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Abstract

Discriminant analysis is a widely used multivariatechniqgue with
Fisher's discriminant analysis (FDA) being its mastnerable form. FDA
assumes equality of population covariance matrideg, does not require
multivariate normality. Nevertheless, the latter dssirable for optimal
classification. To test FDA's performance under -monmality caused by
skewness the method was assessed with simulatisedb@an a skew-curved
normal (SCN) distribution belonging to the familyf skew-generalised
normal distributions; additionally, effects of salesize and rotation were
evaluated. Apparent error rate (APER) was used las measure of
classification performance. The analysis was penfad using ANOVA with
(transformed) mean APER as the dependent vari&dsults show the FDA
to be highly robust to skewness introduced into thedel via the SCN
distributed simulated data.

1 Introduction

Discriminant analysis is a widely used multivariatatsstical technique with two
closely related goals: discrimination and classtima In its original form,
proposed by Fisher, the method assumes equality @ulption covariance
matrices, but does not explicitly require multivaeianormality. However, optimal
classification performance of Fisher's discrimin&mction can only be expected
when multivariate normality is present as well, giranly good discrimination can
ensure good allocation.

The reported experiment aimed at examining the stiess of Fisher’s
discriminant function to violation of normality caas by skewness as exemplified
by the skew-curved normal (SCN) distribution, a memiof a new family of
asymmetric normal distributions. Concomitantly, th8uences of sample size and
rotation were investigated. Allocation performamas assessed by calculation of
the apparent classification error rate (APER).
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2 Methods

2.1 Fisher’'s discriminant function

Discrimination is a separation procedure that ttedgind a discriminant function
whose numerical values are such that the obsemstioom several populations
are separated as much as possible. An allocatioocepure that uses a
discrimination function as a well-defined rule inder to optimally assign a new
observation to the labelled classes is called diaasion. It is evident that only
good discrimination leads to good classification.

Consider two populations; andm,, each with p-variate distribution having
mean vectorgi; and p, and common covariance matrk Let the sizes of two
independent random samples be denoted pyamd n respectively, the mean
vectors byx, and X,, the pooled sample covariance matrix by S andarserved

unit by x. Fisher suggested finding a linear conabion of multivariate
observations x to create univariate observatiormigh that the ys derived from
populationsm; and n, are separated as much as possible. Fisher’'s disnt
function (DF) can be written as:

y=a'x

where a is the vector of coefficients and x thetgewmf variable values for a
particular case.

Fisher's DF assumes equality of population covaréamatrices, but does not
assume multivariate normality.

An allocation rule based on Fisher’s DF is as fako allocate observationgx
to classny, if

Y, =2mor y,-m=0

wherem is the cut-off point.
Else allocate observation ¥o classt,, if

Y, <m or y,—-m<Q0.

Hills (Krzanowski, 1977: 191) has pointed out tkaédher’'s DF is a useful tool
for discrimination under wide distributional condins, but it may be a quite
unsuitable technique for allocating particular atve¢éion to one of two
multivariate non-normal populations. Therefore,sslfication based on Fisher’s
DF can be optimal only when multivariate normalylds.
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2.2 Skew-Curved normal distribution

The skew-curved normal (SCN) distribution is a spkecase of a new class of
asymmetric normal distributions, so-called skeweatised normal (SGN)
distributions introduced by Arrellano-Valle et §2004).

A random variable X has a SGN density with paramsste andi, (A, 00 00 and
A2 = 0) if:

u@=2¢m¢ﬂ—iﬁ—q,xmm (2.1)

1+ A, X2

where @ () and ® () are the N (0,1) pdf and cdf, respectively. Itdsnoted by
X ~ SGN @, A2). SCN is a special case or subclass of the forfimek; OO [0 and
A2 =\1%. Thus, a random variable X has a SCN density if:

fu):zmm¢{——ﬁﬁ——},xmm (2.2)

J1+ (A x)?

and it is usually denoted by X ~ SCMN).

It should be noted that the well-established skewnyral (SN) density
described by Azzalini and Capitanio (1999) alsorespnts a special case of SGN
family with A, O 00 andi, = 0O:

f(x) = 20(x)®(A\,x), x O O (2.3)

Both SCN and SN distributions depend on only ongrasetry parameteri()
and both include the classic normal distributionaaspecial case (when = 0).
However, the SCN distribution provides a wider rangf kurtosis and less
skewness compared to the SN. Besides, when «, the asymptotic distribution
of the SCN distribution does not become half-norasmboes the SN distribution.

The fact that the SCN distribution provides »smeotiskewness« was the
motivation for its use in the experiment (Figure 1)

2.3 Simulation

The simulation involved the generation of 2 growfs3 random, intercorrelated
variables (essentially generating 2 groups in 3atsional space). Throughout the
experiment the sample size, symmetry (normalityyl grosition of one group
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(designatedrt,) were kept constant (sample size 50, no skewnedsa rotation),

while the parameters of the other group (designatgdaried:

= sample size (n): 25, 50, 100;
= skewnessXy): 0, 1, 5, 10;
rotation around the centroid); 0—180° in steps of 20°.
The experiment consisted of 100 simulations per woation of parameter

values.
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Figure 1: Examples of SCN density far = 1 (dashed) ant; = 10 (dotted), withh; = 0
(i. e. standard normal) as a reference (solid grey)
As the use of completely fictitious data was nohsidered appropriate, group
generation was based on parameters (means andiaosamatrices) of a subset
of the time-honoured Iris dataset. The Iris datasetsists of 50 measurements of

4 characteristics (sepal length, sepal width, pé&talgth, petal width) in 3 Iris
species I( setosal. versicolor, I. virginica). Considering their spatial geometry,

thelris setosa(m;) andlris virginica (wp) sepal length, petal length and petal width
(labelled variable x, y and z, respectively) partane (presented in Table 1) were

used.
2 Assignment of both groups (setosamasind virginica as,) was arbitrary.
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Table 1: Means and covariances.

Iris setosa 1) Iris virginica (mp)
X y z X y z
u | 5.006| 1.462| 0.246| | 6.588| 5.552| 2.026

X| 089] 1.79| 0.74 0.89 1.79 0.74
y| 1.79 | 4.40| 1.87 1.79 4.40 1.87
z| 0.74| 1.87| 0.84 | 0.74| 1.87| 0.84

Figure 2 demonstrates the baseline geoméiry=(0, a = 0) using a simulated
instance; note that n = 100 for both groups to ecbhahe visualisation.

The simulation was programmed in R (v 2.1) and cird of two main
routines:

1. samples generation and

2. Fisher's discriminant analysis.

The key element of the generation routine was ti@N Sandom number
generator (RNG), built using the inversion methoithwatilisation of R's uniform
RNG. Due to the fact that the SCN distribution ftioo (see equation 2.5, above)
and hence its inverse distribution function cam be obtained in closed form, a
numerical technique with construction of cumulativelues table (with
appropriate parameters) in the range of —10 z toz1®as applied, yielding a
generator compliant with requirements for such gpse (L'Ecuyer, 2004).

Although R offers several possibilities for discimant analysis (e. g.
functions Ida, qda), we opted for implementationtlod original Fisher's DF using
our own function. The obtained confusion matrix waed for evaluation, i. e. for
performance assessment.

2.4 Evaluation

The (predictive) performance of the Fisher's DF \masessed using the apparent
classification error rate (APER). APER is an iniwely conceivable and easy to
implement measure, albeit with some shortcomingg, giving over-optimistic
results if used for evaluation of the data usedcimstruction of the classification
rule (Pohar, 2004). To avoid the latter problemo tseparate (independent) sample
sets were generated at each parameter combinaimnfor the DF construction
and the other for the DF evaluation.
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Figure 2: Baseline spatial geometry of the simulated groupgdark grey triangles) and
7, (light grey circles); n = 10Qy; = 0,a = 0 for both groups.

The APER was calculated from the confusion matgrngingency table of
actual group membership versus predicted group neeshiip) shown in Table 2.

Table 2: Confusion matrix.

Predicted Group

Membership Total
T T2
Actual T n;* m =m-n" | m
Group m c c
o m | M=, - n n
Membership | ™| "2 T~ 2 2

n; andnw, stand for populations of groups 1 and 2, whileand n stand for
number of observations (items) in both groups, eesipely. n® is the number of
items belonging tar; and classified as belonging 19, n,° is the same fott,. n,™
is the number of items belonging tg and (mis)classified as belonging o
while " is the number items belonging 48 and (mis)classified as belonging to
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n;. The APER is defined as the proportion of itemsatassified by the allocation
rule:

m m

+
APER =M TNz
nl + n2

3 Results

The analysis was performed with statistical packaggv 2.1) and SPSS (v 12.0).
To meet the assumptions of ANOVA, the mean APERif@el as the mean value
of classification error at each parameter comboratin 100 simulations) was
transformed to normal-score ranks by first rankihg mean APER values and
then applying the Blom transformation (as impleneehin SPSS). The results
were analysed by ANOVA with normal-score ranks (R&R) as the dependent
variable and with sample size, skewness (asymmeosfficient) and rotation

angle as independent variables. The main objectethe analysis was to
determine the effect of independent variables ughenclassification results.

The Table 3 summarises the results. The resultsvsihat group size does
affect classification. This is not surprising rediag the fact that with increasing
sample size lower misclassification rate is expgctence increasing the number
of observations leads to more accurate discrimomatunction and thus to a better
classification procedure.

Classification performance is also affected by tiota with increasing rotation
angle lower misclassification rate is expected.sTisi due to the fact that rotation
diminishes group overlapping, facilitating formutat of a good discrimination
function and, consequently, better classificatiseg( Figure 3).

Table 3: Analysis of variance table.

Independent variables Df Sum Sq Mean Sq F value Pr (>F) Sig.
size 2 2596.5 1298.2 3067.88 | <107 wxx
asymm 3 2.2 0.7 1.71 | 0.1624

rotat 9 3923.0 435.9 1030.05 | <107%°| xxx
size:asymm 6 1.9 0.3 0.75 | 0.6053
sizetrotat 18 252.9 14.1 33.20 | <107 wxx
asymm:rotat 27 84.3 3.1 7.38 | <107F°| e
size:asymm:rotat 54 26.3 0.5 1.15 | 0.2069
residuals 11880 5027.3 0.4

Dependent Variable: nsAPER
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Moderate interactions are noted between the graup and rotation and
between skewness and rotation. The former is pbdysexplained by the
combination of the group size and rotation angfeas above. The latter indicates
that the major difference between the effects @f lgvel of the rotation angle is
also affected by the level of skewness. Again, tisisnot surprising: a small
rotation angle in association with a high skewnessy be expected to degrade
classification performance.
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Figure 3: 2-dimensional (xy) geometry of a simulation ingtarwith n= 100,A; = 10,a
= 80° form, (dark grey triangles) and n = 50, = 0, a = 0° for=, (light grey circles).
Note skewness if;.

On the other hand, skewness by itself can not baodstrated to have any
significant effect on classification, indicating ethFisher's DF to be rather
insensitive to skewness.

Figures 4—6 (below) illustrate the stated resyEsach box in the figures shows
the median, quartiles and extreme values withiatagory.)

Figures 4 and 5 depict lowering of mean APER valwéh increasing sample
size and increasing rotation angle. On the contraoysuch effect is noticeable in
Figure 6, confirming the conclusion of no identifia effect of skewness on
APER. This visibly confirms that the performanceFasher’'s DF does not seem to
be affected by skewness, thus substantiating itaistmess in the presence of
skewness induced by using SCN distributed data.
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Figure 4: Box-plot of mean APER vs. sample size.
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Figure 5: Box-plot of mean APER vs. rotation angle.
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Figure 6: Box-plot of mean APER vs. skewness.

4 Conclusion

The purpose of the experiment described in thisepawas to examine the
robustness of the Fisher's discriminant functionskewness introduced by data
following the skew-curved normal distribution. liaw,inter alia, motivated by the
still valid statement of Krzanowski (1977) who ernaglsed the value of
information on performance of the Fisher’s discnamt function in non-optimal
conditions. Since the size of groups and their igbairientation might also be
expected to be involved in multivariate settingse teffects of group size and
rotation angle was analysed, too.

For generating multivariate non-normality we usedetatively new class of
distributions, called skew-curved normal distrilns, which include the normal
distribution as a special case. Asymptotically,sinelistributions do not turn into
the half-normal and thus provide more smooth skessnéhat Azzalini's skew-
normal distribution.

Results indicate that Fisher's DF (as an allocatide) is appreciably affected
by sample size and rotation, while introduction skewness could not be
demonstrated to have any significant effect on sifasation. Therefore, Fisher’s
DF seems to be rather insensitive/fairly robustskewness introduced into the
model via the SCN distributed simulated data.

A possible further step in the investigation coblel to assess the predictive
performance of Fisher’'s DF using another perforneameasure.
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