matrix term, we can again add a
n× n-dimensional diagonal matrix diag(a, a, ..., a), and get a n× n-dimensional
mass spectrum with n massive states, and n − 1 degenerate masses. The mass
matrix still has a democratic texture, and there is still no CP-violation.

12.4 Breaking the democratic symmetry

In order to obtain non-degenerate, non-vanishing masses for the physical flavours
(ψ1, ψ2, ψ3), the permutation symmetry of the democratic fermion fields (ϕ1, ϕ2, ϕ3)
must be broken. The proposal here is to derive the perturbed unitary rotation
matrices U, U ′ for the up and down sectors from a specific parameterisation of the
weak mixing matrix V = UU

′†.
The idea is to embed the assumption of democratic symmetry into the Stan-

dard Model mixing matrix, by expressing the mixing matrix as a product

V = UU ′† = (ŨUdem)(U†demŨ
′†) (12.10)

Since both the mixing matrix and its factors, according to the “standard” param-
eterisation [6], are so close to the unit matrix, the rotation matrices U, U ′ are
effectively perturbations of the the democratic diagonalising matrix (12.6). In this
way, the weak interaction basis remains close to the democratic basis.

12.4.1 Factorizing the mixing matrix

The Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [7] can of course be
parametrized - and factorized - in many different ways, and different factoriza-
tions correspond to different rotation matrices U and U ′. The most obvious and
“symmetric” factorization of the CKM mixing matrix is, following the “standard”
parametrization [6] with three Euler angles α, β, 2θ,

V =




cβc2θ sβc2θ s2θe
−iδ

−cβsαs2θe
iδ − sβcα −sβsαs2θe

iδ + cβcα sαc2θ
−cβcαs2θe

iδ + sβsα −sβcαs2θe
iδ − cβsα cαc2θ


 = UU

′† (12.11)
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with the diagonalizing rotation matrices for the up- and down-sectors

U =



1 0 0

0 cosα sinα
0 − sinα cosα





e−iγ

1

eiγ






cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3




(12.12)
and

U ′ =




cosβ − sinβ 0
sinβ cosβ 0

0 0 1





e−iγ

1

eiγ






cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


 ,

respectively, where α, β, θ and γ correspond to the parameters in the standard
parametrization of the CKM mixing matrix, in such a way that γ = δ/2, δ =

1.2±0.08 rad, and 2θ = 0.201±0.011◦, while α = 2.38±0.06◦ and β = 13.04±0.05◦.
¿From the rotation matrices U and U ′ we then obtain the mass matrices

M = U†diag(mu,mc,mt)U andM ′ = U ′†diag(md,ms,mb)U ′, such that

M =
1

6




X+H M̂12 Z+W

M̂∗12 X−H Z−W

Z∗ +W∗ Z∗ −W∗ 6T − 2X


 (12.13)

where T is the trace T = mu + mc + mt, and with D =
√
3sθ −

√
2cθ, C =√

3sθ +
√
2cθ, F = cαsα(mt −mc),

X = 1
2
(mcs

2
α +mtc

2
α −mu)(D

2 + C2 − 2) + F(D− C) cosγ+ T + 3mu
H = 1

2
(mcs

2
α +mtc

2
α −mu)(D

2 − C2) + F cosγ(D+ C)

W = 1
4
(mcs

2
α +mtc

2
α −mu) (D

2 − C2) − F (D+ C) e−iγ

Z = (mcs
2
α+mtc

2
α−mu)

[
2+ 1

4
(D− C)2

]
+ F
2
(D−C) (eiγ−2 e−iγ)−2T+6 mu

M̂12 = −(mcs
2
α +mtc

2
α −mu) (D C+ 1) − F (C eiγ −D e−iγ) + T − 3 mu

Similarly for the down-sector,

M ′ =
1

6




X ′ +H ′ M̂ ′12 Z ′ +W ′

M̂
′∗
12 X ′ −H ′ Z ′ −W ′

Z
′∗ +W

′∗ Z
′∗ −W

′∗ 6T ′ − 2X ′


 (12.14)

with the parameters T ′ = md +ms +mb, G =
√
2sθ −

√
3cθ, J =

√
2sθ +

√
3cθ

and F ′ = cβsβ(mb −ms), and

X ′ = 1
2
(mss

2
β +mbc

2
β −md)(G

2 + J2 − 2) − F ′(J+G) cosγ+ T ′ + 3mb
H ′ = 1

2
(mss

2
β +mbc

2
β −md)(G

2 − J2) + F ′(J−G) cosγ
W ′ = 1

4
(mss

2
β +mbc

2
β −md)(G

2 − J2) + F ′(G− J)eiγ

Z ′ = (mss
2
β+mbc

2
β−md)

[
2+ 1

4
(J+G)2

]
+ F ′

2
(J+G)(2eiγ−e−iγ)−2T ′+6mb

M̂ ′12 = (mss
2
β +mbc

2
β −md) (G J− 1) − F

′ (J eiγ −G e−iγ) + T ′ − 3 mb



i
i

“proc15” — 2015/12/9 — 10:51 — page 149 — #165 i
i

i
i

i
i

12 A Democratic Suggestion 149

In order to evaluate to what degree these rather opaque matrices are “demo-
cratic”, we evaluate the matrix elements by inserting numerical mass values. For
the up-sector we get the (nearly democratic) matrix texture

M = Cu





1

k e−i(α+β)

kp e−iα





1 1 1

1 1 1

1 1 1





1

k ei(α+β)

kp eiα


+Λ




(12.15)
where the “small” matrix

Λ =



0 0 0

0 ε ε ′e−iβ

0 ε ′eiβ η


 ,

with ε ∼ ε ′ � η < k, p, is what breaks the democratic symmetry, supplying the
two lighter families with non-zero masses. With mass values calculated at µ =MZ

(Jamin 2014) [8],

(mu(MZ),mc(MZ),mt(MZ)) = (1.24, 624, 171550)MeV,

we get α ∼ 2.7895o, β ∼ 2.7852o, Cu = 54240.36MeV ≈ mt/3, and

k ≈ 1.00438, p ≈ 1.06646, ε ′ ≈ 0.0000505,
ε ≈ 0.00004596 ≈ 2mu/Cu, η = 0.018154 ≈ 1

2
mt
Cu

mc
Cu

.

For the down-sector, with

(md(MZ),ms(MZ),mb(MZ)) = (2.69, 53.8, 2850)MeV

we get another democratic texture,

M ′ = Cd



X+A Ye−iµ e−iρ

Yeiµ X−A (1+ 2A)eiκ

eiρ (1+ 2A)e−iκ X+ Y −A− 1


 (12.16)

where

Cd = 966.5MeV , A = 0.0056, X = 1.0362, Y = 1.0305 and
µ ≤ κ ∼ 0.22o < ρ ∼ 0.226o.

Just like in the up-sector mass matrix, the matrix elements inM ′ display a nearly
democratic texture. In both the up-sector and the down-sector the mass matrices
are thus approximately democratic.

12.5 Calculability

In the mass matrix literature there is an emphasis on “calculability”. The ideal is
to obtain mass matrices that have a manageable form, but there is nothing that
forces nature to serve us such user-friendly formalism. It is however tempting to
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speculate that there are relations between the elements that could make the demo-
cratic matrices more calculable, and in the search for matrices that are reasonably
transparent and calculable, we look at a more radical factorization of the mixing
matrix, viz.

U =



1 0 0

0 cosα sinα
0 − sinα cosα






cosω 0 sinω e−iδ

0 1 0

− sinω eiδ 0 cosω







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


 (12.17)

and

U ′ =




cosβ − sinβ 0
sinβ cosβ 0

0 0 1







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3




where, as before, δ = 1.2 ± 0.08 rad, and ω = 2θ = 0.201 ± 0.011◦, while α =

2.38±0.06◦, and β = 13.04±0.05◦. These rotation matrices are still “perturbations”
of the democratic diagonalizing matrix (12.6), and the up-sector mass matrix has a
texture similar to (12.13),

M =
1

6



R+Q+ S cos δ R−Q− iS sin δ A− Be−iδ

R−Q+ iS sin δ R+Q− S cos δ A+ Be−iδ

A− Beiδ A+ Beiδ T − 2(R+Q)


 (12.18)

where T is the trace, T = mu +mc +mt, and

R = N (2 cω cω − 1) + T − 2
√
2 cω F, Q = 3 sω sω N+ 3 mu,

S = −2
√
6 cω sω N+ 2

√
3sω F

A = N (2 cω cω + 2) − 2 T +
√
2 cω F+ 6 mu, B =

√
6 cω sω N+ 2

√
3 F sω

with N = mc sα sα +mt cα cα −mu, F = cα sα (mt −mc). This matrix can be
reformulated in a form similar to (12.15),

Mu = Cu





1

k e−iα

kp e−i(α−β)





1 1 1

1 1 1

1 1 1





1

k eiα

kp ei(α−β)


+Λ




where α = arctan(S sin δ/(R−Q)), β = arctan(B sin δ/(A+ B cos δ)), and

Λ =



0 0 0

0 ε ε ′e−iβ

0 ε ′eiβ η




with

k = |M12|/M11 =
|R−Q−iS sin δ|
R+Q+S cos δ , p = |M13|/|M12| =

|A−Be−iδ|
|R−Q−iS sin δ| ,

ε = (|M22||M11|− |M12|
2)/|M11|

2 = 4RQ−S2

|R+Q+S cos δ|2 ≈ 2m1/A,
ε ′ = (|M23||M11|− |M13||M12|)/|M11|

2,
η = (|M33||M11|− |M13|

2)/|M11|
2 ≈ 1

2
mc
A
mt
A

Inserting the masses (mu(MZ),mc(MZ),mt(MZ)) = (1.24, 624, 171550) MeV, we
get Cu = 53723.5MeV , k = 1.00318, p = 1.0828, and



i
i

“proc15” — 2015/12/9 — 10:51 — page 151 — #167 i
i

i
i

i
i

12 A Democratic Suggestion 151

ε = 0.00004646 ≈ 2(mu/Cu), ε ′ = 0.0000444, η = 0.0185 ≈ 1
2
(mt/Cu)(mc/Cu)

For the down-sector, with

U ′ =




cosβ − sinβ 0
sinβ cosβ 0

0 0 1







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


 ,

the mass matrix U ′†diag(md,ms,mb)U ′ reads

M ′ = Cd



X+A Y 1

Y X−A 1+ 2A

1 1+ 2A X+ Y −A− 1




where

Cd = 2(mdc
2
β +mss

2
β) − 2

√
3cβsβ(ms −md)) + 2(mb −ms −md)

X = (2mb +ms +md + 2(mdc
2
β +mss

2
β) + 2

√
3cβsβ(ms −md))/Cd

Y = (2mb +ms +md − 4(mdc
2
β +mss

2
β))/Cd,

A = 2
√
3cβsβ(ms −md))/Cd.

Inserting the masses (md(MZ),ms(MZ),mb(MZ)) = (2.69, 53.8, 2850) MeV, we
moreover get the numerical values

Cd = 926.448MeV ≈ mb/3, X = 1.0375, A = 0.0070, Y = 1.0318.

12.6 Conclusion

By including the democratic rotation matrix in the parametrization of the weak
mixing matrix, we obtain mass matrices with specific democratic textures. In this
way we make contact between the democratic hypothesis and the experimentally
derived parameters of the CKM mixing matrix, avoiding the introduction of
additional concepts.
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Abstract. We report on exchanges entertained and new developments reported and dis-
cussed at the workshop “What Comes Beyond the Standard Models” held in Bled, Slovenia,
July 11th-19th 2015.

New LHC data, various unification schemes with and without gravity, the nature
of fermions, flavor and the number of families, condensates, and other topics of current
interest were all heatedly discussed.

Povzetek. Avtor poroča o diskusijah med predavanji in v diskusijskih sekcijah na izbrane
teme, ter o napredku, ki ga je prinesla letošnja blejska delavnica “What Comes Beyond
the Standard Models” . Posebej omenja zadnje analize meritev na LHC, o teorijah, ki
prinašajo enotno sliko lastnosti fermionov, pomagajo razumeti pojav ustreznih bozonskih
polj, vključno z gravitacijo, o napovedih o številu družin fermionov, o skalarnih poljih in
lastnostih fermionov, o pojavu kondenzatov in ostalih temah na tem področju.

13.1 SM Electroweak Symmetry Breaking Sector

The LHC starts run II after having found a relatively light scalar particle that
could be the predicted Standard Model Higgs at 125 GeV and not much more
(to the disappointment of a part of the community that firmly expected TeV-
scale supersymmetry). Still, this summer the ATLAS collaboration reported [1] a
two-gauge boson spectrum in dijet searches (see talk by Llanes-Estrada in these
proceedings) that shows an excess at 2 TeV not confirmed by CMS data.

We discussed whether this could be just a statistical fluctuation. Should
increased data taking consolidate the excess, an interesting scenario to analyze
was proposed, whether a top-ball [2] made of 6 top quarks and 6 top antiquarks
all in an s-wave (with wavefunction antisymmetry allowed by the color and flavor
degrees of freedom) might have been produced. The 2 TeV mass of the excess could
be about right, since 12×mt ' 2.1 TeV which allows for some Higgs-exchange
induced binding, though its production cross-section needed for the low-statistics
LHC run-I would need to be very large. This cross-section needs to be estimated
by theorists.

Independently of whether new resonances coupling to the Electroweak Sym-
metry Breaking Sector (EWSBS) are found, this can be studied by means of Effective
Field Theory for the currently observed particles h (the new 125 GeV scalar) and
ωi ∼WL, ZL.
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In the non-linear realization of SU(2)L × SU(2)R → SU(2)V , and neglecting
masses of O(100GeV) as appropriate to study the 1-3 TeV region, the correspond-
ing next-to-leading order (NLO) Lagrangian density is

L =
1

2

[
1+ 2a

h

v
+ b

(
h

v

)2]
∂µω

i∂µωj
(
δij +

ωiωj

v2

)
+
1

2
∂µh∂

µh

+
4a4

v4
∂µω

i∂νω
i∂µωj∂νωj +

4a5

v4
∂µω

i∂µωi∂νω
j∂νωj +

g

v4
(∂µh∂

µh)2

+
2d

v4
∂µh∂

µh∂νω
i∂νωi +

2e

v4
∂µh∂

νh∂µωi∂νω
i (13.1)

that was described in [3,4]. (Other researchers [5–7] are also pursuing this ap-
proach.) This Lagrangian has seven-parameters (a, b, a4, a5, g, d, e), with the first
two being LO and the other five NLO in the derivative expansion.

Two strategies can be followed. If the LHC run-II finds no new physics, it
can conduct precision work to try to see a separation of the Standard Model
(1, 1, 0, 0, 0, 0, 0). Currently only a ∈ (0.88, 1.3) is known at 2σ confidence level.
Norma Mankoc triggered discussion on how Effective Theory is philosophically
not too satisfactory as its predictivity is moderate and it cannot “solve” the various
puzzles of the Standard Model. It remains a powerful descriptive tool to classify
data. Full theories will manifest themselves as separations from the SM values
of one of those parameters, and matching those UV completions to the Effective
Theory allows to classify them and quickly discard or constrain families thereof.
Example theories that can soon be tested include for example Left-Right models
or Composite Higgs models that include spin-1 resonances within reach of the
LHC [8,9].

If the LHC confirms resonant structures inWLWL in the 2 TeV region, Effective
Theory fails, since a derivative expansion cannot saturate unitarity. The second
strategy then activates: the use of Unitarized Chiral Perturbation Theory based on
the Lagrangian of Eq. (13.1) is appropriate to describe resonances [10–12].

13.2 The flavor problem and the SM parameters

The largest number of parameters in the Standard Model comes from the flavor
sector. There is at present no compelling theory explaining them.

At the workshop, strong arguments were presented in favor of the existence
of a fourth family. For example, the Ljubljana unified theory of spin and charge
based on SO(1, 13) predicts such a fourth fermion family. Also the concept of
fermionization, by which SM fermions can be constructed from boson fields alone,
was discussed by H. Nielsen and matching the number of degrees of freedom for
the fundamental bosons and the generated fermions required that fourth family.

At present, strong phenomenological obstacles to this fourth family exist that
require all its members to have high masses.

For a start, CKM unitarity closes very well with three families, so that the
parameters of the unitarity triangle ρ̄ and η̄ are known to 20% and 3% respec-
tively [13].
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Second, direct searches at the LHC put excited quarks above the 3 TeV
scale [14] so that they start being irrelevant for electroweak-scale physics.

Another hurdle for fourth-family extensions of the SM is that the number of
relativistic degrees of freedom is tightly constrained from cosmology. For example,
the Planck collaboration [15] reports an analysis of Baryon Acoustic Oscillations
and the Cosmic Microwave Background that yields Neff = 3.30 ± 0.27 for the
effective number of relativistic degrees of freedom. This clearly excludes a fourth
light neutrino, in agreement with LEP bounds at the Z-pole. The presumed fourth
family therefore comes with an additional hierarchy problem in which mν4 �
mν1,2,3 . (Planck finds that the sum of the three light neutrino masses is 0.23 eV.)

13.3 Other physics at very high scales: unification, condensates
and gravity

13.3.1 Gauge symmetry groups

A topic widely discussed at the workshop is why nature chose the symmetry
group U(1) × SU(2)L × SU(3)c to charge the Standard Model fermions. Several
possibilities were discussed. A widely accepted one is that the symmetry group
at a very high energy scale is larger and we only perceive a remainder subgroup.
Well-known are the SU(5) and SO(10) extensions [16] of the Standard Model, in
strong tension with proton lifetime bounds. SO(1, 13) has also been presented as an
important alternative because of the entailed unification of spins and charges [17]
under a common framework.

The first type of groups under discussion do not involve space-time and thus
make no statement about gravity. The unification happens at the level of internal
degrees of freedom only on a fixed space-time background. The scale must then
be smaller than the Planck scale and is usually taken around 1015 to 1016 GeV
where the running couplings of the U(1), SU(2) and SU(3) SM subgroups are all
approximately equal (see fig. 13.1).

The second possibility entails unification of internal and space-time symme-
tries and is a more general concept.

Many questions remain open. One is why given a large groupG, the symmetry
breaking pattern brings us to the SM group, i.e. G → U(1) × SU(2)L × SU(3).
Currently we know of no good argument why fermion condensates perform
exactly this breaking and not something else. (Arranging symmetry breaking by
fundamental scalar fields is equally ad-hoc as the potentials must be tuned to
produced the wanted results.) One recent alley of investigation [19] addresses the
smallness of the SM group dimension. Should there be larger unbroken groups
under which certain fermions would be charged, and all couplings being equal
at the GUT scale, the finding is that these fermions would be very massive and
beyond reach of current collider experiments. This comes about because the large
antiscreening for 1-flavor of fermions charged under a large-dimension group
(left plot of figure 13.2) forces chiral symmetry breaking at a much larger scale
than QCD’s SU(3). The corresponding fermion mass is proportional to that scale,
M(0) ∝ ΛχSB (right plot of figure 13.2) and out of reach. Fermions charged under
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Fig. 13.1. Running coupling constants of U(1), SU(2)L and SU(3)c in the absence of new
physics through the GUT scale. Reprinted with permission of Particle Data Group [18]
.

SU(4) would have masses of O(10) TeV and be not too far in the energy scale, but
larger groups yet would yield hopelessly heavy masses.

Fig. 13.2. Left: 1-loop running coupling constants for several groups (all equal at the GUT
scale). Right: corresponding fermion masses due to chiral symmetry breaking. Were there
fermions charged under SU(4) or larger groups, their large mass would have impeded their
production at colliders.

13.3.2 Condensates

Probably the biggest current embarrassment of physics is the smallness of the
cosmological constant. The Planck collaboration [15] quotesΩΛ = 0.686(20) which
is more than two thirds of the total energy density in the universe, but only slightly
above 3 GeV per cubic meter in absolute value, or about 3× 10−47 GeV4. This is
an absurdly small number by all SM measures. For example, the QCD condensate
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is typically found to be (0.77(4)ΛM̄S)
3 with the scale at 0.31(2) GeV [20], or about

0.023 GeV3. The entailed energy density is 45 orders of magnitude off.
A solution for confining gauge theories such as QCD is to argue that this

condensate is active only inside hadrons [21], that is, that the condensate itself
is confined around quarks themselves. Dynamical studies of the corresponding
domain walls between the condensed and uncondensed phases have to our knowl-
edge not been carried out.

For the electroweak symmetry breaking sector the situation is worse since
the corresponding vacuum energy density scale v4 = (246GeV)4 is now off by 56
orders of magnitude. And it is not obvious that the fundamental scalar Higgs field
reported so far will have anything to do with a confining gauge theory, so that
the same mechanism can be invoked. In fact, technicolor theories were already
discarded at the time of LEP. Likewise, condensates breaking higher symmetry
groups will bring about energy densities disparate from the tiny number found by
cosmologists.

Acknowledgements

This work is partially supported by Spanish grants MINECO:FIS2014-57026-REDT,
FPA2014-53375-C2-1-P and UCM:910309.

References

1. G. Aad et al. [ATLAS Collaboration], arXiv:1506.00962 [hep-ex].
2. C. D. Froggatt and H. B. Nielsen, Surveys High Energ. Phys. 18, 55 (2003) [hep-

ph/0308144]; C. D. Froggatt and H. B. Nielsen, Int. J. Mod. Phys. A 30, no. 13, 1550066
(2015) [arXiv:1403.7177 [hep-ph]].

3. R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, Phys. Rev. Lett. 114, 221803 (2015)
[arXiv:1408.1193 [hep-ph]]; R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, Phys.
Rev. D 91, 075017 (2015) [arXiv:1502.04841 [hep-ph]].

4. R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, J. Phys. G 41, 025002 (2014)
[arXiv:1308.1629 [hep-ph]]; R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, JHEP
1402, 121 (2014) [arXiv:1311.5993 [hep-ph]]; R. L. Delgado, A. Dobado, M. J. Herrero
and J. J. Sanz-Cillero, JHEP 1407, 149 (2014) [arXiv:1404.2866 [hep-ph]].

5. R. Alonso, I. Brivio, B. Gavela, L. Merlo and S. Rigolin, JHEP 1412, 034 (2014)
[arXiv:1409.1589 [hep-ph]].

6. W. Kilian, T. Ohl, J. Reuter and M. Sekulla, Phys. Rev. D 91, 096007 (2015)
[arXiv:1408.6207 [hep-ph]].

7. G. Buchalla, O. Cata, A. Celis and C. Krause, arXiv:1504.01707 [hep-ph].
8. J. Yepes, arXiv:1507.03974 [hep-ph].
9. D. Barducci et al. Phys. Rev. D 91, 095013 (2015).

10. T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988).
11. A. Dobado, M. J. Herrero and T. N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado
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