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Feature embedding in click-through rate prediction
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Abstract. We tackle the challenge of feature embedding for the purposes of improving the click-through rate
prediction process. We select three models: logistic regression, factorization machines and deep factorization
machines, as our baselines and propose five different feature embedding modules: embedding scaling, FM
embedding, embedding encoding, NN embedding and the embedding reweighting module. The embedding
modules act as a way to improve baseline model feature embeddings and are trained alongside the rest of the
model parameters in an end-to-end manner. Each module is individually added to a baseline model to obtain a
new augmented model. We test the predictive performance of our augmented models on a publicly accessible
dataset used for benchmarking click-through rate prediction models. Our results show that several proposed
embedding modules provide an important increase in predictive performance without a drastic increase in
training time.
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Vložitve značilk pri napovedovanju verjetnosti klika

Cilj pričujoče raziskave je bil ugotoviti ali lahko izboljšamo
modele strojnega učenja za napovedovanje verjetnosti klika
skozi napredne vložitve značilk. Evalvirali smo pet različnih
pristopov za vložitve značilk (vložitve s skaliranjem, FM
vložitve, vložitve s kodiranjem, NN vložitve ter vložitve z
uteževanjem) v kombinaciji s tremi modeli strojnega učenja
(logistična regresija, faktorizacijske metode in globoke fak-
torizacijske metode). Vsi razviti pristopi so modularni in jih
lahko treniramo ločeno ter pripojimo poljubnim modelom v
našem napovednem cevovodu. Skozi medsebojne primerjave
smo temeljito evalvirali vse prej omenjene modele ter mod-
ele nadgrajene z dodanimi moduli za vložitve značilk. Naši
rezultati so pokazali, da lahko s pomočjo modulov za vložitve
značilk signifikantno izboljšamo napovedne rezultate modelov,
ne da bi drastično podaljšali čas učenja.

1 INTRODUCTION

Online advertising, as opposed to traditional advertising
(e.g., in newspapers, on billboards, on television, on
radio, etc.) is typically featured on websites or mobile
applications. Online advertising allows companies to
reach a worldwide user base and engage key demo-
graphics to market their products. It offers a way for
companies to increase brand awareness as well as their
understanding of target audiences. For online advertising
to succeed, ads need to be prominently featured and
presented to relevant consumers. The vast majority of
online advertising space is sold through programmatic
advertising. In programmatic advertising, whenever a
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user opens a web page or an app, an auction is executed
in the background for each ad space on that page. The ad
space in these real-time bidding (RTB) auctions is thus
being dynamically sold to the highest bidder [1], [2].
Bidders are typically specialized companies that offer
their services to advertisers in order to participate in
RTB auction as efficiently as possible. Since loading
of web pages needs to be as fast as possible and any
delays would ruin the user’s browsing experience, a key
characteristic of RTB auctions is that they are close to in-
stantaneous, occurring in less than 100 milliseconds [3].
The advertisement space in programmatic advertising is
completely automatized, the whole advertising process
is being performed, managed and optimized by software
directly.

The ad that wins the auction is displayed to the user
visiting the website, in the hopes that said user will
respond positively [4] and potentially click on the ad.
Since such a click directly translates to online traffic
and therefore value for the advertiser, predicting click-
through rate (CTR) is a key part of the advertising
businesses [5]. CTR prediction demands very quick
response rates, so it is able to function within the RTB
environment. Additionally, the amount of constantly
generated information in the online advertising space
is overwhelming and impossible to organize or oversee
manually. Both issues, quick response rate and over-
whelming amount of data, are addressed with sophisti-
cated machine learning models, which are able to extract
important knowledge from past data, are trained on-the-
fly and able to perform extremely fast predictions.
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Models predict user clicks based on a variety of
inputs, including contextual data related to the user, his-
torical data and other data which varies across domains.
Mentioned input features are predominantly categorical
and can usually take on a very large amount of different
values. A typical approach with such data is to transform
them into high-dimension sparse binary vectors via one-
hot encoding. These sparse vectors can be problematic
for some of the more popular and modern machine
learning techniques, such as deep learning. In these
cases further embedding and dimensionality reduction
is necessary to produce dense numeric feature vectors
that can then be used in model training.

Recent research in the field of CTR focuses on
optimizing prediction models, such as logistic regression
(LR) [6], factorization machines (FM) [7], deep neural
networks (DNN) [8] or hybrid approaches, like DeepFM
[9]. LR is essentially a linear model, assigning a specific
weight to each observed feature and using a logis-
tic function for final prediction. A more sophisticated
method are FMs, where the linear model is upgraded
with an additional interaction term. This gives FMs
the ability to capture 2nd order interactions between
different features by approximating the weights for any
given co-occurring feature pair, while the main quality
of DNN models is their ability to capture higher order
feature interactions, which is not feasible for LRs or
classic (also known as 2nd order) FM versions. Be-
sides DNN, FM and LR are among the most popular
models in the CTR prediction space. Because of their
good performance and relative simplicity, they were
selected as our model baselines. Finally, we also selected
the more sophisticated DeepFM, which combines the
functionality of FM and DNN models and is currently
considered one of the state-of-the-art approaches for
CTR prediction.

While the model is clearly the most important aspect
of CTR predictions, some recent studies show that the
way we handle features should rightfully get a signif-
icant portion of our attention. Since dimensionality of
the mentioned categorical features is typically extremely
high, a dimensionality reduction approach called the
hashing trick was proposed by Weinberger et al. [10].
The hashing trick aims to reduce feature dimensionality
by using a hashing function to map features from their
original space to a smaller feature space. Different from
random projections, the hashing trick introduces no
additional overhead to store projection matrices. Even
more, it actually helps reduce storage needs by reducing
feature dimensionality.

Our research builds on the work by He et al. [11]
and Zhou et al. [12] which suggests that intelligent
feature embedding and extraction could increase pre-
dictive performance of models and reduce the need for
manual feature engineering. The main goal of our re-

search is thus to implement and evaluate whether various
feature embedding approaches can indeed improve the
efficiency in training and accuracy of predictive models.
To achieve this goal, we explore different feature embed-
ding approaches in the context of CTR prediction. While
the presented findings are primarily focused around CTR
prediction, they could be easily transferred and used
in other fields as well, particularly with other types
of tabular data classification or regression problems.
This research is also a direct continuation of [13],
where we explored performances of similar embedding
improvements on a private dataset provided by Zemanta.

2 METHODS

In this section we first present the steps traditionally
required for performing model prediction. Next, we
present the five embedding modules we developed: the
embedding scaling module, the FM embedding module,
the embedding encoding module, the NN embedding
module and the embedding reweighting module. Finally,
we present all of the details of our experimental setup.

2.1 The general predictive framework
To adequately investigate different embedding and en-

richment approaches, we will first formulate the typical
steps that we have to take when using a prediction
model. We can break the process into four steps: in-
put, hashing, embedding and prediction. The following
subsections briefly describe each step.

2.1.1 Input: The first step is serving raw input data
to our model. Since raw input data is usually gathered
from different sources and tries to capture as much
information as possible, it features different data types.
In the context of CTR, both numerical as well as
categorical features are common. While some predictive
models, such as decision trees, are able to learn directly
from raw categorical data, other approaches (e.g., FM,
DNN, etc.) require numerical inputs. In such cases, some
kind of feature embedding is usually required to encode
categorical data so it can be used for model training and
prediction.

2.1.2 Hashing: Categorical variables often have a
very large dimensionality, which can make model train-
ing and prediction problematic. A simple and practical
solution to this issue is feature hashing, also called
the hashing trick [10]. The hashing trick is formally
described as follows. For a given feature with value xi,
where i ∈ N , implying that feature has dimensionality
|N |, define a hashing function hhashing:

hhashing : N → M

xi 7→ j,

where j ∈ M and |M | ≪ |N |. The hashing trick es-
sentially maps a high dimensional feature into a smaller
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dimensional space by computing a hash value of the
original feature value.

A scenario where two different values get mapped
to the same hash value is called a collision. Collisions
occur because we are mapping from a larger to a
smaller space. However, if we assume a sufficiently large
hashing space, the performance loss due to collisions
becomes negligible, making this approach very suc-
cessful in practice. Furthermore, since feature hashing
essentially reduces model complexity, it can be con-
sidered a form of regularization [14]. We can perform
feature hashing in two ways: either hash each feature
separately and treat values from different columns dif-
ferently, or hash the entire sample. In both cases, we
obtain a set of index values, which are forwarded to the
embedding layer. The difference is that separate feature
hashing avoids cases where a collision occurs between
two feature values of different columns that happen to
have the same original value. Conversely, hashing the
entire sample is faster and easier to implement. Our
experiments use the latter example of hashing the entire
sample.

2.1.3 Embedding: Since predictive models like LR,
FM and DeepFM require numerical inputs, categorical
data needs to be mapped into a numerical space. We
first describe the process of one-hot encoding, which
shows how we transform categorical information to
numerical vectors and afterwards describe an analogous
index-based approach that avoids generating large sparse
vectors.

The most popular approach for categorical data em-
bedding is called one-hot encoding, which maps cate-
gorical values to sparse vectors. We formally describe
single-feature one-hot encoding as follows. For a given
categorical feature f , define set N , which contains all
possible values of f :

N = {x1, x2, · · · , x|N |}.

For example, if our categorical feature is a de-
vice type, then our possible corresponding set N is
{PC, laptop, mobile, tablet}. Using N , we define the
following map:

hone-hot : N → {0, 1}|N |

xi 7→ v,

where v is an |N |-dimensional vector of zeroes, with
the i-th component equal to 1. In our example above,
this translates to:

hone-hot(PC) = [1, 0, 0, 0]T ,

hone-hot(laptop) = [0, 1, 0, 0]T ,

hone-hot(mobile) = [0, 0, 1, 0]T ,

hone-hot(tablet) = [0, 0, 0, 1]T .

After obtaining such a sparse vector for each categorical
feature, we concatenate them. The concatenated vector

can then be multiplied with our model weights and
used to compute the final prediction. This is however
computationally expensive, since we always store all
values of each of our one-hot encoded vectors.

To avoid storing large vectors, we can instead simply
use the relevant index values to retrieve the relevant
model weights directly and avoid multiplication. For
example, instead of embedding our feature value xi

into a vector ei where the i-th component equals 1 and
multiplying it with our weight vector w:

w = [w0, w1, · · · , wi−1, wi, wi+1, · · · , w|N |],

which would obtain component wi, we instead use index
value i to obtain the component directly. We illustrate
the advantage of the the index-based approach in the
following example. Let’s say we are dealing with a
categorical feature device type, with its corresponding
value set:

N = {PC, laptop, mobile, tablet}.

We wish to embed this categorical feature as a 2-
dimensional numeric vector. Note that this implies that
the weight vector from the above definition actually
becomes a weight matrix with dimensions (2 × 4). An
example of such an embedding/weight matrix can be
seen below:

W =

[
0.33 0.12 2.57 3.04
1.43 0.50 1.26 7.55

]
.

Obtaining a numerical embedding for the value of “lap-
top” requires the following steps. We first obtain the
appropriate one-hot vector:

hone-hot(laptop) = vlaptop =


0
1
0
0

 ,

then we proceed to multiply the embedding/weight ma-
trix with the one-hot vector to obtain the final numeric
feature embedding:

W ·vlaptop =

[
0.33 0.12 2.57 3.04
1.43 0.50 1.26 7.55

]
·


0
1
0
0

 =

[
0.12
0.50

]
.

The index-based approach simplifies this process by
obtaining the index value of the feature value laptop.
In this context, the index value indicates the position of
value laptop in set N :

hindex(laptop) = 1.

Finally, the index is used to extract* the embedding
directly from the embedding/weight matrix:

col1(W ) = col1

([
0.33 0.12 2.57 3.04
1.43 0.50 1.26 7.55

])
=

[
0.12
0.50

]
.

∗Here, the function coli(M) returns the i-th column of matrix M .



78 DEMŠAR, PAHOR, KOPIČ

Not generating the one-hot vectors is an important
optimization, since these vectors are typically very large,
due to the high dimensionality of categorical features.

2.1.4 Prediction: We selected logistic regression
(LR), factorization machines (FM) and deep factor-
ization machines (DeepFM) as our baseline models.
The following subsections provide a basic theoretical
description of the mentioned models.

LR is a type of predictive analysis that attempts
to explain the relationship between one dependent bi-
nary variable and one or more independent variables.
When performing LR on m-dimensional real vectors,
the model consists of two components:

• an m-dimensional weight vector θ,
• a bias θ0.

For a given sample x ∈ Rm, our model prediction f(x)
equals:

f(x) = σ(θ0+θ1x1+θ2x2+. . . θmxm) = σ(θ0+

m∑
i=1

θixi),

where σ is the logistic function. The logistic function is
a member of the sigmoid function family and is defined
by the formula:

σ(x) =
1

1 + e−x
.

LR is essentially a linear model that outputs the prob-
ability of a positive outcome for a binary event given
a set of dependent real variables. It is attractive in the
CTR prediction context due to its simplicity, training
and prediction speeds and decent performance [6]. The
LR model is visualized in Figure 1.

FMs attempt to capture interactions between features
by using factorized parameters. They can be utilized
to model any order of feature interactions, although
second order interactions are the most common. When
performing prediction on m-dimensional real vectors via
a second order FM, we require three components:

• an (m× k)-dimensional factorized interaction ma-
trix V ; here k denotes the size of the interaction
vectors,

• an m-dimensional weight vector θ,
• a bias θ0.

For a given sample x ∈ Rm, our model prediction f(x)
equals:

f(x) = σ(θ0 +

m∑
i=1

θixi +

m∑
i=1

m∑
i<j

⟨vi, vj⟩xixj).

Notably, the FM prediction on an m-dimensional
vector is equal to LR, with the addition of the interaction
term. The interaction term is used to approximate all
second order feature interactions by computing scalar
products between their respective latent vectors. The
latent vectors are rows in matrix V , so the value of

feature xi corresponds to the i-th row in V, denoted as
vector vi. The above formalization also illustrates why
FM are well suited for prediction problems where data
is high-dimensional and sparse. If our m-dimensional
vector x is sparse, only a small number of non-zero
feature combinations need to be computed. The FM
model is visualized in Figure 2.

Our final models are deep factorization machines or
DeepFMs. Proposed by Guo et al. in [9], they improve
on the performance of FMs by adding an additional
DNN term to the final prediction. When performing
prediction on m-dimensional real vectors via a DeepFM,
we require:

• an (m× k)-dimensional factorized interaction ma-
trix V ; here k is a hyperparameter denoting the size
of the interaction vectors,

• an m-dimensional weight vector θ,
• a bias θ0,
• a neural network used to compute the DNN term;

neural network size is chosen as a hyperparameter.
For a given sample x ∈ Rm, our model prediction

f(x) equals:

f(x) = σ(θ0+

m∑
i=1

θixi+

m∑
i=1

m∑
i<j

⟨vi, vj⟩xixj+yDNN ).

Notably, the DeepFM prediction on an m-dimensional
vector is equal to FM, with the addition of the DNN
term yDNN . The DNN term is used to capture high-
order interactions of the input embeddings by feeding
them through a series of fully connected neural network
layers.

2.1.5 Performing feature embedding: Considering the
described prediction process, our objective is to devise
an additional step, embedding+. The embedding+ step
is included among the prediction steps and aims to
produce an improved embedding which in turn results in
improved predictions. The location of the embedding+
step is technically arbitrary and based on the embed-
ding approach in question, but we primarily focus on
approaches that perform the step between embedding
and prediction steps. Notably, the embedding+ step
differs from other established embedding techniques,
like word2vec [15], because it is a direct part of the
end-to-end training process. Furthermore, since it is
trained alongside the rest of the model, its performance
is dynamic.

2.2 Embedding modules
This section describes the feature embedding modules

we implemented in order to try to improve the predic-
tive performance of the baseline models. Visualizations
maintain the previously introduced color coding, lin-
ear embeddings and related terms are visualized with
a yellow color, while the interaction embeddings are
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Figure 1. Visual representation of the LR model. The LR model performs prediction by computing the sigmoid activation of
the summation of its bias and linear terms. Linear embeddings and subsequent linear term are colored yellow, while the bias
term is colored purple.

visualized with a green color. Module architecture and
resulting embedding vectors are presented in blue.

2.2.1 The embedding scaling module: The embed-
ding scaling module aims to improve final model’s
predictive performance by feeding the dense embeddings
into a fully connected neural network. The neural net-
work has H hidden layers, where H ∈ N0 is a tunable
hyperparameter. Each hidden layer as well as the output
layer have ⌊F · S⌉ neurons, where F is the number
of model features and thus the size of the original
embedding vector and S ∈ R is the scaling hyperparam-
eter. Notably, we use the parameter S to either upscale
or downscale the dimension of the original embedding
vector. Each approach has its own motivation: upscaling
seeks to increase the model’s expressiveness, while
downscaling seeks to reduce the model’s overfitting. The
(linear) embedding scaling process with H hidden layers
and scaling factor S is performed on a dataset with
F categorical features. For a given data sample with
F categorical features, our embedding layer returns the
following set of dense embeddings. Each set element is a
real number corresponding to the value of the respective
categorical feature:

e = {e1, e2, . . . , eF }.

We define H+1 matrices: W0, W1, . . . ,WH . Matrix W0

has dimensions (F ×R), where R = ⌊F ·S⌉ represents
the size of the final rescaled embedding vector. Matri-
ces W1,W2, · · · ,WH have dimensions (R × R). For
each matrix, we also define corresponding bias vectors
b0, b1, · · · , bH , which get added to the result of each

performed matrix multiplication. All bias vectors are of
size R. Our set of dense embeddings is transformed into
a single vector:

e′ = [e1, e2, . . . , eF ],

which is first multiplied with matrix W0 and added to
bias vector b0. We also apply an activation function,
denoted below as σ(.), over each element of the result, to
break linearity. This produces the first scaled embedding
vector:

w0 = σ(W0 · e′ + b0).

The scaled embedding vector w0 is afterwards multiplied
with the remaining matrices in the following manner:

w1 = σ(W1 · w0 + b1),

w2 = σ(W2 · w1 + b2),

· · · ,
wH = σ(WH · wH−1 + bH).

We consider the final output vector wH as our rescaled
embedding and forward it to the prediction layer. Fig-
ure 4 shows two examples of embedding scaling.

The embedding scaling module contains R · K((F ·
K + 1) + (R · K + 1)(H − 1)) parameters, where
F equals the number of features, K equals the size
of the embedding vectors, H equals the number of
hidden layers and R = ⌊F · S⌉ is the new rescaled
number of features. Notably, the number of parameters
is considerably lower than the total dimensionality of
the categorical feature space, which implies that the size
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Figure 2. Visual representation of the FM model. The FM model performs prediction by computing the sigmoid activation of
the summation of its bias, linear and interactions terms. Ignoring the interaction embeddings, the model downgrades to classic
LR. Interaction embedding and subsequent interaction term are colored green.

of the embedding scaling module is practically negligi-
ble compared to the baseline model embedding layer
size. The embedding scaling module also has a special
interaction with the DeepFM prediction model. Since
the size of the DeepFM’s neural network component is
related to the number of model features, it is affected by
the rescaling operation of the module. This means that
the upscaling operation of the module results in a larger
DeepFM neural network and vice versa for downscaling.

2.2.2 The FM embedding module: The FM embed-
ding module aims to transform the set of original inter-
action embedding vectors into a different set and use it
to make the final prediction by computing all possible
combinations of scalar products between vectors. While
the classic FM model trains the set of interaction vectors
that correspond to the samples’ categorical features, the
FM embedding module instead directly focuses on the
interaction vector components.

The FM embedding process with the original interac-
tion vector of size K and new interaction vector of size
C is performed on a dataset with F categorical features.
For a given data sample with F categorical features, our
embedding layer returns the following set of interaction

vectors:

e = {e⃗1, . . . , e⃗F } =



e11
e21

...
eK1

 ,


e12
e22

...
eK2

 , . . . ,


e1F
e2F

...
eKF


 .

Instead of computing the interaction term as the sum
of scalar products between all possible pairs of vectors
from set e, we transform e into a single dense vector e′

and treat it as a data sample:

e′ = [e11, e21, . . . , eK1, . . . , eKF ].

We now aim to model interactions between features of
sample e′. To achieve this, we define a trainable vector
set v, which contains N = KF vectors of size C:

v = {v⃗1, v⃗2, . . . , v⃗N} =



v11
v21

...
vC1

 ,


v12
v22

...
vC2

 , . . . ,


v1N
v2N

...
vCN


 .

We treat these vectors as new interaction vectors used
to approximate interactions between features of our data
sample e′. We assign each component of our data sample
a separate trainable interaction vector. Each component
from e′ gets multiplied element-wise to its correspond-
ing vector from set v. This results in a new set of
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Figure 3. Visual representation of the DeepFM model. The DeepFM model performs prediction by computing the sigmoid
activation of the summation of its bias, linear, interaction and DNN terms. The DNN term is computed by using the same set
of embeddings used to compute the FM term.
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Figure 4. Visual representation of the embedding scaling module. The embedding dimension can be either upscaled (left) or
downscaled (right).

interaction embedding vectors:

v′ = {e1 ⊙ v⃗1, e2 ⊙ v⃗2, . . . , eKF ⊙ v⃗N}.

The new embedding vector set gets forwarded to the
prediction layer, where a prediction is performed in the
same way as with classic FMs. Recalling the original FM
equation, the new interaction term yinteraction calculation
can be reformulated as follows:

yinteraction =

N∑
i=1

N∑
i<j

⟨vi, vj⟩e′ie′j .

The FM embedding module contains F · K · C
parameters, where F equals the number of features, K

equals the size of the original embedding vectors and
C equals the size of the new embedding vectors. A
visualization of this embedding module can be seen in
Figure 5. Similarly to the embedding scaling module,
the FM embedding module also affects the size of the
DeepFM’s neural network component. In this case, the
result is always an increase in component parameters,
since the effective number of features is increased from
F to F ·K.

2.2.3 The embedding encoding module: The em-
bedding encoding module aims to improve embed-
ding quality by feeding the existing embedding vectors
through a neural network with a narrow hidden layer
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Figure 5. Visual representation of the FM embedding module. The embedding via FM is performed in two steps: first, extract
the basic embedding, and second, multiply each original embedding weight with a separate embedding vector in an element-wise
fashion. The resulting set of embedding vectors is then used for the final prediction.

and afterwards reconstructing the hidden layer output
to the original input size. We adopt this dimensionality
reduction approach from classic autoencoders [16]. The
embedding encoding procedure for linear as well as
interaction embeddings can be seen in Figure 6.

The embedding encoding process with shrinking fac-
tor S ∈ [1,∞) is performed on a dataset with F
categorical features. For a given data sample with F
categorical features, our embedding layer returns a set
of dense embeddings. Each set element is a real vector
of size K, corresponding to the value of the respective
categorical feature:

e = {e1, e2, . . . , eF }.

To perform our embedding encoding and decoding steps,
we define two matrices, Wcontract,Wexpand, with dimen-
sions (F×E) and (E×F ), where E = ⌊F/S⌉ equals the
size of the narrow representation vector. Identically to
section 2.2.1, corresponding bias vectors bcontract, bexpand
are defined for each matrix. Our set of dense embeddings
is concatenated into a single vector:

e′ = [e1, e2, . . . , eF ],

and afterwards fed into the network. The process is again
similar to 2.2.1 and likewise utilizes activation functions
to break linearity:

w0 = σ(Wcontract · e′ + bcontract),

w1 = σ(Wexpand · w0 + bexpand).

We consider the final output vector w1 as our improved
embedding and forward it to the prediction layer. De-
scription of hidden layers is omitted for brevity. An
arbitrary number of hidden layers can be included both
before and after the narrow hidden layer. Description of
such hidden layers is found in section 2.2.1.

The embedding encoding module contains
EK(FK(EK + FK) + (H − 1)(EK + 1))),
where F equals the number of features, K equals
the embedding vector size, H equals the number of
hidden layers and E = ⌊F/S⌉ is the size of the of the
narrow representation vector. A visualization of this
embedding module can be seen in Figure 6. Notably, the
embedding encoding module differs from embedding
scaling and FM embedding because it preserves the
effective number of features from the original model.

2.2.4 The NN embedding module: The NN embed-
ding module works by accepting both linear feature
embeddings as well as factorized interaction embeddings
as its input. After obtaining both types of embedding
vectors, we concatenate them and feed the concate-
nated vector into a fully connected neural network.
The motivation behind the NN embedding module is
sharing the information between linear and interaction
embeddings. Each layer of the module’s neural network
has F · (K + 1) neurons, which corresponds to the size
of the concatenated vector.

The neural network embedding process with H ∈ N0

hidden layers and interaction vector size K is performed
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Figure 6. Visual representation of the embedding encoding module. The embedding is concatenated into a single vector,
which is fed into the neural network with a narrow hidden layer. Afterwards, it is reconstructed into a vector of the same size
as the input and reshaped into separate feature embeddings.

on a dataset with F categorical features. For a given
data sample with F categorical features, our embedding
layer returns the following sets of dense embeddings.
Elements from elinear are real numbers, while elements
from einteraction are real vectors of size K:

elinear = {e1, e2, . . . , eF },

einteraction = {e⃗1, e⃗2, . . . , e⃗F },

einteraction =



e11
e21

...
eK1

 ,


e12
e22

...
eK2

 , . . . ,


e1F
e2F

...
eKF


 .

We define H + 1 matrices, W0,W1, . . . ,WH , with
dimensions (N × N), where N = F (K + 1). We
also define bias vectors b0, b1, . . . , bH corresponding to
each matrix. All elements from our embedding sets are
concatenated into a single vector:

e′ = [e1, e2, . . . , eF , e11, e21, . . . , eKF ],

and afterwards fed into the network as follows:

w0 = σ(W0 · e′ + b0),

w1 = σ(W1 · w0 + b1),

w2 = σ(W2 · w1 + b2),

· · · ,
wH = σ(WH · wH−1 + bH).

We consider the final output vector wH as our improved
embedding. Next, we perform vector reshaping to obtain

appropriate embedding sets and forward them to the
prediction layer.

The NN embedding module contains H(F 2(K+1)2+
F (K + 1)) parameters, where F equals the number of
model features, K is the size of the interaction vectors
and H is the number of hidden layers in the module
network. Figure 7 shows an example module with F =
2, K = 2 and H = 1.

2.2.5 The embedding reweighting module: Embed-
ding reweighting aims to improve the model’s perfor-
mance by assigning each feature a weight based on
the entire dense embedding vector. These weights range
between 0 and 1 and predict the degree of relevance
each feature will have when making the final prediction.
Afterwards, each embedding is scaled by its respective
weight and served to the final model. To practically
obtain the weight vector for a specific sample, we
feed it to a fully connected neural network with no
hidden layers and F output neurons, where F is the
number of features and a sigmoid activation function.
This approach seeks to minimize the impact of noisy
features.

The (interaction) embedding reweighting process with
interaction vector size K is performed on a dataset with
F categorical features. For a given data sample with
F categorical features, our embedding layer returns the
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Figure 7. Visual representation of the NN embedding
module. The NN embedding is performed in three steps:
first, extract basic linear and interaction embeddings, second,
construct a single vector and feed it into the network, and
third, reconstruct the network output into linear and interaction
embeddings and use them to perform the final prediction.

following set of interaction vectors:

e = {e⃗1, . . . , e⃗F } =



e11
e21

...
eK1

 ,


e12
e22

...
eK2

 , . . . ,


e1F
e2F

...
eKF


 .

To compute our weight vector, we define matrix W
with dimensions (KF × F ) and a corresponding bias
vector b of size F . We concatenate all vectors from our
embedding set into a single vector:

e′ = [e1, e2, . . . , eF , e11, e21, . . . , eKF ],

and use it to compute a weight vector as follows:

w = σ(W · e′ + b).

Here, σ(.) denotes the logistic activation function
(description found in section 2.1.4). We associate each
component of the weight vector w = [w1, w2, . . . , wF ]
with the respective interaction vector from the original
embedding set e. Associated weights and embedding
vectors are multiplied together, resulting in an improved
embedding set:

ereweighted = {w1 ⊙ e⃗1, w2 ⊙ e⃗2, . . . , wF ⊙ e⃗F },

which is forwarded to the prediction layer. The process
above describes reweighting of interaction embeddings.
Reweighting of linear embeddings is performed in a sim-
ilar manner. Both approaches are visualized in Figure 8.

The embedding reweighting module contains
F (KF + 1) parameters, where F equals the number
of model features and K is the size of the interaction
vectors.

2.2.6 A summary of embedding modules: We develop
five embedding modules, each with its own characteris-
tics. Table 1 contains an overview of all implemented
modules.

2.3 Experimental setup
As mentioned in the prior sections, our main objective

is computing click-through rates, which are essentially
probabilities that a certain user will click on a specific
displayed ad. Since the act of clicking on an ad is an
event with a binary outcome, we can formulate our
problem as a binary classification, where a value of 1
implies that the user clicked the ad and a value of 0
implies they didn’t. Our models are trained to predict the
event outcome by using the rest of the event information
as dependant variables.

2.3.1 Implementation: We implement our LR, FM
and DeepFM baseline models as well as all embedding
modules in the programming language Python [17].
Python is an object oriented, scripted and interpreted
language, which is currently considered one of the
premier tools for data scientists, both in education, as
well as in general research [18]. In addition to its
ease of use, one of Python’s main advantages is its
access to a large array of programming libraries. To
implement our models and carry out our experiments, we
primarily utilize TensorFlow [19], an end-to-end open
source machine learning library. To ease the use of our
work for solving other problems, we employ a modular
approach, where we use a single configurable function
to construct all of our models. The function has the
following parameters:

• num feats - how many features does the dataset
have. Features are expected to be 32-bit integers.

• num bins - the size of the hashing domain for
the entire dataset. This setting implies that after
hashing, each observed value in our dataset will
range between 0 and num bins - 1.

• num factors - the size of the FM model feature
interaction vectors. If this parameter is not set, or
the size is set to 0, the model becomes LR.

• num hidden layers - how many layers are in the
neural network part of the DeepFM model. If the
value is set to 0, the model becomes LR/FM.

• hidden layer size - number of neurons in a single
layer of the neural network part of the DeepFM
model. If the value is set to 0, the model becomes
LR/FM.
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Figure 8. Visual representation of the interaction embedding reweighting module. The feature reweighting is performed
in three steps: first, extract the original embedding, second, compute the weight vector, and third, perform element-wise
multiplication of the original embedding and the weight vector and use the obtained vector to perform the final prediction.

Module name Target embedding Module size

Embedding scaling module Either/Both R ·K((F ·K + 1) + (R ·K + 1)(H − 1))
FM embedding module Interaction FKC
Embedding encoding module Either/Both EK(FK(EK + FK) + (H − 1)(EK + 1)))
NN embedding module Both H(F 2(K + 1)2 + F (K + 1))
Embedding reweighting module Either/Both F (KF + 1)

Table 1. A summary of embedding modules. Each parameter is described in the respective module section. The FM embedding
module can only be applied to interaction embeddings. The NN embedding module requires both linear and interaction
embeddings. Others can be applied to linear or interaction embedding or to both of them. The equations that denote the
module’s size are explained in detail in sections describing the modules.

• linear modules - the embedding modules that are
applied to the linear embeddings.

• interaction modules - the embedding modules that
are applied to the interaction embeddings.

• both modules - the embedding modules that are
applied to both linear and interaction embeddings.

• optimizer - the optimizer used to update model
parameters during training.

• loss - the loss used to guide optimization.
• additional metrics - additional informative metrics

to display during model training.

2.3.2 The dataset: Our experiments are performed
on a publicly available dataset provided by Criteo [20],
[21]. The dataset represents a portion of their traffic over
a period of seven days. It contains 45 million examples
of served display ads with 26 categorical features and
the target variable; whether a click occurred. Categorical
data is anonymized and presented in the form of hashed

values. Positive and negative samples have both been
subsampled at different rates beforehand, resulting in
a final ratio of 26% click and 74% non-click events.
Since the dataset simulates a scenario of real-time ad
space bidding, we are not allowed to perform any kind of
sample shuffling. Doing so would imply that the model
predicts present data, but is trained with samples from
the future. To enforce the time and order sensitive nature
of our dataset, we select the data samples from the first
70% as our training set, and use the remaining 30% as
our test set.

2.3.3 Parameter and hyperparameter optimization:
All our models are trained with the LazyAdam opti-
mizer, a variant of the popular Adam [22] optimizer,
which is better suited for handling sparse updates. We
use a grid search to explore different hyperparameter
configurations for each embedding module as well as
the baseline models. For the FM and DeepFM models,
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we select a fixed latent vector size of 6. We perform
separate grid searches for the optimal learning rate of the
LR and FM models. For the baseline DeepFM model, we
perform a grid search of the optimal values of the hidden
layer size, number of the hidden layers and learning rate.
The three obtained optimal models served as baselines.
We perform a series of experiments where we apply each
individual module to our model baselines and perform a
grid search of the respective module’s hyperparameters.
We explore the following hyperparameters:

• Embedding scaling: scaling ratio (scaling values
0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 2, 3), number of
hidden layers (1, 2, 3), and layer activation (ReLU,
Swish, Tanh).

• FM embedding: size of new latent vectors (2, 3, 4,
5, 6, 7, 8, 9, 10).

• Embedding encoding: squeeze ratio (1.5, 2, 3, 4,
5, 6), number of hidden layers (1, 2, 3), and layer
activation (ReLU, Swish, Tanh).

• NN embedding: number of hidden layers (1, 2, 3)
and layer activation (ReLU, Swish, Tanh).

In addition to the module’s hyperparameters, we also
explore a new optimal learning rate for each module-
enhanced model. All our experiments feature a batch
size of 10000.

2.3.4 Model evaluation: Due to the class imbalance
present in our dataset, using measures such as precision
is undesirable. A naive model that always predicts
the majority class would achieve 74% precision on
our dataset, but would be entirely useless at the task
of click prediction. Instead of precision, our primary
performance metric is therefore Relative Information
Gain [23]. We first define the empirical cross entropy
or log-score as follows:

CE =
1

N

N∑
i=1

[
yi log pi + (1− yi) log(1− pi)

]
,

where yi equals the label of the i-th sample, pi equals
the predicted probability of the i-th sample and N equals
the number of test samples. Given the empirical CTR of
the data p =

∑N
i=1 yi/N , we define the information gain

as IG = CE +H(p), where H is the entropy defined
by:

H(p) = −(p log p+ (1− p) log(1− p)).

We define relative information gain (RIG) as the ratio
RIG = IG/H(p).

3 RESULTS

3.1 Logistic regression
We present the following LR-based models:
• LR; the baseline model,
• LR+Scale; the LR model augmented with the em-

bedding scaling module,

• LR+Encode; the LR model augmented with the
embedding encoding module,

• LR+Weight; the LR model augmented with the
embedding reweighting module.

Augmented models LR+Scale and LR+Encode use the
original linear embeddings as input to generate new
embeddings. LR+Weight similarly takes the original
linear embeddings as input and generates a vector that
reweights each embedding value. Our grid search finds
the following optimal hyperparameter values for each
augmented model:

• LR+Scale has scaling factor 1.5, two hidden layers,
ReLU activation and learning rate 0.005,

• LR+Encode has dimension scaling value 1.5, one
hidden layer, Swish activation and learning rate
0.009.

• LR+Weight has a learning rate of 0.01
The baseline LR model has a learning rate of 0.003. The
results of each model with the described configurations
can be seen in Table 2.

All proposed augmented models provide a perfor-
mance increase over the LR baseline. Since each aug-
mented model features a different type of embedding
module, we are able to observe their contributions. The
performance contribution of each embedding module
can be seen in Table 3.

The best performing module is the embedding
reweighting module. It provides the most significant im-
provement in terms of RIG, while not drastically increas-
ing prediction time. Notably, such offline performance
improvements could translate to a significant increase
in online* predictive performance [24]. In addition to
the embedding reweighting module, both the embedding
scaling and embedding encoding modules also provide
a substantial increase in predictive performance.

3.2 Factorization machines
We present the following FM-based models:
• FM; the baseline model,
• FM+Scale; FM model augmented with the embed-

ding scaling module,
• FM+FM; FM model augmented with the FM em-

bedding module,
• FM+Encode; FM model augmented with the em-

bedding encoding module,
• FM+NN; FM model augmented with the NN em-

bedding module,
• FM+Weight; FM model augmented with the em-

bedding reweighting module.
Augmented models FM+Scale, FM+Encode and

FM+Weight apply the effects of their respective embed-
ding modules to both linear and interaction embeddings.
Afterwards, all embeddings are used to compute the

∗Offline implies a local training dataset, while online implies live
production data.
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Model RIG [%] Log loss [%] Training time

LR 16.06± 0.00 47.96± 0.00 4min 10s

LR+Scale 16.58± 0.05 47.67± 0.03 5min 37s
LR+Encode 16.40± 0.07 47.77± 0.04 5min 8s
LR+Weight 16.76± 0.01 47.56± 0.01 4min 46s

Table 2. Logistic regression results. The relative information gain and log loss are expressed as percentage values.

Module Performance increase

Embedding scaling 0.52± 0.05
Embedding encoding 0.34± 0.07
Embedding reweighting 0.70± 0.01

Table 3. Module contributions for the LR experiment. The
performance increase is measured in percentage points of the
RIG metric.

final prediction. The FM+FM model only transforms
the interaction embeddings. The FM+NN model uses
both linear and interaction embeddings as a single input
to compute new versions of both embeddings. Our
grid search finds the following optimal hyperparameter
values for each augmented model:

• FM+Scale has scaling factor 0.3, one hidden layer,
Swish activation and learning rate 0.004,

• FM+FM has nine factors in the FM used for the
embedding and learning rate 0.003,

• FM+Encode has a dimension scaling value 3, three
hidden layers, Swish activation and learning rate
0.007,

• FM+NN has two hidden layers, ReLU activation
and learning rate 0.006,

• FM+Weight has a learning rate of 0.004.

The baseline FM model has a learning rate of 0.001. The
results of each model with the described configurations
can be seen in Table 4.

All proposed augmented models provide a perfor-
mance increase over the FM baseline. Similarly to our
LR experiments, each FM augmented model features
a different type of embedding module, so we again
observe their individual contributions. The performance
contributions of each embedding module can be seen in
Table 5.

The best performing module is again the embedding
reweighting module. It provides a similar RIG increase
as noted in the LR experiments, with model training time
again not increasing drastically. The embedding scaling
and embedding encoding modules also provide a similar
performance increase as noted in the LR experiments.
The newly presented NN embedding module is also
reasonably successful. The FM embedding module is
the least successful, but still provides a small lift. The
training time is notably increased in this case.

3.3 Deep factorization machines

We present the following DeepFM-based models:

• DeepFM; the baseline model,
• DeepFM+Scale; the DeepFM model augmented

with the embedding scaling module,
• DeepFM+FM; the DeepFM model augmented with

the FM embedding module,
• DeepFM+Encode; the DeepFM model augmented

with the embedding encoding module,
• DeepFM+NN; the DeepFM model augmented with

the NN embedding module,
• DeepFM+Weight; the DeepFM model augmented

with the embedding reweighting module.

The module-enhanced models match their FM coun-
terparts, with the addition of the deep neural network
component. Our grid search finds the following optimal
hyperparameter values for each augmented model:

• DeepFM+Scale has scaling factor 3, one hidden
layer, ReLU activation and learing rate 0.001,

• DeepFM+FM has eight factors in the FM used for
the embedding and learning rate 0.002,

• DeepFM+Encode has dimension scaling value 1.5,
one hidden layer, ReLU activation and learning rate
0.001,

• DeepFM+NN has one hidden layer, ReLU activa-
tion and learning rate 0.001,

• DeepFM+Weight has a learning rate of 0.004.

The DeepFM+Weight, DeepFM+Scale and
DeepFM+NN models are able to provide a
performance increase over the DeepFM baseline.
The DeepFM+Encode as well as DeepFM+FM
decrease model performance. Exactly as above, each
DeepFM augmented model features a different type of
embedding module, so we can observe their individual
contributions. The performance contributions of each
embedding module can be seen in Table 7.

The best performing module is once again the em-
bedding reweighting module. It provides a substantially
lower performance increase than in previous experi-
ments, which is likely due to the already impressive per-
formance of the baseline model. DeepFMs are currently
considered among the state-of-the-art models for CTR
prediction.
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Model RIG [%] Log loss [%] Training time

FM 17.03± 0.02 47.41± 0.00 9min 13s

FM+Scale 17.59± 0.00 47.09± 0.00 9min 43s
FM+FM 17.11± 0.02 47.36± 0.01 30min 46s
FM+Encode 17.47± 0.02 47.16± 0.01 13min 55s
FM+NN 17.33± 0.13 47.24± 0.07 15min 11s
FM+Weight 17.71± 0.01 47.02± 0.00 10min 22s

Table 4. Factorization machine results. Relative information gain and log loss are expressed as percentage values.

Module Performance increase

Embedding scaling 0.57± 0.02
FM embedding 0.09± 0.03
Embedding encoding 0.44± 0.03
NN embedding 0.30± 0.13
Embedding reweighting 0.68± 0.02

Table 5. Module contributions for the FM experiment. The
performance increase is measured in percentage points of the
RIG metric.

4 DISCUSSION

In this manuscript, we investigate different feature em-
bedding approaches when dealing with high-dimensional
categorical data. We specifically aim to improve the
predictive performance of logistic regression, factor-
ization machines and deep factorization machines for
the task of CTR prediction. We propose five different
embedding modules, apply them to the relevant baseline
models and evaluate their predictive performance and
training time on a popular public CTR dataset. Our
experiments suggest that multiple proposed embedding
modules provide a significant performance improvement
over the model baselines.

For both the logistic regression and factorization
machines, the most successful modules are the embed-
ding reweighting, embedding scaling and embedding
encoding modules, which add a significant boost to
the baseline models’ RIG performance. Particular to
the factorization machine model we evaluate two ad-
ditional embedding modules: FM and NN embedding.
The performance of NN embedding is slightly lower
compared to embedding encoding, while FM embedding
only provides a minor RIG lift.

In the DeepFM experiment, we observe positive per-
formance of NN embedding, scaling and reweighting,
with the latter again giving us the best results. With
DeepFM, embedding encoding and FM embedding are
unable to improve the baseline performance. Applying
the FM embedding module to the baseline models
also results in significantly longer training time, while
other embedding modules do not produce a noticeable
increase.

Our experiments present the embedding reweighting
module as the clear winner in terms of performance
boosting. Since the module essentially learns to assign a
weight to each feature, further research could be made
to investigate and build a framework that monitors the
reweighting layer of the model and identifies features
with a higher and lower impact. This information could
then be utilized to perform feature selection in a pro-
duction setting.

Finally, there remain two major areas of further re-
search: investigating how different combinations of the
proposed modules affect the performance when com-
bined into a single model and applying the proposed
feature embedding findings to other machine learning
areas. Our work investigates the feature embedding
effects for the task of click-through rate prediction,
however the modules themselves can easily be applied to
other types of models that also learn from tabular data.
Furthermore, the enhanced models do not have to be
limited to binary classification, which further broadens
the field of potential applications.
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