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Abstract 

Discriminant analysis is a widely used multivariate technique with 
Fisher’s discriminant analysis (FDA) being its most venerable form. FDA 
assumes equality of population covariance matrices, but does not require 
multivariate normality. Nevertheless, the latter is desirable for optimal 
classification. To test FDA's performance under non-normality caused by 
skewness the method was assessed with simulation based on a skew-curved 
normal (SCN) distribution belonging to the family of skew-generalised 
normal distributions; additionally, effects of sample size and rotation were 
evaluated. Apparent error rate (APER) was used as the measure of 
classification performance. The analysis was performed using ANOVA with 
(transformed) mean APER as the dependent variable. Results show the FDA 
to be highly robust to skewness introduced into the model via the SCN 
distributed simulated data.  

1 Introduction 

Discriminant analysis is a widely used multivariate statistical technique with two 
closely related goals: discrimination and classification. In its original form, 
proposed by Fisher, the method assumes equality of population covariance 
matrices, but does not explicitly require multivariate normality. However, optimal 
classification performance of Fisher's discriminant function can only be expected 
when multivariate normality is present as well, since only good discrimination can 
ensure good allocation. 

The reported experiment aimed at examining the robustness of Fisher’s 
discriminant function to violation of normality caused by skewness as exemplified 
by the skew-curved normal (SCN) distribution, a member of a new family of 
asymmetric normal distributions. Concomitantly, the influences of sample size and 
rotation were investigated. Allocation performance was assessed by calculation of 
the apparent classification error rate (APER). 
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2 Methods 

2.1 Fisher’s discriminant function 
 
Discrimination is a separation procedure that tries to find a discriminant function 
whose numerical values are such that the observations from several populations 
are separated as much as possible. An allocation procedure that uses a 
discrimination function as a well-defined rule in order to optimally assign a new 
observation to the labelled classes is called classification. It is evident that only 
good discrimination leads to good classification. 

Consider two populations π1 and π2, each with p-variate distribution having 
mean vectors µ1 and µ2 and common covariance matrix Σ. Let the sizes of two 
independent random samples be denoted by n1 and n2 respectively, the mean 
vectors by 1x  and 2x , the pooled sample covariance matrix by S and any observed 

unit by x. Fisher suggested finding a linear combination of multivariate 
observations x to create univariate observations y such that the ys derived from 
populations π1 and π2 are separated as much as possible. Fisher’s discriminant 
function (DF) can be written as: 

 

xay T=  

 
where a is the vector of coefficients and x the vector of variable values for a 
particular case.  

Fisher’s DF assumes equality of population covariance matrices, but does not 
assume multivariate normality.  

An allocation rule based on Fisher’s DF is as follows: allocate observation x0 
to class π1, if 

 
m̂ŷ0 ≥  or 0ˆˆ0 ≥− my  

 
where m̂  is the cut-off point. 

Else allocate observation x0 to class π2, if 
 

m̂ŷ0 <  or 0m̂ŷ0 <− . 

 
Hills (Krzanowski, 1977: 191) has pointed out that Fisher’s DF is a useful tool 

for discrimination under wide distributional conditions, but it may be a quite 
unsuitable technique for allocating particular observation to one of two 
multivariate non-normal populations. Therefore, classification based on Fisher’s 
DF can be optimal only when multivariate normality holds. 
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2.2 Skew-Curved normal distribution 

The skew-curved normal (SCN) distribution is a special case of a new class of 
asymmetric normal distributions, so-called skew-generalised normal (SGN) 
distributions introduced by Arrellano-Valle et al. (2004). 

A random variable X has a SGN density with parameters λ1 and λ2 (λ1 ∈ ℜ and 
λ2 ≥ 0) if: 
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where φ (⋅) and Φ (⋅) are the N (0,1) pdf and cdf, respectively. It is denoted by 
X ~ SGN (λ1, λ2). SCN is a special case or subclass of the former for λ1 ∈ ℜ and 
λ2 = λ1

2. Thus, a random variable X has a SCN density if: 
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and it is usually denoted by X ~ SCN (λ1). 

It should be noted that the well-established skew-normal (SN) density 
described by Azzalini and Capitanio (1999) also represents a special case of SGN 
family with λ1 ∈ ℜ and λ2 = 0: 

 
    ( )x)x(2)x(f 1λΦφ= , x ∈ ℜ      (2.3) 

 
Both SCN and SN distributions depend on only one asymmetry parameter (λ1) 

and both include the classic normal distribution as a special case (when λ1 = 0). 
However, the SCN distribution provides a wider range of kurtosis and less 
skewness compared to the SN. Besides, when λ1→ ∞, the asymptotic distribution 
of the SCN distribution does not become half-normal as does the SN distribution.  

The fact that the SCN distribution provides »smoother skewness« was the 
motivation for its use in the experiment (Figure 1). 

2.3 Simulation 

The simulation involved the generation of 2 groups of 3 random, intercorrelated 
variables (essentially generating 2 groups in 3-dimensional space). Throughout the 
experiment the sample size, symmetry (normality) and position of one group 
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(designated π2) were kept constant (sample size 50, no skewness and no rotation), 
while the parameters of the other group (designated π1) varied: 
� sample size (n): 25, 50, 100; 
� skewness (λ1): 0, 1, 5, 10; 
� rotation around the centroid (α): 0–180° in steps of 20°. 
The experiment consisted of 100 simulations per combination of parameter 

values. 
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Figure 1: Examples of SCN density for λ1 = 1 (dashed) and λ1 = 10 (dotted), with λ1 = 0 

(i. e. standard normal) as a reference (solid grey). 

As the use of completely fictitious data was not considered appropriate, group 
generation was based on parameters (means and covariance matrices) of a subset 
of the time-honoured Iris dataset. The Iris dataset consists of 50 measurements of 
4 characteristics (sepal length, sepal width, petal length, petal width) in 3 Iris 
species (I. setosa, I. versicolor, I. virginica). Considering their spatial geometry, 
the Iris setosa (π1) and Iris virginica (π2) sepal length, petal length and petal width 
(labelled variable x, y and z, respectively) parameters (presented in Table 1) were 
used2.  

                                                 
2 Assignment of both groups (setosa as π1 and virginica as π2) was arbitrary. 
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Table 1: Means and covariances. 

 Iris setosa (π1) Iris virginica ( π2) 
 x y z x y z 
µ 5.006 1.462 0.246 6.588 5.552 2.026 
  
x 0.89 1.79 0.74 0.89 1.79 0.74 
y 1.79 4.40 1.87 1.79 4.40 1.87 
z 0.74 1.87 0.84 

 

0.74 1.87 0.84 
 
 

Figure 2 demonstrates the baseline geometry (λ1 = 0, α = 0) using a simulated 
instance; note that n = 100 for both groups to enhance the visualisation. 

The simulation was programmed in R (v 2.1) and consisted of two main 
routines:  

1. samples generation and  
2. Fisher's discriminant analysis. 

 
The key element of the generation routine was the SCN random number 

generator (RNG), built using the inversion method with utilisation of R's uniform 
RNG. Due to the fact that the SCN distribution function (see equation 2.5, above) 
and hence  its inverse distribution function can not be obtained in closed form, a 
numerical technique with construction of cumulative values table (with 
appropriate parameters) in the range of –10 z to 10 z was applied, yielding a 
generator compliant with requirements for such a purpose (L’Ecuyer, 2004). 

Although R offers several possibilities for discriminant analysis (e. g. 
functions lda, qda), we opted for implementation of the original Fisher's DF using 
our own function. The obtained confusion matrix was used for evaluation, i. e. for 
performance assessment. 

2.4 Evaluation 

The (predictive) performance of the Fisher's DF was assessed using the apparent 
classification error rate (APER). APER is an intuitively conceivable and easy to 
implement measure, albeit with some shortcomings, e.g. giving over-optimistic 
results if used for evaluation of the data used for construction of the classification 
rule (Pohar, 2004). To avoid the latter problem, two separate (independent) sample 
sets were generated at each parameter combination: one for the DF construction 
and the other for the DF evaluation. 
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Figure 2: Baseline spatial geometry of the simulated groups: π1 (dark grey triangles) and π2 (light grey circles); n = 100, λ1 = 0, α = 0 for both groups. 

The APER was calculated from the confusion matrix (contingency table of 
actual group membership versus predicted group membership) shown in Table 2. 

 

Table 2: Confusion matrix. 

 
Predicted Group 
Membership  

π1 π2 
Total 

π1 n1
c n1

m = n1 - n1
c n1 Actual 

Group 
Membership 

π2 n2
m = n2 – n2

c n2
c n2 

 
 

π1 and π2 stand for populations of groups 1 and 2, while n1 and n2 stand for 
number of observations (items) in both groups, respectively. n1

c is the number of 
items belonging to π1 and classified as belonging to π1, n2

c is the same for π2. n1
m 

is the number of  items belonging to π1 and (mis)classified as belonging to π2 
while n2

m is the number items belonging to π2 and (mis)classified as belonging to 
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π1. The APER is defined as the proportion of items misclassified by the allocation 
rule: 
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3 Results 

The analysis was performed with statistical packages R (v 2.1) and SPSS (v 12.0). 
To meet the assumptions of ANOVA, the mean APER (defined as the mean value 
of classification error at each parameter combination in 100 simulations) was 
transformed to normal-score ranks by first ranking the mean APER values and 
then applying the Blom transformation (as implemented in SPSS). The results 
were analysed by ANOVA with normal-score ranks (nsAPER) as the dependent 
variable and with sample size, skewness (asymmetry coefficient) and rotation 
angle as independent variables. The main objective of the analysis was to 
determine the effect of independent variables upon the classification results. 

The Table 3 summarises the results. The results show that group size does 
affect classification. This is not surprising regarding the fact that with increasing 
sample size lower misclassification rate is expected, since increasing the number 
of observations leads to more accurate discrimination function and thus to a better 
classification procedure.  

Classification performance is also affected by rotation: with increasing rotation 
angle lower misclassification rate is expected. This is due to the fact that rotation 
diminishes group overlapping, facilitating formulation of a good discrimination 
function and, consequently, better classification (see Figure 3).  

 

Table 3: Analysis of variance table. 

Independent variables Df Sum Sq Mean Sq F value Pr (>F) Sig. 
size  2  2596.5  1298.2  3067.88 < 10–15 *** 
asymm  3  2.2  0.7  1.71 0.1624  
rotat  9  3923.0  435.9  1030.05 < 10–15 *** 
size:asymm  6  1.9  0.3  0.75 0.6053  
size:rotat  18  252.9  14.1  33.20 < 10–15 *** 
asymm:rotat  27  84.3  3.1  7.38 < 10–15 *** 
size:asymm:rotat  54  26.3  0.5  1.15 0.2069  
residuals  11880  5027.3  0.4    

   Dependent Variable: nsAPER 
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Moderate interactions are noted between the group size and rotation and 
between skewness and rotation. The former is plausibly explained by the 
combination of the group size and rotation angle effects above. The latter indicates 
that the major difference between the effects of the level of the rotation angle is 
also affected by the level of skewness. Again, this is not surprising: a small 
rotation angle in association with a high skewness may be expected to degrade 
classification performance. 
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Figure 3: 2-dimensional (xy) geometry of a simulation instance with n = 100, λ1 = 10, α 

= 80° for π1 (dark grey triangles) and n = 50, λ1 = 0, α = 0° for π2 (light grey circles). 
Note skewness in π1. 

On the other hand, skewness by itself can not be demonstrated to have any 
significant effect on classification, indicating the Fisher’s DF to be rather 
insensitive to skewness. 

Figures 4–6 (below) illustrate the stated results. (Each box in the figures shows 
the median, quartiles and extreme values within a category.) 

Figures 4 and 5 depict lowering of mean APER values with increasing sample 
size and increasing rotation angle. On the contrary, no such effect is noticeable in 
Figure 6, confirming the conclusion of no identifiable effect of skewness on 
APER. This visibly confirms that the performance of Fisher’s DF does not seem to 
be affected by skewness, thus substantiating its robustness in the presence of 
skewness induced by using SCN distributed data. 
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Figure 4: Box-plot of mean APER vs. sample size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Box-plot of mean APER vs. rotation angle. 
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Figure 6: Box-plot of mean APER vs. skewness. 

4 Conclusion 

The purpose of the experiment described in this paper was to examine the 
robustness of the Fisher's discriminant function to skewness introduced by data 
following the skew-curved normal distribution. It was, inter alia, motivated by the 
still valid statement of Krzanowski (1977) who emphasised the value of 
information on performance of the Fisher’s discriminant function in non-optimal 
conditions. Since the size of groups and their spatial orientation might also be 
expected to be involved in multivariate settings, the effects of group size and 
rotation angle was analysed, too. 

For generating multivariate non-normality we used a relatively new class of 
distributions, called skew-curved normal distributions, which include the normal 
distribution as a special case. Asymptotically, these distributions do not turn into 
the half-normal and thus provide more smooth skewness that Azzalini's skew-
normal distribution. 

Results indicate that Fisher's DF (as an allocation rule) is appreciably affected 
by sample size and rotation, while introduction of skewness could not be 
demonstrated to have any significant effect on classification. Therefore, Fisher’s 
DF seems to be rather insensitive/fairly robust to skewness introduced into the 
model via the SCN distributed simulated data. 

A possible further step in the investigation could be to assess the predictive 
performance of Fisher’s DF using another performance measure. 
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