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The ‘2n− 1 rule’

The ‘2n − 1 rule’ is an old (and innocent) joke, often told by hard working honest
mathematicians, about building a fence between good and bad mathematics. According to
this rule, n-th rate mathematicians feel comfortable only when surrounded by (2n − 1)-st
rate mathematicians, as the latter do not pose a threat to the former. This rule has a fixed
point only when n = 1, suggesting that first-rate mathematicians interact only with other
first-rate mathematicians. An alternative version replaces (2n − 1)-st rate mathematicians
by k-th rate mathematicians for k ≥ 2n−1. Clearly the 2n−1 rule is a sociological rather
than a mathematical rule, and is prone to exceptions.

One exception is that the advisor/supervisor of a first-rate mathematician need not be
a first-rate mathematician — he or she may be an average mathematician, blessed by an
exceptionally good student. Another exception, even more convincing, can be found in the
history of mathematics. Many mathematicians can find big names such as Gauss or Newton
among their academic predecessors (with help from the Mathematics Genealogy Project),
and in particular, this shows that a first-rate mathematician can end up having an academic
descendant who is not a first-rate mathematician himself/herself. And of course the 2n− 1
rule would then make it likely that at some value of n (much) greater than 1, some bad
mathematics is bound to happen. A third exception comes in the form of co-authorship. If
the 2n− 1 rule held without exceptions, then a lot of multi-author papers would be written
by first-rate mathematicians only.

We are now seeing a revival of belief in the 2n − 1 rule, in the world of mathematical
publishing. Most papers in n-th rate journals are cited in (2n− 1)-th rate journals. This is
supported by the aggressive growth of new mathematical journals, many of them published
by predatory publishers, and feeding on the APC ‘Open Access’ publishing policy. It
seems there are now too many mathematical journals, and too much mathematics is being
published these days.

If taken cum grano salis (that is, with a grain of salt), the 2n − 1 rule is an amusing
observation about quality in mathematics. Most mathematicians silently agree who are the
first-rate mathematicians, and which journals are indeed first-rate journals. A problem can
arise in isolated environments, however, when a few individuals declare themselves as first-
rate mathematicians, and then by following the 2n− 1 rule, abuse their power. This is the
main reason for not trusting blindly the 2n− 1 rule.
In our journal we do not believe in this kind of ranking. There is good mathematics and
bad mathematics, and there are good journals and bad journals. And we are very happy
that Ars Mathematica Contemporanea is a good journal, publishing good mathematics.

Dragan Marušič and Tomaž Pisanski
Editors In Chief
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Abstract

Let F be a (possibly non-simple) hypergraph and let forb(m,F ) denote the maximum
number of edges a simple hypergraph with m vertices can have if it doesn’t contain F as
a subhypergraph. A conjecture of Anstee and Sali predicts the asymptotic behaviour of
forb(m,F ) for fixed F . In this paper we prove that even finding this predicted asymptotic
behaviour is an NP-hard problem, meaning that if the Anstee-Sali conjecture were true,
finding the asymptotics of forb(m,F ) would be NP-hard.

Keywords: Forbidden configuration, hypergraph, trace, NP-hard, NP-complete, Anstee-Sali conjec-
ture.

Math. Subj. Class.: 05D05, 68R01

1 Introduction
This paper considers an extremal problem in hypergraph theory that results as a natural
generalization of Turán’s famous problem.

Some of the most celebrated extremal results are those of Erdős, Stone and Simonovits
([11], [10]). They consider the following problem: Given m ∈ N and a graph F , find
the maximum number of edges in a graph on m vertices that avoids having a subgraph
isomorphic to F .

There are a number of ways to generalize this to hypergraphs. A k-uniform hypergraph
is one in which each edge has size k. Some view k-uniform hypergraphs as the most natural
generalization of a graph (a graph is a 2-uniform hypergraph) and one might also generalize
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the forbidden subgraph problem to a forbidden k-uniform subhypergraph problem. There
are both asymptotic and exact results (e.g. [9], [13], [12]).

Forbidden Configurations is a different (but also natural) generalization that is studied
mainly by Richard Anstee and his colaborators. We consider the following problem: Given
m ∈ N and a hypergraph F , find the maximum number of edges in a simple hypergraph
(i.e. no repeated edges) H on m vertices that avoids having a subhypergraph isomorphic to
F . Surveys on the topic can be found in [1] and [14].

We find it convenient to use the language of matrices to describe hypergraphs: Each
column of a {0, 1}-matrix can be viewed as an incidence vector on the set of rows.

Definition 1.1. If α is a column and A a matrix, define λ(α,A) to be the multiplicity of α
in A. Define a matrix to be simple if it is a {0, 1}-matrix with no repeated columns (that
is, if λ(α,A) ≤ 1 for every column α).

Note that an m×n simple matrix corresponds to a simple hypergraph (or set system)
on m vertices with n distinct edges, where we allow the “empty edge”.

Definition 1.2. When A is a {0, 1}-matrix, we denote by ‖A‖ the number of columns in
A (which is the cardinality of the associated set system).

Definition 1.3. Let A and B be {0, 1}-matrices with the same number of rows. Define
the concatenation [A|B] to be the configuration that results from taking all columns of A
together with all columns of B. For t ∈ N, we define the product

t ·A := [ A | A | · · · | A︸ ︷︷ ︸
t times

].

Our objects of study are {0, 1}-matrices with row and column order information strip-
ped from them.

Definition 1.4. Two {0, 1}-matrices are said to be equivalent if one is a row and column
permutation of the other. An equivalence class is called a configuration.

Abusing notation, we will commonly use matrices and their corresponding configura-
tions interchangeably.

Definition 1.5. For a configuration F and a {0, 1}-matrix A (or a configuration A), we
say that F is a subconfiguration of A, and write F ≺ A if there is a representative of F
which is a submatrix of A. We say A has no configuration F (or doesn’t contain F as a
configuration) if F is not a subconfiguration of A. Let Avoid(m,F ) denote the set of all
simple matrices on m-rows with no subconfiguration F .

Our main extremal problem is to compute

forb(m,F ) = max
A
{‖A‖ : A ∈ Avoid(m,F )}.

Perhaps some examples are useful:

• forb

(
m,

[
1
1

])
= m+ 1, since we can take all columns with at most one 1.
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• forb

(
m,

[
1
0

])
= 2, since we may only take the column of 1’s and the column of

0’s (i.e. the empty set and the complete set).

• forb

(
m,

[
1 1
1 1

])
=
(
m
2

)
+
(
m
1

)
+
(
m
0

)
, by taking all columns with at most two 1’s.

The proof that this is indeed the maximum is easy and can be found in [14].

Let Ac denote the {0, 1}-complement of A (replace every 0 in A by a 1 and every 1 by
a 0). Note that forb(m,F ) = forb(m,F c).

Remark 1.6. Let F and G be configurations such that F ≺ G. Then forb(m,F ) ≤
forb(m,G).

We say a column α has column sum t if it has exactly t ones. Let 0m denote the
column with m rows, all of them zeros. Similarly, let 1m denote the column of m ones.

For a set of rows S, we let A|S denote the submatrix of A given by restricting the rows
of A to only those in S.

An important general result due to Füredi applies to simple and to non-simple configu-
rations.

Theorem 1.7 (Z. Füredi). Let F be a given k-rowed {0, 1}−matrix. Then forb(m,F ) is
in O(mk).

We desire more accurate asymptotic bounds. Anstee and Sali conjectured that the best
asymptotic bounds can be achieved with certain product constructions.

Definition 1.8. Let A and B be {0, 1}-matrices. We define the product A × B by taking
each column of A and putting it on top of every column of B. Here is an example of a
product:

A =

[
0 1 1
0 0 1

]
, B =

[
1 0
0 1

]
=⇒

A
×
B

=


0 0 1 1 1 1
0 0 0 0 1 1
1 0 1 0 1 0
0 1 0 1 0 1

 .
Note that this is a well defined operation in configurations.

We are interested in asymptotic bounds for forb(m,F ). Let Im be the m×m identity
matrix, Icm be the {0, 1}-complement of Im (all ones except for the diagonal) and let Tm
be the tower matrix: a matrix corresponding to a maximum chain in the partially ordered
set of the power set of the vertices. For example,

T4 =


0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 .
Anstee and Sali conjectured that the asymptotically “best” constructions avoiding a

single configuration would be products of I, Ic and T .
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Definition 1.9. Let F be a configuration. Let

Pr(a, b, c) := Ir × ...× Ir︸ ︷︷ ︸
a times

×Icr × ...× Icr︸ ︷︷ ︸
b times

×Tr × ...× Tr︸ ︷︷ ︸
c times

,

Define X(F ) to be the largest number such that there exist numbers a, b, c ∈ N with
a+ b+ c = X(F ) such that for all r ∈ N,

F ⊀ Pr(a, b, c).

Conjecture 1.10. [8] Let F be a configuration. Then forb(m,F ) is in Θ(mX(F )).

Observe thatX(F ) is always an integer. Also note that ‖Pr(a, b, c)‖ = ra+b ·(r+1)c ∈
Θ(rX(F )), so by taking r = dm/X(F )e (and perhaps deleting a constant number of rows
and therefore columns in case X(F ) - m), we have that ‖Pr(a, b, c)‖ ∈ Ω(mX(F )). So the
fact that forb(m,F ) ∈ Ω(mX(F )) is built into the conjecture.

Thus, in order to prove the conjecture, all that would be required would be to prove that
forb(m,F ) ∈ O(mX(F )) for every F . A disproof could be potentially easier, as only a
counterexample would be required.

The conjecture has been proven for all k × ` configurations F with k ∈ {1, 2, 3} and
many others cases in various papers. The proofs for k = 2 are in [4], for k = 3 in [4],
[2], [8]. For ` = 2, the conjecture was verified in [5]. For k = 4, all cases either when
the conjecture predicts a cubic bound for F or when F is simple were completed in [3].
For k = 4 and F non-simple, there are three boundary cases with quadratic bounds, one of
which is established in [6]. For k ∈ {5, 6} some results can be found in [7].

Anstee has long conjectured that even finding X(F ) given F was not a trivial task, and
the specific question of its NP-hardness was conjectured in [1], [14]. In this paper we settle
this question: finding X is indeed NP-hard. We also note that one of the decision versions
associated with this optimization problem is NP-complete, adding this function to the long
list of functions known to be NP-complete, with the interesting plus that this function is
conjectured to give the exponent of the asymptotic growth of forb.

For relatively small configurations F we have a computer program that yields the an-
swer (relatively) quickly. The source code (in C++) can be freely downloaded from:

http://matmor.unam.mx/˜mraggi/

This program can computeX(F ) forF having less than∼10 rows in just a few minutes.
This task takes merely exponential time, not doubly exponential (as it is often the case with
forbidden configuration problems). This program was written to perform many tasks other
than finding X(F ). A description of the algorithms used can be found in [14].

2 Results
There are two natural decision problems associated with X(F ): Given F and k as inputs,

1. Is it true that X(F ) < k?

2. Is it true that X(F ) ≥ k?

We prove that the first of the two decision problems is in NP by exhibiting a certificate
which can be checked in polynomial time.

The main result of this paper is the following:
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Theorem 2.1. FindingX(F ) is an NP-hard problem. In other words, should a polynomial-
time algorithm exist for finding X(F ) given F , then every problem in NP could be solved
in polynomial time. Furthermore, the problem “given F and k, is X(F ) < k?” is in NP.

Before proving this theorem, we need a few results.

Proposition 2.2. Let F be a configuration with n rows. Then X(F ) ≤ n.

Proof. Indeed, assume for the sake of contradiction that a, b, and c are such that a+b+c =
n + 1 and F ⊀ Pr(a, b, c). Every configuration of Pr(a, b, c) contains [01], therefore any
{0, 1}-column can be formed with the first n configurations of Pr(a, b, c). The n + 1-
th matrix ensures the columns of F with high multiplicity get repeated as many times as
needed.

This observation in particular implies that if a polynomial time algorithm existed for any
of the two decision versions of the problem, then we’d have a polynomial time algorithm
for finding X(F ), which together with Theorem 2.1 would make the decision version of
finding X(F ) an NP-complete problem.

A simple (but surprising) corollary of Conjecture 1.10, if it were true, would be that
repeating columns more than twice in F has no effect on the asymptotic behavior of
forb(m,F ). In other words, assuming the conjecture were true, the multiplicity of a col-
umn in a configuration would not affect the asymptotic bound and, asymptotically, it would
only matter if a column is not there (has multiplicity 0), appears once (has multiplicity 1),
or appears “multiple times” (has multiplicity 2 or more). Formally,

Proposition 2.3. Let Ft = [G|t · H] with G and H simple {0, 1}-matrices that have no
columns in common. Then X(F2) = X(Ft) for all t ≥ 2. In particular, if the conjecture
were true, then forb(m,Ft) and forb(m,F2) would have the same asymptotic behavior.

Proof. It suffices to show that given t, G, H , a, b and c, there exists an R such that for
every r ≥ R, we have

F2 = [G|2 ·H] ≺ Pr(a, b, c) ⇐⇒ Ft = [G|t ·H] ≺ Pr(a, b, c).

Since F2 ≺ Ft, we only need to prove that if F2 ≺ Pr(a, b, c) for some r, then Ft ≺
PR(a, b, c) for some R. Suppose then F2 is contained in the product Pr(a, b, c) for some r.
The idea is to find a subconfiguration of Pr(a, b, c) in which there are some columns with
multiplicity 1, and for the columns with multiplicity 2 or more, the multiplicity depends on
r, and goes to infinity as r goes to infinity. Then we may take r to be large enough so that
the multiplicity of any one column (with multiplicity of 2 or more) is larger than t.

Let x be the number of rows of Ft. Notice the following three facts, which include
definitions for EI , EIc and ET .

EI(x, r) := [(r − x) · 0x | Ix] ≺ Ir
EIc(x, r) := [(r − x) · 1x | Icx] ≺ Icr

ET (x, r) :=
⌊ r
x

⌋
· Tx ≺ Tr.

The first and second facts are easy to see; just take any subset of x rows from Ir or Icr .
The third statement is true by taking the br/xc-th row of Tr, the 2br/xc-th row of Tr, etc.,



6 Ars Math. Contemp. 10 (2016) 1–8

up to the xbr/xc-th row. For example, if r = 5 and x = 2, we may take the second and
fourth row from T5:

T5 =


0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

 =⇒ T5|{2,4} =

[
0 0 1 1 1 1
0 0 0 0 1 1

]
= ET (2, 5)

Note that in the three configurations EI(x, r), EIc(x, r) and ET (x, r), we have that
there are some columns of multiplicity 1 and there are some columns for which their mul-
tiplicity can be made as large as we wish by making r large. Formally, let E(x, r) be one
of EI(x, r) or EIc(x, r) or ET (x, r). We have that for every x-rowed column α there are
three possibilities: either λ(α,E(x, r)) = 0 for all r, or λ(α,E(x, r)) = 1 for all r, or
lim
r→∞

λ(α,E(x, r)) =∞.
If α is a column for which lim

r→∞
λ(α,E(x, r)) = ∞, we may conclude that there is an

R for which λ(α,E(x, r)) ≥ t for every r ≥ R.
Since F2 is contained in Pr(a, b, c) for some r, the columns in H will have multiplicity

at least 2 in some subset of the rows of Pr(a, b, c). We see that Ft is also a subconfiguration
of PR(a, b, c).

3 Proof of the Main Theorem
We now prove the main theorem 2.1.

Proof. First we prove that the decision problem has a certificate which can be checked
in polynomial time. A certificate that indeed X(F ) < k would have to be a proof that
F ≺ Pr(a, b, c) for each triple a, b, c for which a + b + c = k. Note that there are at
most a quadratic (with respect to the number of rows) number of a, b, c’s which satisfy the
equation, since the question has a trivial “yes” answer when k is more than the number of
rows (Proposition 2.2).

Given F andA configurations, one can easily construct a certificate that a configuration
F is indeed a subconfiguration of a configuration A: explicitly state which permutation of
F appears in exactly which rows and columns of A. For the case A = Pr(a, b, c), a
certificate only needs to specify which rows of F go inside which factors, so at most a
quadratic number of these certificates-of-being-a-subconfiguration suffice.

We now prove that finding X(F ) is NP-hard. Suppose there existed some polynomial-
time algorithm that finds X(F ) given F . We shall prove that there would then exist a
polynomial time algorithm for GRAPH COLORING. Suppose we are given a graph G and
we wish to find the minimum number of colors for which there exists a good coloring of
the graph. We may assume that no isolated vertices exist.

The idea is to construct a 3-part matrix F (G) in which the first two parts ensure there is
no T or Ic in a maximum product of the form Pr(a, b, c) with no subconfiguration F (G),
and the last part is constructed so that a partition into I ′s produces a partition of the vertices
of the graph into independent sets and vice-versa.

Suppose G has n vertices and e edges. Let M be a large number with M ≥ n+ 2 and
let S be the incidence matrix of G (i.e., the edges of G are encoded as columns with two
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1’s corresponding to the vertices that belong to the edge). Construct the following simple
matrix:

F (G) :=

 1 1MIcM
1 TM
S 0

 .
Clearly we can construct F (G) in polynomial time (with respect to the number of

vertices of G). We prove now that we have χ(G) = X(F ) − 2M + 1, which in turn
would yield a polynomial time algorithm for GRAPH COLORING, provided we had a
polynomial time algorithm for finding X(F ).

Now, let us study the possibilities for a product of type Pr(a, b, c) that does not have
F (G) as a subconfiguration for any r. If b 6= 0, then we could place all of [1|IcM ] in the Ic
part of Pr(a, b, c), so a+ b+ c would be at most 1 +M + n (using Proposition 2.2). The
same conclusion holds when c 6= 0. But if we let b = c = 0, Pr(a, 0, 0) is just a product
of I’s, so let us calculate how many I ′s we can multiply together and still not create a
subconfiguration F (G).

In order for F (G) to be a part of a product of I ′s, every row of [1|IcM ] and [1|TM ] must

be in a separate factor I, since there is no
[
1
1

]
in I (and also separate from the rows of

[S|0], since we are assuming G has no isolated vertices).

Then two rows of the [S|0] part can be in the same I if and only if there is no
[
1
1

]
in

those two rows, which, in terms of the graph, means there is no edge between those two
vertices. On the other hand, a product of χ(G) identity matrices contains the incidence
matrix of a complete χ(G)-multipartite graph. In other words, partitioning [S|0] into I’s is
equivalent to partitioning the vertices of G into independent sets. So if the graph G cannot
be colored with χ(G) − 1 colors and this is the maximum, this means that X(F ) = a =
2M + χ(G)− 1 ≥ n+M + 1. Then χ(G) = X(F (G))− 2M + 1.
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Abstract

Let p be a permutation of the set Nn = {1, 2, . . . , n}. We introduce techniques for
counting N(n; k, r, I;π), the number of even or odd restricted permutations of Nn satisfy-
ing the conditions−k ≤ p(i)−i ≤ r (for arbitrary natural numbers k and r) and p(i)−i 6∈ I
(for some set I) and π = 0 for even permutations and π = 1 for odd permutations.

Keywords: Even and odd restricted permutations, exact enumeration, recurrences, permanents.

Math. Subj. Class.: 05A15, 05A05, 11B37, 15A15

1 Introduction
Let p be a permutation of the set Nn = {1, 2, . . . , n}. So, p(i) refers to the value taken by
the function p when evaluated at a point i. A class of permutations in which the positions
of the marks after the permutation are restricted can be specified by an n× n (0, 1)-matrix
A = (aij) in which:

aij =

{
1, if the mark j is permitted to occupy the i-th place;
0, otherwise.

The following result is a well known fact on the number of restricted permutations.
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Theorem 1.1 ([1]). The number of restricted permutations is given by the permanent of a
square matrix A:

perA =
∑
p∈Sn

a1p(1)a2p(2) · · · anp(n),

where p runs through the set Sn of all permutations of Nn.

Next, we will define strongly and weakly restricted permutations (for more informa-
tions see [13]).

Definition 1.2. In strongly restricted permutations of Nn, the number ri =
∑n
j=1 aij is

uniformly small, i.e., ri ≤ K (i = 1, 2, . . . , n), where K is an integer independent of n. In
weakly restricted permutations, n− ri is uniformly small.

Let us briefly overview historical development of the topic of restricted permutations.
Probably the most well known example is the derangement problem or “le Problème des
Rencontres” (see [1] or [6]). Most of the restricted permutations considered in current
literature deal with pattern avoidance. For surveys of such studies, see [3] or [9]. For a
related topic of pattern avoidance in compositions and words see [5].

Detailed introduction to weakly restricted permutations can be found in [1]. A general
method of enumeration of permutations with restricted positions was developed by Ka-
plansky and Riordan in a series of papers (they developed the theory of rook polynomials
for these purposes—see [6], [7], [8], [18]). Lagrange, Lehmer, Mendelsohn, Tomescu and
Stanley ([12, 13, 15, 16, 20, 19]) studied particular types of strongly restricted permutations
satisfying the condition |p(i) − i| ≤ d, where d is 1, 2, or 3 (more information on their
work can be found in [1]).

Lehmer [13] classified some sets of strongly restricted permutations. The first author
showed in [1] how to handle all five types of Lehmer’s permutations. For the number of
restricted permutations in a circular case the following is known: Stanley [19, Example
4.7.7] explored type k = 2 with the transfer-matrix method, Baltić [2] used finite state
automata for type k = 2, and Li et al. [14] explored the k = 3 by expanding permanents.

An explicit technique for creating a system of the recurrence equations was given in [1],
based on a simple mapping ϕ from combinations of Nk+r+1 and some crucial differences
between the transfer-matrix Method and the newly proposed technique were given.

Krafft and Schaefer in [11] find the closed formula for the strongly restricted permuta-
tions of the set Nn satisfying the condition |p(i) − i| ≤ k, where k + 2 ≤ n ≤ 2k + 2.
Panholzer [17] and Kløve [10] made progress in symmetric cases (Panholzer used finite
state automata, while Kløve used modified transfer-matrix method based on expanding
permanent) and they found the asymptotic expansion and gave bounds for the denominator
of corresponding generating functions.

Here we pursue the more general, asymmetric cases and the cases where more num-
bers are forbidden than in the ordinary derangements for even and odd strongly restricted
permutations. Our method determines the number of restricted permutations that are even,
and the number of restricted permutations that are odd.

In Section 2 we introduce a general technique for counting N(n; k, r, I;π), the number
of even or odd restricted permutations (N(n; k, r, I;π) is defined in abstract). In Section 3
we illustrate it with several examples. Using a program that implements our technique, we
have contributed about a hundred sequences to the Sloane’s online encyclopedia of integer
sequences [21].



V. Baltić and D. Stevanović: Counting even and odd restricted permutations 11

2 CountingN(n; k, r, I;π)

We established the connection between the number of restricted permutations and the per-
manent function of a matrix A, perA, in Theorem 1 from the introduction. The Laplace
expansion of the permanent function (this is the same as for the determinant function) is
computationally inefficient for high dimension because for n × n matrices, the computa-
tional effort scales with n!. Therefore, the Laplace expansion is not suitable for large n.
However, the matrices obtained in the Laplace expansions for restricted permutations have
the regular structure, so called band matrices (a band matrix is a sparse matrix whose non-
zero entries are confined to a diagonal band, comprising the main diagonal and zero or
more diagonals on either side), and their expansions can be reduced to a system of linear
recurrence equations.

We present a general technique for counting N(n; k, r, I;π), the number of even or
odd (π = 0 for even permutations and π = 1 for odd permutations) restricted permutations
satisfying the conditions −k ≤ p(i) − i ≤ r and p(i) − i 6∈ I for all i ∈ Nn, where
k ≤ r < n, and I is a fixed subset of the set {−k + 1,−k + 2, . . . , r − 1}. Assume that I
contains x elements, |I| = x. Our technique proceeds in six steps:

1. Create C, a set of all (k + 1)-element combinations of the set Nk+r+1 containing
element k + r + 1.

2. Create D, a set of all ordered pairs D = (C, π), where C ∈ C and π ∈ {0, 1}.
3. Introduce an integer sequence aD(n) for each ordered pair D ∈ D.

4. Apply the mapping ϕ (defined below) to each ordered pair.

5. Create a system of linear recurrence equations (later we will see that these equations
correspond to the Laplace expansion of a permanent of the matrix A):

aD(n) =
∑

D′∈ϕ(D)

aD′(n− 1).

6. Solve the system to obtain equations N(n; k, r, I; 0) = a((r+1,r+2,...,r+k+1),0)(n)
and N(n; k, r, I; 1) = a((r+1,r+2,...,r+k+1),1)(n).

We next describe these steps in detail and then prove that N(n; k, r, I;π) is indeed equal
to a((r+1,r+2,...,r+k+1),π)(n).

Definition 2.1. Let C denote a set of all combinations with k + 1 elements of the set
Nk+r+1, which contain k + r + 1. We represent these combinations as strictly increasing
ordered (k + 1)-tuples.

For example, all such combinations with 3 elements of the set N5 = {1, 2, 3, 4, 5} are
represented (in reverse lexicographic order) by:

(3, 4, 5), (2, 4, 5), (2, 3, 5), (1, 4, 5), (1, 3, 5), (1, 2, 5).

In examples we will use easier notation:

345, 245, 235, 145, 135, 125.
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Definition 2.2. Let α± I denote the set α± I = {α± i | i ∈ I}.
We split the set C in two disjoint sets

C1 = {C ∈ C | 1 ∈ C} and C2 = {C ∈ C | 1 6∈ C},

but we will also separate the set C2 into x+ 1 disjoint sets

Cm2 = {C ∈ C2 | m elements of C are in r + 1− I}, (m = 0, 1, . . . , x).

Let Ck+1−m denote a Cartesian product Ck+1−m = C × C × · · · × C, where C appears
(k + 1−m) times. Let B denote the set B = {0, 1}.

We define the set of ordered pairs D = {(C, π) | C ∈ C, π ∈ B} and same as in the
case of C we will divide it into disjoint sets:

D1 = {(C, π) | C ∈ C1, π ∈ B}, D2 = {(C, π) | C ∈ C2, π ∈ B},

Dm2 = {(C, π) | C ∈ Cm2 , π ∈ B}, (m = 0, 1, . . . , x).

For each D ∈ D2 we define ordered (k + 1)-tuple

SD = (D1, D2, . . . , Dk, Dk+1)

in the following manner. We get each of the combinations Ci ∈ C from the initial combi-
nation C = (c1, c2, . . . , ck, ck+1) (pay attention that D ∈ D is D = (C, π)) by deleting
ci, decreasing all other coordinates by 1, shifting all coordinates with bigger index to one
place left and putting k + r + 1 at the end:

Ci = (c1 − 1, . . . , ci−1 − 1, ci+1 − 1, . . . , ck+1 − 1, k + r + 1).

For the parity coordinate, we have an easier condition:

πi =

{
π, i is odd,
1− π, i is even,

i.e. if i is odd the parity coordinate stays the same and if i is even the parity coordinate
changes.

In the same way as before, we also introduce D1 for each D ∈ D1:

D1 =
(
(c2 − 1, c3 − 1, . . . , ck − 1, ck+1 − 1, k + r + 1), π

)
(in this case the parity coordinate π stays the same).

Now, we get ordered (k + 1−m)-tuple SD′ =
(
D′1, D

′
2, . . . , D

′
k+1−m

)
from ordered

(k + 1)-tuple SD = (D1, D2, . . . , Dk, Dk+1) when we delete all ordered pairs
Dy = (Cy, πy) corresponding to elements cy which satisfy the condition cy ∈ r + 1− I .

Finally, we introduce the mapping

ϕ(D) =

{
ϕ1(D), D ∈ D1

ϕm2 (D), D ∈ Dm2 ,

defined by ϕ1 : D1 → D and ϕm2 : Dm2 → Dk+1−m, for m = 0, 1, . . . , x, defined by

ϕ1(D) = D1, ϕm2 (D) = SD′.
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We use these mappings to find a system of 2 ·
(
k+r
k

)
linear recurrence equations (one

equation per ordered pair, i.e. two equations per combination – one corresponding to even
permutations and another corresponding to odd permutations): if we have ϕ1(D) = D′

then we have the linear recurrence equation:

aD(n+ 1) = aD′(n)

and if we have ϕm2 (D) = (D′1, D
′
2, . . . , D

′
k+1−m) then we have the linear recurrence

equation:
aD(n+ 1) = aD′1(n) + aD′2(n) + · · ·+ aD′k+1−m

(n).

The initial conditions are: a((r+1,r+2,...,r+k+1),0)(0) = 1 and aD(0) = 0 for all
D 6= ((r + 1, r + 2, . . . , r + k + 1), 0).

This system can be easily solved, for example by using the standard method based
on generating functions. From this system of linear recurrence equations we are able
to get a linear recurrence equation and a generating function for N(n; k, r, I;π). We
will prove that N(n; k, r, I; 0) = a((r+1,r+2,...,r+k+1),0)(n) and N(n; k, r, I; 1) =
a((r+1,r+2,...,r+k+1),1)(n). Thus, from the matrix of this system, S, we can find
N(n; k, r, I;π) as the element in the first row and the first column of the matrix Sn, i.e.,
the number of the closed paths in the digraph G whose adjacency matrix is S (this obser-
vation is important because we can apply the Transfer matrix method to the matrix S). We
apply this observation to determine the computational complexity of our technique: Sn

can be computed with repeated squaring [4] in O(log2 n) operations. Hence, our technique
evaluates the number of restricted permutations more efficiently than the straightforward
techniques of filtering permutations or expanding the permanent perA.

All the generating functions that we derive using our technique are rational. We have a
system of 2 ·

(
k+r
k

)
linear recurrence equations which leads us to the upper bound for the

degree d of the denominator polynomial: d ≤ 2 ·
(
k+r
k

)
. It is sufficient to compute a finite

number of values, in particular 2 ·
(
k+r
k

)
of them, to find the generating function.

Theorem 2.3. For even permutationsN(n; k, r, I; 0) = a((r+1,r+2,...,r+k+1),0)(n) and for
odd permutations N(n; k, r, I; 1) = a((r+1,r+2,...,r+k+1),1)(n).

Proof. We establish the correspondence between combination C = (c1, c2, . . . , ck) ∈ C
and the specific matrix MC = f(C). We introduce a setMt (for a fixed t) of matrices MC

that correspond to the sequences aD0
(n) and aD1

(n), whereD0 = (C, 0) andD1 = (C, 1).
Let matrix MC = (mij) satisfies the following conditions:

1) the first k + 1 rows is definied by:

for i = 1, 2, . . . , k + 1, mij =

{
1, j + r − ci 6∈ I
0, j + r − ci ∈ I

for j = 1, 2, . . . , ci and

mij = 0 for j > ci;

2) elements in the last t− (k+1) rows satisfy: mij = 1 for −k ≤ j − i ≤ r, j − i 6∈ I
and mij = 0 otherwise.

Denote byMt the set of all t× t (t > r) matrices MC for C ∈ C.
From the matrix MC ∈ Mt, we can determine the corresponding combination

C = (c1, c2, . . . , ck) ∈ C: let ci denotes the column of the last one in the i-th row of
the matrix M , i = 1, 2, . . . , k + 1.
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So, the function f : C →Mt, defined by f(C) =MC is a bijection.

We associate an n× n matrix A = (aij) defined by:

aij =

{
1, if − k ≤ j − i ≤ r, j − i 6∈ I,
0, otherwise

with the strongly restricted permutations satisfying −k ≤ p(i) − i ≤ r and p(i) − i 6∈ I .
As stated in the introduction, the number of all permutations (even and odd) satisfying
−k ≤ p(i) − i ≤ r and p(i) − i 6∈ I is equal to perA. Notice that A ∈ Mn with
ci = r + i, where 1 ≤ i ≤ k + 1, and thus the combination corresponding to A is
(r + 1, r + 2, . . . , r + k + 1).

We next observe that the recurrence equations from step 5. (see page 11) correspond to
the expansion of the permanent of matrices fromMt by the first row (ϕ1) or by the first
column (in cases of all of ϕm2 ; note that when we skip an element cy , it corresponds to a
zero element in the first column). During this expansion we need to take care about the
parity of the permutation under construction.

First, note that at each step of construction determines the position of the smallest
of the remaining elements of the permutation. Let q denote the number of already used
elements in the construction of the restricted permutation. Define a monotonically increas-
ing sequence w of positions in the permutation which have not yet been assigned values:
w = (w1, w2, . . . , wn−q), where w1 < w2 < · · · < wn−q .

If we make an expansion by the first row (we have one in the first column), it corre-
sponds to p(w1) = q + 1 and the parity of the permutation under construction doesn’t
change because we haven’t got any new inversions.

If we make an expansion by the first column and if we have 1 in the i-th row (i.e. at
the position (i, 1) in the matrix A is 1), it corresponds to p(wi) = q + 1. There are i − 1
numbers: p(w1), p(w2), . . . , p(wi−1) which made new inversions with p(wi) = q + 1,
because all of them have not been assigned yet, so they are all greater than q + 1. So, the
parity of the permutation under construction depends on the parity of i:

• if i is even then there are odd number (i − 1) inversions, so we need to change the
parity of the permutation under construction, π′ = 1− π;

• if i is odd then there are even number (i− 1) inversions, so we don’t need to change
the parity of the permutation under construction, π′ = π.

These observations lead to the main conclusions:

N(n; k, r, I; 0) = a((r+1,...,r+k+1),0)(n)

N(n; k, r, I; 1) = a((r+1,r+2,...,r+k+1),1)(n).

3 Examples
We illustrate the technique from the previous section on two examples.

Example 3.1. We find the number of even (odd) permutations of the set Nn, satisfying the
condition −1 ≤ p(i) − i ≤ 1 for all i ∈ Nn. It is usually referred to as a permutation of
length n within distance 1.
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In this case we have k = r = 1, i.e. k + r + 1 = 3 and C = {23, 13}.
ϕ2(23, 0) = {(23, 0), (13, 1)}, ϕ1(13, 0) = {(23, 0)}, ϕ2(23, 1) = {(23, 1), (13, 0)},
ϕ1(13, 1) = {(23, 1)}, from which we get the system of linear recurrence equations:

a(23,0)(n+ 1) = a(23,0)(n) + a(13,1)(n),
a(13,0)(n+ 1) = a(23,0)(n),
a(23,1)(n+ 1) = a(23,1)(n) + a(13,0)(n),
a(13,1)(n+ 1) = a(23,1)(n),

with the initial conditions a(23,0)(0) = 1, a(13,0)(0) = 0, a(23,1)(0) = 0, a(13,1)(0) = 0. If
we substitute a(23,0)(n) = an, a(13,0)(n) = bn, a(23,1)(n) = cn and a(13,1)(n) = dn we
have a simpler form:

an+1 = an + dn, bn+1 = an, cn+1 = cn + bn, dn+1 = cn.

The initial conditions are a0 = 1, b0 = c0 = d0 = 0.

For a sequence which is denoted by a lower case letter we will denote the corresponding
generating function by the same upper case letter (an ↔ A(z), bn ↔ B(z), and so on).
We find the following system of linear equations

(
variables are A(z), B(z), C(z), D(z)

)
:

A(z)− 1

z
= A(z) +D(z),

B(z)

z
= A(z),

C(z)

z
= C(z) +B(z),

D(z)

z
= C(z)

and part of its solution that we are interested in is:

A(z) =
1− z

1− 2z + z2 − z4
, C(z) =

z2

1− 2z + z2 − z4
.

From the denominator of these generating functions 1−2z+z2−z4, we can find the linear
recurrence equations an = 2an−1 − an−2 + an−4 and cn = 2cn−1 − cn−2 + cn−4.

When we solve these equations we find the general terms of these sequences:

an =
1

2
(Fn+1 + xn) , cn =

1

2
(Fn+1 − xn) ,

where Fn denotes n-th Fibonacci number (F1 = F2 = 1, Fn+1 = Fn + Fn−1; A000045
at [21]), and xn = cos nπ3 + 1√

3
sin nπ

3 (A010892 at [21]).
The number of even permutations, an, and odd permutations, cn, both satisfying the

condition |p(i) − i| ≤ 1, for all i ∈ Nn is determined by previous formulae or by their
generating functions A(z) and C(z):

n 0 1 2 3 4 5 6 7 8 9 10 . . .
an 1 1 1 1 2 4 7 11 17 27 44 . . .
cn 0 0 1 2 3 4 6 10 17 28 45 . . .

These sequences are A005252 and A024490 at [21].

Example 3.2. We find the number of even (odd) permutations of the set Nn, satisfying the
condition p(i)− i ∈ {−2, 0, 2}.



16 Ars Math. Contemp. 10 (2016) 9–18

In this case we have k = r = 2, i.e. k + r + 1 = 5, set I = {−1, 1}, which implies
(r+ 1− I) = {2, 4} and C = {345, 245, 235, 145, 135, 125}, which is separated into sets:

C1 = {145, 135, 125}, C02 = ∅, C12 = {345, 235}, C22 = {245}.

ϕ1
2(345, 0) = {(345, 0), (235, 0)}, ϕ1

2(345, 1) = {(345, 1), (235, 1)},
ϕ2
2(245, 0) = {(135, 0)}, ϕ2

2(245, 1) = {(135, 1)},
ϕ1
2(235, 0) = {(145, 1), (125, 0)}, ϕ1

2(235, 1) = {(145, 0), (125, 1)}
ϕ1(145, 0) = {(345, 0)}, ϕ1(145, 1) = {(345, 1)},
ϕ1(135, 0) = {(245, 0)}, ϕ1(135, 1) = {(245, 1)},
ϕ1(125, 0) = {(145, 0)}, ϕ1(125, 1) = {(145, 1)}.

If we substitute a(345,0)(n) = an, a(245,0)(n) = bn, a(235,0)(n) = cn, a(145,0)(n) = dn,
a(135,0)(n) = en, a(125,0)(n) = fn, a(345,1)(n) = gn, a(245,1)(n) = hn, a(235,1)(n) = in,
a(145,1)(n) = jn, a(135,1)(n) = kn and a(125,1)(n) = `n we get the system of linear
recurrence equations:

an+1 = an + cn, gn+1 = gn + in,
bn+1 = en, hn+1 = kn,
cn+1 = jn + fn, in+1 = dn + `n
dn+1 = an, jn+1 = gn,
en+1 = bn, kn+1 = hn,
fn+1 = dn, `n+1 = jn,

with the initial conditions a0 = 1 and b0 = c0 = · · · = `0 = 0.
From this system we find the generating functions:

A(z) = 1−z−z4
1−2z+z2−2z4+2z5−z6+z8 and G(z) = z3

1−2z+z2−2z4+2z5−z6+z8 .

From the denominator of these generating functions

1− 2z + z2 − 2z4 + 2z5 − z6 + z8 = (1− z)(1 + z)(1 + z2)(1− z + z2)(1− z − z2),

we find the linear recurrence equation an = 2an−1−an−2+2an−4−2an−5+an−6−an−8
and same for gn.

When we solve this equation we find the general terms of these sequences:

an =
1

10
(Ln+2 + yn + zn) , gn =

1

10
(Ln+2 + yn − zn) ,

where Ln denotes n-th Lucas number (L1 = 1, L2 = 3, Ln+1 = Ln + Ln−1; A000032
and A000204 at [21]), yn = 2 cos nπ2 + sin nπ

2 and zn = 5, if n is congruent to 0, 1 or 2
modulo 6, and zn = 0, if n is congruent to 3, 4 or 5 modulo 6.

The number of even permutations, an, and odd permutations, gn, both satisfying the
conditions |p(i) − i| ≤ 2 and p(i) − i 6= −1, 1 is determined by previous formulae or by
their generating functions A(z) and G(z):

n 0 1 2 3 4 5 6 7 8 9 10 . . .
an 1 1 1 1 2 3 5 8 13 20 32 . . .
gn 0 0 0 1 2 3 4 7 12 20 32 . . .
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4 Concluding remarks
We have developed a technique for generating a system of linear recurrence equations that
enumerate the even and the odd strongly restricted permutations. In some cases, using the
digraph corresponding to the matrix of the system we can establish a connection between
restricted permutations and restricted compositions. Using a program that implements this
technique, we have contributed 96 sequences, A241975–A242070, to the Online encyclo-
pedia of integer sequences [21].

We thank anonymous referees for carefully reading the manuscript and helpful sugges-
tions which led to considerable improvements in presentation of results.
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1 Introduction
Let G be a graph. A G-design of order n is a pair (S,B) where B is a collection of
subgraphs (blocks), each isomorphic to G, which partitions the edge set of the complete
undirected graph Kn with vertex set S. After determining the spectrum for G-designs
for different graphs G, many problems have been studied also recently (for example, see
[1]-[7]).

A Steiner triple system (more simply, triple system) of order n is a G-design of order n
where G is the graph K3. It is well known that the spectrum for triple systems is precisely
the set of all n ≡ 1 or 3 (mod 6) [9], and that if (S, T ) is a triple system of order n, then
|T | = n(n − 1)/6. Similarly, a 6-cycle system of order n is a G-design of order n where
G is 6-cycle. The spectrum for 6-cycle systems is precisely the set of all n ≡ 1 or 9 (mod
12) [15], and if (X,C) is a 6-cycle system of order n, then |C| = n(n− 1)/12. It is worth
noting that if (S, T ) and (X,C) have order n, then |T | = 2|C|.

Given the fact that triple systems and 6-cycle systems coexist for all n ≡ 1 or 9 (mod
12), an obvious question to ask is: are there any connections between the two when n ≡
1 or 9 (mod 12)? The answer, of course, is yes. One much studied connection is that of
2-perfect 6-cycle systems. A 6-cycle system is 2-perfect provided the collection of triples
obtained by replacing each 6-cycle (a, b, c, d, e, f) with the two triples (a, c, e) and (b, d, f)
is a Steiner triple system. Such systems exist for all n ≡ 1 or 9 (mod 12) ≥ 13 [15].

Quite recently a new connection between triple systems and 6-cycle systems has been
introduced: the squashing of a 6-cycle system into a Steiner triple system. A definition
is in order. Let (a, b, c, d, e, f) be a 6-cycle and form the following six bowties (a pair of
triples with a common vertex).
IfB is any one of the six bowties in Figure 1, we say that we have squashed (a, b, c, d, e, f)
into B. So there are six different ways to squash a 6-cycle into a bowtie. If (X,C) is a
6-cycle system, 2|C| = 2n(n − 1)/12 = n(n − 1)/6 is the number of triples in a Steiner
triple system. Therefore it makes sense to ask the following question: what is the spectrum
for 6-cycle systems that can be squashed into Steiner triple systems? In [11], a complete
solution is given to this problem by constructing for every n ≡ 1 or 9 (mod 12) a 6-cycle
system that can be squashed into a Steiner triple system.

Example 1.1. (A 6-cycle system of order 9 squashed into a triple system [11].)

(0,1,2,3,4,5) (0,1,2)(0,4,5)
(3,6,0,2,4,1) (3,6,0)(3,4,1)
(2,8,4,0,3,7) SQUASH (2,8,4)(2,3,7)
(7,0,8,6,5,1) −→ (7,0,8)(7,5,1)
(6,1,8,5,7,4) (6,1,8)(6,7,4)
(5,2,6,7,8,3) (5,2,6)(5,8,3)

Now if n ≡ 3 or 7 (mod 12) there does not exist a 6-cycle system of order n. However,
there does exist a maximum packing (max packing) of Kn with 6-cycles with leave a triple
(i.e., a pair (X,C) and a set L, the leave, where C is a collection of edge disjoint 6-cycles
with verteces in X , L is the set of the edges of Kn not belonging to any 6-cycle of C and
|L| is as small as possible) and so the following question makes sense. Does there exist for
each n ≡ 3 or 7 (mod 12) a max packing of Kn with 6-cycles which can be squashed into
bowties so that the bowties plus the leave (a triple) form a Steiner triple system?
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Figure 1

Example 1.2. (A max packing of K7 squashed into a triple system [11].)

(2,3,4,5,0,1) SQUASH (2,1,0)(2,3,4)
(4,6,0,2,5,1) −→ (4,1,5)(4,0,6)
(5,6,2,4,0,3) (5,3,0)(5,6,2)
(1,3,6) leave −→ (1,3,6)

The following theorem is proved in [11].

Theorem 1.3. [11] There exists a 6-cycle system of every order n ≡ 1 or 9 (mod 12) that
can be squashed into a triple system and a 6-cycle maximum packing that can be squashed
into a triple system for every n ≡ 3 or 7 (mod 12), n ≥ 7.

The object of this paper is to finish off the problem of squashing maximum packings
of Kn with 6-cycles into maximum packings of Kn with triples. We need to be a bit more
precise.

Let (X,C) be a maximum packing of Kn with 6-cycles with leave L. In what follows,
to keep the vernacular from getting out of hand, to say that C has been squashed means
that the resulting collection S(C) of bowties is a partial triple system.

Further, if t is a triple belonging to L and S(C) ∪ {t} is a maximum packing of Kn

with triples (or a triple system), we will say that we have squashed (X,C) into a maximum
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packing of Kn with triples. So, for example, Example 1.2 is the squashing of a maximum
packing of K7 with 6-cycles into a triple system of order 7.

The following easy to read table gives the leaves for max packings for both 6-cycles
and triples not covered by Theorem 1.3. (See [8] and [13].)

Kn 6-cycles leave triples leave
n ≡ 0, 2, 6, 8 (mod 12) 1-factor 1-factor

n ≡ 5 (mod 12) 4-cycle 4-cycle

n ≡ 11 (mod 12) t tt
�
�
T
T t tt t

4 leaves are possible
t tt t

n ≡ 4 or 10 (mod 12)
t tt
�
�
T
T��QQ tt tt tt tt · · · tt

22 leaves are
possible for n ≥ 16

t""
b
b
ttt tt tt tt · · · tt

tripole [13]

We remark that if n ≡ 0, 2, 6, 8 or 5 (mod 12) and a 6-cycle maximum packing can
be squashed, there are no triples to be added; i.e., the resulting collection of bowties is a
maximum packing of Kn with triples. If n ≡ 4, 10 or 11 (mod 12) and a 6-cycle maximum
packing can be squashed, then a triple is taken from the 6-cycle leave in order to obtain a
maximum packing of Kn with triples.

2 Preliminaries
From now on to say that the 6-cycle (a, b, c, d, e, f) is squashed we will always mean that
it has been squashed into the bowtie (a, b, c)(a, e, f); see Figure 2.
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Figure 2

So, for example, in Example 1.1 we can simply list the 6-cycles (without listing the
bowties they have been squashed into) and say they can be squashed into a triple system.

The following three examples are used repeatedly in what follows.

Example 2.1. (A max packing of K6 with 6-cycles squashed into a max packing of K6

with triples.)

C = {(5, 0, 1, 2, 4, 3), (2, 3, 1, 5, 4, 0)}, leave L = {(0, 3), (1, 4), (2, 5)}. (There are no
triples in the leave.)
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Example 2.2. (A max packing of K8 with 6-cycles squashed into a max packing of
K8 with triples.)

X = Z4 × Z2; C = {(00, 30, 11, 20, 31, 01), (10, 00, 21, 30, 01, 11), (20, 10, 31, 00, 11, 21),
(30, 20, 01, 10, 21, 31)}, leave L = {(00, 20), (10, 30), (01, 21), (11, 31)}. (There are no
triples in the leave.)

Example 2.3. (Decomposition of K4,4,4 into 6-cycles squashed into triples.) (An obvi-
ous definition.)

X = Z4×{1, 2, 3};C = {(12, 13, 01, 02, 03, 11), (02, 23, 01, 12, 03, 21), (11, 02, 33, 01, 22,
13), (01, 32, 33, 11, 22, 03), (32, 11, 23, 12, 31, 03), (12, 21, 23, 32, 31, 33), (31, 02, 13, 21,
22, 23), (21, 32, 13, 31, 22, 33)}. (There is no leave.)

3 Basic Lemmas
With the examples of Section 2 in hand we can go to the general constructions, where
we shall make use of GDDs. Let H be a set of integers and X be a set of size n; a
GDD(n,H, k) is a triple (X,G,B) where G is a partition of X into subsets called groups
of size in H , B is a set of subsets of X (called blocks) of size k, such that a group and
a block contain at most one common point and every pair of points from distinct groups
occurs in exactly one block. A PBD is a GDD(n, {1}, k).

We break the constructions into the eight cases: 2, 6, 8; 0; 11; 4, 10; 5 (mod 12).

3.1 n ≡ 2, 6 and 8 (mod 12)

These are the easiest cases, so a good place to start.
n ≡ 2 (mod 12) Write 12k + 2 = 2(6k + 1) and let (X,T ) be a Steiner triple system of
order 6k + 1. Let S = X × {1, 2} and define a collection C of 6-cycles as follows: For
each triple t = {a, b, c} ∈ T define a copy of Example 2.1 on {a, b, c} × {1, 2} with leave
Lt = {(a1, a2), (b1, b2), (c1, c2)} and put these 6-cycles in C. Then C is a max packing
of K12k+2 with 6-cycles with leave L = {Lt| t ∈ T}. Trivially, C can be squashed into a
max packing of K12k+2 with triples with leave L.
n ≡ 6 (mod 12) The case for n = 6 is handled with Example 2.1. So now write 12k+6 =
2(6k + 3) and proceed exactly as in the case n ≡ 2 (mod 12).
n ≡ 8 (mod 12) Write 12k+8 = 2(6k+4). The case n = 8 is handled by Example 2.2.
So let 12k + 8 ≥ 20. It is well kown that there is a PBD with block sizes 3 and 4 for every
n ≡ 4 (mod 6) [13]. Let (X,B) be such a PBD, |X| ≡ 4 (mod 6), and proceed exactly as
in the cases for n ≡ 2 or 6 (mod 12), using Example 2.2 as well as Example 2.1.

Lemma 3.1. There exists a max packing of Kn with 6-cycles that can be squashed into a
max packing of Kn with triples for all n ≡ 2, 6, 8 (mod 12) ≥ 6.

3.2 n ≡ 0 (mod 12)

We begin with an example.

Example 3.2. (n = 12)

Let X = {∞1,∞2} ∪ Z10 and define a collection of 6-cycles C as follows:



24 Ars Math. Contemp. 10 (2016) 19–29

(0,∞1, 2, 1, 3, 6), (2,∞2, 4, 3, 5, 8), (4,∞1, 6, 5, 7, 0), (6,∞2, 8, 7, 9, 2)
(8,∞1, 9, 0, 1, 4), (1,∞1, 3, 0, 2, 7), (3,∞2, 5, 2, 4, 9), (5,∞1, 7, 4, 6, 1),
(7,∞2, 9, 6, 8, 3), (0,∞2, 1, 8, 9, 5),

with leave L = {(0, 8), (1, 9), (2, 3), (4, 5), (6, 7), (∞1,∞2)}. Then (X,C) is a max
packing of K12 with 6-cycles and can be squashed into a max packing of K12 with triples
with leave L.

We will need two constructions for 12k ≥ 24: one when k is even and one when k is
odd.
12k, k even Write 12k = 4(3k) and let (P,G,B) be a GDD(3k, {2}, 3), set X =
P × {1, 2, 3, 4} and define a collection of 6-cycles C as follows:

(i) For each group g ∈ G place Example 2.2 on g × {1, 2, 3, 4} with leave Lg = {g ×
{1}, g × {2}, g × {3}, g × {4}} and place these 6-cycles in C.

(ii) For each triple t = {a, b, c} ∈ B place a copy of Example 2.3 on K4,4,4 with parts
{a} × {1, 2, 3, 4}, {b} × {1, 2, 3, 4}, and {c} × {1, 2, 3, 4} and place these 6-cycles
in C.

Then (X,C) is a max packing ofK12k with 6-cycles with leave L = {g×{1}, g×{2}, g×
{3}, g × {4} | g ∈ G}. It is straightforward to see that the 6-cycles in (i) and (ii) can be
squashed into a max packing of K12k with triples with leave L.
12k, k odd Write 12k = 4(3k). Since k is odd, 3k is the order of a Kirkman triple system
(P, T ). LetX = P ×{1, 2, 3, 4}, π a parallel class in T , and define a collection of 6-cycles
C as follows:

(i) For each triple t = {a, b, c} ∈ π, place a copy of Example 3.2 on {a, b, c} ×
{1, 2, 3, 4} with leave Lt and place these 6-cycles in C.

(ii) For each triple {a, b, c} ∈ T \ π, place a copy of Example 2.3 on K4,4,4 with parts
{a}× {1, 2, 3, 4}, {b}× {1, 2, 3, 4}, and {c}× {1, 2, 3, 4}, and place these 6-cycles
in C.

Then (X,C) is a max packing of K12k with 6-cycles with leave L = {Lt| t ∈ π}. Squash-
ing these 6-cycles produces a max packing of K12k with triples with leave L.

Lemma 3.3. There exists a max packing of Kn with 6-cycles that can be squashed into a
max packing of Kn with triples for all n ≡ 0 (mod 12).

3.3 n ≡ 11 (mod 12)

We begin with an example.

Example 3.4. (n = 11)

Let X = Z9 ∪ {∞1,∞2} and define a collection of 6-cycles C as follows:

(4, 8,∞2, 7,∞1, 0), (5, 0,∞2, 4,∞1, 1), (6, 1,∞2, 5,∞1, 2), (7, 2,∞2, 6,∞1, 3)
(3, 2, 5, 7, 0, 1), (7, 4, 5, 3, 0, 6), (4, 3, 6, 8, 1, 2), (8, 5, 6, 4, 1, 7)
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with leave L = {(∞1,∞2, 3, 8), (0, 2, 8)}. Then (X,C) is a max packing of K11 with
6-cycles with leave L. Squashing these 6-cycles and adding (0, 2, 8) from the leave L gives
a max packing of K11 with triples with leave the 4-cycle (∞1,∞2, 3, 8).

We can now give a general construction for 11 (mod 12) ≥ 23.
12k + 11 ≥ 23 Write 12k + 11 = 2(6k + 4) + 3. Let (P,G,B) be a GDD(6k +
4, {4∗, 2}, 3) [13], set X = {∞1,∞2,∞3} ∪ (P × {1, 2}), and define a collection of
6-cycles C as follows:

(i) Let b∗ be the unique group of size 4 and define a copy of Example 3.4 on {∞1,∞2,
∞3}∪(b∗×{1, 2}) with leaveL = {(∞1,∞2,∞3), (x, y, z, w)}, where {x, y, z, w}
⊆ b∗ × {1, 2} and place these 6-cycles in C.

(ii) For each group g ∈ G of size 2, define a copy of a max packing of K7 with 6-cycles,
with vertex set {∞1,∞2,∞3}∪(b×{1, 2}), that can be squashed into 6-triples with
leave (∞1,∞2,∞3) [11]. Add these 6-cycles to C.

(iii) For each triple t = {a, b, c} ∈ B, place a copy of Example 2.1 on t × {1, 2} with
leave {a} × {1, 2}, {b} × {1, 2}, and {c} × {1, 2} and place these 6-cycles in C.

Then (X,C) is a max packing of K12k+11 with 6-cycles with leave L in (i). If we squash
these 6-cycles and add the triple (∞1,∞2,∞3) from the leave L in (i) we have a max
packing of K12k+11 with triples with leave (x, y, z, w) in (i).

Lemma 3.5. There exists a max packing of Kn with 6-cycles that can be squashed into a
max packing of Kn with triples for all n ≡ 11 (mod 12).

3.4 n ≡ 4 or 10 (mod 12)

The following three examples are necessary for the constructions in this section.

Example 3.6. (n = 10)

LetX = {∞}∪ (Z3×Z3) and define a collection of 6-cycles C as follows: (01, 11, 00, 12,
02,∞), (12, 21, 00, 01, 02, 10), (11, 21, 10, 22, 12,∞), (22, 01, 10, 11, 12, 20), (21, 01, 20,
02, 22,∞), (02, 11, 20, 21, 22, 00) with leave L = {{∞, 20, 10, 00}, (01, 12), (11, 22),
(21, 02)}. (We remark that {∞, 20, 10, 00} is a copy of K4 and not a 4-cycle.) Then
(X,C) is a max packing of K10 with 6-cycles with leave L. If we squash these 6-cycles
and remove a triple from {∞, 20, 10, 00}, the result is a max packing of K10 with triples
with leave the tripole K1,3 ∪ {(01, 12), (11, 22), (21, 02)}.

Example 3.7. (n = 16)

Let X = {∞1,∞2,∞3,∞4} ∪ {ij | i ∈ Z6, j ∈ {0, 1}}. Further, for each i ∈ Z6,
define α(i) = ∞1 if i is odd and ∞2 if i is even. For each i ∈ Z6 define a collection
of 6-cycles C as follows: (i1, i0, (4 + i)1, (2 + i)1, (1 + i)1, α(i)), (i0, (1 + i)1, (4 +
i)0, (2 + i)0, (1 + i)0, α(i)), and (i0, (2 + i)1,∞3, (1 + i)0,∞4, (5 + i)1) with leave
L = {∞1,∞2,∞3,∞4} ∪ {(ij , (3 + i)j) | i ∈ {0, 1, 2}, j ∈ {0, 1}}. (Once again
we remark that {∞1,∞2,∞3,∞4} is a copy of K4.) Then (X,C) is a max packing of
K16 with 6-cycles with leave L. If we squash these 6-cycles and remove a triple from
{∞1,∞2,∞3,∞4}, the result is a max packing of K16 with triples, with leave the tripole
K1,3 ∪ {(ij , (3 + i)j) | i ∈ {0, 1, 2}, j ∈ {0, 1}}.

Example 3.8. (n = 28)
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Let X = {∞1,∞2,∞3,∞4} ∪ (Z12 × {1, 2}), and let (P,G,B) be a GDD(12, {3}, 4)
(equivalent to a pair of orthogonal quasigroups of order 3) and define a collection of 6-
cycles C as follows:

(i) For each group g ∈ G, place a copy of Example 3.6 on {∞1,∞2,∞3,∞4} ∪ (g ×
{1, 2}) with leave {∞1,∞2,∞3,∞4} ∪ {(x1, x2) | x ∈ g} (with K4 based on
{∞1,∞2,∞3,∞4}).

(ii) For each block b ∈ B place a copy of Example 2.2 on b × {1, 2} with leave
{{x1, x2} | x ∈ b}.

Then (X,C) is a max packing of K28 with 6-cycles with the leave in (i). Now squashing
the 6-cycles in (i) and (ii) and removing a triple from K4 gives a max packing of K28 with
triples with leave a tripole.

We can now go to the general constructions for n ≡ 10 (mod 12), n ≥ 22 and n ≡ 4
(mod 12), n ≥ 40.
n ≡ 10 (mod 12), n ≥ 22 Write 12k + 10 = 2(6k + 5) and let (P,B) be a PBD(6k +
5, {5∗, 3}) [13]. Set X = P × {1, 2} and define a collection C of 6-cycles as follows:

(i) Let b∗ be the unique block of size 5 and define a copy of Example 3.6 on b∗×{1, 2}
and place these 6-cycles in C. (The leave is K4 ∪ {1-factor}.)

(ii) For each triple t = {a, b, c} ∈ B, define a copy of Example 2.1 on t × {1, 2} with
leave {(a1, a2), (b1, b2), (c1, c2)} and place these 6-cycles in C.

Then (X,C) is a max packing of K12k+10 with 6-cycles with leave K4 ∪ {1-factor}.
Squashing the 6-cycles in C and removing a triple from the leave in (i) produces a max
packing of K12k+10 with triples with leave a tripole.
n ≡ 4 (mod 12), n ≥ 40 Write 12k+4 = 4+2(6k) and let (P,G,B) be a GDD(6k, {6},
3) [13]. Set X = {∞1,∞2,∞3,∞4} ∪ (P × {1, 2}) and define a collection of 6-cycles
as follows:

(i) For each group g ∈ G define a copy of Example 3.7 on{∞1,∞2,∞3,∞4} ∪ (g ×
{1, 2}) with leave K4 ∪ {(x1, x2) | x ∈ G} (K4 is based on {∞1,∞2,∞3,∞4}).

(ii) For each triple t = {a, b, c} ∈ B, define a copy of Example 2.1 on t × {1, 2} with
leave {(a1, a2), (b1, b2), (c1, c2)} and place these 6-cycles in C.

Then (X,C) is a max packing of K12k+4 with 6-cycles. Squashing the 6-cycles in C and
removing a triple from the leave K4 in (i) produces a max packing of K12k+4 with triples
with leave a tripole.

Lemma 3.9. There exists a max packing of Kn with 6-cycles that can be squashed into a
max packing of Kn with triples for all n ≡ 4 or 10 (mod 12) ≥ 6.

3.5 n ≡ 5 (mod 12)

This case requires three examples.

Example 3.10. (n = 17)
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Let X = {∞1,∞2} ∪ Z15 and define a collection of 6-cycles C as follows:
{(0, 9, 4, 5, 1, 3)+i | i ∈ Z15}∪{(7, 14,∞2, 13,∞1, 0), (8, 0,∞2, 7,∞1, 1), (9, 1,∞2, 8,
∞1, 2), (10, 2, ∞2, 9,∞1, 3), (11, 3,∞2, 10,∞1, 4), (12, 4,∞2, 11,∞1, 5), (13, 5,∞2,
12,∞1, 6)} with leave the 4-cycle (∞1,∞2, 6, 14). Squashing all of the 6-cycles in C
produces a max packing of K17 with triples with leave the 4-cycle (∞1,∞2, 6, 14).

Example 3.11. (n = 29)

Let X = {∞1,∞2} ∪ Z27 and define a collection of 6-cycles C as follows:
{(0, 3, 1, 5, 4, 9) + i, (0, 16, 10, 17, 7, 15) + i | i ∈ Z27} ∪ {(14, 0,∞2, 13,∞1, 1) +
j ∈ {0, 1, 2, ..., 11}, (13, 26,∞2, 25,∞1, 0)} with leave the 4- cycle (∞1,∞2, 12, 26).
Squashing the 6-cycles in C gives a max packing of K29 with triples with leave the 4-cycle
(∞1,∞2, 12, 26).

Example 3.12. (n = 53)

Let X = {∞1,∞2} ∪ Z51 and define a collection of 6-cycles C as follows:
{(0, 3, 1, 5, 4, 21)+i, (0, 19, 9, 20, 11, 23)+i, (0, 24, 8, 15, 7, 22)+i, (0, 20, 6, 11, 5, 18)+
i | i ∈ Z51} ∪ {(26, 0,∞2, 25,∞1, 1)+ j | j ∈ {0, 1, 2, . . . , 23}} ∪ {(25, 50,∞2, 49,∞1,
0)}with leave the 4-cycle (∞1,∞2, 24, 50). Squashing these 6-cycles gives a max packing
of K53 with triples with leave the 4-cycle (∞1,∞2, 24, 50).

We can now give two general constructions to finish off the case n ≡ 5 (mod 12).
12k + 5, k odd Write 12k+5 = 1+4(3k+1). Since k is odd, 1+4(3k+1) = 1+4(6t+4).
Let (P,G,B) be a GDD(6t, {4∗, 2}, 3), set X = {∞} ∪ (P × {1, 2, 3, 4}) and define a
collection of 6-cycles as follows:

(i) For the unique group b∗ of size 4, define a copy of Example 3.10 on {∞} ∪ (b∗ ×
{1, 2, 3, 4}) (the leave is a 4-cycle) and place these 6-cycles in C.

(ii) For each group g of size 2, define a copy of Example 1.1 on {∞}∪ (g×{1, 2}) and
place these 6-cycles in C. (There is no leave.)

(iii) For each triple {a, b, c} ∈ B, place a copy of Example 2.3 on {a, b, c} × {1, 2, 3, 4}
with parts {a} × {1, 2, 3, 4}, {b} × {1, 2, 3, 4}, {c} × {1, 2, 3, 4}, and place these
6-cycles in C. (There is no leave.)

Then (X,C) is a max packing of K12k+5 with 6-cycles with leave a 4-cycle. If we squash
the 6-cycles in (i), (ii) and (iii), we have a max packing of K12k+5 with triples with leave a
4-cycle.
12k + 5, k even Write 12k + 5 = 1 + 4(3k + 1). Since k is even, 1 + 4(3k + 1) =
1+4(6t+1). Since 12k+5 ≥ 77, 6t+1 ≥ 19, and there exists a GDD(6t+1, {7∗, 3}, 3)
[11] (P,G,B). Define a collection C of 6-cycles on X = {∞} ∪ (P × {1, 2, 3, 4}) as
follows:

(i) For the unique group b∗ of size 7, define a copy of Example 3.11 on {∞} ∪ (b ×
{1, 2, 3, 4}) (with leave a 4-cycle) and place these 6-cycles in C.

(ii) For each group g of size 3, place a copy of a 6-cycle system of order 13 which can be
squashed into a triple system [11] (no leave) on {∞} ∪ (g × {1, 2, 3, 4}) and place
these 6-cycles in C.

(iii) For each triple {a, b, c} ∈ B, place a copy of Example 2.3 on {a, b, c} × {1, 2, 3, 4}
with parts {a} × {1, 2, 3, 4}, {b} × {1, 2, 3, 4}, {c} × {1, 2, 3, 4}, and place these
6-cycles in C. (There is no leave.)
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Then (X,C) is a max packing of K12k+5 with 6-cycles with leave the 4-cycle in (i).
Squashing the 6-cycles in (i), (ii) and (iii) produces a max packing of K12k+5 with triples
with leave the 4-cycle in (i).

Lemma 3.13. There exists a max packing of Kn with 6-cycles that can be squashed into a
max packing of Kn with triples for all n ≡ 5 (mod 12) ≥ 17.

4 Main result and further developments
Putting together the results in Section 3 gives the following theorem.

Theorem 4.1. For each n ≡ 0, 2, 4, 5, 6, 8, 10, 11 (mod 12), n ≥ 6, there exists a max
packing of Kn with 6-cycles that can be squashed into a max packing of Kn with triples.
There are no exceptions.

Since a complete solution is also a max packing, we can combine Theorem 1.3 and
Theorem 8.1 into the following corollary (giving a complete solution to the squashing of
max packings of 6-cycles into max packings with triples).

Corollary 4.2. For each n ≥ 6, there is a max packing of Kn with 6-cycles that can be
squashed into a max packing of Kn with triples.

In this paper we give a complete solution to the problem of squashing maximum pack-
ings of Kn with 6-cycles into maximum packings of Kn with triples. An open problem is
to solve the general case, i.e. squashing a maximum packing of Kn with 2m-cycles into a
maximum packing of Kn with m-cycles; the case m = 4 is completely solved in [10] .
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1 Introduction
A fundamental problem that appears in the design of cellular networks is to assign sets of
frequencies to transmitters in order to avoid the unacceptable interferences. The number
of frequencies demanded at a transmitter may vary between transmitters. The problem
appeared in the sixties and was soon related to the graph multicoloring problem (the formal
definition is given on page 33), see the early survey [5]. It received an enormous attention
in the nineties and is still of considerable interest (see [1] and the references there). Besides
the mobile telephony there are several applications of frequency assignment including radio
and television broadcasting, military applications, satellite communication and wireless
LAN [1]. A sizable part of theoretical studies is concentrated on the simplified model
when the underlying graph which has to be multicolored is a subgraph of triangular grid
(see [12, 13, 5]). This is a natural choice because it is well known that hexagonal cells
provide a coverage with the optimal ratio of the distance between centers compared to the
area covered by each cell. Such graphs are called hexagonal graphs [18, 19, 21]. Indeed, the
model is a reasonable approximation for the rural cellular networks where the underlying
graph is often nearly planar, and a popular example are the sets of benchmark problems
based on the real cellular network around Philadelphia [2] (see the FAP website [29]).

Although the multicoloring (the formal definition is given on page 33) of hexagonal
graphs seems to be a very simplified optimization problem, some interesting mathematical
questions were asked at the time that are still open. An example is the conjecture of Mc-
Diarmid and Reed saying that the multichromatic number (the formal definition is given
on page 33) of any hexagonal graph G is between ω(G) and 9ω(G)/8, where ω(G) is the
weighted clique number [12]. On the other hand, the hexagonal graph model is known to
be practically useless in urban areas, where high concrete buildings on the one hand pre-
vent propagation of the radio signals and on the other hand allow very high concentration
of users. Loosely speaking, a three dimensional model may be needed in contrast to the
hexagonal graphs that are a good model for two dimensional networks. In this paper we
discuss a generalization of the multicoloring problem on hexagonal graphs from the planar
case to three dimensions. It is well known that hexagonal cells of the same size with centers
positioned in the triangular grid provide an optimal coverage of the plane. Optimality here
means the best ratio between the diameter and the area covered by the cell. The situation is
much more interesting in three dimensions. Obviously, optimal cells would be nearly balls,
and the question is how to position the centers of the balls to achieve the optimal diameter
to volume ratio. The famous Kepler conjecture was a longstanding conjecture about the
ball packing in three-dimensional Euclidean space. It says that no arrangement of equally
sized balls filling space has greater average density than that of the cubic close packing
(face-centered cubic) and the hexagonal close packing arrangements. The density of these
arrangements is slightly greater than 74%. It may be interesting to note that the solution
of Kepler’s conjecture is included as a part of the 18th problem in the famous Hilbert’s
problem list back in 1900 [22]. Recently Thomas Hales, following an approach suggested
by Fejes Tóth, published a proof of the Kepler conjecture. For more details, see [6, 7].

Given an optimal arrangement of balls, we define a graph by taking the balls (or centers
of balls) as vertices and connect each pair of touching balls with an edge. Nonnegative
demands are assigned to each vertex and we are interested in multicoloring of the graph
induced on vertices of positive demand. Loosely speaking, we generalize the problem of
multicoloring of hexagonal graphs from two dimensions to three dimensions. The question
“What ratio χ(G)/ω(G) can be obtained by a generalization of 2-dimensional algorithm
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to 3-dimensional algorithm” has been asked at the Oberwolfach seminar Algorithmische
Graphentheorie [28] and we are not aware of any result since then.

More formally, we are interested in multicoloring of weighted graphs G = (V (G),
E(G), d), where V = V (G) is the set of vertices, E = E(G) is the set of edges, and d as-
signs a positive integer d(v) to vertex v ∈ V . d(v) is the weight of a vertex, here also called
demand. Adjacent vertices are called neighbors. The degree of a vertex, degG(v) = deg(v)
is the number of neighbors of v. A proper multicoloring ofG is a mapping f from V (G) to
subsets of integers such that |f(v)| ≥ d(v) for any vertex v ∈ V (G) and f(v) ∩ f(u) = ∅
for any pair of adjacent vertices u and v in the graph G. The minimum number of col-
ors needed for a proper multicoloring of G, χm(G), is called the multichromatic number.
Another invariant of interest in this context is the (weighted) clique number, ω(G), de-
fined as follows: The weight of a clique of G is the sum of demands on its vertices and
ω(G) is the maximal clique weight on G. Clearly, χm(G) ≥ ω(G). Hexagonal graph is
the graph induced on vertices of triangular grid of positive demand. Or, in other words,
cells of hexagonal grid are assigned non-negative integer demands, and the graph is com-
posed by taking cells with positive demand as vertices and two vertices whose hexagons
share an edge are regarded to be adjacent. In the 3-dimensional case we will consider
optimal arrangements of balls, and define a graph by taking balls (with positive demand)
as vertices, and connect touching balls by edges. We call these graphs the cannonball
graphs as Keplers motivation for studying the arrangements of balls was optimal arrange-
ment of cannonballs. McDiarmid and Reed proved in [12] that multicoloring of hexagonal
graphs is NP-complete. In the last decade there were several results on upper bounds
for the multichromatic number in terms of weighted clique number for hexagonal graphs,
some of which also provide approximation algorithms that are fully distributed and run
in constant time [8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 15, 21, 23, 24, 25, 27]. The best
known approximation ratios are χm(G) ≤ (4/3)ω(G) + O(1) in general [12, 14, 18] and
χm(G) ≤ (7/6)ω(G)+O(1) for triangle free hexagonal graphs [8, 15, 16]. The conjecture
of McDiarmid and Reed: χm(G) ≤ (9/8)ω(G) +O(1) remains an open problem [12].

Since multicoloring of cannonball graphs is an extension of multicoloring of hexagonal
graphs, it is NP-complete. No approximation algorithm and no upper bound was previ-
ously known for the multichromatic number of cannonball graphs. Here we give two upper
bounds, where the first is easily implied by known results for hexagonal graphs (because
a layer in a cannonball graph is a hexagonal graph) and the second is an improvement of
the first upper bound using some structural properties of the cannonball graphs. In both
cases, the constructions are given, thus providing polynomial-time approximation algo-
rithms. The main result of this paper that gives the first answer to a problem asked in [28]
is

Theorem 1.1. There is a polynomial-time approximation algorithm for multicoloring can-
nonball graphs which uses at most 11

6 ω(G) + 25
6 colors.

The paper is organized as follows. In the next section we formally define some basic
terminology. In Section 3, we present an overview of the algorithm, while in Section 4 we
provide a proof of Theorem 1.1. In the last Section we give some ideas for further work.

2 Hexagonal and cannonball graphs
First we formally define hexagonal and cannonball graphs. Recall the formal definition
of hexagonal graphs: the position of each vertex is an integer linear combination x~p +
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y~q of two vectors ~p = (1, 0) and ~q = ( 1
2 ,
√
3
2 ) and the vertices of the triangular grid

are identified with pairs (x, y) of integers. Put an edge connecting two vertices if the
points representing the vertices are at Euclidean distance one in the triangular grid (in other
words, when the corresponding hexagonal cells are adjacent). To construct a hexagonal
graph G, positive weights are assigned to a finite subset of points in the grid and G is
the subgraph induced on V (G), the set of grid vertices with positive weights. Cannonball
graphs are constructed in a similar way. However, we have many possibilities already when
constructing the underlying grid, which, loosely speaking, consists of tetrahedrons and will
be called tetrahedron grid T ∈ G, where G is an infinite family of such grids. We will
construct a cannonball graph starting from a fixed grid, which in turn however can be one
of many possible grids that arrise from optimal ball packings.

Optimal arrangement of balls in one layer is to put the centers of the balls in the points
of triangular grid. Then, there are exactly two possibilities to put a second layer on the
top of the first layer. These two arrangements are obviously symmetric, however, when
choosing a position for the third layer, there are two possibilities that give rise to differ-
ent arrangements. We will call them layer-arrangement (a) and layer-arrangement (b),
respectively (see figure 1).

Consequently, we have an infinite number of tetrahedron grids, that all came from the
optimal ball arrangements. One of the arrangements, called the cubic close packing (see
case (a) of figure 1), can be described nicely by introducing a third vector ~r = ( 1

2 ,
√
3
6 ,
√
6
3 )

in addition to ~p = (1, 0, 0) and ~q = ( 1
2 ,
√
3
2 , 0). Now the position of each vertex is an integer

linear combination x~p+ y~q + z~r and the vertices of the tetrahedron grid may be identified
with triplets (x, y, z) of integers. Given the vertex v, we will refer to its coordinates as
x(v), y(v) and z(v), or shortly x, y, and z, when there is no confusion possible. For other
arrangements there is no such easy extension of the notation from hexagonal graphs. A
cannonball graphG is obtained by assigning integer weights to the points of the tetrahedron
grid T , taking as V (G) the vertices in the grid with positive weights, and introducing edges
between vertices at Euclidean distance one (in other words, connecting the touching balls).
The cannonball graphs based on the cubic close packing will be called regular cannonball
graphs. Clearly, from the construction it follows that any layer of an arbitrary cannonball
graph is a hexagonal graph (maybe not connected).

Formally, a cannonball graph is a graph induced on vertices of positive weight.
There is a natural basic 4-coloring of (unweighted) cannonball graph. Start with any

layer and call it the base layer. Introduce coordinates (x, y, 0) in this layer and define the
base coloring by the formula

bc(v) = x mod 2 + 2(y mod 2). (2.1)

Colors of vertices of the next layers are then determined exactly as follows. It is obvious
that whenever we store a new layer above (or under) the previous one with fixed coloring,
we know that each ball from the new layer is connected to exactly three balls from the pre-
vious layer, and all of those balls have different colors. Thus there is exactly one extension
of the four coloring to the next layer (see figures 1 and 2, where 4-coloring, using colors
0, 1, 2, 3, is presented).

It is easy to see that this rule, starting from (2.1), gives a proper coloring of the next
layers. In regular cannonball graphs this coloring can be given by closed expression in the
following way:
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position (a) position (b)

Figure 1: Two different arrangements of the third layer.

bc(v) = ((z + 1) mod 2)(x mod 2 + 2(y mod 2))+

+ (z mod 2)((x+ 1) mod 2 + 2((y + 1) mod 2)). (2.2)

From the construction of cannonball graphs it is clear that each vertex has (at most) 6
neighbors in its layer, and in addition (at most) three neighbors in each of the neighboring
layers. The degree of a vertex in cannonball graph is hence at most 12 (see figure 2).

The cliques in the cannonball graphs can have at most four vertices. The (weighted)
clique number, ω(G), is the maximal clique weight on G, where the weight of a clique is
the sum of weights on its vertices. As cliques in cannonball graphs can have at most four
vertices, the weighted clique number is the maximum weight over weights of all tetrahe-
drons, triangles, edges and weights of isolated vertices. Therefore, we can define invariants
ωi(G) which denote the maximum weight of a clique of size at most i onG. In fact, we can
regard the clique numbers as based on the complete subgraphs of the grid graph because
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Figure 2: All twelve possible neighbors of vertex v ∈ G for arrangements (a) and (b).
Circles and gray lines represent the middle layer containing v, squares and thick lines
represent the upper layer, dashed triangles and dashed lines represent the lower layer.

the vertices of weight 0 clearly do not contribute to the clique weights. For example, ω2(G)
is the maximal weight over all edges and isolated vertices. Clearly, for cannonball graphs
we have

ω1(G) ≤ ω2(G) ≤ ω3(G) ≤ ω4(G) = ω(G).

An induced subgraph of the cannonball graph without a 3-clique will be called a tri-
angle-free cannonball graph.

In the algorithm we will consider some subgraphs of the cannonball graph, in particular,
it may be useful to have 3-colorable subgraphs.

For 3-colorable graphs, there is a simple multicoloring algorithm that uses at most⌈
3
2ω(G)

⌉
colors.

Lemma 2.1. Every 3-colorable graph G can be multicolored using at most
⌈
3
2ω(G)

⌉
col-

ors.

We will prove Lemma 2.1 using the following procedure.

Procedure 2.2. Let G be an arbitrary 3-colorable graph with coloring c : V (G) →
{1, 2, 3}. Define K =

⌊
ω(G)
2

⌋
. Assign min{d(v),K} colors to every vertex. More pre-

cisely, a vertex of color c(v) receives colors from the set {c(v), c(v)+3, . . . , c(v)+3(K−
1)}.
a) For the case ω = 2k + 1 do the following:
If d(v) ≥ K + 1 then assign the additional color 0 to v and if d(v) ≥ K + 2 assign to v the
highest N = d(v)−K − 1 colors from one of its neighbors’ palettes. More precisely, take
b ∈ {1, 2, 3}\c(v) and use the colors {b+ 3K, b+ 3(K − 1), . . . , b+ 3(K −N + 1)}.
b) For the case ω = 2k do the following:
If d(v) ≥ K + 1 assign to v the highest N = d(v) −K colors from one of its neighbors’
palettes. More precisely, take b ∈ {1, 2, 3} \ c(v) and use colors {b + 3K, b + 3(K −
1), . . . , b+ 3(K −N + 1)}.

Proof of Lemma 2.1. Note that if d(v) > K then for any neighbor u of v we have d(u) ≤
K. Furthermore, d(u) +N = d(u) + d(v)− 1−K ≤ ω(G)− 1−K ≤ K, and there is
no conflict possible.
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a) Suppose ω = 2k+1. Then in Procedure 2.2 all together we need at most 3
⌊
ω(G)
2

⌋
+1 <⌈

3
2ω(G)

⌉
colors.

b) Suppose ω = 2k. Then in Procedure 2.2 all together we need at most 3
⌊
ω(G)
2

⌋
=⌈

3
2ω(G)

⌉
colors.

Recall that by definition all vertices of a tetrahedron grid T which are not in G must
have weight d(v) = 0. Then we need not check whether a vertex of the grid is one of the
vertices of G. Therefore:

ω3(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T )},

where τ(T ) is the set of all triangles of the tetrahedron grid T .
For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, w, t) : {v, w, t} ∈ τ(T )},

where

a(v, w, t) =

⌈
d(v) + d(w) + d(t)

3

⌉
,

is the rounded average weight of the triangle {v, w, t} ∈ τ(T ).
Clearly, the following fact holds.

Fact 2.3. For each v ∈ G,

κ(v) ≤
⌈
ω3(G)

3

⌉
≤
⌈
ω(G)

3

⌉
.

We call a vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v),
we say that the vertex v is very heavy.

To color vertices of G we use colors from an appropriate palette. For a given color c,
its palette is defined as the set of pairs {(c, i)}i∈N. A palette is called a base color palette
if c ∈ {0, 1, 2, 3} is one of the base colors, and it is called an additional color palette if
c /∈ {0, 1, 2, 3}.

If a vertex v does not have a neighbor of color i in G, we call such color a free color of
v.

3 Algorithms for multicoloring cannonball graphs
Recall that a tetrahedron grid consists of several horizontal layers which are triangular
grids. No matter how we store one layer onto another, for every hexagonal graph in a
particular horizontal layer one of the well known algorithms [12, 18, 26] may be used. The
best known approximation ratio is 4

3ω(G′), where G′ is a hexagonal graph in a single layer
(obviously ω(G′) ≤ ω(G)). Therefore, for each layer we need at most 4

3ω(G) colors.
We can use one palette of colors for odd layers and the second palette of colors for even
layers, in order to prevent any conflict. Altogether we get an algorithm that uses at most
2 · 43ω(G) = 8

3ω(G). Since this bound is obviously not the best possible, the algorithm that
improves this bound is presented in what follows.

In many papers, e.g. [12, 18, 23, 25], a strategy of borrowing was used. The same
idea can be used for cannonball graphs. Our algorithm consists of two main phases. In the



38 Ars Math. Contemp. 10 (2016) 31–44

first phase (Steps 1 and 2 of the algorithm) vertices take κ(v) colors from their base color
palette, so use no more than 4

3ω(G) colors. After this phase, all light vertices in G are fully
colored, i.e., every light vertex v ∈ V (G) already received all needed d(v) colors. The
vertices that are heavy, but not very heavy, induce a triangle-free cannonball graph with the
weighted clique number not exceeding dω(G)/3e. Very heavy vertices in G are isolated in
the remaining graph and therefore they can easily be fully colored (Step 2 and Step 4). In
the second phase (Steps 3 and 4 of the algorithm) we first color all vertices of degree 4 and
thereby obtain a 3-colorable graph, for which Procedure 2.2 can be used for satisfying the
remaining demands by using new colors.

More precisely, our algorithm consists of the following steps:

Algorithm

Input: A weighted cannonball graph G = (V,E, d). Coordinates (x(v), y(v), z(v)), for
v ∈ V .

Output: A proper multicoloring of G, using at most 11
6 · ω (G) + 19

6 colors.

Step 0 For each vertex v ∈ V compute its base color bc(v)

and its base function value

κ(v) = max

{⌈
d(u) + d(v) + d(t)

3

⌉
: {v, u, t} ∈ τ(T )

}
,

where τ(T ) is the set of all triangles in the tetrahedron grid T .

Step 1 For each vertex v ∈ V assign min{κ(v), d(v)} colors from its base color palette
to v. Construct a new weighted triangle-free cannonball graph G1 = (V1, E1, d1)
where d1(v) = max{d(v) − κ(v), 0}, V1 ⊆ V is the set of vertices with d1(v) > 0
(heavy vertices in G) and E1 ⊆ E is the set of all edges in G with both endpoints in
V1 (G1 is induced by V1).

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices in G) assign the
first unused κ(v) colors of the base color palettes of its neighbors in the tetrahedron
grid T . Construct a new graph G2 = (V2, E2, d2) where d2 (v) is the difference
between d1(v) and the number of colors assigned in this step. Note that V1 = V2,
and E1 = E2, as only very heavy vertices are partially colored in this step.

Step 3 For each vertex v ∈ V2 with degG2
(v) = 4 assign unused colors from its free base

color palette. Construct a new 3-colorable graph G3 = (V3, E3, d3) where d3 (v) is
the difference between d2(v) and the number of colors assigned in this step, V3 ⊆ V2
is the set of vertices with d3(v) > 0 and E3 ⊆ E2 is the set of all edges in G2 with
both endpoints in V3 (G3 is induced by V3).

Step 4 Find a 3-coloring of G3 and apply Procedure 2.2 for the graph G3 by using colors
from new additional color palettes.

4 Correctness proof
Recall that each vertex knows its position on the tetrahedron grid T . Note that whenever
we mention “very heavy/heavy/light vertex”, we refer to the property of this vertex in the
graph G, i.e., there is no reclassification in graphs Gi, i ∈ 1, 2, 3.
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In Step 0 we have to prove that each vertex can obtain its base color. Recall that we
can assume that one of the horizontal layers is the base layer. We can compute the base
coloring in each vertex v = (x, y) of this layer by the formula: bc(v) = x mod 2 + 2(y
mod 2). In the neighboring layers (the above and the bottom one) the colors are deter-
mined by 4-coloring of the base layer. Thus, we can obtain a proper 4-coloring for the
whole cannonball graph. If, in addition we know that G is regular cannonball graph, we
can compute the base color directly from expression (2.2).

In Step 1 each heavy vertex v in G is assigned κ(v) colors from its base color palette,
while each light vertex u is assigned d(u) colors from its base color palette. Hence the
remaining weight of each vertex v ∈ G1 is

d1(v) = d(v)− κ(v).

Note that G1 consists only of heavy vertices in G. Therefore,

Lemma 4.1. G1 is a triangle-free cannonball graph.

Proof. Assume that there exists a triangle {v, u, t} ∈ τ(G1), which means that d1(v),
d1(u), d1(t) > 0. Then we have:

d(v) + d(u) + d(t) = d1(v) + κ(v) + d1(u) + κ(u) + d1(t) + κ(t) ≥
≥ d1(v) + d1(u) + d1(t) + 3a(u, v, t) ≥
≥ d1(v) + d1(u) + d1(t) + d(v) + d(u) + d(t)

> d(v) + d(u) + d(t)

a contradiction. Therefore, the graph G1 does not contain a 3-clique, so it is a triangle-free
cannonball graph.

In Step 2 only very heavy vertices in G (d1(v) > κ(v)) are colored. It is not difficult
to see that each very heavy vertex v ∈ G is isolated in G1 (all its neighbors are light in G).
Otherwise, for some {u, v, t} ∈ τ(T ), we would have

d(v) + d(u) > 2κ(v) + κ(u) ≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction. Let us denote

D1(v) = min{κ(v)− d(u) : {u, v} ∈ E(T ), bc(u) = 1},
D2(v) = min{κ(v)− d(u) : {u, v} ∈ E(T ), bc(u) = 2},
D3(v) = min{κ(v)− d(u) : {u, v} ∈ E(T ), bc(u) = 3}.

Note that D1(v), D2(v), D3(v) > 0. Otherwise, we would have let say D1(v) ≤ 0 and
thus d(u) ≥ κ(v) for some u such that {u, v, t} ∈ τ(T ). Therefore,

d(v) + d(u) > 2κ(v) + κ(v) = 3κ(v) ≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction.
Since in Step 1 each light vertex t uses exactly d(t) colors from its base color palette, very
heavy vertex v have at least Di(v) free colors from every base color palette i. Besides, for
heavy neighbors {u, v} ∈ E, we can prove:
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Lemma 4.2. In G1 for every edge {v, u} ∈ E1 we have:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u).

Proof. Assume that v and u are heavy vertices in G and d1(v) + d1(u) > κ(v). Then for
some {v, u, t} ∈ τ(T ) we have:

d(v)+d(u) = d1(v)+κ(v)+d1(u)+κ(u) > 2κ(v)+κ(u) ≥ 3a(u, v, t) ≥ d(u)+d(v),

a contradiction.

Another useful observation is

Claim 4.3.

ω(G2) ≤
⌈
ω(G)

3

⌉
.

Proof. Recall that in a cannonball graph the only cliques are tetrahedrons, triangles, edges
and isolated vertices. Since G1 is a triangle-free cannonball graph, G2 contains no tetrahe-
dron, neither triangle, so we have only edges and isolated vertices to check.

For each edge vu ∈ E2, using Lemma 4.2 and Fact 2.3, we have:

d2(v) + d2(u) ≤ d1(v) + d1(u) ≤ κ(v) ≤ dω(G)/3e.

For each isolated vertex v ∈ G2 we should have d2(v) ≤ dω(G)/3e. If v is very heavy,
then d2(v) = d(v)−2κ(v) because the vertex has received κ(v) colors in Step 1 and in Step
2. We claim that d2(v) ≤ κ(v). Indeed, if d2(v) > κ(v), then d(v) = d2(v) + 2κ(v) >
3κ(v) contradicting the definition of κ(v). Hence, d2(v) ≤ κ(v) ≤ dω(G)/3e as needed.
If v is not very heavy in G then κ(v) < d(v) ≤ 2κ(v) and d2(v) = d(v)− κ(v) ≤ κ(v) ≤
dω(G)/3e.

Let ∆(G) be the maximal vertex degree in the graph G. Considering correctness of
Step 3, we have to first prove that:

Lemma 4.4. ∆(G2) ≤ 4 and every vertex v with degG2
(v) = 4 has at least one free color.

Proof. Let v be an arbitrary vertex in the graph G2. Without loss of generality, assume that
bc(v) = 0. Recall that by Lemma 4.1 graph G2 is triangle-free. Therefore, vertex v can
have at most 3 neighbors in its layer, and the angle between any two of them is 2π/3. In
this case vertex v cannot have any additional neighbor in the lower or in the upper layer,
therefore degG2(v) = 3. If the vertex v has only 2 neighbors in its layer, then we have two
different possibilities for the angle between the neighbors: 2π/3 and π. Both possibilities
on the layer-arrangement (a) are depicted on Figure 3 and the (b) case is depicted in Figure
4. It is easy to see that vertex v could have at most two additional neighbors in lower and
upper layer - otherwise we obtain a triangle. Suppose that degG2(v) = 4, then all possible
cases of its neighbourhood are shown in Figures 3 and 4. It is easy to see that in both
cases (1) vertex v can borrow color 1, and in both cases (2) vertex v can borrow color 2
or 3. If the vertex v has only one neighbor in its layer it can have at most three neighbors
altogether. Namely, in this case v can have at most one neighbor in the lower layer and at
most one neighbor in the upper layer, since otherwise we obtain a triangle.
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Figure 3: Two different possibilities for neighbourhood of vertex v with degG2(v) = 4 in a
triangle-free cannonball graph, obtained from the layer-arrangement (a). Circles represent
vertices of the middle layer, squares of the upper layer and triangles of the lower layer, and
white vertices are part of the grid, but are not in the graph.
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Figure 4: Two different possibilities for vertex v neighbourhood with degG2(v) = 4 in a
triangle-free cannonball graph, obtained from the layer-arrangement (b). Notation has the
same meaning as in Figure 3.

By Lemma 4.4 we know that borrowing is possible for all vertices of degree 4.
In Step 3 we take the colors from the free base color palettes.
Without loss of generality, assume that bc(v) = 0 and one of its free colors is 1. Recall

that in this case we haveD1(v) free colors from the first base color palette, which is enough
to fully color the vertex v (current demand d2(v)). Namely,

Lemma 4.5.
d2(v) ≤ D1(v).

Proof. Let v be a vertex in G2 with bc(v) = 0. If vertex v ∈ G2 has four neighbors in
G2, it always has free colors such that all neighbors on its layer of this base colors are not
in V (G2) (see Figures 3 and 4). Without loss of generality assume that one of these free
colors is 1. Let t be a vertex, which is an existing neighbor of v inG2, and u is the neighbor
of v with bc(u) = 1 so that {u, v, t} ∈ τ(T ) is a triangle. Then we have

κ(v) + d2(v) + a(u, v, t) + d(u)
?
≤ d(v) + d(t) + d(u) ≤ 3a(u, v, t) ≤ a(u, v, t) + 2κ(v)
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and the inequality ? occurs because d2(v) = d(v) − κ(v) and d(t) > κ(t) ≥ a(u, v, t).
Therefore,

d2(v) ≤ κ(v)− d(u) ≤ D1(v).

Finally, to show correctness of Step 4 we have to prove that for G3 we can apply
Procedure 2.2. We know that ∆(G3) ≤ 3 since ∆(G2) ≤ 4 and in Step 3 we had fully
colored all vertices with degree equal to 4. According to Brooks’ Theorem [4] we know
that G3 is 3-colorable. It is well-known that the 3-coloring can be found in polynomial
time [11]. In fact a linear time algorithm exists [3].

Therefore, we can apply Procedure 2.2 and multicolor G3 by using
⌈
3
2ω(G3)

⌉
− 1 new

colors.

Ratio and time complexity

We claim that during the first three steps our algorithm uses at most 4
3ω(G) + 8

3 colors.
To see this, notice that in Step 1 each vertex v uses at most κ(v) colors from its base color
palette and, by Fact 2.3 and using that there are four base colors, we know that no more
than 4 dω(G)/3e ≤ 4

3ω(G) + 8
3 colors are needed. Note also that in Step 2 and Step 3

we use only those colors from the base color palettes which were not used in Step 1, so
altogether no more than 4

3ω(G) + 8
3 colors from the base color palettes are used in total

until Step 4.
In Step 4 we introduce new palettes that contain no more than

⌈
3
2ω(G3)

⌉
colors (by Lemma

2.1) .
LetA(G) denote the number of colors used by our algorithm for the graphG. By Claim

4.3 it holds ω(G3) ≤ ω(G2) ≤ dω(G)/3e ≤ ω(G)/3 + 2
3 and thus⌈

3

2
ω(G3)

⌉
≤
⌈

3

2

(
ω(G)

3
+

2

3

)⌉
=

⌈
ω(G)

2
+ 1

⌉
≤ 1

2
ω(G) +

3

2
.

Therefore, the total number of colors used by our algorithm is at most

A(G) ≤ 4

3
ω(G) +

8

3
+

⌈
3

2
ω(G3)

⌉
≤ 4

3
ω(G) +

8

3
+

1

2
ω(G) +

3

2
=

11

6
ω(G) +

25

6
.

Hence we arrived at the statement of Theorem 1.1.
Finally, we wish to remark that our algorithm can be implemented in linear time.

Namely, in Steps 1, 2 and 3 we need constant time for each vertex. In Step 0 we need
linear time to compute the value of κ. Step 4 is also linear since we have linear 3-coloring
algorithm [3] and Procedure 2.2 is constant.

5 Conclusion
In this paper we provide an algorithm for a proper multicoloring of a cannonball graph
that uses at most 11

6 ω(G) + 19
6 colors. As this is the first result for the multicoloring

problem of cannonball graphs, we believe that further improvements can be done. Among
the interesting problems that remain open are: improving of the competitive ratio 11/6,
finding some distributed algorithms for multicoloring cannonball graphs, or finding some
k-local algorithms for some k, similarly as in 2-dimensional case for hexagonal graphs (for
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definition of k-local algorithms see [10]). We already mentioned that in the 2-dimensional
case, better bounds were obtained for triangle-free hexagonal graphs. It is very likely that
also for cannonball graphs there exist some “forbidden” subgraphsH , maybe tetrahedrons,
such that better bounds can be obtained for H-free cannonball graphs.

Acknowledgement. The authors wish to thank to the anonymous referee for very careful
reading and for constructive remarks which helped to considerably improve the presenta-
tion.
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Abstract

A distinguishing partition of a set X with automorphism group aut(X) is a partition
of X that is fixed by no nontrivial element of aut(X). In the event that X is a complete
multipartite graph with its automorphism group, the existence of a distinguishing partition
is equivalent to the existence of an asymmetric hypergraph with prescribed edge sizes.
An asymptotic result is proven on the existence of a distinguishing partition when X is a
complete multipartite graph with m1 parts of size n1 and m2 parts of size n2 for small n1,
m2 and large m1, n2. A key tool in making the estimate is counting the number of trees of
particular classes.

Keywords: Complete multipartite graph, distinguishing partition, combinatorial species, tree enu-
meration.

Math. Subj. Class.: 05C25, 05C65, 20B25

1 Introduction
The distinguishing partition problem asks, given a finite set X with a group G that acts
on X , whether there exists a partition P of the elements of X such that no nontrivial el-
ement of G fixes P . Formally, consider a partition P = {P1, . . . , Pt} and γ ∈ G. For
general X ′ = {x1, . . . , xi} ⊂ X , let γ(X ′) = {γ(x1), . . . , γ(xi)}. Then let γ(P ) =
{γ(P1), . . . , γ(Pt)}. We say that P is a distinguishing partition if γ(P ) 6= P for all non-
trivial γ ∈ G. When X is a graph, we consider it to be acted upon by its automorphism
group aut(X).

Not all sets X with group action G have a distinguishing partition. For example, if G
is the group of all permutation on X and |X| ≥ 2, then X does not have a distinguishing
partition. Conversely, if G is the trivial group, then all partitions of X are distinguish-
ing. As another example, let X be the set {a, b, c, d} acted upon by the cyclic group with
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generator that takes a to b, b to c, c to d, and d to a. Then X has the following dis-
tinguishing partitions: {{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, {{d}, {a, b, c}},
{{a, b}, {c}, {d}}, {{b, c}, {d}, {a}}, {{c, d}, {a}, {b}}, {{d, a}, {b}, {c}}. By contrast,
the dihedral group acting on four elements has no distinguishing partition.

In general, the conditions for the existence of a distinguishing partition can be quite
complex, even in a relatively restricted setting such as taking X to be a complete multi-
partite graph, acted upon by its automorphism group. Informally, the difficulty is that if a
partition P consists of few large parts, then a nontrivial automorphism might fix each part,
while if P consists of many small parts, then a nontrivial automorphism might permute the
parts.

Ellingham and Schroeder [7] first considered the distinguishing partitions problem for
complete equipartite graphs. Their finding is that if X is a complete equipartite graph with
m parts, each of size n, then X has a distinguishing partition if and only if m ≥ f(n) for
f(2) = f(14) = 6, f(6) = 5, and otherwise f(n) = blog2(n + 1)c + 2. In this setting,
aut(X) is the imprimitive action of the wreath product Sn o Sm on X .

The distinguishing partition is a measure of the level of symmetry of a group action,
and as such the concept is closely related to the well-studied distinguishing number, as
introduced by Albertson and Collins [1] on a graph and by Tymoczko [11] for a general
group action. Other such measures are the cost of 2-distinguishing [6] and the determining
set [5]. The survey of Bailey and Cameron [2] shows how these concepts have appeared
independently in many different settings.

The distinguishing number of X is the mimimum number of label classes in a distin-
guishing labeling of X . In turn, a distinguishing labeling is a map from X to the set of
labels [t] that is not fixed under any nontrivial automorphism of X . All distinguishing par-
titions can be regarded as distinguishing labelings by treating each block of the partition
as a separate label class, but not all distinguishing labelings are similarly distinguishing
partitions. Every set with group action has a distinguishing labeling–every element could
be assigned a unique label–but not all have a distinguishing partition. It should be noted
that the term “distinguishing partition” has been used elsewhere to mean what we here call
a distinguishing labeling.

For the remainder of this paper, we will consider the case that X is a complete multi-
partite graph with its automorphism group. We denote by X = Kn1,...,nm the complete
multipartite graph with maximal independent sets Xi of size ni for 1 ≤ i ≤ m. Also,
Km1(n1),m2(n2) denotes the complete multipartite graph with mi parts each of size ni for
i = 1, 2. We focus in particular on Km1(n1),m2(n2) for fixed n1 and m2 and large m1 and
n2.

Based on the results of Ellingham and Schroeder [7], we might expect a complete
multipartite graph to have a distinguishing partition if it has many small parts, and not to
have a distinguishing partition if it has few large parts. In our setting, which combines these
two extremes, it seems natural to expect that a distinguishing partition, in the asymptotic
sense, would exist if n2/m1 does not exceed a certain ratio. Our main result is that this is
indeed the case.

Theorem 1.1. Fix n1 ≥ 2 andm2 ≥ 1, and suppose thatm1 is sufficiently large relative to
n1 and m2. There exists a value r = rn1,m2

such that the following holds. Km1(n1),m2(n2)

has a distinguishing partition if and only if

n2 ≤ rn1,m2
m1 + ε(m1)
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for some function ε(m1) ∈ o(m1).

We have that r2,m2
= 1. For n1 ≥ 3, we define rn1,m2

by first choosing values of
j = jn1,m2

and k = kn1,m2
such that

n1 = 2 +

(
m2

0

)
+

(
m2

1

)
+ · · ·+

(
m2

j

)
+ k,

with either

j < b(m2 − 1)/2c and 0 ≤ k <
(
m2

j + 1

)
, or j = b(m2 − 1)/2c and k ≥ 0.

If j < b(m2 − 1)/2c, then let

r = 1 +

j∑
i=0

m2 − i
m2

(
m2

i

)
+
m2 − j − 1

m2
k,

and otherwise choose

r = 1 +

j∑
i=0

m2 − i
m2

(
m2

i

)
+

1

2
k.

We say that j2,m2 = −1.
The structure of the paper and the proof Theorem 1.1 is as follows. In Section 2,

we establish basic concepts on enriched trees and hypergraphs which are used heavily
throughout the proof. In Section 3, we show how a type of partition of Km1(n1),m2(n2)

known as a regular partition may be represented as a hypergraph with mi edges of size
ni, i = 1, 2. We establish key lemmas for the general result in Section 4. In Section 5,
we provide the general construction that, for the existence of a distinguishing partition,
maximizes n2 to within an additive constant, given m1, n1,m2. Then we prove that for
large m1 relative to n1 and m2, if n′2 > n2 and Km1(n1),m2(n′2)

has a distinguishing
partition, then so does Km1(n1),m2(n2).

In Section 6, we focus on the case that n1 = 2. Then the following refinement of
Theorem 1.1 holds.

Theorem 1.2. There exist constants α > 0 and β > 1 and

z :=

⌊
logβ

(
m1(β − 1)

αβ

(
logβm1

)3/2)⌋
such that Theorem 1.1 holds with ε(m1) of the form

m1

z + 1
+ (1 + om1

(1))αβzz−7/2
(

β

β − 1

)2

≈ m1

logβ(m1)
.

In Section 7, we consider the case that k = 0 and j < b(m2 − 1)/2c. Then Theorem
1.1 can be refined as follows.

Theorem 1.3. If k = 0 and j < b(m2 − 1)/2c, then Theorem 1.1 holds with ε(m1) of the
form (

(2m2 − 4j − 4)
2m2−4j−5
2m2−4j−4

2m2 − 4j − 5
C

1
2m2−4j−4 + om1(1)

)
m

2m2−4j−5
2m2−4j−4

1

for a value of C that depends only on n1 and m2.
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The value of C will be specified in Section 7.
We consider k ≥ 1 and j < b(m2 − 1)/2c in Section 8.

Theorem 1.4. If k ≥ 1 and j < b(m2 − 1)/2c, then Theorem 1.1 holds with ε(m1) of the
form Θ(m1/(logm1)).

In Section 9, we consider the case that k = 0 and j = (m2 − 2)/2. Then the following
exact result for large m1 is possible.

Theorem 1.5. Suppose that k = 0 and j = b(m2 − 1)/2c. Theorem 1.1 holds with
ε(m1) = 2m2−1 if m2 is even and at least 4 and ε(m1) = 2m2−1− 1 if m2 is odd or 2, for
sufficiently large m1.

In Section 10, we prove the following for k ≥ 1 and j = b(m2 − 1)/2c.

Theorem 1.6. If k ≥ 1 and j = b(m2 − 1)/2c, then Theorem 1.1 holds with ε(m1) =
2m2−1 − 1 if km1 is even and m2 is odd, and otherwise ε(m1) = 2m2−1 + brm1c − rm1,
for sufficiently large m1.

2 Enriched trees and hypergraphs
Combinatorial species and enriched trees

We make use of the language of combinatorial species, as presented by Bergeron, Labelle,
and Leroux [4]. A species F is, for every finite set U , a finite set of objects F [U ], called
structures, together with, for every bijection σ : U → U ′, a function F [σ] : F [U ]→ F [U ′]
that satisfies the following two properties, which are standard functioriality properties in
category theory:

1) for all bijections σ : U → U ′ and σ′ : U ′ → U ′′, F [σ′ ◦ σ] = F [σ′] ◦ F [σ],

2) for the identity map IdU , F [IdU ] = IdF [U ].

The function F [σ] is known as transport of species. Consider the symmetric group SU that
acts on U . Given an F -structure s, we say that the automorphism group of s, aut(s), is the
subgroup of those σ ∈ SU that satisfy F [σ](s) = s.

Let a be the species of asymmetric trees, or trees whose automorphism group is trivial,
and let a• be the species of rooted asymmetric trees. A rooted tree is considered asymmet-
ric if it has no nontrivial root-preserving automorphism; it is possible that the underlying
unrooted tree structure is not asymmetric.

Now let F be a species that contains at least one structure over a set of size 1. An
F -enriched tree on a set U is a tree on U together with an F -structure sv on the neighbor
set N(v) of every vertex v ∈ U . If σ is an automorphism of an F -enriched tree t, then σ is
an automorphism of the underlying tree structure of t. Furthermore, if σv is the restriction
of σ on N(v), then the transport of species F [σv] takes sv to sσ(v). We say that aF is the
species of asymmetric F -enriched trees. For example, when F is E , the species of sets,
then there is a unique E-structure on every finite set, and aE is simply a. The species A and
AF are, respectively, the species of (not necessarily asymmetric) trees and the species of
F -enriched trees.

The sum of two species (F + F ′)[U ] is the disjoint union F [U ] + F ′[U ] such that
(F + F ′)[σ](s) = F [σ](s) if s ∈ F [U ] and (F + F ′)[σ](s) = F ′[σ](s) if s ∈ F ′[U ]. If a
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is a positive integer, then aF is the sum of a copies of F . We say that Fi[U ] is F [U ] when
|U | = i, and otherwise Fi[U ] = ∅, and |Fi| is the number of structures of F over a set with
i elements.

Consider the species F =
∑κ
i=1 aiEi for nonnegative integers κ, a1, . . . , aκ with κ ≥ 1

and a1 ≥ 1. This is the species that consists of ai distinct set structures over a set with
i elements for 1 ≤ i ≤ κ and otherwise no structures. Then the species aF may be
regarded as the species of asymmetric trees in which every vertex has degree at most κ,
and every vertex of degree i is assigned a label from a pool of ai possible labels. Such a
tree is asymmetric if it has no nontrivial label-preserving automorphism. Later, we show
how estimating the number of elements of aF with a given number of vertices can help
determine asymptotic bounds for the distinguishing partitions problem.

A structure of the product species FF ′ over U is an ordered pair (f, f ′) for an F -
structure f overU1 and a F ′-structure f ′ overU2 for some partitionU1tU2 ofU . Transport
of species is defined by (FF ′)[σ](s) = (F [σ1](f), F ′[σ2](f ′)), each σi the restriction of
σ to Ui.

Hypergraphs

A hypergraphH is a triple (V (H), E(H), I(H)), with V (H) a finite set of elements called
vertices and E(H) a finite set of elements called edges. The incidence relation I(H) is a
subset of V (H) × E(H). We will generally treat edges as subsets of V (H). The degree
of v ∈ V (H), denoted deg(v), is the number of edges incident to v. H is connected if
the bipartite graph with vertex sets V (H) and E(H) and edge set I(H) is connected, and
E(H) 6= ∅. If every edge is incident to n1-vertices, then H is n1-uniform.

For a hypergraphH with an edge e, deg1(H) and deg1(e) denote the number of vertices
of degree 1 in H and e, while deg+

2 H and deg+
2 e are the numbers of vertices of degree at

least 2 in H and e.
An automorphism σ ofH is a permutation of V (H) and E(H) such that (v, e) ∈ I(H)

if and only if (σ(v), σ(e)) ∈ I(H) for all vertices v and edges e. We say that σ is trivial
if σ(v) = v and σ(e) = e for all vertices v and edges e, and H is asymmetric if the only
automorphism of H is trivial. Thus we allow that hypergraphs may contain multiple edges
that are incident to the same vertex set, but such hypergraphs are not asymmetric.

A connected n1-uniform hypergraph H is called a tree if E(H) can be enumerated
{e1, . . . , e|E(H)|} in such a way that for each 2 ≤ i ≤ |E(H)|, we have that |ei ∩ (e1 ∪
· · · ∪ ei−1)| = 1. Equivalently, a tree is a connected n1-uniform hypergraph H with
(n1− 1)|E(H)|+ 1 vertices. The leaves of a tree H are the edges e that satisfy deg1(e) =
n1 − 1. We say that l(G) is the number of leaves of G.

For a tree G, define the quantity

µ(G) :=
∑

v∈V (G)
deg(v)>2

(deg(v)− 2).

We will later need the following relationship between l(G) and µ(G).

Lemma 2.1. Let G be a tree with at least 2 edges. Then l(G) ≥ µ(G) + 2.

Proof. Enumerate E(G) = (e1, . . . , e|E(G)|) such that for 2 ≤ i ≤ |E(G)|,

ei ∩ (e1 ∪ . . . ∪ ei−1) = {vi},
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and let Gi be the subtree of G with edges (e1, . . . , ei). We prove that the lemma holds for
Gi by induction on i for 2 ≤ i ≤ |E(G)|, with the i = 2 case following from µ(G2) = 0
and l(G2) = 2. Assume the lemma holds for Gi−1.

For 3 ≤ i ≤ |E(G)|, µ(Gi) = µ(Gi−1) + 1 if vi has degree at least 3 in Gi, and
otherwise µ(Gi) = µ(Gi−1). Also, l(Gi) ≥ l(Gi−1) since ei is a leaf in Gi, and at
most one leaf of Gi−i, namely a leaf that contains vi as a degree 1 vertex, is not a leaf in
Gi. Furthermore, whenever µ(Hi) = µ(Gi−1) + 1, vi has degree at least 2 in Gi−1 and
thus l(Gi) = l(Gi−1) + 1. The lemma follows for Gi by l(Gi) − l(Gi−1) ≥ µ(Gi) −
µ(Gi−1).

3 Distinguishing partitions and asymmetric hypergraphs
We demonstrate a bijection between certain distinguishing partitions of complete multipar-
tite graphs and asymmetric hypergraphs with prescribed edge sizes. Using this bijection,
we establish the existence or nonexistence of distinguishing partitions by demonstrating
the existence or nonexistence of certain asymmetric hypergraphs. The argument is nearly
identical to that given by Ellingham and Schroeder [7].

With X = Kn1,...,nm , let P be a partition of X with parts P1, . . . , Pt, and we say that
P is a regular partition of X if |Xi ∩ Pi′ | ≤ 1 for all i and i′. It is a necessary but not
sufficient condition for P to be distinguishing that P is regular.

Definition 3.1. For every regular partition P of X with parts P1, . . . , Pt, we associate a
hypergraph τ(P ) as follows: V (τ(P )) = {Pi, 1 ≤ i ≤ t}, E(τ(P )) = {Xi : 1 ≤ i ≤ m},
and Xi and Pi′ are incident if |Xi ∩ Pi′ | = 1.

Note that τ(P ) is a hypergraph with m edges with sizes n1, . . . , nm since Xi intersects
exactly ni parts of P .

We say that the automorphism group aut(P ) is the subgroup of aut(X) consisting of
those elements that fix P . The following relationship holds.

Lemma 3.2. If P is a regular partition of X , then aut(P ) is isomorphic to aut(τ(P )).

Proof. Let τ̃ : aut(P ) → aut(τ(P ) be the group homomorphism induced by τ . Say that
P1, . . . , Pt are the parts of P .

An automorphism σ ∈ aut(P ) induces automorphisms σP and σX on the sets {Pi} and
{Xi′} respectively. Then σ is uniquely determined by σP and σX , and in particular σ is
trivial if and only if σP and σX are both trivial. Thus τ̃ is injective.

Now let σ′ ∈ aut(τ(P )). Then σ′ is uniquely determined by incidence-preserving
permutations of {Pi} and {Xi′}. Let σ be the permutation of X such that if x ∈ X
is the unique vertex contained in Xi ∩ Pi′ , then σ(x) is the unique vertex contained in
σ′(Xi)∩σ′(Pi′). It is readily checked that in fact σ ∈ aut(P ), and thus τ̃ is surjective.

Corollary 3.3. There exists a distinguishing partition of Kn1,...,nm if and only if there
exists an asymmetric hypergraph with m edges of sizes n1, . . . , nm.

It will be convenient to associate another hypergraph with a regular partition P of
Km1(n1),m2(n2). Let τ ′(P ) be a vertex-labeled hypergraph that contains exactly the ver-
tices and the n1-edges of τ(P ). Say that the n2-edges of τ(P ) are X1, . . . , Xm2

. Then the
vertex label set of τ ′(P ) is 2[m2], and a vertex v in τ ′(P ) is labeled with a set S ⊆ [m2] if
v ∈ Xi exactly when i ∈ S. Then τ ′(P ) is just a different way of encoding τ(P ).
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The weight w(v) of a vertex v ∈ τ ′(P ) is the cardinality of its label. The weight w(S)
of a set of vertices S is the sum of the weights of the vertices in S. The weight w(e) or
w(G) of an n1-edge e or connected component G ⊂ τ ′(P ) is the weight of the vertex set
of e or G. The value of G is w(G) − rm2|E(G)|. Value may be positive or negative. We
have that n2 = w(τ ′(P ))/m2, and thus our strategy in proving the main results is to find
an asymmetric labeled hypergraph with m1 n1-edges and maximal weight. Though weight
and value encode the same information, value is useful in that it gives a clear comparison
of the weight of a component of τ ′(P ) to its asymptotic limit.

4 Key Lemmas
We now present a series of lemmas that provide upper bounds on the weights and values of
certain types of components.

Lemma 4.1. Let G be a connected n1-uniform hypergraph with n1|E(G)|/2 + p vertices.
Then G contains 2p+ µ(G) vertices of degree 1. Equivalently, each edge has, on average,
(2p+ µ(G))/|E(G)| degree 1 vertices.

Proof. There are n1|E(G)| pairs of the form (v, e), where v is a vertex, e an edge, and
v ∈ e. The number of such pairs (v, e) is also

deg1(G) + 2(n1|E(G)|/2 + p− deg1(G)) + µ(G),

or n1|E(G)|+ 2p− deg1(G) + µ(G). Thus deg1(G) = 2p+ µ(G).

Lemma 4.2. Suppose that τ(P ) is asymmetric, and let S be the set of degree 1 vertices
in an edge of τ ′(P ). Then |S| ≤ 2m2 . Define nonnegative values j′ and k′ such that
|S| =

(
m2

0

)
+ · · ·+

(
m2

j′

)
+ k′ with either 0 ≤ k′ <

(
m2

j′+1

)
or k′ = 0 and j′ = m2. Then

w(S) ≤
j′∑
i=0

(m2 − i)
(
m2

i

)
+ k′(m2 − j′ − 1).

Proof. For all v1, v2 ∈ S, there is an automorphism of the underlying unlabeled hypergraph
of τ ′(P ) that switches v1 and v2 and fixes all other vertices. Thus all vertices in S must
have different labels in τ ′(P ), which implies that |S| ≤ 2m2 . The lemma follows from the
fact that S contains at most

(
m2

i

)
vertices with a label of cardinality m2 − i.

Let w|S| denote the upper bound on w(S) in Lemma 4.2. Now suppose that τ ′(P ) is
asymmetric and G is a component of τ ′(P ). A defect in G is one of the following. A
defective vertex is a vertex v with degree at least 2 and weight less than m2, counted with
multiplicity d(v) = m2−w(v). A defective edge is an edge ewith set S of degree 1 vertices
with collective weight less than w|S|, counted with multiplicity d(e) = w|S| − w(S). The
number of defects in G is denoted by d(G).

Lemma 4.3. Let G be a connected component of τ ′(P ). If τ(P ) is asymmetric, then

w(G) ≤ m2 deg+
2 (G) +

∑
e∈E(G)

wdeg1(e)
− d(G).
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Proof. Every vertex has weight at most m2, and a defective vertex v with degree at least 2
has weight m2 − d(v). The set of degree 1 vertices in an edge e has weight wdeg1(e)

if e
is not defective, and otherwise weight wdeg1(e)

− d(e). The lemma follows by adding over
all vertices.

If G contains n1|E(G)|/2 + p vertices, then write

2p+ µ(G) = b

⌊
2p+ µ(G)

|E(G)|

⌋
+ b′

⌈
2p+ µ(G)

|E(G)|

⌉
with nonnegative b + b′ = |E(G)|. The following lemma states that the weight of G is
maximized when all edges have about the same number of degree 1 vertices.

Lemma 4.4. With all quantities as above,

w(G) ≤ m2n1|E(G)|/2−m2p−m2µ(G) + bwb 2p+µ(G)
|E(G)| c + b′wd 2p+µ(G)

|E(G)| e − d(G).

Proof. By Lemma 4.1, G has n1|E(G)|/2− p− µ(G) vertices of degree at least 2. Then
by Lemma 4.3,

w(G) ≤ m2n1|E(G)|/2−m2p−m2µ(G) +
∑

e∈E(G)

wdeg1(e)
− d(G).

The expression wy is concave in y, meaning that for all y, wy−wy−1 ≥ wy+1−wy . Thus,
given a set of values {yi} such that

∑
i yi = 2p + µ(G),

∑t
i=1 wyi is maximal when b of

the yi are equal to
⌊
2p+µ(G)
|E(G)|

⌋
and b′ of the yi are

⌈
2p+µ(G)
|E(G)|

⌉
. The lemma follows.

We now look to maximize the weight of G by considering the total number of vertices
of a given weight. In particular, G contains at most |E(G)|

(
m2

i

)
degree 1 vertices with

weight m2 − i, since each each edge contains at most
(
m2

i

)
such vertices. Choose values

j∗ and k∗ such that

2p+ µ(G) = |E(G)|
(
m2

0

)
+ · · ·+ |E(G)|

(
m2

j∗

)
+ k∗

with j∗ ≥ −1 and 0 ≤ k∗ < |E(G)|
(
m2

j∗+1

)
.

Lemma 4.5. With all quantities as above, w(G) ≤

m2

(
n1|E(G)|

2
− p− µ(G)

)
+

j∗∑
i=0

|E(G)|(m2 − i)
(
m2

i

)
+ (m2 − j∗ − 1)k∗ − d(G).

Proof. Let G′ be a (not necessarily asymmetric) hypergraph constructed from G by giving
every vertex of degree at least 2 the label [m2] and assigning a label to every degree 1
vertex such that all edges of G′ are nondefective and have distinct labels among the degree
1 vertices. Then G′ has (n1|E(G)|/2 − p − µ(G)) vertices of degree at least 2, each of
which has weight m2, and at most |E(G)|

(
m2

i

)
degree 1 vertices of weight m2 − i for

0 ≤ i ≤ j∗. The result follows by w(G′) = w(G) + d(G).
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We consider the upper bound of Lemma 4.5 to be a function wmax(p, µ(G), d), with
the quantities m2 and |E(G)| considered to be fixed. We note that

wmax(p, µ(G), d) > wmax(p, µ(G), d+ 1),

while
wmax(p, µ(G), d) ≥ wmax(p, µ(G) + 1, d),

with equality exactly when j∗ = −1.
Now we consider µ(G) = d = 0, and the upper bound of Lemma 4.5 is a function

wmax(p). The effect of replacing p by p + 1 is equivalent, numerically, to replacing a
vertex with weight m2 by two vertices, one of weight m2 − j∗ − 1 and the other of weight
either m2 − j∗ − 1 or m2 − j∗ − 2. Thus the function wmax(p) is weakly unimodal in
p and achieves a maximum when j∗ = b(m2 − 1)/2c and k∗ = 0 or 1. Then 2p =∑b(m2−1)/2c
i=0 |E(G)|

(
m2

i

)
+ (0 or 1), and we have by Lemma 4.5 that

w(G) ≤ |E(G)|

m2n1
2
− m2

2

bm2−1
2 c∑
i=0

(
m2

i

)
+

bm2−1
2 c∑
i=0

(m2 − i)
(
m2

i

) . (4.1)

Thus the following holds.

Corollary 4.6. Let all quantities be as above.

1. If j = b(m2 − 1)/2c, then w(G) ≤ m2r|E(G)|.
2. If j < b(m2 − 1)/2c and p ≤ |E(G)|(n1

2 − 1), then w(G) ≤ m2r|E(G)|.
3. G has positive value only if j < b(m2 − 1)/2c and G is a tree. Then if G has d

defects, v(G) ≤ m2 − 2j − d.

Proof. Part 1 follows by Equation (4.1) and the definition of r. Part 2 follows from the
monotonicity of wmax and the definition of r. Part 3 is a consequence of Parts 1 and 2.

We now focus on the particular case that G is a tree and k = 0. Suppose that G has l
leaves, and by Lemma 2.1, l ≥ µ(G) + 2. Then j∗ = j and k∗ = 2 + µ(G), and

∑
e∈E(G)

wdeg1(e)
≤

j∑
i=0

|E(G)|(m2 − i)
(
m2

i

)
+ (µ(G) + 2)(m2 − j − 1).

This bound can be attained if G contains |E(G)|
(
m2

i

)
degree 1 vertices of weight m2 − i

for 0 ≤ i ≤ j and µ(G) + 2 degree 1 vertices of weight m2 − j − 1. However, every leaf
of G contains a vertex of weight at most m2− j − 1, and thus in fact

∑
e∈E(G) wdeg1(e)

≤

j∑
i=0

|E(G)|(m2 − i)
(
m2

i

)
+ (µ(G) + 2)(m2 − j − 1)− (l − µ(G)− 2).

Since G has |E(G)| − 1− µ(G) vertices of degree 2 or more,

w(G) ≤ m2|E(G)|+
j∑
i=0

|E(G)|(m2 − i)
(
m2

i

)
− µ(G)j +m2 − 2j − l.

Finally, if we allow that G might have d defects, then we conclude the following.
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Lemma 4.7. With all quantities as above, v(G) ≤ m2 − 2j − l − jµ(G)− d.

Now we consider all of τ ′(P ). Let Comp(P ) be the set of connected components of
τ ′(P ).

Lemma 4.8. If τ(P ) is asymmetric, v(τ ′(P )) ≤
∑
G∈Comp(P ) v(G) +m22m2−1.

Proof. We calculate that v(τ ′(P )) is
∑
G∈Comp(P ) v(G) plus the sum of the weights of

all vertices not contained in any n1-edge. Since τ(P ) is asymmetric, every vertex not
contained in an n1-edge must have a different label, and there is at most one vertex with
every label S ⊂ 2[m2]. The lemma follows.

5 An extremal construction
In this section, we give a general method of constructing a distinguishing partition P of
Km1(n1),m2(n2). We then show that n2 is maximal to within an additive constant, given
the other parameters. We do so by describing the vertex-labeled hypergraph τ ′(P ). For the
remainder of this section, we assume that j < b(m2−1)/2c; the case that j = b(m2−1)/2c
is treated seperately.

Let G be a component of τ ′(P ). Define the value v(e) of an edge e ∈ E(G) to be
v(G)/|E(G)|. Let ξ be the map that adds 1 mod m2 to every element in the label of every
vertex of a 2[m2]-vertex labeled hypergraph. Note that v(ξ(G)) = v(G). Say that vertex
labeled hypergraphs G,G′ are equivalent under ∼ξ if G = ξi(G′) for some i.

Let T ∗ = T ∗n1,m2
= (T1, T2, . . .) be an ordered list of equivalence classes under ∼ξ

of positive weight asymmetric hypergraphs such that the edges in an element of Ti have
value at least as great as the edges in an element of Ti+1 for all i. By Lemma 4.7, an edge
e may have value δ > 0 only if e is contained in a tree with at most m2/δ edges. Thus T ∗
enumerates all hypergraphs with positive value, and only classes of trees are in T ∗.

A symmetry breaking loop R is a 2[m2]-vertex labeled hypergraph on at least minR =
minR(n1,m2) edges defined as follows. If m2 = 1, then j = −1 and n1 = 2, and we
set minR = 6. Let R be a cycle that contains consecutive vertices v1, v2, v3, v4. Then all
vertices of R have weight 1 except for v1, v2, v4, which all have weight 0.

If m2 > 1, we set minR = max(2m2, n1 + 1). Let quotR be the maximum multiple
of m2 up to |E(R)|. Let v0, . . . , vquot

R
−1 be vertices and e0, . . . , equot

R
−1 be edges such

that ei contains only degree 1 vertices except for vi, vi+1, subscripts mod quotR. The set of
vertex labels of the degree 1 vertices of e0 includes all possible labels of size at leastm2−j,
and all others are of size m2− j− 1. To determine the labels of the degree 1 vertices of ei,
add i mod m2 to every element in the labels of the degree 1 vertices of e0. Assign v0 the
label ∅, vi the label [m2]− i for 1 ≤ i ≤ m2, and vi the label [m2] for all other i. Finally,
R contains edges of the form vi, vi+1, . . . , vi+n1−1 for 1 ≤ i ≤ |E(R)| − quotR.

We need some key facts on symmetry breaking loops.

Lemma 5.1. Let R be a symmetry breaking loop that is a component of τ ′(P ). Then no
automorphism of P induces a nontrivial automorphism of R.

Proof. The lemma is readily verified when m2 = 1, and so we assume that m2 > 1. Let
σ be an automorphism of τ(P ) that induces an automorphism of R. Since v0 is the only
vertex of R of weight 0, it is a fixed point. Since v1 is the only vertex of R that is in a
common edge with v0, has degree 2 in τ ′(P ), and weight not equal tom2, v1 is also a fixed
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point. Thus all vi are fixed, which implies that σ fixes the n2-edges of τ(P ). Since all vi
are fixed, σ thus also fixes all n1-edges of R. Finally, since all degree 1 vertices in a given
edge have different labels, they must be fixed points as well.

The following is readily observed from the construction of symmetry breaking loops.

Lemma 5.2. Let R be a symmetry breaking loop, and let 1 ≤ i < i′ ≤ m2. Then the
number of vertices of R whose label contains i is equal to the number of vertices of R
whose label contains i′.

Lemma 5.3. There exists a value ω = ωn1,m2 , which depends only on n1 and m2, such
that a symmetry breaking loop R has value at least ω.

Proof. If m2 = 1, then v(R) = −3. If m2 > 1, then the total weight of the degree 1
vertices in each edge with degree 1 vertices is m2(r − 1). All other vertices have weight
m2 except for m2 vertices of weight m2 − 1 and one of weight 0. It follows that w(R) =
quotRm2r − 2m2 and v(R) = −(|E(R)| − quotR)m2r − 2m2 > −m2

2r − 2m2.

We now come to our construction of P . Choose ζ to be the maximum value such that
the total number of edges in all trees of T1∪· · ·∪Tζ is at mostm1−minR. Let ∆m1(n1),m2

be the union of all trees in T1 ∪ · · · ∪ Tζ , together with a symmetry breaking loop so that
∆m1(n1),m2

has m1 edges, and a degree 0 vertex of every label except ∅.

Lemma 5.4. ∆m1(n1),m2
is in fact τ ′(P ) for a distinguishing partition P for an appropri-

ate value of n2.

Proof. By construction, ∆m1(n1),m2
contains the same number of vertices whose label

contains i as the number of vertices whose label contains i′ for all 1 ≤ i < i′ ≤ m2. Thus
∆m1(n1),m2

is τ ′(P ) for some partition P of Km1(n1),m2(n2) and for some n2. Next, we
apply Corollary 3.3 and show that P is distinguishing by showing that τ(P ) is asymmetric.
Let σ be an automorphism of τ(P ). Since ∆m1(n1),m2

contains exactly one symmetry
breaking loop, all n2-edges of τ(P ) are fixed under σ. Since all components of ∆m1(n1),m2

are asymmetric and no two are isomorphic to each other, all n1-edges and vertices of τ(P )
are fixed as well.

Next, we prove that ∆m1(n1),m2
is a nearly optimal construction.

Lemma 5.5. Let P be a distinguishing partition of Km1(n1),m2(n2) such that τ ′(P ) =
∆m1(n1),m2

, and let G′ be an asymmetric vertex-labeled hypergraph. Then w(G′) ≤
w(∆m1(n1),m2

) + Errorn1,m2
for some value Errorn1,m2

that depends only on n1 and
m2. In particular, if P ′ is a distinguishing partition of Km1(n1),m2(n′2)

, then n′2 ≤ n2 +
Errorn1,m2

/m2.

Proof. First we determine an upper bound on w(G′) in terms of the structure T ∗, and then
we compare that to w(∆m1(n1),m2

). Let v+ be the sum of the weights of all vertices of G′

that are not contained in edges; since they must all have different labels, v+ ≤ m22m2−1.
Then, summing over all components G of G′ that contain n1-edges, n′2 ≤ 1

m2

∑
G w(G)+

2m2−1 = rm1 + 1
m2

∑
e∈E(G′) v(e) + 2m2−1.
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Suppose that the set of edge values of hypergraphs in T ∗ are {v1, v2, . . .} with v1 >
v2 > · · · , and suppose that there are nvi total edges in all hypergraphs of T ∗ with value vi.
Let ρ be the largest value such that τ ′(P ) contains nvρ edges of value vρ. Then

w(G′) ≤ rm1m2 +

ρ∑
i=1

nvivi +

(
m1 −

ρ∑
i=1

nvi

)
vρ+1 +m22m2−1.

Now we consider τ ′(P ) with symmetry breaking loopR. Choose ζ so that Tζ is the last
equivalence class of trees that are components of τ ′(P ); edges in Tζ+1 have value vρ+1,
and thus by Lemma 4.7, each tree in Tρ+1 has at most m2/(vρ+1) edges. By construction,
R has at most m2

2/(vρ+1) + minR edges, each of which has value at least ω/|E(R)|.
Furthermore, τ ′(P ) contains nvi edges of value vi for 1 ≤ i ≤ ρ, and all edges besides
these and edges in R have value vρ+1. Thus w(∆m1(n1),m2

) ≥

rm1m2 +

ρ∑
i=1

nvivi +

(
m1 −

ρ∑
i=1

nvi

)
vρ+1 − |E(R)|

(
vρ+1 −

ω

|E(R)|

)
+m22m2−1.

Thus w(G′)−w(∆m1(n1),m2
) ≤ |E(R)|(vρ+1−ω/|E(R)|) ≤ m2

2 + minR vρ+1−ω.
This proves the lemma.

In the subsequent sections, we prove upper bounds on n2 in terms of the other variables
by evaluating the weights of ∆m1(n1),m2

. For every m1, n1,m2, choose n′2(m1, n1,m2)
maximally so that Km1(n1),m2(n′2)

has a distinguishing partition P ′m1(n1),m2
.

Lemma 5.6. limm1→∞
n′2(m1,n1,m2)
n′2(m1+1,n1,m2)

= 1.

Proof. It follows by construction of ∆m1(n1),m2
and Lemma 5.5.

Lemma 5.7. If m1 is sufficiently large relative to m2, n1, and n2, then Km1(n1),m2(n2)

has a distinguishing partition.

Proof. If n2 is small relative to n1 and m2, then an asymmetric hypergraph with mi edges
of size ni for i = 1, 2 may be constructed as follows. First take an asymmetric hypergraph
with m1 n1-edges, which exists by the main result of [7]. Then add m2 n2-edges on the
same vertex set. The result is asymmetric.

Now assume that n2 is large. Choose m∗ maximally so that n′2 = n′2(m∗, n1,m2) ≥
n2. By Lemma 5.6, n′2/n2 is close to 1. We need to show that Km∗(n1),m2(n2) has a
distinguishing partition. Our method is to show that there exists distinguishing partition P ′

of Km∗(n1),m2(n′2)
and a subset S of weight m2 vertices on τ ′(P ′), with |S| = n′2 − n2,

such that the hypergraph that results by changing all of the labels of vertices of S from [m2]
to ∅ is asymmetric.

Lemma 5.8. With all quantities as above, V (τ ′(P ′)) has a subset S of weight m2 vertices
of size n′2−n2 such that the hypergraphG′ that results from changing all labels of vertices
of S from [m2] to ∅ is τ ′(P ∗) for a distinguishing partition P ∗ of Km∗(n1),m2(n2).
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Proof. Certainly P ∗ is a partition of Km∗(n1),m2(n2). It suffices to show that S may be
chosen so that τ(P ∗) is asymmetric. If τ ′(P ′) contains Θ(n′2) vertices of degree at least
2 of weight m2 and none of weight 0, then any set S of size n′2 − n2 of weight m2 and
degree at least 2 vertices satisfies the desired property. This condition is seen directly in all
cases that j = b(m2 − 1)/2c, as P ′ is constructed directly in subsequent sections.

It must be that τ ′(P ′) has few components with weight 0 vertices, and no components
with many weight 0 vertices. Otherwise, if n1 = 2, we could replace all those components
and a largest defect-free component of τ ′(P ′), if there is one, by a single defect-free asym-
metric tree, which would increase the weight, a contradiction to Lemma 5.5. Otherwise, we
could replace all those components and a largest symmetry breaking loop of τ ′(P ′), if there
is one, with a single symmetry breaking loop. By Lemma 4.7 if n1 = 3, and otherwise by
Corollary 4.6, this would increase the weight, also a contradiction to Lemma 5.5.

It is shown in subsequent sections that for all sufficiently large t, there is an element
of T ∗ with t edges. Thus there are Ω(

√
m∗) elements of T ∗ of size up to 2

√
m1 that are

not components of τ ′(P ′). It must be that all but o(m∗) edges of τ ′(P ′) are contained
in positive weight components; otherwise, all components with nonpositive weight could
be removed and replaced by Ω(

√
m∗) components of positive weight, a contradiction to

Lemma 5.5.
Let T1, . . . , Ta be the components of τ ′(P ′) with weight 0 vertices. Let T be a positive

weight component with t vertices. Then T has Θ(t) vertices of degree at least 2, all but
at most m2 of which have weight m2, and thus τ ′(P ′) has Θ(m∗) vertices in positive
weight components with weight m2. Let S be a subset of size n′2 − n2, chosen uniformly
at random, of the weight m2 vertices that are contained in the larger half of positive weight
components. Let G′ be the hypergraph that results from changing the labels of all vertices
of S in τ ′(P ′) from [m2] to ∅.

Every component T of G′ that contains a vertex of S is asymmetric, since it was con-
structed by dividing the set of vertices labeled [m2] into vertices labeled [m2] and ∅, and
it had no vertex labeled ∅ previously. T is not isomorphic to another component T ′ that
contains a vertex of S since the hypergraph that results from changing all vertices of T of
label ∅ to [m2] is nonisomorphic to the hypergraph that results from changing all vertices
of T ′ of label ∅ to [m2]. To conclude, we need to show that with high probability, Ti is not
isomorphic to any component of G′ for each 1 ≤ i ≤ a, since a is small.

If Ti is isomorphic to T , a component of G′ that contains a vertex of S, then it must
be that the hypergraphs T ∗i and T ∗, which result from converting all vertices of Ti and T
of label ∅ to [m2], are isomorphic. Thus T ∗i is isomorphic to a component T ∗ of τ ′(P ′).
Since T ∗ is asymmetric, for all subsets S′ of weightm2 vertices of T ∗, the hypergraphs that
result from converting all vertices of S′ from label [m2] to ∅ are nonisomorphic. Since T ∗

is large, the probability that Ti is isomorphic to some other component of G′ is small.

Lemma 5.9. Suppose that Km∗(n1),m2(n2) has a distinguishing partition and m1 > m∗.
Then Km1(n1),m2(n2) has a distinguishing partition.

Proof. It suffices to prove the lemma for m1 = m∗+1. Let P be a distinguishing partition
of Km∗(n1),m2(n2). Define a tail T of τ(P ) to be a sequence of vertices v1, . . . , vn1+t−1
and edges {vi, . . . , vn1+i−1} for 1 ≤ i ≤ t, such that vn1

, . . . , vn1+t−1 are contained in
no edges outside of T . Assume that T is chosen so that t is maximal. Then add an vertex
vn1+t and an edge {vt+1, . . . , vn1+t} to τ(P ) to create a hypergraph G′.
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We show thatG′ is asymmetric. By construction, vn1+t is the only degree 1 vertex con-
tained in a maximum tail ofG′, and thus it is a fixed point. Then the edge {vt+1, . . . , vn1+t}
is fixed, since it is the only edge to contain vn1+t. Thus all other vertices and edges are
fixed as well, since τ(P ) is asymmetric. It follows thatKm1(n1),m2(n2) has a distinguishing
partition.

We summarize the preceding lemmas as follows.

Corollary 5.10. If m1 is large relative to n1 and m2, let n′2 be the largest value such that
Km1(n1),m2(n′2)

has a distinguishing partition. Then Km1(n1),m2(n2) has a distinguishing
partition if n2 ≤ n′2.

6 n1 = 2

In this section we consider the case that n1 = 2. A labeled connected 2-uniform hypergraph
has positive value only if it is a tree with fewer than m2 defects. Furthermore, all trees
without defects have positive value.

Our bounds and construction requires an estimate on the number of asymmetric or-
dinary trees, which is provided by the twenty-step algorithm of Harary, Robinson, and
Schwenk.

Lemma 6.1. There exists constants α > 0 and β > 1 such that the number of asymmetric
trees on i edges is (1 + oi(1))αβii−5/2. Furthermore, there exists α′ > 0 such that the
number of asymmetric rooted trees on i edges is (1 + oi(1))α′βii−3/2.

Proof of Theorem 1.2: Recall that

z =

⌊
logβ

(
m1(β − 1)

αβ

(
logβm1

)3/2)⌋
.

Summing the result of Lemma 6.1 from 1 to z, the number of nonisomorphic asym-
metric trees with at most z edges is (α β

β−1 + o(1))βzz−5/2, and they collectively have

(α β
β−1 + o(1))βzz−3/2 ≤ (1 + o(1))m1 edges. Similarly, the collective number of edges

of nonisomorphic asymmetric trees with at most z + 1 edges is at least (1 + o(1))m1, and
with at most z + 2 edges exceeds m1. Each edge of a defect-free tree on z + 2 edges has
value m2/(z+2), and thus all edges of ∆m1(n1),m2

have value at least m2/(z+2), except
edges in the symmetry breaking loop.

We show that ∆m1(n1),m2
has m1

z+1 + (1 + om1(1))αβzz−7/2
(

β
β−1

)2
components of

value m2 and o(βzz−7/2) = o(m2/z
2) components of lesser value. The latter statement

follows by Lemma 6.2. Thus in fact ∆m1(n1),m2
contains (1+oi(1))α′βii−3/2 defect-free

components on i edges for 1 ≤ i ≤ z, o(m1/z) defect-free components on z + 2 edges,
o(m1/z

2) components of other types, and all remaining components are defect-free on
z + 1 edges.

For every edge e ∈ E(∆m1(n1),m2
), let v∗(e) = v(e) −m2/(z + 1). For 1 ≤ i ≤ z,

the sum of v∗(e) over all edges e in components with z + 1− i edges is thus

(m2 + o(1))αβz+1−i(z + 1− i)−3/2(1/(z + 1− i)− 1/(z + 1)).
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By βzz−7/2 = Θ(m1/ log2m1), the preceding sum is

m2αβ
z+1−iz−3/2(i/z2) + o(m1β

−i/ log2m1)

for i < z/ log z, and otherwise

m2αβ
z+1−iz−3/2(i/z2) + o(m1/ log3m1),

which is observed by noting that βz−z/ log z = O((m2 log(m1)3/2)1−1/ log z), and that
m

1/ log z
1 > m

i log logm1/ logm1

1 = logi(m1) for all fixed i.
The sum of v∗(e) over all edges e in components with either z+2 edges or with defects

is o(m1/ log2(m1)), whereas v∗(e) = 0 if e is in a defect-free component with z+1 edges.
We conclude that∑

e∈E(τ ′(P ))

v∗(e) = αβzz−7/2
z∑
i=0

β−i(i+ 1) + o(m1/ log2m1)

= αβzz−7/2
β2

(β − 1)2
+ o(m1/ log2m1).

Thus ∑
e∈E(τ ′(P ))

v(e) =
m1

z + 1
+ αβzz−7/2

β2

(β − 1)2
+ o(m1/ log2m1),

which implies that G has the desired number of components of value m2.
The proof of Lemma 6.2 makes use of the species L(a•) of ordered sets of rooted

asymmetric trees: an element of L(a•) on z′ elements is given by order partitioning [z′]
into subsets and taking an a•-structure on each subset.

Lemma 6.2. There are o(m1/z
2) components of ∆m1(n1),m2

with defects.

Proof. If G is a component of ∆m1(n1),m2
with a defect, then the value of G is at most

m2 − 1, and thus since the edges of G have value at least m2/(z + 2), then G has at most
m2−1
m2

(z+2) edges. Thus we need to show that the number of components with defects on at
most m2−1

m2
(z+ 2) edges in ∆m1(n1),m2

is o(βzz−9/2). It suffices to show that the number
of components with positive value on z′ edges isO((β′)z

′
) for fixed β < β′ < βm2/(m2−1)

and z′ < m2−1
m2

(z + 2), since βz
′
< βz/zi for fixed i.

If G is a component of positive value with z′ edges, then by Lemma 4.7 all but at most
m2 − 1 vertices of G are labeled [m2]. Let G′ be the subgraph of G that is the union of all
paths between vertices not labeled [m2]. Only vertices not labeled [m2] are leaves in G′,
and each leaf has one of 2m2 − 1 labels, and thus the number of such G′ that may result is
at most a polynomial in z′, say p(z′). We may reconstruct G from G′ by replacing every
vertex v ∈ G′ with a rooted asymmetric tree with root v. Thus, since G is determined by
G′ and an ordered set of asymmetric trees on a total of z′ + 1 vertices, there are at most
p(z′)|L(a•)z′+1| components on z′ edges.

Choose fixed β < β∗ < β′. The lemma follows by showing that |L(a•)z′+1| =
O((β∗)z

′
). We show inductively on z′ that |L(a•)z′+1| ≤ γ(β∗)z

′
for some sufficiently

large γ.
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Note the recursion L(a•) = E0 + a•L(a•): every ordered set of rooted trees is either
the empty set or a rooted tree followed by another ordered set of rooted trees. Thus for
z′ ≥ 1,

|L(a•)z′+1| =
z′+1∑
i=1

|a•i ||L(a•)z′+1−i| ≤
z′+1∑
i=1

|a•i |γ(β∗)z
′+1−i.

Let a•≤z′/3 be the species of rooted asymmetric trees on at most z′/3 vertices. Observe
that |(a•≤z′/3a

•)z′+1| ≤ |a•z′+1|: given an asymmetric rooted tree T on i ≤ z′/3 vertices
and another T ′ on z′ + 1 − i vertices, a third tree may be constructed by adjoining T ′ to
T so that the root of T ′ is forgotten and place adjacent to the root of T . This construction
allows T and T ′ to be uniquely determined. Thus by Lemma 6.1,

bz′/3c∑
i=1

|a•i ||a•z′+1−i| ≤ (1 + o(1))α′ββz
′
z′−3/2.

But also,
bz′/3c∑
i=1

|a•i ||a•z′+1−i| ≥ α′ββz
′
z′−3/2(1 + o(1))

bz′/3c∑
i=1

|a•i |β−i.

Thus
bz′/3c∑
i=1

|a•i |β−i ≤ 1 + o(1) and
bz′/3c∑
i=1

|a•i |(β∗)
−i
< β/β∗.

Thus
∑z′+1
i=1 |a•i |γ(β∗)z

′+1−i ≤

γβ(β∗)z
′
+

z′+1∑
i=bz′/3c+1

|ai|γ(β∗)z
′+1−i =

γβ(β∗)z
′
+ (1 + o(1))

z′+1∑
i=bz′/3c+1

α′βii−3/2γ(β∗)z
′+1−i < γ(β∗)z

′+1

as desired.

7 k = 0 and j < b(m2 − 1)/2c
In this section we consider the case that k = 0 and j < b(m2 − 1)/2c. The value of C
defined in the statement of Theorem 1.3 is determined as follows. If 0 < j < m2/2− 3/2,
then

C =

(
m2

j + 1

)m2−2j−1(m2

j

)m2−2j−3(2m2 − 4j − 4

m2 − 2j − 3

)
2−m2+2j+3

(2m2 − 4j − 4)!
.

If j = 0 and m2 > 3, then

C = mm2−1
2

(
2m2 − 4

m2 − 3

)
1

(2m2 − 4)!
,
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and if j = m2/2− 3/2, then C =
(
m2

j+1

) ((
m2

j+1

)
− 1
)
/2.

The result requires the following estimate on the number of structures of a particular
type of tree.

Lemma 7.1. If i is odd, the number of labeled structures of AE1+E3 on i + 1 vertices is(
i+1

(i−1)/2
) (i−1)!
2(i−1)/2 , and of AE1+2E3 on i+ 1 vertices is

(
i+1

(i−1)/2
)
(i− 1)!.

Proof. Apply Proposition 3.1.19 of Bergeron, Labelle, and Leroux [4].

Proof of Theorem 1.3: We start by proving an upper bound on the sum of the values of
all components of ∆m1(n1),m2

. Let G be a component of ∆m1(n1),m2
with t edges and

positive value; by Lemma 4.7, G is a tree with at most m2 − 2j − 1 leaves.
Construct a colored graph c(G) from G as follows: V (c(G)) is the union of all edges

of G and vertices of G of degree at least two; and E(c(G)) is given by vertex-edge con-
tainment. Every defective vertex or edge inG is colored red in c(G). If v is a non-defective
vertex of degree at least 3, then v is colored green in c(G). All other vertices of c(G) are
blue.

A segment in c(G) is a maximal path (v0, . . . , vi) such that for all 0 < i′ < i, vi′
is a blue vertex with degree 2. Construct a new graph c′(G) by replacing every segment
(v0, . . . , vi) with a single edge v0vi, and label that edge by the number i of edges it replaces
in c(G).

The number of edges of c′(G) is at most 2m2 − 4j − 5. To see this, observe that G has
d defects and at mostm2−2j−1−d leaves by Lemma 4.7. Every leaf of c′(G) is a leaf of
G. Combining the facts that

∑
v∈V (c′(G)) deg(v) = 2e(c′(G)) and

∑
v∈V (c′(G))(deg(v)−

2) = −2, e(c′(G)) ≤ 2m2− 4j− 5− 2d+a− b, where a and b are the number of vertices
of degree 2 and at least 4 in c′(G). However, the only degree 2 vertices in c′(G) correspond
to defects in G, and thus a ≤ d. Thus c′(G) has at most 2m2− 4j− 5 edges. Furthermore,
this bound is attained only if G has m2 − 2j − 1 leaves, no defects, no vertices of degree
at least 4, and no vertices of degree 3 if j > 0 by Lemma 4.7.

If c′(G) has 2m2 − 4j − 5 edges, then G has value 1 and no edges that intersects four
other edges, since this would give a vertex of degree at least 4 in c′(G). Thus, if c′(G) has
2m2−4j−5 edges, then c′(G) has m2−2j−1 leaves and m2−2j−3 vertices of degree
3. If j > 0, then by Lemma 4.7, all vertices of c′(G) are blue, and such trees, forgetting
labels, may be described by the species AE1+E3 . If j = 0, then the degree 3 vertices may
be green or blue, and thus such trees are described by the species AE1+2E3 .

Given c′(G) with i = 2m2 − 4j − 5 ≥ 2 edges and that G has t edges, there are
(1+o1(t))ti−1/((i−1)!α) nonisomorphic labellings of the edges, where α is the cardinality
of the automorphism group of c′(G). This is since that in most labellings, all labels are
distinct, and the orbit of a labeling with distinct labels consists of α labellings. The number
of labeled graphs c′(G) of a given isomorphism class and automorphism group of order α
is (i+ 1)!/α. Hence the number of graphs c(G) with c′(G) having m2 − 2j − 1 leaves is
γ(1 + o1(t))ti−1/((i− 1)!(i+ 1)!), where γ is the number of labeled specimens of AR as
in Lemma 7.1.

If c′(G) has fewer than i = 2m2 − 4j − 5 edges, there are o(ti−1) labeling of c′(G).
Since the number of graphs c′(G) that may arise is independent of t, the total number of
graphs c(G) is γ(1 + o1(t))ti−1/((i− 1)!(i+ 1)!), of which almost all have m2 − 2j − 1
leaves and all segments of different lengths.
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Given a graphG′, the number of componentsG of ∆m1(n1),m2
with positive value such

that c(G) = G′ has an upper bound that depends only on n1 and m2. G is determined by
c(G) and the following: the labels of all defective vertices, the labels of all vertices that
are contained in defective edges, the labels of all vertices contained in leaves of G, and the
labels of all vertices contained in edges with at least 3 vertices of degree at least 2. There
are at most m2− 2j− 1 of each of these items in G, and each one may be determined in at
most 2n1m2 ways, and thus there are at most 24n1m2(m2−2j−1) componentsGwith positive
value such that c(G) = G′. Thus, there are o(t2m2−4j−6) positive-value components G
with t edges such that either G has at most m2− 2j− 2 leaves or c′(G) has two edges with

the same label. Adding over all t, there are o(m
2m2−4j−5
2m2−4j−4

1 ) such components G.
Now we determine how many positive-value componentsGwith t edges of ∆m1(n1),m2

satisfy these two conditions: c(G) = G′ for a particular graph G′ with m2− 2j− 1 leaves,
and c′(G) has distinct edge labels. If 0 ≤ j < m2/2 − 3/2, G has no defects, no vertices
of degree at least 3 (if j > 0), and m2 − 2j − 3 edges that intersect 3 others. Each leaf,
since it is not defective, contains one vertex of every label S with |S| ≥ m2−j and exactly
one vertex with a label S with |S| = m2− j − 1. There are

(
m2

j+1

)
ways to select this label.

Each edges that intersects 3 others, since it is not defective, contains a vertex of every label
S with |S| ≥ m2 − j except for one label S with |S| = m2 − j. There are

(
m2

j

)
ways

to choose this label. The total number of such components is
(
m2

j+1

)m2−2j−1(m2

j

)m2−2j−3,
and the distinct edge labels of c′(G) ensure that each of these components are asymmetric.

If j = m2/2 − 3/2, then c(G) has 2 leaves and is a path. As before, the two leaves
each contain a vertex of every label S with |S| ≥ m2 − j, together with one vertex each
of labels S and S′ respectively with |S| = |S′| = m2 − j − 1. All other edges contain
exactly a vertex of each label S̃ with |S̃| ≥ m2 − j. By asymmetry, S 6= S′. Thus there
are
(
m2

j+1

)
(
(
m2

j+1

)
− 1)/2 asymmetric components G with c(G) = G′.

We conclude that there are (C + o(1))t2m2−4j−6 components of ∆m1(n1),m2
with t

edges and positive value, almost all of which have value 1 and none with value exceeding
m2 − 2j − 2. Adding over all

t < (1 + o(1))

(
m1(2m2 − 4j − 4)

C

) 1
2m2−4j−4

proves the result.

8 k ≥ 1 and j < b(m2 − 1)/2c

Proof of Theorem 1.4: We start with the upper bound on n2. By Lemma 4.7, every com-
ponent of ∆m1(n1),m2

has value at most m2 − 1, and every component with positive value
is a tree. Suppose that the number of components of ∆m1(n1),m2

on i edges with positive

value is at most bi for some b. Then ∆m1(n1),m2
has at most b

d(logb(m1))/2e+1−1
b−1 compo-

nents with at most dlogb(m1)/2e edges. Thus, ∆m1(n1),m2
has at most b

d(logb(m1))/2e+1−1
b−1 +

m1

dlogb(m1)/2e components of positive value, each of which has value at most m2 − 1. This
would prove the upper bound.

We now establish that there are at most bi components of positive value on i edges for
some b. Every component G of positive value is a tree. Associate with G a labeled tree G′

as follows. The vertex set of G′ is the union of the edge set of G and the set of vertices
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of G with degree at least 2. The edges of G′ are given by inclusion in G. If v is a vertex
of G′ that corresponds to a vertex of G, then v is given the same label; thus, there are at
most 2m2 possible labels for v. If e is a vertex of G′ that corresponds to an edge of G, then
e is labeled in a way to encode the number and labels of degree 1 vertices of e. Thus e
can be labeled in at most 1 + 2m1 + 22m1 + · · ·+ 2n2m1 ways. G can be reconstructed to
isomorphism from G′.

If G has i edges, then G′ has at most 2i− 1 vertices. Thus the number of isomorphism
classes of underlying unlabeled trees ofG′ grows exponentially in i [10]. Since the number
of possible labels of each vertex ofG′ depends only on n1 andm2, the total number of trees
G′, and thus components G, grows at most exponentially in i.

To prove the lower bound on n2, we show that the number of components of ∆m1(n1),m2

with t edges does in fact grow exponentially in t. LetG be a tree without defects or vertices
of degree at least 3 such that every edge contains at least

(
m2

0

)
+ · · ·+

(
m2

j

)
degree 1 ver-

tices. Then G contains 2|E(G)| − 1 vertices of weight m2, |E(G)|
(
m2

i

)
of weight m2 − i

for 1 ≤ i ≤ j, and |E(G)|k + 2 of weight m2 − j − 1. Then G has value m2 − 2j − 2.
To G we may associate a vertex-labeled tree G′, with the vertices of G′ given by the

edges of G, and the edges of G′ are given by intersection. The label of a vertex of G′

encodes the labels of the degree 1 vertices of the corresponding edge. Suppose that such
an edge e intersects i other edges. Since e contains a vertex of every label with of size at

least m2 − j and k − i + 2 vertices of label of size m2 − j − 1, there are ai :=
( (m2

j+1)
k−i+2

)
ways to label e inG′. ThusG′ may be regarded as a member of a∑k+2

i=1 aiEi
, and from every

member of this species, one can reconstruct an asymmetric 2[m2]-labeled n1-uniform tree
with positive value. We show that |(a∑k+2

i=1 aiEi
)t| grows exponentially in t by exhibiting a

subset of structures of exponential size.
Let (v0, . . . , vb2t/3c) be a path. Let S be subset of size t − 1 − b2t/3c of the integers

from 3 to b2t/3c−2 that includes 3 and b2t/3c−2. For every i ∈ S, let ui be a vertex with
an edge uivi. Then the graph with vertices (v0, . . . , vb2t/3c) and ui for each i ∈ S, and
labels chosen arbitrarily, is an element of a∑k+2

i=1 aiEi
. Two such graphs are nonisomorphic

for different choices of S, and the number of choices of S grows exponentially in t.
Say that there are bt trees of the maximum possible value of m2 − 2j − 2 on t edges

for some fixed b and sufficiently large t. Then ∆m1(n1),m2
contains no component with

more than dlogb(m1)e edges for large m1, except possibly the symmetry breaking loop,
and ∆m1(n1),m2

has at least m1−m2dlogb(m1)e−minR
dlogb(m1)e components. This proves the theorem.

9 k = 0 and j = b(m2 − 1)/2c
We consider Theorem 1.5 in three cases.

Theorem 9.1. Theorem 1.5 holds for even m2 ≥ 4.

Proof. The upper bound on n2 follows from Lemmas 4.7 and 4.8: when j = (m2 − 1)/2,
since every tree has at least 2 leaves, no component has positive value.

We establish the that n2 may be rm1+2m2−1 by the following construction. Let τ ′(P )
consist of components G1, . . . , Gm2 of n1-edges, such that Gi consists of ti edges, and all
the ti are distinct and sum to m1. Say that Gi contains edges e1, . . . , eti such that for all
1 ≤ a < b ≤ ti, ea and eb do not intersect unless b = a+ 1, in which case ea ∩ eb = {va}.
Each va is labeled [m2]. Each ea contains one vertex of each of label of size at leastm2−j.
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In addition, e1 and eti contain respective vertices u1 and u2 of labels {i, i+ 1, . . . , i+ j}
and {i, i − 1, . . . , i − j}, subscripts mod m2. In addition, τ ′(P ) contains one degree 0
vertex of each nonempty label.

Now we show that τ(P ) is asymmetric. Since the Gi have different numbers of edges,
no automorphism permutes the components of τ ′(P ) nontrivially. The only nontrivial au-
tomorphism of the edges of Gi reverses the chain. Given that an automorphism σ fixes the
n2-edges of τ(P ), the two leaf edges of Gi cannot be interchanged, and thus are fixed and
all edges ofGi are fixed. Thus every degree 2 vertex in τ ′(P ) is fixed as well. Finally, each
degree 1 vertex in an edge e ∈ Hi has a different label, and thus all these vertices are fixed.

Finally, since σ fixes each Gi componentwise, and the n2-edge Xi intersects Gi more
than any other n2-edge, σ fixes each n2-edge.

Theorem 9.2. Theorem 1.5 holds when m2 = 2.

Proof. All components of τ ′(P ) have a a nonpositive value by Lemma 4.7. By Lemma
4.7, if G is a tree of 0 value, then G has two leaves and is a chain. Furthermore, to assure
asymmetry, the leaves of G must contain vertices labeled {1} and {2} respectively. Other-
wise, if G is a non-tree with value 0, then since r = 2, G must have t edges and 2t vertices,
and every vertex must be labeled [2].

We conclude that if τ ′(P ) has value m22m2−1, then τ ′(P ) is a collection of chains, as
described above; components in which every vertex is labeled [2]; and a degree 0 vertex
of every nonempty label. But then τ(P ) has a symmetry that results from reversing each
chain and switching the n2-edges. Thus the upper bound on n2 holds.

Now we prove the sufficiency of the bound by construction. Let τ ′(P ) contain a chain
with at least five edges, e1, . . . , em1

such that ea and eb intersect only when b = a+ 1, and
then ea ∩ eb = {va}. All vertices are labeled [2] except for v1 and v2, which are labeled
{1} and {2} respectively, and degree 1 vertices u1 and u2 that are contained in each of the
leaves, labeled {1} and {2} respectively. Also, τ ′(P ) contains a degree 0 vertex of each
nonempty label.

We show that τ(P ) is asymmetric. The n2-edges cannot be switched since no automor-
phism of τ ′(P ) moves v1 to any other vertex of weight 1. Thus v1 is a fixed point in τ(P ),
which fixes all edges of τ ′(P ). Furthermore, the vertices in the leaves of τ ′(P ) are fixed
since they are of different labels.

Theorem 9.3. Theorem 1.5 holds for odd m2.

Proof. By Lemma 4.7, no component of τ ′(P ) has positive value. We establish the upper
bound on n2 by showing that every connected component of τ ′(P ) has negative value.

Suppose thatG is a component with value 0. By Lemma 4.4,G contains |E(G)|(n1−1)
vertices, of which |E(G)|(n1− 2) have degree 1. Furthermore, every edge contains n1− 2
degree 1 vertices since wn1−1+wn1−3 < 2wn2−2. ConstructG′ by removing these degree
1 vertices. Then G′ is a ordinary, 2-regular connected graph and thus a cycle. Furthermore,
G lacks defects. We conclude that G has a nontrivial automorphism.

Now consider the following construction when m1 ≥ m2 + 3. Let τ ′(P ) contain a
connected n1-uniform hypergraph with edges e1, . . . , em1

, subscripts mod m1, such that
ea and eb do not intersect unless |b−a| = 1. If b = a+1, then we say that ea∩eb = {va}.
τ ′(P ) has no defects except for the following. For 1 ≤ i ≤ m2 − 1, say that vi is labeled
[m2]− {i}, and vm2+1 is labeled [m2]− {m2}. Also, τ ′(P ) contains a degree 0 vertex of
each nonempty label. Then τ ′(P ) is asymmetric, and n2 is the maximum value.
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10 k ≥ 1 and j = b(m2 − 1)/2c
We say J that an (ψ, s, t, n1)-regular hypergraph if J satisfies the following conditions. J
is n1-uniform with t edges, of which all edges intersect s other edges with the exception
of ψ edges that each intersect s − 1 other edges. Furthermore, no two edges intersect at
more than 1 vertex, and every vertex has degree at most 2. Finally, every automorphism of
J fixes all edges. Before we prove the main result of this section, we need some lemmas
on the existence of regular hypergraphs.

Lemma 10.1. Let ψ and s ≥ 3 be given, and suppose that t is sufficiently large relative to
ψ and s. Suppose that st−ψ is even. Then there exists an asymmetric graph with t vertices
such that all vertices have degree s, except for ψ vertices that have degree s− 1 .

Call a graph of this form an (ψ, s, t)-asymmetric graph.

Proof. The lemma follows from the main theorem of [9] when st is even and ψ = 0, since
an random s-regular graph is almost surely asymmetric. Such a graph is also almost surely
s-connected [3].

Consider the case that st is even. Then ψ is also even. Choose distinct t1, . . . , tψ/2
such that t1 + . . .+ tψ/2 = t, with each ti even if t is even. For 1 ≤ i ≤ ψ/2, let Gi be an
s-connected (0, s, ti)-asymmetric graph with an edge removed. Then the disjoint union of
the Gi is an (ψ, s, t)-asymmetric graph.

For odd st and ψ, we may construct a (ψ, s, t)-asymmetric graph as follows. Let G′ be
an (ψ(s − 1), s, t − ψ)-asymmetric graph. Add new vertices v1, . . . , vψ to G′, each with
disjoint neighbor sets of size s − 1 vertices of degree s − 1 in G′. The resulting graph is
(ψ, s, t)-asymmetric.

Lemma 10.2. Let ψ and s ≥ 3 be given, and suppose that t is sufficiently large relative
to ψ and s. Suppose that st − ψ is even. Also let n1 ≥ s be given. Then there exists an
(ψ, s, t, n1)-asymmetric hypergraph.

Proof. Let G be an (ψ, s, t)-asymmetric graph. Let H ′ be a hypergraph with vertex set
E(G), edge set V (G), and incidence given by incident in G. Then construct H from H ′

by adding n1 − d degree 1 vertices to every edge in H ′ that contains d vertices. Then H is
(ψ, s, t, n1)-asymmetric.

Proof of Theorem 1.6: The upper bound on n2 follows by Corollary 4.6 and 4.8, except
when km1 is even and m2 odd. In this case, suppose that all connected components of
τ ′(P ) have value 0, and τ ′(P ) contains a degree 0 vertex of every nonempty label. By
Lemma 4.4 and the fact that wn1−k−1 + wn1−k−3 < 2wn1−k−2, every edge of τ ′(P )
contains exactly n1 − k − 2 degree 1 vertices. Furthermore, τ ′(P ) does not have any
defects. In this case, τ(P ) has an nontrivial automorphism that permutes the n2-edges.
The upper bound on n2 follows.

We establish the result by the following constructions. First consider the case that km1

and m2 are both even. Let the graph of τ ′(P ) be an (m2, k + 2,m1, n1)-asymmetric hy-
pergraph, which exists by Lemma 10.2, together with a degree 0 vertex of every nonempty
label. Choose the labels of the vertices of τ ′(P ) so that there are no defects, label the
edges with k + 1 degree 1 vertices by e1, . . . , em2

, and say ei contains a vertex with label
{i, i+ 1, . . . , i+m2/2− 1}, subscripts mod m2. Then τ ′(P ) is asymmetric and satisfies
n2 = rm1 + 2m2−1.
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If km1 is even andm2 is odd, let τ ′(P ) be a (0, k+2,m1, n1)-asymmetric hypergraph,
together with a degree 0 vertex of every nonempty label. Suppose that τ ′(P ) has exactly
the following m2 defects: for degree 2 vertices v1, . . . , vm2

, vi is labeled [m2]−{i}. Then
τ(P ) is asymmetric, and n2 = rm1 + 2m2−1 − 1.

If km1 is odd and m2 is even, then let τ ′(P ) be an (m2 +1, k+2,m1, n1)-asymmetric
hypergraph with e1, . . . , em2+1 the edges that intersect k + 1 other edges, together with a
degree 0 vertex of every nonempty label. Choose the labels of the vertices of τ ′(P ) so that
there are no defects, except that em2+1 contains a degree 1 vertex with every label of size
at least m2 − j, together with a vertex labeled ∅. For 1 ≤ i ≤ m2, ei contains a degree 1
vertex labeled {i, i+ 1, . . . , i+m2/2− 1}, subscripts mod m2. Then τ(P ) is asymmetric
and satisfies n2 = rm1 + 2m2−1 − 1/2.

Finally, if km1 and m2 are both odd, then let τ ′(P ) be an (m2, k + 2,m1, n1)-asym-
metric hypergraph, together with a degree 0 vertex of every nonempty label. Choose the
labels of τ ′(P ) so that there are no defects, and if the edges with k + 1 degree 1 vertices
are e1, . . . , em2

, then ei contains a vertex labeled {i, i + 1, . . . , i + m2/2 − 1/2}, with
subscripts mod m2. Then τ(P ) is asymmetric and satisfies n2 = rm1 + 2m2−1 − 1/2.
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centes, LaCIM, Montréal 1994. English version: Combinatorial Species and Tree-like Struc-
tures, Cambridge University Press, 1998.

[5] D. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin.,
13(1) #R78 (2006), 12 pp.

[6] D. Boutin, Small Label Classes in 2-Distinguishing Labelings, Ars Math. Contemp., 1(2)
(2008), 154–164.

[7] M. Ellingham, J. Schroeder, Distinguishing partitions and asymmetric uniform hypergraphs,
Ars Math. Contemp., 4(1) (2011), 111–123.

[8] F. Harary, R. W. Robinson, A. J. Schwenk, Twenty-step algorithm for determining the asymp-
totic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483–503.
Errata: Vol. A 41 (1986), p. 325.

[9] J. H. Kim, B. Sudakov, V. Vu, On the asymmetry of random regular graphs and random
graphs, Random Structures Algorithms - Special issue: Proceedings of the tenth international
conference ”Random structures and algorithms”, Volume 21 Issue 3-4, October 2002.

[10] R. Otter. The Number of Trees, Ann. Math. 49 (1948), 583-599.

[11] J. Tymoczko, Distinguishing numbers for graphs and groups, Electron. J. Combin. 11 #R63
(2004), 13 pp.



Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 10 (2016) 67–77

Commutators of cycles in permutation groups

Aleš Vavpetič ∗
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Abstract

We prove that for n ≥ 5, every element of the alternating group An is a commutator
of two cycles of An. Moreover we prove that for n ≥ 2, a (2n + 1)-cycle of the per-
mutation group S2n+1 is a commutator of a p-cycle and a q-cycle of S2n+1 if and only
if the following three conditions are satisfied (i) n + 1 ≤ p, q, (ii) 2n + 1 ≥ p, q, (iii)
p+ q ≥ 3n+ 1.

Keywords: Commutator, cycle, permutation, alternating group.

Math. Subj. Class.: 20B05

1 Introduction
In 1951 O. Ore [9] conjectured that in a finite simple non-abelian group every element is
a commutator. In the same paper he proved that the conjecture holds for the alternating
group An, where n ≥ 5, but the result had already been proved by G. A. Miller half a
century earlier [7]. After Ore published the paper there were many papers devoted to the
Ore conjecture: R. C. Thompson proved the Ore conjecture for the projective special linear
groups PSLn(q) [10], [11], [12], R. Gow proved it for the projective simplectic groups
PSp2n(q), where q ≡ 1 (mod 4) [4], O. Bonten for the exceptional groups of Lie type of
low rank [2], J. Neubüser, H. Pahlings, E. Cleuvers proved it for the sporadic groups [8],
E. W. Ellers, N. Gordeev handled the finite simple groups of Lie type over a finite field Fq ,
whenever q ≥ 9, ... M. W. Liebeck, E. A. O’Brien, A. Shalev, P. H. Tiep proved the Ore
conjecture for the remaining cases [6] and the conjecture became the theorem. We refer
the reader to the survey paper [5] for more historical notes about commutators and the Ore
conjecture.

In this paper we prove a stronger version of the Ore conjecture for the simple alternating
group An. In Section 2 it is shown that, for n ≥ 5, every permutation of An is actually a
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commutator of two cycles of An. In particular, every even permutation of the symmetric
group Sn is a product of two conjugate cycles. Namely, if ρ = [σ, τ ] = σ−1τ−1στ ,
then ρ is a product of σ−1τ−1σ and τ (and also a product of σ−1 and τ−1στ ). Note that
permutations τ and τ−1 are conjugate in Sn. In [1] it is proved that a (2n + 1)-cycle of
A2n+1 is a product of two conjugate l-cycles of A2n+1 if and only if l ≥ n + 1. Hence
this is a necessary condition for the existence of two l-cycles σ and τ such that [σ, τ ] is a
(2n + 1)-cycle. In Section 3 it is shown that this is far from being a sufficient condition.
More precisely, it is shown that, for n ≥ 2, a (2n + 1)-cycle of A2n+1 is a commutator
of a p-cycle and a q-cycle of S2n+1 if and only if n + 1 ≤ p, q and p + q ≥ 3n + 1. In
particular, a (2n+ 1)-cycle of A2n+1 (n ≥ 2) is a commutator of l-cycles of S2n+1 if and
only if l ≥ 3n+1

2 .
The image of an element a under a permutation σ is denoted by aσ . Permutations are

executed from left to right. The support suppσ of a permutation σ is the set of all elements
which are not fixed by σ.

Let σ be a permutation, a ∈ suppσ and x1, . . . , xn 6∈ suppσ. We define permutations
ϕ(σ; a, x1, . . . , xn) and ε(σ; a) by

tϕ(σ;a,x1,...,xn) =


x1, t = a,

xi+1, t ∈ {x1, . . . , xn−1},
aσ, t = xn,

tσ, t 6∈ {a, x1, . . . , xn},

and

tε(σ;a) =


a, t = a,

aσ, t = aσ
−1

,

tσ, t 6∈ {a, aσ−1}.

If σ is the k-cycle (a1, . . . , ak), then ϕ(σ; ak, x1, . . . , xn) is the (k+n)-cycle (a1, . . . , ak,
x1, . . . , xn) and ε(σ; ak) is the (k − 1)-cycle (a1, . . . , ak−1).

Let σ and τ be permutations such that suppσ ∩ supp τ = ∅. For a ∈ suppσ and
b ∈ supp τ , let ψ(σ, τ ; a, b) denote the permutation defined by

tψ(σ,τ ;a,b) =


tσ, t ∈ suppσ − {a},
bτ , t = a,

tτ , t ∈ supp τ − {b},
aσ, t = b.

If τ is a k-cycle then ψ(σ, τ ; a, b) = ϕ(σ; a, bτ , bτ
2

, . . . , bτ
k

), and if σ is a k-cycle then
ψ(σ, τ ; a, b) = ϕ(τ ; b, aσ, aσ

2

, . . . , aσ
k

).

2 Permutations as commutators of cycles
The proof that every permutation of An (n ≥ 5) is a commutator of two cycles is based
on induction on the number and the lengths of cycles in the cycle decomposition of the
permutation. In the following lemmas we describe how the application of ϕ, ψ, and ε
modify commutators.
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Lemma 2.1. Let σ, τ be permutations, x ∈ suppσ, y ∈ supp τ , and (suppσ ∪ supp τ) ∩
({x1, . . . , xn} ∪ {y1, . . . , ym}) = ∅. Then for t 6∈ {xσ, xτσ, yτσ, yσ−1τσ, x1, . . . , xn,
y1, . . . , ym} we have t[σ,τ ] = t[ϕ(σ;x,x1,...,xn),ϕ(τ ;y,y1,...,ym)].

Proof. Denote σ̃ = ϕ(σ;x, x1, . . . , xn) and τ̃ = ϕ(τ ; y, y1, . . . , ym). For t 6∈ {xσ, xτσ,
yτσ, yσ

−1τσ, x1, . . . , xn, y1, . . . , ym} we have tσ
−1

= tσ̃
−1

. Since t 6∈ {yτσ, y1, . . . , ym},
also tσ

−1 6∈ {yτ , y1, . . . , ym} and therefore tσ
−1τ−1

= tσ̃
−1τ̃−1

. Since tσ
−1τ−1 6∈ {x,

x1, . . . , xn} we have tσ
−1τ−1σ = tσ̃

−1τ̃−1σ̃ . And finally tσ
−1τ−1σ 6∈ {y, y1, . . . , ym},

hence t[σ,τ ] = t[σ̃,τ̃ ].

We record the following immediate consequence.

Corollary 2.2. Let σ, τ be permutations. Suppose that a, b ∈ suppσ such that aσ =
aτ = b, and (suppσ ∪ supp τ) ∩ ({x1, . . . , xn} ∪ {y1, . . . , ym}) = ∅. Then for t 6∈
{bσ, bτσ, x1, . . . , xn, y1, . . . , ym} we have t[σ,τ ] = t[ϕ(σ;b,x1,...,xn),ϕ(τ ;b,y1,...,ym)].

Lemma 2.3. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ and
c, d 6∈ suppσ ∪ supp τ . Then

[ϕ(σ; b, c, d), ϕ(τ ; b, d, c)] = ϕ([σ, τ ]; bτσ, c, d).

Proof. Denote σ̃ = ϕ(σ; b, c, d) and τ̃ = ϕ(τ ; b, d, c). By Corollary 2.2, we have t[σ̃,τ̃ ] =
t[σ,τ ] for t 6∈ {bσ, bτσ, c, d}. Because

(bτσ)[σ̃,τ̃ ] = (bτ )τ̃
−1σ̃τ̃ = cσ̃τ̃ = dτ̃ = c,

c[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = aσ̃τ̃ = bτ̃ = d,

d[σ̃,τ̃ ] = cτ̃
−1σ̃τ̃ = dσ̃τ̃ = (bσ)τ̃ = bστ = (bτσ)[σ,τ ],

(bσ)[σ̃,τ̃ ] = dτ̃
−1σ̃τ̃ = bσ̃τ̃ = cτ̃ = bτ = (aσ)τ = (bτ

−1

)στ = (bσ)[σ,τ ],

we have [ϕ(σ; b, c, d), ϕ(τ ; b, d, c)] = ϕ([σ, τ ]; bτσ, c, d).

Lemma 2.4. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ and
c, d 6∈ suppσ ∪ supp τ . Then

[ϕ(σ; b, c, d), ϕ(τ ; b, d)] = ϕ([σ, τ ]; bσ, c, d),

[ϕ(σ; b, d), ϕ(τ ; b, c, d)] = ϕ([σ, τ ]; bσ, d, c).

Proof. Denote σ̃ = ϕ(σ; b, c, d) and τ̃ = ϕ(τ ; b, d). By Corollary 2.2, we have t[σ̃,τ̃ ] =
t[σ,τ ] for t 6∈ {bσ, bτσ, c, d}. Because

(bσ)[σ̃,τ̃ ] = dτ̃
−1σ̃τ̃ = bσ̃τ̃ = cτ̃ = c,

c[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = aσ̃τ̃ = bτ̃ = d,

d[σ̃,τ̃ ] = cτ̃
−1σ̃τ̃ = cσ̃τ̃ = dτ̃ = bτ = (aσ)τ = (bτ

−1

)στ = (bσ)[σ,τ ],

(bτσ)[σ̃,τ̃ ] = (bτ )τ̃
−1σ̃τ̃ = dσ̃τ̃ = (bσ)τ̃ = bστ = (bτσ)[σ,τ ],

we have [ϕ(σ; b, c, d), ϕ(τ ; b, d)] = ϕ([σ, τ ]; bσ, c, d).
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Because [σ, τ ]−1 = [τ, σ] and (bτ )[τ,σ] = bσ , we have

[ϕ(σ; b, d), ϕ(τ ; b, c, d)] = ([ϕ(τ ; b, c, d), ϕ(σ; b, d)])−1 =

= ϕ([τ, σ]; bτ , c, d)−1 =

= ϕ([σ, τ ]; bσ, d, c).

Corollary 2.5. Let ρ be a (2n+ 1)-cycle and n ≥ 2. For p, q ∈ N such that p, q ≤ 2n+ 1
and p + q ≥ 3n + 2, there exist a p-cycle σ, a q-cycle τ , and a ∈ suppσ such that
[σ, τ ] = ρ, supp ρ = suppσ ∪ supp τ , and aσ = aτ . In the case q 6= 2n + 1 we arrange
that aσσ 6∈ supp τ .

Proof. If n = 2 and p ≥ q then (p, q) ∈ {(5, 5), (5, 4), (5, 3), (4, 4)} and we have

(a1, a2, a3, a4, a5) = [(a1, a4, a2, a3, a5), (a1, a4, a3, a5, a2)] =

= [(a1, a4, a2, a5, a3), (a1, a4, a3, a5)] =

= [(a1, a2, a4, a5, a3), (a1, a2, a5)] =

= [(a1, a5, a2, a3), (a1, a5, a3, a4)].

If n = 2 and p < q, then q = 2n+ 1 = 5 and we can use the equality [σ, τ ]−1 = [τ, σ]. In
all cases aσ1 = aτ1 and if q 6= 5, also aσσ1 6∈ supp τ .

Let n > 2. The proof is divided into 3 cases.
Case 1: Suppose q ≤ 2n. Let p1 = p − 2, q1 = q − 1, and n1 = n − 1. Then

p1 + q1 = p − 2 + q − 1 ≥ 3n1 + 2 and p1, q1 ≤ 2n1 + 1. By the inductive hypothesis
there exist a p1-cycle σ, a q1-cycle τ , and a ∈ suppσ such that [σ, τ ] is a (2n1 + 1)-
cycle, suppσ ∪ supp τ = supp[σ, τ ], and aσ = aτ . Let x, y 6∈ suppσ ∪ supp τ , σ̃ =
ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y). Then σ̃ is a p-cycle, τ̃ is a q-cycle, aσ̃ = aσ = aτ =
aτ̃ , aσ̃σ̃ = x 6∈ supp τ̃ , and by Lemma 2.4, [σ̃, τ̃ ] is a (2n+1)-cycle and supp σ̃∪supp τ̃ =
supp[σ̃, τ̃ ].

Case 2: Suppose q = 2n+1 and p 6= 2n+1. This case follows from the previous case
and equality [σ, τ ]−1 = [τ, σ].

Case 3: Suppose p = q = 2n + 1. By the inductive hypothesis there exist (2n − 1)-
cycles σ, τ , and a ∈ suppσ such that [σ, τ ] is a (2n − 1)-cycle, suppσ = supp τ =
supp[σ, τ ], and aσ = aτ . Let x, y 6∈ suppσ, σ̃ = ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y, x).
Then σ̃ and τ̃ are (2n + 1)-cycles, aσ̃ = aσ = aτ = aτ̃ , and by Lemma 2.3, [σ̃, τ̃ ] is a
(2n+ 1)-cycle and supp σ̃ = supp τ̃ = supp[σ̃, τ̃ ].

Lemma 2.6. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ , bσ 6∈
supp τ , and c 6∈ suppσ ∪ supp τ . Then

[σ, ϕ(τ ; b, c)] = ε([σ, τ ]; bσ)(c, bσ).

Proof. Let τ̃ = ϕ(τ ; b, c). By Corollary 2.2, we get t[σ,τ̃ ] = t[σ,τ ] for t 6∈ {bσ, bτσ, c}.
From

(bσ)[σ,τ̃ ] = bτ̃
−1στ̃ = aστ̃ = bτ̃ = c,

c[σ,τ̃ ] = cτ̃
−1στ̃ = bστ̃ = bσ,

(bτσ)[σ,τ̃ ] = (bτ )τ̃
−1στ̃ = cστ̃ = cτ̃ = bτ ,
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and

(bτσ)[σ,τ ] = bστ = bσ,

(bσ)[σ,τ ] = bτ
−1στ = aστ = bτ ,

it follows [σ, ϕ(τ ; b, c)] = ε([σ, τ ]; bσ)(c, bσ).

Corollary 2.7. Let n1, n2 ∈ N and let ρ be a product of two disjoint cycles of lengths 2n1
and 2n2, respectively. If p, q ≤ 2(n1 + n2) − 1 and p + q ≥ 3(n1 + n2) then there exist
a p-cycle σ, a q-cycle τ , and a ∈ suppσ such that ρ = [σ, τ ], supp ρ = suppσ ∪ supp τ ,
and aσ = aτ .

If n1 = n2 = 1 then there exist no cycles σ and τ such that the length of one of them is
strictly greater than 2(n1 + n2) − 1 = 3, [σ, τ ] is a product of two disjoint transpositions,
supp[σ, τ ] = suppσ ∪ supp τ , where aσ = aτ for some a ∈ suppσ. That means that
in the Corollary in this case the upper bound requirement on the length of the cycles is
sharp. If n1 + n2 ≥ 3 the upper bound requirement is not sharp (it can be increased to
2(n1+n2)) but the bound in the Corollary is in almost all cases sufficient for our purposes.
Namely, in the case n1+n2 ≥ 4, we get 2(2(n1+n2)−2) ≥ 3(n1+n2) and therefore the
Corollary provides two cycles whose lengths can be required to be (independently) either
odd or even: both odd (p = q = 2(n1 +n2)− 1), both even (p = q = 2(n1 +n2)− 2), the
first even and the second odd (p = 2(n1 + n2)− 2, q = 2(n1 + n2)− 1), the first odd and
the second even.

Proof. One may assume that n1 ≥ n2. The proof is by induction on n2.
Let n2 = 1. If n1 = 1 then the only possibility for p and q is p = q = 3. In this

case [(a1, a2, a3), (a1, a2, a4)] = (a1, a2), (a3, a4). Let n1 ≥ 2. Because p + (q − 1) ≥
3(n1 + 1) − 1 = 3n1 + 2 and p, q ≤ 2(n1 + 1) − 1 = 2n1 + 1, Corollary 2.5 provides
a p-cycle σ, a (q − 1)-cycle τ , and a ∈ suppσ such that [σ, τ ] is a (2n1 + 1)-cycle,
suppσ ∪ supp τ = supp[σ, τ ], aσ = aτ , and aσσ 6∈ supp τ . Let c 6∈ suppσ ∪ supp τ
and τ̃ = ϕ(τ ; aτ , c). Then τ̃ is a q-cycle, aσ = aτ = aτ̃ , and by Lemma 2.6, [σ, τ̃ ] =
ε([σ, τ ]; aσσ)(aσσ, c) and suppσ ∪ supp τ̃ = supp[σ, τ̃ ]. Note that aστ̃σ = c is in the
support of the 2-cycle.

For the proof by induction, suppose that for all n < n2 the assumptions p, q ≤ 2(n1 +
n) − 1 and p + q ≥ 3(n1 + n) guarantee the existence of a p-cycle σ, a q-cycle τ , and
a ∈ suppσ such that the following hold: [σ, τ ] is a product of two disjoint cycles of lengths
2n1 and 2n, supp[σ, τ ] = suppσ ∪ supp τ , aσ = aτ , and aστσ is in the support of the
2m-cycle in the cycle decomposition of [σ, τ ].

We prove that the same holds for n = n2. The proof is divided into 3 cases.
Case 1: Let q < 2(n1+n2)−1. Define p̃ = p−2, q̃ = q−1, andm = n2−1. Because

p̃+ q̃ ≥ 3(n1 +m) and p̃, q̃ ≤ 2(n1 +m)− 1, the inductive hypothesis yields a p̃-cycle σ,
a q̃-cycle τ , and a ∈ suppσ such that [σ, τ ] = ρ1ρ2, where supp ρ1 ∩ supp ρ2 = ∅, ρ1 is a
2n1-cycle, ρ2 is a 2m-cycle, aσ = aτ , and aστσ ∈ supp ρ2. Let x, y 6∈ suppσ ∪ supp τ ,
σ̃ = ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y). Then σ̃ is a p-cycle, τ̃ is a q-cycle, aσ̃ =
aσ = aτ = aτ̃ , and by Lemma 2.4, [σ̃, τ̃ ] = ϕ(ρ1ρ2; a

σσ, x, y) = ρ1ϕ(ρ2; a
σσ, x, y) and

aσ̃τ̃ σ̃ = aσσ ∈ suppϕ(ρ2; a
σσ, x, y).

Case 2: Let p 6= 2(n1 + n2)− 1 and q = 2(n1 + n2)− 1. This case follows from the
previous case and the equality [σ, τ ]−1 = [τ, σ].
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Case 3: Let p = q = 2(n1+n2)− 1. Define p̃ = q̃ = 2(n1+n2)− 3 and m = n2− 1.
From p̃, q̃ ≤ 2(n1 + m) − 1 and n1 > 1 we get p̃ + q̃ ≥ 3(n1 + m). By the inductive
hypothesis there exist p̃-cycles σ, τ , and a ∈ suppσ such that [σ, τ ] = ρ1ρ2, where
supp ρ1∩ supp ρ2 = ∅, ρ1 is a 2n1-cycle, ρ2 is a 2m-cycle, aσ = aτ , and aστσ ∈ supp ρ2.
Let x, y 6∈ suppσ ∪ supp τ , σ̃ = ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y, x). Then σ̃ and τ̃
are p-cycles, aσ̃ = aσ = aτ = aτ̃ , and by Lemma 2.3, [σ̃, τ̃ ] = ϕ(ρ1ρ2; a

στσ, x, y) =
ρ1ϕ(ρ2; a

στσ, x, y) and aσ̃τ̃ σ̃ = aσσ ∈ suppϕ(ρ2; a
στσ, x, y).

Lemma 2.8. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ , and
x, y, z 6∈ suppσ ∪ supp τ . Then

[ϕ(σ; b, x, y, z), ϕ(τ ; b, y, z)] = [σ, τ ](x, y, z).

Proof. Let σ̃ = ϕ(σ; b, x, y, z) and τ̃ = ϕ(τ ; b, y, z). By Corollary 2.2, we have t[σ̃,τ̃ ] =
t[σ,τ ] for t 6∈ {bσ, bτσ, x, y, z}. As

(bσ)[σ̃,τ̃ ] = zτ̃
−1σ̃τ̃ = yσ̃τ̃ = zτ̃ = bτ = (aσ)τ = (bτ

−1

)στ = (bσ)[σ,τ ],

(bτσ)[σ̃,τ̃ ] = (bτ )τ̃
−1σ̃τ̃ = zσ̃τ̃ = bστ̃ = bστ = (bτσ)[σ,τ ],

x[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = aσ̃τ̃ = bτ̃ = y,

y[σ̃,τ̃ ] = xτ̃
−1σ̃τ̃ = xσ̃τ̃ = yτ̃ = z,

z[σ̃,τ̃ ] = yτ̃
−1σ̃τ̃ = bσ̃τ̃ = xτ̃ = x,

we have [σ̃, τ̃ ] = [σ, τ ](x, y, z).

Lemma 2.9. Let σ1, σ2, τ1, τ2 be cycles such that (suppσ1 ∪ supp τ1) ∩ (suppσ2 ∪
supp τ2) = ∅. Suppose there exist a ∈ suppσ1 and b ∈ suppσ2 such that aσ1 = aτ1

and bσ2 = bτ2 . Then [ψ(σ1, σ2; a
σ1 , bσ2), ψ(τ1, τ2; a

τ1 , bτ2)] = [σ1, τ1][σ2, τ2].

Proof. Let σ = ψ(σ1, σ2; a
σ1 , bσ2) and τ = ψ(τ1, τ2; a

τ1 , bτ2). Set c = aσ1 = aτ1

and d = bσ2 = bτ2 . From Corollary 2.2 and equalities σ = ϕ(σ1; c, b
σ2
2 , . . . , b, bσ2) and

τ = ϕ(τ1; c, b
τ2
2 , . . . , b, bτ2), we get t[σ,τ ] = t[σ1,τ1] = t[σ1,τ1][σ2,τ2] for t 6∈ {cσ1 , cτ1σ1} ∪

suppσ2 ∪ supp τ2. From Corollary 2.2 and equalities σ = ϕ(σ2; d, a
σ2
1 , . . . , a, aσ1) and

τ = ϕ(τ2; d, a
τ2
1 , . . . , a, aτ1), we get t[σ,τ ] = t[σ2,τ2] = t[σ1,τ1][σ2,τ2] for t 6∈ {dσ2 , dτ2σ1}∪

suppσ2 ∪ supp τ2. Therefore t[σ,τ ] = t[σ1,τ1][σ2,τ2] for t 6∈ {cσ1 , cτ1σ1 , dσ2 , dτ2σ1}. From

(cσ1)[σ,τ ] = dτ
−1στ = bστ = dτ = cτ1 = aσ1τ1 = cτ1

−1σ1τ1 = (cσ1)[σ1,τ1],

(cτ1σ1)[σ,τ ] = (cτ1)τ
−1στ = dστ = (cσ1)τ = cσ1τ1 = (cτ1σ1)[σ1,τ1],

(dσ2)[σ,τ ] = cτ
−1στ = aστ = cτ = dτ2 = bσ2τ2 = dτ2

−1σ2τ2 = (dσ2)[σ2,τ2],

(dτ2σ2)[σ,τ ] = (dτ2)τ
−2στ = cστ = (dσ2)τ = dσ2τ2 = (dτ2σ2)[σ2,τ2],

we get [σ, τ ] = [σ1, τ1][σ2, τ2].

Theorem 2.10. Let ρ ∈ An. If n ≥ 5 or ρ is not a 3-cycle then ρ is a commutator of two
cycles of An.
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Proof. If ρ = (a1, a2, a3) is a 3-cycle then n ≥ 5 and ρ = [(a1, a3, x), (a1, a2, y)] for
some x, y 6∈ supp ρ.

Suppose that ρ is not a 3-cycle. We show that there exist cycles σ and τ of odd lengths
and a ∈ suppσ such that ρ = [σ, τ ], supp ρ = suppσ ∪ supp τ , and aσ = aτ . The proof
is by induction on the number of cycles in the cycle decomposition of ρ, which we denote
by c(ρ).

If c(ρ) = 1, ρ is a cycle of odd length l ≥ 5. The statement follows from Corollary 2.5.
If c(ρ) = 2, then let ρ = ρ1ρ2, where ρ1 and ρ2 are disjoint cycles. The lengths of

these cycles are of the same parity. If the lengths are even, the statement follows from
Corollary 2.7. In the case of odd lengths, 3 cases are considered.

Case 1: Suppose both lengths are 3. Then [(a1, a2, a6, a5, a3), (a1, a2, a4, a6, a5)] =
(a1, a2, a3)(a4, a5, a6).

Case 2: Suppose exactly one of the lengths is 3. One may assume ρ2 = (x, y, z) is the
3-cycle. Let ρ1 be a cycle of length 2l + 1, where l ≥ 2. By Corollary 2.5, there exist a
2l-cycle σ, a (2l + 1)-cycle τ , and a ∈ suppσ such that ρ1 = [σ, τ ], supp ρ1 = suppσ ∪
supp τ , and aσ = aτ . By Lemma 2.8, we have ρ = [ϕ(σ; aσ, x, y, z), ϕ(τ ; aτ , y, z)],
where ϕ(σ; aσ, x, y, z) and ϕ(τ ; aτ , y, z) are (2l + 3)-cycles.

Case 3: Suppose both lengths are greater than 3. Let ρi be a cycle of length 2li + 1,
li ≥ 2. By Corollary 2.5, there exist (2l1 + 1)-cycles σ1, τ1, (2l2)-cycles σ2, τ2, a1 ∈
suppσ1, and a2 ∈ suppσ2 such that ρi = [σi, τi], supp ρi = suppσi ∪ supp τi, and
aσi
i = aτii . Then ψ(σ1, σ2; aσ1

1 , aσ2
2 ) and ψ(τ1, τ2; aτ11 , a

τ2
2 ) are (2(l1 + l2)+ 1)-cycles and

by Lemma 2.9, ρ = [ψ(σ1, σ2; a
σ1
1 , aσ2

2 ), ψ(τ1, τ2; a
τ1
1 , a

τ2
2 )].

If c(ρ) ≥ 3, the following 4 cases are considered.
Case 1: Suppose ρ = ρ1ρ2, where ρ2 is a (2l+1)-cycle, l ≥ 2, and supp ρ1∩supp ρ2 =

∅. By Corollary 2.5, there exist (2l)-cycles σ2, τ2 and b ∈ suppσ2, such that ρ2 = [σ2, τ2],
supp ρ2 = suppσ2 ∪ supp τ2, and bσ2 = bτ2 . Because 2 ≤ c(ρ1) ≤ c(ρ) − 1, the
inductive hypothesis yields cycles σ1, τ1 of odd lengths, as well as a ∈ suppσ1, such that
ρ1 = [σ1, τ1], supp ρ1 = suppσ1 ∪ supp τ1, and aσ1 = aτ1 . By Lemma 2.9, we have ρ =
[ψ(σ1, σ2; a

σ1 , bσ2), ψ(τ1, τ2; a
τ1 , bτ2)], where ψ(σ1, σ2; aσ1 , bσ2) and ψ(τ1, τ2; aτ1 , bτ2)

are cycles of odd lengths.
Case 2: Suppose ρ = ρ1ρ2, where ρ2 = (a1, a2, a3)(a4, a5, a6) and supp ρ1 ∩ supp ρ2

= ∅. If ρ1 = (a7, a8, a9) then ρ = [(a1, a2, a7, a8, a9, a4, a5, a3, a6), (a1, a2, a8, a9, a5,
a3, a4)]. If ρ1 is not a 3-cycle, the inductive hypothesis yields cycles σ1, τ1 of odd lengths,
as well as a ∈ suppσ1, such that ρ1 = [σ1, τ1], supp ρ1 = suppσ1 ∪ supp τ1, and
aσ1 = aτ1 = b. Then σ = ϕ(ϕ(σ1; b, a1, a2, a3); b, a4, a5, a6) and τ = ϕ(ϕ(τ1; b, a2, a3);
b, a5, a6) are cycles of odd lengths and, using Lemma 2.8 twice, we get ρ = [σ, τ ].

Case 3: Suppose ρ = ρ1ρ2, where ρ2 is a disjoint product of cycles of lengths 2l1 and
2l2, such that l1 + l2 ≥ 3, and supp ρ1 ∩ supp ρ2 = ∅.

If ρ1 = (a1, a2, a3) then by Corollary 2.7, there exist a (2(l1 + l2) − 2)-cycle σ2, a
(2(l1 + l2)− 1)-cycle τ2, and a ∈ suppσ2, such that ρ2 = [σ2, τ2], supp ρ2 = suppσ2 ∪
supp τ2, and aσ2 = aτ2 = b. Then σ = ϕ(σ2; b, a1, a2, a3) and τ = ϕ(τ2; b, a2, a3) are
(2(l1 + l2) + 1)-cycles and by Lemma 2.8, we get ρ = [σ, τ ].

If ρ1 is not a 3-cycle then by the inductive hypothesis there exist cycles σ1, τ1 of odd
lengths and a ∈ suppσ1, such that ρ1 = [σ1, τ1], supp ρ1 = suppσ1∪ supp τ1, and aσ1 =
aτ1 . If l1 + l2 = 3 then ρ2 = (a1, a2, a3, a4)(a5, a6) and for σ2 = (a1, a5, a2, a4, a6, a3)
and τ2 = (a1, a5, a3, a4) we get ρ2 = [σ2, τ2] and for b = a1 we get bσ1 = bτ1 . If l1+ l2 >
3 Corollary 2.7 provides (2(l1+ l2)−2)-cycles σ2 and τ2, as well as b ∈ suppσ2, such that
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ρ2 = [σ2, τ2], supp ρ2 = suppσ2 ∪ supp τ2, and bσ2 = bτ2 . Then σ = ψ(σ1, σ2; a
σ1 , bσ2)

and τ = ψ(τ1, τ2; a
τ1 , bτ2) are cycles of odd length and by Lemma 2.9, we get ρ = [σ, τ ].

Case 4: Suppose ρ is a disjoint product of transpositions and at most one 3-cycle. If
there are at most four transpositions in the cycle decomposition of ρwe have 3 possibilities:

[(a1,a3, a5, a6, a2, a4, a7), (a1, a3, a6, a4, a7, a2, a5)] = (a1, a2)(a3, a4)(a5, a6, a7),

[(a1,a2, a4, a8, a6, a3, a5), (a1, a2, a3, a8, a4, a6, a7)] = (a1, a2)(a3, a4)(a5, a6)(a7, a8),

[(a1,a2, a5, a3, a4, a9, a10, a7, a11), (a1, a2, a6, a3, a4, a10, a7, a9, a8)] =

=(a1, a2)(a3, a4)(a5, a6)(a7, a8)(a9, a10, a11).

Otherwise ρ = ρ1ρ2, where ρ2 = (a1, a2)(a3, a4)(a5, a6)(a7, a8), 2 ≤ c(ρ1) < c(ρ),
and supp ρ1 ∩ supp ρ2 = ∅. By the inductive hypothesis there exist cycles σ1, τ1 of odd
lengths and a ∈ suppσ1, such that ρ1 = [σ1, τ1], supp ρ1 = suppσ1 ∪ supp τ1, and
aσ1 = aτ1 . For σ2 = (a1, a8, a3, a2, a4, a6, a7, a5) and τ2 = (a1, a8, a4, a3, a5, a6) we
have ρ2 = [σ2, τ2]. Then σ = ψ(σ1, σ2; a

σ1 , aσ2
1 ) and τ = ψ(τ1, τ2; a

τ1 , aτ21 ) are cycles of
odd lengths and by Lemma 2.9, we get ρ = [σ, τ ].

3 Cycles as commutators of cycles
From the previous section we know that a (2n + 1)-cycle is a commutator of a p-cycle
and a q-cycle if p + q ≥ 3n + 2 (and p, q ≤ 2n + 1). But this sufficient condition is not
necessary. Note that in the previous section we were interested in pairs of cycles σ and τ ,
for which there exists a ∈ suppσ such that aσ = aτ . We needed that for “concatenation”
of cycles in Lemma 2.9. With that assumption withdrawn, the result is obtained by using a
more stringent hypothesis as shown in the next corollary.

Lemma 3.1. Let σ, τ be permutations, x, y 6∈ suppσ ∪ supp τ , a1, a2 ∈ suppσ ∩ supp τ ,
b ∈ suppσ − supp τ , and c ∈ supp τ − suppσ, such that aσ1 = b, bσ = a2, aτ1 = c, and
cτ = a2. Then

[ϕ(σ; b, c, x), ϕ(τ ; c, y)] = ϕ([σ, τ ]; c, y, x).

Proof. Let σ̃ = ϕ(σ; b, c, x) and τ̃ = ϕ(τ ; c, y). If t 6∈ {x, a2, c} then tσ
−1

= tσ̃
−1

.
If t 6∈ {y, aσ2} then tσ

−1 6∈ {y, a2} and tσ
−1τ−1

= tσ
−1τ̃−1

. If t 6∈ {x, aσ2 , a2} then
tσ

−1τ−1 6∈ {x, c, b} and tσ
−1τ−1σ = tσ

−1τ−1σ̃ . If t 6∈ {y, aσ2} then tσ
−1τ−1σ 6∈ {y, c} and

tσ
−1τ−1στ = tσ

−1τ−1σ̃τ̃ . Hence for t 6∈ {x, y, c, a2, aσ2} we get t[σ,τ ] = t[σ̃,τ̃ ]. Because

c[σ,τ ] = cτ
−1στ = aστ1 = bτ = b,

c[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = bσ̃τ̃ = cτ̃ = y,

y[σ̃,τ̃ ] = yτ̃
−1σ̃τ̃ = cσ̃τ̃ = xτ̃ = x,

x[σ̃,τ̃ ] = cτ̃
−1σ̃τ̃ = aσ̃τ̃1 = bτ̃ = b,

a
[σ̃,τ̃ ]
2 = xτ̃

−1σ̃τ̃ = xσ̃τ̃ = aτ̃2 = aτ2 = bστ = bτ
−1στ = a

[σ,τ ]
2 ,

(aσ2 )
[σ̃,τ̃ ] = aτ̃

−1σ̃τ̃
2 = yσ̃τ̃ = yτ̃ = a2 = cτ = cστ = aτ

−1στ
2 = (aσ2 )

[σ,τ ],

we get [σ̃, τ̃ ] = ϕ([σ, τ ]; c, y, x).
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Corollary 3.2. Let ρ be a (2n + 1)-cycle and n ≥ 2. For p, q ∈ N such that p, q ≤ 2n
and p + q = 3n + 1, there exist a p-cycle σ and a q-cycle τ , such that [σ, τ ] = ρ and
supp ρ = suppσ ∪ supp τ .

Proof. By induction on n we prove that whenever p, q ≤ 2n and p + q = 3n + 1, there
exist a p-cycle σ, a q-cycle τ , a1, a2 ∈ suppσ ∩ supp τ , b ∈ suppσ − supp τ , and
c ∈ supp τ − suppσ, such that aσ1 = b, bσ = a2, aτ1 = c, cτ = a2, [σ, τ ] is a (2n + 1)-
cycle, and supp[σ, τ ] = suppσ ∪ supp τ .

Because [τ, σ] = [σ, τ ]−1 we may assume p ≥ q.
If n = 2 then p = 4, q = 3 and we have [(a1, b, a2, d), (a1, c, a2)] = (a1, c, b, d, a2).
Let n > 2. For p, q ≤ 2n and p + q = 3n + 1 we define p̃ = p − 2 and q̃ = q − 1.

Then p̃ + q̃ = 3(n − 1) + 1 and p̃ ≤ 2(n − 1). From q ≤ p we get q 6= 2n and
therefore q̃ ≤ 2(n − 1). By the inductive hypothesis there exist a p̃-cycle σ̃, a q̃-cycle τ̃ ,
a1, a2 ∈ supp σ̃∩supp τ̃ , b ∈ supp σ̃−supp τ̃ , and c ∈ supp τ̃−supp σ̃, such that aσ̃1 = b,
bσ̃ = a2, aτ̃1 = c, cτ̃ = a2, [σ̃, τ̃ ] is a (2n − 1)-cycle, and supp[σ̃, τ̃ ] = supp σ̃ ∪ supp τ̃ .
Let x, y 6∈ supp σ̃∪supp τ̃ . Then σ = ϕ(σ̃; b, c, x) is a p-cycle, τ = ϕ(τ̃ ; c, y) is a q-cycle,
c, a2 ∈ suppσ ∩ supp τ , x ∈ suppσ − supp τ , y ∈ supp τ − suppσ, cσ = x, xσ = a2,
cτ = y, yτ = a2, and by Lemma 3.1, [σ, τ ] is a (2n+ 1)-cycle.

Let σ and τ be permutations. An equivalence relation on the set suppσ ∩ supp τ is
defined in the following way. Elements a, b ∈ suppσ ∩ supp τ are equivalent if and only
if there exist a0, . . . , an ∈ suppσ ∩ supp τ and ρ1, . . . , ρn ∈ {σ, σ−1, τ, τ−1}, such that
a = a0, b = an, and ai = aρii−1 for i = 1, . . . , n. This is obviously an equivalence relation.

Definition 3.3. Permutations σ and τ are braided if all elements of suppσ ∩ supp τ are
equivalent to each other.

Lemma 3.4. Let σ and τ be cycles such that the commutator [σ, τ ] is a cycle and supp[σ, τ ]
= suppσ ∪ supp τ . Then σ and τ are braided.

Proof. Let ρ = [σ, τ ] and a0 ∈ suppσ ∩ supp τ . For n ≥ 0 we inductively define
a4n+1 = aσ

−1

4n , a4n+2 = aτ
−1

4n+1, a4n+3 = aσ4n+2, and a4n+4 = aτ4n+3. Let us show
that if a4m = aρ

m

0 ∈ suppσ ∩ supp τ , then a4m is equivalent to a0. Let b1 = a0 and
i1 = max{i | i ≤ 4m, ai = a0}. For k ≥ 1 and ik < 4m we let ik+1 = max{i | ik <
i ≤ 4m, ai = aik+1}, bk+1 = aik+1

, and ρk ∈ {σ, σ−1, τ, τ−1}, where ρk is uniquely
defined by bρkk = bk+1. If we show that bk ∈ suppσ ∩ supp τ for all k, then by definition,
a0 = b1 is equivalent to a4m = bl. For 1 ≤ k < l we have bk+1 ∈ supp ρk. Suppose
bk+1 6∈ supp ρ̃, where ρ̃ is the cycle in {σ, τ} − {ρk, ρ−1

k }. Because aρkik = aik+1 and

ρk 6= ρ̃±1, necessarily also aσ̃ik+1 = aik+2 or aσ̃
−1

ik+1 = aik+2. Because aρ
−1
k
ik+2 = aik+3

and aik+1 6∈ supp σ̃, we get aik = aik+3. This contradicts the definition of ik. Hence
bk ∈ suppσ ∩ supp τ .

Let b ∈ suppσ ∩ supp τ . Because ρ is a cycle and b ∈ supp ρ, there exists m such that
b = aρ

m

0 . Thus b is equivalent to a0, and hence σ and τ are braided.

Lemma 3.5. Let σ and τ be permutations such that supp[σ, τ ] = suppσ ∪ supp τ . Then
| suppσ − supp τ |, | supp τ − suppσ| ≤ | suppσ ∩ supp τ |.

Proof. Suppose there exist x, y ∈ suppσ − supp τ , such that x = yσ . Then x[σ,τ ] = x,
and consequently x 6∈ supp[σ, τ ], which is a contradiction. Hence the map (suppσ −
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supp τ) → (suppσ ∩ supp τ), defined by x 7→ xσ , is an injection. Therefore | suppσ −
supp τ | ≤ | suppσ ∩ supp τ |.

Because supp[τ, σ] = supp[σ, τ ], the other inequality follows from the above para-
graph.

Lemma 3.6. Let σ and τ be cycles such that [σ, τ ] is a cycle and supp[σ, τ ] = suppσ ∪
supp τ . Then | suppσ − supp τ |+ | supp τ − suppσ| ≤ | suppσ ∩ supp τ |+ 1.

Proof. Let k = | suppσ ∩ supp τ |, | suppσ| = k + p, and | supp τ | = k + q. If p = 0,
then by Lemma 3.5 we have

| suppσ − supp τ |+ | supp τ − suppσ| = | supp τ − suppσ| < | suppσ ∩ supp τ |+ 1.

Analogously for q = 0. Let p, q > 0. Let suppσ − supp τ = {a1, . . . , ap}. Let mi ∈
N ∪ {0} be the largest number such that aσ

j

i ∈ suppσ ∩ supp τ for all j ∈ {1, . . . ,mi}.
We claim that all mi are positive. Indeed, suppose that there exist x, y ∈ suppσ− supp τ ,
such that xσ = y. Then y[σ,τ ] = y which is a contradiction since suppσ ⊂ supp[σ, τ ].
Hence the set Mi = {aσi , . . . , aσ

mi

i } is nonempty for all i. Because σ is a cycle and p > 0,
for every x ∈ suppσ ∩ supp τ there exists the smallest i ∈ N such that xσ

−i

= ak for
some k, which means that x ∈ Mk. Therefore, (suppσ ∩ supp τ) = M1

∐
. . .

∐
Mp.

Similarly, (suppσ ∩ supp τ) = N1

∐
. . .

∐
Nq , where supp τ − suppσ = {b1, . . . , bq},

Ni = {bτi , . . . , bτ
ni

i } ⊂ supp τ ∩ suppσ, and bτ
ni+1

i 6∈ suppσ.
By Lemma 3.4, the cycles σ and τ are braided. Hence there exist i2 ∈ {2, . . . , p},

d2 ∈ M1, c2 ∈ Mi2 , and τ2 ∈ {τ, τ−1} such that d2 = cτ22 . For j > 2 there exist
ij ∈ {2, . . . , p} − {i2, . . . , ij−1}, dj ∈ M1 ∪ (∪j−1

l=2Mil), cj ∈ Mij , and τj ∈ {τ, τ−1}
such that dj = c

τj
j . Let us show that for each i, the set Ñi = Ni−{c2, . . . , cp} is nonempty.

By construction, the elements c2, . . . , cp are different, dj 6= ck for j ≤ k, and every pair
{cj , dj} is a subset of Nl for some l. Suppose Ni ∩ {c2, . . . , cp} = {ck1 , . . . , ckr}, where
k1 < . . . < kr. Then dk1 ∈ Ni and dk1 6∈ {ck1 , . . . , ckr}, so dk1 ∈ Ñi 6= ∅. Hence in the
union of the q nonempty sets Ñ1, . . . , Ñq there are exactly k−(p−1) elements. This means
that | supp τ−suppσ| = q ≤ k−(p−1) = | suppσ∩supp τ |−| suppσ−supp τ |+1.

Theorem 3.7. Let n ≥ 2 and let ρ be a (2n + 1)-cycle. There exist a p-cycle σ and a
q-cycle τ such that ρ = [σ, τ ] and supp ρ = suppσ ∪ supp τ if and only if the following
three conditions are satisfied (i) n+ 1 ≤ p, q, (ii) 2n+ 1 ≥ p, q, (iii) p+ q ≥ 3n+ 1.

Proof. Suppose there exist a p-cycle σ and a q-cycle τ such that ρ = [σ, τ ] and supp ρ =
suppσ ∪ supp τ . Let k = | suppσ ∩ supp τ |, p = k + p̃, and q = k + q̃. By Lemma 3.5,
we have q̃ ≤ k, therefore 2q̃ ≤ k + q̃ = q ≤ 2n + 1 which implies q̃ ≤ n. Then
2n + 1 = | supp ρ| = | suppσ ∪ supp τ | = p + q̃ ≤ p + n, hence n + 1 ≤ p. By
Lemma 3.6, we have p̃ + q̃ ≤ k + 1. Therefore 2n + 1 = k + p̃ + q̃ ≤ 2k + 1 and
p+ q = 2n+ 1 + k ≥ 3n+ 1.

If p + q ≥ 3n + 2 the theorem follows from Corollary 2.5. If p + q = 3n + 1, the
theorem follows from Corollary 3.2.
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Abstract

We give an improvement of a result of Zverovich and Zverovich which gives a condition
on the first and last elements in a decreasing sequence of positive integers for the sequence
to be graphic, that is, the degree sequence of a finite graph.
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1 Statement of Results
A finite sequence of positive integers is graphic if it occurs as the sequence of vertex de-
grees of a graph. Here, graphs are understood to be simple, in that they have no loops or
repeated edges. A result of Zverovich and Zverovich states:

Theorem 1.1 ([8, Theorem 6]). Let a, b be reals. If d = (d1, . . . , dn) is a sequence of
positive integers in decreasing order with d1 ≤ a, dn ≥ b and

n ≥ (1 + a+ b)2

4b
,

then d is graphic.

Notice that here the term (1+a+b)2

4b is monotonic increasing in a, for a ≥ 1 and fixed
b, and it is also monotonic decreasing in b, for a ≥ b ≥ 1 and fixed a. Thus any sequence
that satisfies the inequality n ≥ (1+a+b)2

4b , for any pair a ≥ d1, b ≤ dn, will also satisfy the

inequality n ≥ (1+d1+dn)
2

4dn
. So Theorem 1.1 has the following equivalent expression.
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Theorem 1.2. Suppose that d = (d1, . . . , dn) is a decreasing sequence of positive integers
with even sum. If

n ≥ (1 + d1 + dn)
2

4dn
, (1.1)

then d is graphic.

The simplified form of Theorem 1.2 also affords a somewhat simpler proof, which we
give in Section 2 below. Admittedly, the proof in [8] is already quite elementary, though it
does use the strong index results of [4, 3].

The following corollary of Zverovich–Zverovich’s is obtained by taking a = d1 and
b = 1 in Theorem 1.1.

Corollary 1.3 ([8, Corollary 2]). Suppose that d = (d1, . . . , dn) is a decreasing sequence
of positive integers with even sum. If d1 ≤ 2n

1
2 − 2, then d is graphic.

Note that this can be expressed in the following equivalent form.

Corollary 1.4. Suppose that d = (d1, . . . , dn) is a decreasing sequence of positive integers
with even sum. If n ≥ d2

1

4 + d1 + 1, then d is graphic.

Zverovich–Zverovich state that the bound of Corollary 1.4 “cannot be improved”, and
they give examples to this effect. In fact, there is an improvement, as we will now describe.
The subtlety here is that Zverovich–Zverovich formulated their result as an upper bound on
d1, and, as an upper bound on d1, this upper bound on d1 cannot be improved. However,
the reformulation of their result as a lower bound on n can be slightly improved. We prove
the following result in Section 2.

Theorem 1.5. Suppose that d = (d1, . . . , dn) is a decreasing sequence of positive integers

with even sum. If n ≥
⌊
d2
1

4 + d1

⌋
, then d is graphic.

Example 1.6. There are many examples of sequences that verify the hypotheses of Theo-
rem 1.5 but not those of Corollary 1.4. In fact, there are 81 such sequences of length n ≤ 8.
Figure 1 shows three graphs whose degree sequences have this property; they have degree
sequences (2, 2, 2), (3, 3, 2, 2, 2) and (3, 3, 3, 3, 3, 3) respectively. For infinite families of
examples, for every positive odd integer x, consider the sequence (2x, 1x

2+2x−1), and for
x even, consider the sequence (2x, 2x, 1x

2+2x−2). Here, and in sequences throughout this
paper, the superscripts indicate the number of repetitions of the entry.

Example 1.7. The following examples show that the bound of Theorem 1.5 is sharp when
dn = 1. For d even, say d = 2x with x ≥ 1, let d = (dx+1, 1x

2+x−2). For d odd,
say d = 2x + 1 with x ≥ 1, let d = (dx+1, 1x

2+2x−1). In each case g has even sum,
n =

⌊
d2

4 + d
⌋
−1, but d is not graphic, as one can see from the Erdős–Gallai Theorem [6].

Remark 1.8. The fact that Theorem 1.2 is not sharp has also been remarked in [1], in the
abstract of which the authors state that Theorem 1.2 is “sharp within 1”. They give the
bound

n ≥ (1 + d1 + dn)
2 − ε′

4dn
, (1.2)
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Figure 1: Three examples

where ε′ = 0 if d1 + dn is odd, and ε′ = 1 otherwise. Consider any decreasing sequence
with d1 = 2x+1 and dn = 1. Note that the bound given by Theorem 1.2 is n ≥ x2+3x+3,
the bound given by (1.2) is n ≥ x2 + 3x+ 2, while Theorem 1.5 gives the stronger bound
n ≥ x2 + 3x + 1. The paper [1] gives more precise bounds, as a function of d1, dn, and
the maximal gap in the sequence.

Remark 1.9. There are many other recent papers on graphic sequences; see for example
[5, 7, 1, 2].

2 Proofs of Theorems 1.2 and 1.5
We will require the Erdős–Gallai Theorem, which we recall for convenience.

Erdős–Gallai Theorem. A sequence d = (d1, . . . , dn) of nonnegative integers in decreas-
ing order is graphic if and only if its sum is even and, for each integer k with 1 ≤ k ≤ n,

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{k, di}. (EG)

Proof of Theorem 1.2. Suppose that d = (d1, . . . , dn) is a decreasing sequence with even
sum, satisfying (1.1), and which is not graphic. By the Erdős–Gallai Theorem, there exists
k with 1 ≤ k ≤ n, such that

k∑
i=1

di > k(k − 1) +

n∑
i=k+1

min{k, di}. (2.1)

For each i with 1 ≤ i ≤ k, replace di by d1; the left hand side of (2.1) is not decreased,
while the right hand side of (2.1) is unchanged, so (2.1) still holds. Now for each i with
k + 1 ≤ i ≤ n, replace di by dn; the left hand side of (2.1) is unchanged, while the right
hand side of (2.1) has not increased, so (2.1) again holds. Notice that if k < dn, then (2.1)
gives kd1 > k(k − 1) + (n − k)k = k(n − 1), and so d1 ≥ n. Then (1.1) would give
4ndn ≥ (1+dn+n)

2, that is, (n−(dn−1))2−(dn−1)2+(1+dn)
2 ≤ 0. But this inequality

clearly has no solutions. Hence k ≥ dn. Thus (2.1) now reads kd1 > k(k−1)+(n−k)dn,
or equivalently

(k − 1

2
(1 + d1 + dn))

2 − 1

4
(1 + d1 + dn)

2 + ndn < 0.
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But this contradicts the hypothesis.

The following proof uses the same general strategy as the preceding proof, but requires
a somewhat more careful argument.

Proof of Theorem 1.5. Suppose that d satisfies the hypotheses of the theorem. First suppose
that d1 is even, say d1 = 2x. If dn ≥ 2, then since (1+dn+d1)

2

4dn
is a strictly monotonic

decreasing function of dn for 1 ≤ dn ≤ d1, we have

n ≥ d21
4

+ d1 =
(2 + d1)

2

4
− 1 >

(1 + dn + d1)
2

4dn
− 1,

so n ≥ (1+dn+d1)
2

4dn
and hence d is graphic by Theorem 1.2. So, assuming that d is not

graphic, we may suppose that dn = 1. Furthermore, by Corollary 1.4, we may assume that
n =

d2
1

4 + d1, so n = x2 + 2x.
Now, as in the proof of Theorem 1.2, by the Erdős–Gallai Theorem, there exists k with

1 ≤ k ≤ n, such that

k∑
i=1

di > k(k − 1) +

n∑
i=k+1

min{k, di}. (2.2)

For each i with 1 ≤ i ≤ k, replace di by d1; the left hand side of (2.2) is not decreased,
while the right hand side of (2.2) is unchanged, so (2.2) still holds. For each i with k+1 ≤
i ≤ n, replace di by 1; the left hand side of (2.2) is unchanged, while the right hand side of
(2.2) has not increased, so (2.2) again holds. Then (2.2) reads kd1 > k(k − 1) + (n− k),
and consequently, rearranging terms, (k−x−1)2−1 < 0. Thus k = x+1. Notice that for
1 ≤ i ≤ k, if any of the original terms di had been less than d1, we would have obtained
(k− x− 1)2 < 0, which is impossible. Similarly, for k+1 ≤ i ≤ n, all the original terms
di must have been all equal to one. Thus d = (dk1 , 1

n−k) = ((2x)x+1, 1x
2+x−1). So d has

sum 2x(x + 1) + x2 + x − 1 = 3x2 + 3x − 1, which is odd, regardless of whether x is
even or odd. This contradicts the hypothesis.

Now consider the case where d1 is odd, say d1 = 2x − 1. The theorem is trivial for
d = (1n), so we may assume that x > 1. We use essentially the same approach as we
used in the even case, but the odd case is somewhat more complicated. By Corollary 1.4,
assuming d is not graphic, we have d2

1

4 +d1+1 > n, and hence, as d1 is odd, d2
1

4 +d1+
3
4 ≥ n.

Thus, since n ≥
⌊
d2
1

4 + d1

⌋
=

d2
1

4 +d1− 1
4 , we have n =

d2
1

4 +d1+
3
4 or n =

d2
1

4 +d1− 1
4 .

Thus there are two cases:

(i) n = x2 + x− 1,

(ii) n = x2 + x.

By the Erdős–Gallai Theorem, there exists k with 1 ≤ k ≤ n, such that

k∑
i=1

di > k(k − 1) +

n∑
i=k+1

min{k, di}. (2.3)

As before, for each i with 1 ≤ i ≤ k, replace di by d1 and for each i with k + 1 ≤ i ≤ n,
replace di by dn, and note that (2.3) again holds. Arguing as in the proof of Theorem 1.2,
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notice that if k < dn, then (2.3) gives kd1 > k(k − 1) + (n − k)k = k(n − 1), and so
d1 ≥ n. In both cases (i) and (ii) we would have 2x−1 ≥ n ≥ x2+x−1 and hence x ≤ 1,
contrary to our assumption. Thus k ≥ dn and (2.3) reads kd1 > k(k − 1) + (n − k)dn,
and consequently, rearranging terms, we obtain in the respective cases:

(i) dnx2 − dnk + k2 + dnx− 2kx− dn < 0.

(ii) dnx2 − dnk + k2 + dnx− 2kx < 0,

In both cases we have dnx2 − dnk + k2 + dnx − 2kx − dn < 0. Consider dnx2 −
dnk + k2 + dnx − 2kx − dn as a quadratic in k. For this to be negative, its discriminant,
4dn+d

2
n+4x2−4dnx

2, must be positive. If dn > 1 we obtain x2 < 4dn+d2
n

4(dn−1) . For dn = 2

we have x2 < 3 and so x = 1, contrary to our assumption. Similarly, for dn = 3 we have
x2 < 21

8 and so again x = 1. For dn ≥ 4, the function 4dn+d2
n

4(dn−1) is monotonic increasing in
dn. So, as dn ≤ d1,

x2 <
4d1 + d21
4(d1 − 1)

=
4x2 + 4x− 3

8x− 8
<

x2 + x

2(x− 1)
,

which again gives x = 1. We conclude that dn = 1.
So the two cases are:

(i) x2 − k + k2 + x− 2kx− 1 = (k − x)(k − x− 1)− 1 < 0.

(ii) x2 − k + k2 + x− 2kx = (k − x)(k − x− 1) < 0,

In case (ii) we must have x < k < x+ 1, but this is impossible for integer k and x.
In case (i), either k = x or k = x+ 1. Notice that for 1 ≤ i ≤ k, if any of the original

terms di had been less than d1, we would have obtained (k − x)(k − x− 1) < 0, which is
impossible. Similarly, for k+1 ≤ i ≤ n, all the original terms di must have been all equal
to one. Thus d = (dk1 , 1

n−k). Consequently, if k = x, we have d = ((2x − 1)x, 1x
2−1)

as n = x2 + x − 1. In this case, d has sum x(2x − 1) + x2 − 1 = 3x2 − x − 1,
which is odd, regardless of whether x is even or odd, contradicting the hypothesis. On
the other hand, if k = x + 1, we have d = ((2x − 1)x+1, 1x

2−2). Here, d has sum
(2x− 1)(x+ 1) + x2 − 2 = 3x2 + x− 3, which is again odd, regardless of whether x is
even or odd, contrary to the hypothesis.
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Abstract

Tutte’s 3-flow conjecture asserts that every 4-edge-connected graph has a nowhere-zero
3-flow. In this note we prove that every regular graph of valency at least four admitting a
solvable arc-transitive group of automorphisms admits a nowhere-zero 3-flow.
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1 Introduction
All graphs in this paper are finite and undirected, and all groups considered are finite. Let
Γ = (V (Γ), E(Γ)) be a graph endowed with an orientation. For an integer k ≥ 2, a k-flow
[3] in Γ is an integer-valued function f : E(Γ) → {0,±1,±2, . . . ,±(k − 1)} such that,
for every v ∈ V (Γ), ∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e),

whereE+(v) is the set of edges of Γ with tail v andE−(v) the set of edges of Γ with head v.
A k-flow f in Γ is called a nowhere-zero k-flow if f(e) 6= 0 for every e ∈ E(Γ). Obviously,
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if Γ admits a nowhere-zero k-flow, then Γ admits a nowhere-zero (k+1)-flow. It is also easy
to see that whether a graph admits a nowhere-zero k-flow is independent of its orientation.
The notion of nowhere-zero flows was introduced by Tutte in [20, 21] who proved that a
planar graph admits a nowhere-zero 4-flow if and only if the Four Color Conjecture holds.
The reader is referred to Jaeger [9] and Zhang [25] for surveys on nowhere-zero flows and
to [3, Chapter 21] for an introduction to this area.

In [20, 21] Tutte proposed three celebrated conjectures on integer flows which are still
open in general. One of them is the following well-known 3-flow conjecture (see e.g. [3,
Conjecture 21.16]).

Conjecture 1.1. (Tutte’s 3-flow conjecture) Every 4-edge-connected graph admits a no-
where-zero 3-flow.

This conjecture has been extensively studied in over four decades; see e.g. [6, 7, 10, 11,
12, 19, 23, 24]. Solving a long-standing conjecture by Jaeger [8] (namely the weak 3-flow
conjecture), recently Thomassen [19] proved that every 8-edge-connected graph admits a
nowhere-zero 3-flow. This breakthrough was further improved by Lovász, Thomassen, Wu
and Zhang [12] who proved the following result.

Theorem 1.2. ([12, Theorem 1.7]) Every 6-edge-connected graph admits a nowhere-zero
3-flow.

It is well known [22] that every vertex-transitive graph of valency d ≥ 1 is d-edge-
connected. Thus, when restricted to the class of vertex-transitive graphs, Conjecture 1.1
asserts that every vertex-transitive graph of valency at least four admits a nowhere-zero
3-flow. Due to Theorem 1.2 this is now boiled down to vertex-transitive graphs of valency
5, since every regular graph with even valency admits a nowhere-zero 2-flow. In an at-
tempt to Tutte’s 3-flow conjecture for Cayley graphs, Potočnik, Škoviera and Škerkovski
[16] proved the following result. (It is well known [2] that every Cayley graph is vertex-
transitive, but the converse is not true.)

Theorem 1.3. ([16, Theorem 1.1]) Every Cayley graph of valency at least four on an
abelian group admits a nowhere-zero 3-flow.

This was generalized by Nánásiová and Škoviera [13] to Cayley graphs on nilpotent
groups.

Theorem 1.4. ([13, Theorem 4.3]) Every Cayley graph of valency at least four on a nilpo-
tent group admits a nowhere-zero 3-flow.

It would be nice if one can prove Tutte’s 3-flow conjecture for all vertex-transitive
graphs. As a step towards this, we prove the following result in the present paper.

Theorem 1.5. Every regular graph of valency at least four admitting a solvable arc-
transitive group of automorphisms admits a nowhere-zero 3-flow.

Note that any G-arc-transitive graph is necessarily G-vertex-transitive and G-edge-
transitive. On the other hand, any G-vertex-transitive and G-edge-transitive graph with
odd valency is G-arc-transitive. (This result is due to Tutte, and its combinatorial proof
given in [4, Proposition 1.2] can be easily extended from G = Aut(Γ) to a subgroup G of
Aut(Γ).) Therefore, Theorem 1.5 is equivalent to the following: For any solvable group
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G, every G-vertex-transitive and G-edge-transitive graph with valency at least four admits
a nowhere-zero 3-flow.

In Section 3 we will prove a weaker version (Claim 1) of Theorem 1.5, which together
with Theorem 1.2 implies Theorem 1.5. Note that none of Theorems 1.5 and 1.4 is implied
by the other, because not every Cayley graph is arc-transitive, and on the other hand an
arc-transitive graph is not necessarily a Cayley graph (see e.g. [2, 17]).

At this point we would like to mention a few related results. Alspach and Zhang (1992)
conjectured that every Cayley graph with valency at least two admits a nowhere-zero 4-
flow. Since every 4-edge-connected graph admits a nowhere-zero 4-flow [8], this conjecture
is reduced to the cubic case. Alspach, Liu and Zhang [1, Theorem 2.2] confirmed this
conjecture for cubic Cayley graphs on solvable groups. This was then improved by Nedela
and Škoviera [14] who proved that any counterexample to the conjecture of Alspach and
Zhang must be a regular cover over a Cayley graph on an almost simple group. (A group
G is almost simple if it satisfies T ≤ G ≤ Aut(T ) for some simple group T .) In [15],
Potočnik proved that every connected cubic graph that admits a solvable vertex-transitive
group of automorphisms is 3-edge-colourable or isomorphic to the Petersen graph. This
is another generalization of the result of Alspach, Liu and Zhang above, because Petersen
graph is not a Cayley graph, and for cubic graphs 3-edge-colourability is equivalent to the
existence of a nowhere-zero 4-flow.

It would be pleasing if one can replace arc-transitivity by vertex-transitivity in Theorem
1.5. As an intermediate step towards this, one may try to prove that every Cayley graph of
valency at least four on a solvable group admits a nowhere-zero 3-flow, thus generalizing
Theorem 1.4 and the above-mentioned result of Alspach, Liu and Zhang simultaneously.

2 Preparations
We follow [3] and [5, 18] respectively for graph- and group-theoretic terminology and
notation. The derived subgroup of a group G is defined as G′ := [G,G], the subgroup of
G generated by all commutators x−1y−1xy, x, y ∈ G. Define G(0) := G,G(1) := G′ and
G(i) := (G(i−1))′ for i ≥ 1. A group G is solvable if there exists an integer n ≥ 0 such
that G(n) = 1; in this case the least integer n with G(n) = 1 is called the derived length
of G. Solvable groups with derived length 1 are precisely nontrivial abelian groups. In
the proof of Theorem 1.5 we will use the fact that any solvable group contains an abelian
normal subgroup with respect to which the quotient group has a smaller derived length.

All definitions in the next three paragraphs are standard and can be found in [2, Part
Three] or [17].

Let G be a group acting on a set Ω. That is, for each (α, g) ∈ Ω×G, there corresponds
an element αg ∈ Ω such that α1 = α and (αg)h = αgh for any α ∈ Ω and g, h ∈ G, where
1 is the identity element of G. We say that G is transitive on Ω if for any α, β ∈ Ω there
exists at least one element g ∈ G such that αg = β, and regular if for any α, β ∈ Ω there
exists exactly one element g ∈ G such that αg = β. The group G is intransitive on Ω if it
is not transitive on Ω. A partition P of Ω is G-invariant if P g := {αg : g ∈ G} ∈ P for
any P ∈ P and g ∈ G, and nontrivial if 1 < |P | < |Ω| for every P ∈ P .

Suppose that Γ is a graph admitting G as a group of automophisms. That is, G acts on
V (Γ) (not necessarily faithfully) such that, for any α, β ∈ V (Γ) and g ∈ G, α and β are
adjacent in Γ if and only if αg and βg are adjacent in Γ. (If K is the kernel of the action
of G on V (Γ), namely, the subgroup of all elements of G that fix every vertex of Γ, then
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G/K is isomorphic to a subgroup of the automorphism group Aut(Γ) of Γ.) We say that
Γ is G-vertex-transitive if G is transitive on V (Γ), and G-edge-transitive if G is transitive
on the set of edges of Γ. If Γ is G-vertex-transitive such that G is also transitive on the set
of arcs of Γ, then Γ is called G-arc-transitive, where an arc is an ordered pair of adjacent
vertices.

Let Γ be a graph and P a partition of V (Γ). The quotient graph of Γ with respect to P ,
denoted by ΓP , is the graph with vertex set P in which P,Q ∈ P are adjacent if and only
if there exists at least one edge of Γ joining a vertex of P and a vertex of Q. For blocks
P,Q ∈ P adjacent in ΓP , denote by Γ[P,Q] the bipartite subgraph of Γ with vertex set
P ∪Q whose edges are those of Γ between P and Q. In the case when all blocks of P are
independent sets of Γ and Γ[P,Q] is a t-regular bipartite graph for each pair of adjacent
P,Q ∈ P , where t ≥ 1 is an integer independent of (P,Q), we say that Γ is a multicover
of ΓP . A multicover with t = 1 is thus a topological cover in the usual sense. In the proof
of Theorem 1.5, we will use the following lemma in the case when k = 3.

Lemma 2.1. Let k ≥ 2 be an integer. If a graph admits a nowhere-zero k-flow, then its
multicovers all admit a nowhere-zero k-flow.

Proof. Using the notation above, let Γ be a multicover of Σ := ΓP . Suppose that Σ
admits a nowhere-zero k-flow f (with respect to some orientation). For each oriented
edge (P,Q) of Σ, orient the edges of the t-regular bipartite graph Γ[P,Q] in such a way
that they all have tails in P and heads in Q, and then assign f(P,Q) to each of them.
Denote this nowhere-zero function on the oriented edges of Γ by g, and denote the oriented
edge of Γ with tail α and head β by (α, β). It can be verified that, for any P ∈ P and
α ∈ P ,

∑
(α,β)∈E+

Γ (α) g(α, β) =
∑

(P,Q)∈E+
Σ (P ) t · f(P,Q) and

∑
(β,α)∈E−

Γ (α) g(β, α) =∑
(Q,P )∈E−

Σ (P ) t · f(Q,P ). Since f is a nowhere-zero k-flow in Σ, for every P ∈ P , we
have ∑

(P,Q)∈E+
Σ (P )

f(P,Q) =
∑

(Q,P )∈E−
Σ (P )

f(Q,P ).

Therefore, for every α ∈ V (Γ), we have∑
(α,β)∈E+

Γ (α)

g(α, β) =
∑

(β,α)∈E−
Γ (α)

g(β, α)

and so g is a nowhere-zero k-flow in Γ. �

If Γ is aG-vertex-transitive graph, then for any normal subgroupN ofG, the setPN :=
{αN : α ∈ V (Γ)} of N -orbits on V (Γ) is a G-invariant partition of V (Γ), called a G-
normal partition of V (Γ) [17], where αN := {αg : g ∈ N}. Denote the corresponding
quotient graph by ΓN := ΓPN

. The quotient group G/N induces an action on PN defined
by (αN )Ng = (αg)N . The following observations can be easily proved (see e.g. [17]).

Lemma 2.2. ([17]) Let Γ be a connected G-vertex-transitive graph, and N a normal sub-
group of G that is intransitive on V (Γ). Then the following hold:

(a) ΓN is G/N -vertex-transitive under the induced action of G/N on PN ;

(b) for P,Q ∈ PN adjacent in ΓN , Γ[P,Q] is a regular subgraph of Γ;

(c) if in addition Γ is G-arc-transitive, then ΓN is G/N -arc-transitive and Γ is a multi-
cover of ΓN .
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3 Proof of Theorem 1.5
By Theorem 1.2, in order to prove Theorem 1.5 it suffices to prove that, for any finite
solvable group G, every G-arc-transitive graph of valency five admits a nowhere-zero 3-
flow. We will prove the following seemingly stronger but equivalent result:

Claim 1. For any solvable group G, every G-arc-transitive graph with valency at least
four and not divisible by three admits a nowhere-zero 3-flow.

We will prove this by induction on the derived length of the solvable group G, using
Theorem 1.3 as the base case. We will use the following fact [2, Lemma 16.3]: a graph is
isomorphic to a Cayley graph if and only if its automorphism group contains a subgroup
that is regular on the vertex set. Denote by val(Γ) the valency of a regular graph Γ.

Without loss of generality we may assume that the solvable group G is faithful on the
vertex set of the graph under consideration for otherwise we can replace G by its quotient
group (which is also solvable) by the kernel ofG on the vertex set. Under this assumptionG
is isomorphic to a subgroup of the automorphism group of the graph. We may also assume
that the graph under consideration is connected (for otherwise we consider its components).
We make induction on the derived length n(G) of G.

Suppose that n(G) = 1 and Γ is a G-arc-transitive graph with val(Γ) ≥ 4. Then G is
abelian and so is regular on V (Γ). (A transitive abelian group must be regular.) Since G is
isomorphic to a subgroup of Aut(Γ), it follows that Γ is isomorphic to a Cayley graph on
G. Thus, by Theorem 1.3, Γ admits a nowhere-zero 3-flow.

Assume that, for some integer n ≥ 1, the result (in Claim 1) holds for any solvable
group of derived length at most n. Let G be a solvable group with derived length n(G) =
n+ 1. Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not
divisible by 3. If val(Γ) is even, then Γ admits a nowhere-zero 2-flow and hence a nowhere-
zero 3-flow. So we assume that val(Γ) ≥ 5 is odd. Since 3 does not divide val(Γ) by our
assumption, every prime factor of val(Γ) is no less than 5. Since G is solvable, it contains
an abelian normal subgroup N such that the quotient group G/N has derived length at
most n(G)− 1 = n. Note that G/N is solvable (as any quotient group of a solvable group
is solvable) andN 6= 1 (for otherwiseG/N ∼= G would have derived length n(G)). IfN is
transitive on V (Γ), then it is regular on V (Γ) as N is abelian. In this case Γ is isomorphic
to a Cayley graph on N and so admits a nowhere-zero 3-flow by Theorem 1.3.

In what follows we assume that N is intransitive on V (Γ). By Lemma 2.2, ΓN is
a connected G/N -arc-transitive graph, and Γ is a multicover of ΓN . Thus val(ΓN ) is
a divisor of val(Γ) and so is not divisible by 3. If val(ΓN ) = 1, then Γ is a regular
bipartite graph of valency at least two and so admits a nowhere-zero 3-flow [3]. Assume
that val(ΓN ) > 1. Then val(ΓN ) ≥ 5 and every prime factor of val(ΓN ) is no less than 5.
Thus, since G/N is solvable of derived length at most n, by the induction hypothesis, ΓN
admits a nowhere-zero 3-flow. Since Γ is a multicover of ΓN , by Lemma 2.1, Γ admits a
nowhere-zero 3-flow. This completes the proof of Claim 1 and hence the proof of Theorem
1.5.
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Abstract

There are many major open problems in integer flow theory, such as Tutte’s 3-flow
conjecture that every 4-edge-connected graph admits a nowhere-zero 3-flow, Jaeger et al.’s
conjecture that every 5-edge-connected graph isZ3-connected and Kochol’s conjecture that
every bridgeless graph with at most three 3-edge-cuts admits a nowhere-zero 3-flow (an
equivalent version of 3-flow conjecture). Thomassen proved that every 8-edge-connected
graph is Z3-connected and therefore admits a nowhere-zero 3-flow. Furthermore, Lovász,
Thomassen, Wu and Zhang improved Thomassen’s result to 6-edge-connected graphs. In
this paper, we prove that: (1) Every 4-edge-connected graph with at most seven 5-edge-cuts
admits a nowhere-zero 3-flow. (2) Every bridgeless graph containing no 5-edge-cuts but at
most three 3-edge-cuts admits a nowhere-zero 3-flow. (3) Every 5-edge-connected graph
with at most five 5-edge-cuts is Z3-connected. Our main theorems are partial results to
Tutte’s 3-flow conjecture, Kochol’s conjecture and Jaeger et al.’s conjecture, respectively.
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1 Introduction
All graphs considered in this paper are loopless, but allowed to have multiple edges. A
graphG is called k-edge-connected, ifG−S is connected for each edge set S with |S| < k.
Let X , Y be two disjoint subsets of V (G). Let ∂G(X,Y ) be the set of edges of G with
one end in X and the other in Y . In particular, if Y = X , we simply write ∂G(X) for
∂G(X,Y ), which is the edge-cut of G associated with X . The edge set C = ∂G(X) is
called a k-edge-cut if |∂G(X)| = k. If X is nontrivial, we use G/X to denote the graph
obtained from G by replacing X by a single vertex x that is incident with all the edges in
∂G(X).

Let D be an orientation of E(G). The out-cut of D associated with X , denoted by
∂+D(X), is the set of arcs ofD whose tails lie inX . Analogously, the in-cut ofD associated
with X , denoted by ∂−D(X), is the set of arcs of D whose heads lie in X . We refer to
|∂+D(X)| and |∂−D(X)| as the out-degree and in-degree ofX , and denote these quantities by
d+D(X) and d−D(X), respectively.

Definition 1.1. (1) An orientation D of E(G) is called a modulo 3-orientation if

d+D(v)− d−D(v) ≡ 0 (mod 3)

for every vertex v ∈ V (G).
(2) A pair (D, f) is called a nowhere-zero 3-flow of G if D is an orientation of E(G)

and f is a function from E(G) to {±1,±2}, such that∑
e∈∂+

D(v)

f(e) =
∑

e∈∂−D(v)

f(e)

for every vertex v ∈ V (G).

The 3-flow conjecture, proposed by Tutte as a dual version of Grötzsch’s 3-color theo-
rem for planar graphs, may be one of the most major open problems in integer flow theory.

Conjecture 1.2 (3-Flow conjecture, Tutte [9]). Every 4-edge-connected graph admits a
nowhere-zero 3-flow.

Kochol proved that Tutte’s 3-flow conjecture is equivalent to the following two conjec-
tures.

Conjecture 1.3 (Kochol [4]). Every 5-edge-connected graph admits a nowhere-zero 3-
flow.

Conjecture 1.4 (Kochol [5]). Every bridgeless graph with at most three 3-edge-cuts admits
a nowhere-zero 3-flow.

A weakened version of Conjecture 1.2, the so-called weak 3-flow conjecture, was pro-
posed by Jaeger.

Conjecture 1.5 (Weak 3-flow conjecture, Jaeger [2]). There is a natural number h such
that every h-edge-connected graph admits a nowhere-zero 3-flow.

Lai and Zhang [6] and Alon et al. [1] gave partial results on Conjectures 1.2 and 1.5.
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Theorem 1.6 (Lai and Zhang [6]). Every 4dlog2 n0e-edge-connected graph with at most
n0 odd-degree vertices admits a nowhere-zero 3-flow.

Theorem 1.7 (Alon, Linial and Meshulam [1]). Every 2dlog2 ne-edge-connected graph
with n vertices admits a nowhere-zero 3-flow.

Recently, Thomassen [8] confirmed weak 3-flow conjecture. He proved

Theorem 1.8 (Thomassen [8]). Every 8-edge-connected graph is Z3-connected and there-
fore admits a nowhere-zero 3-flow.

Thomassen’s method was further refined by Lovász, Thomassen, Wu and Zhang [7] to
obtain the following theorem.

Theorem 1.9 (Lovász, Thomassen, Wu and Zhang [7]). Every 6-edge-connected graph is
Z3-connected and therefore admits a nowhere-zero 3-flow.

For more results on Tutte’s 3-flow conjecture, we refer the reader to the introduction
part of [7] and the book written by Zhang [11].

In this paper, we will give the following conjecture which is equivalent to Tutte’s 3-flow
conjecture.

Conjecture 1.10. Every 5-edge-connected graph with minimum degree at least 6 has a
nowhere-zero 3-flow.

To prove the equivalence of Conjectures 1.2 and 1.10, the following lemma is needed.

Lemma 1.11 (Tutte [10]). Let F (G, k) be the number of nowhere-zero k-flows of G. Then
F (G, k) = F (G/e, k)− F (G \ e, k) if e is not a loop of G.

Proposition 1.12. Conjectures 1.2 and 1.10 are equivalent.

Proof. It is obvious that Conjecture 1.2 implies Conjecture 1.3, and Conjecture 1.3 implies
Conjecture 1.10. Now we prove that Conjecture 1.10 can imply Conjecture 1.3. Let G be
a 5-edge-connected graph. Let G′ be the graph obtained from G by gluing |V (G)| disjoint
copies ofK7, such that for each such copyHi, |V (Hi)∩V (G)| = 1 (i = 1, 2, · · · , |V (G)|).
Then G′ is 5-edge-connected and its minimum degree is at least 6, and thus has a nowhere-
zero 3-flow. By Lemma 1.11, G has a nowhere-zero 3-flow. Therefore Conjecture 1.10
implies Conjecture 1.3. Note that Conjecture 1.2 is equivalent to Conjecture 1.3. This
completes the proof.

Our first main result is the following theorem.

Theorem 1.13. Let G be a bridgeless graph and let P = {C = ∂G(X) : |C| = 3, X ⊂
V (G)} and Q = {C = ∂G(X) : |C| = 5, X ⊂ V (G)}. If 2|P |+ |Q| ≤ 7, then G has a
modulo 3-orientation (and therefore has a nowhere-zero 3-flow).

As corollaries of Theorem 1.13, we obtain Theorems 1.14 and 1.15.

Theorem 1.14. Every 4-edge-connected graph with at most seven 5-edge-cuts admits a
nowhere-zero 3-flow.

Theorem 1.15. Every bridgeless graph containing no 5-edge-cuts but at most three 3-
edge-cuts admits a nowhere-zero 3-flow.
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Remark.The number of 3-edge-cuts in Theorem 1.15 can not be improved from three to
four, since K4 or any graph contractable to K4 has no nowhere-zero 3-flow.

Theorems 1.14 and 1.15 partially confirm Conjectures 1.2 and 1.4, respectively.

Definition 1.16. (1) A mapping βG : V (G) 7→ Zk is called a Zk-boundary of G if∑
v∈V (G)

βG(v) ≡ 0 (mod k)

(2) A graph G is called Zk-connected, if for every Zk-boundary βG, there is an orien-
tation DβG and a function fβG : E(G) 7→ Zk − {0}, such that∑

e∈∂+
DβG

(v)

fβG(e)−
∑

e∈∂−DβG
(v)

fβG(e) ≡ βG(v) (mod k)

for every vertex v ∈ V (G).

Jaeger, Linial, Payan and Tarsi [3] conjectured that

Conjecture 1.17 (Jaeger, Linial, Payan and Tarsi [3]). Every 5-edge-connected graph is
Z3-connected.

By applying a similar argument as in the proof of Theorem 1.13, we could obtain the
second main result, which is a partial result to Conjecture 1.17.

Theorem 1.18. Every 5-edge-connected graph with at most five 5-edge-cuts is Z3-conn-
ected.

In the next section, some necessary preliminaries will be given. In Sections 3 and 4,
proofs of Theorems 1.13 and 1.18 will be given, respectively.

2 Preliminaries
In this section, we will give additional but necessary notations and definitions, and then
give some useful lemmas.

Definition 2.1. Let βG be a Z3-boundary of G. An orientation D of G is called a βG-
orientation if

d+D(v)− d−D(v) ≡ βG(v) (mod 3)

for every vertex v ∈ V (G).

Let G be a graph and A be a vertex subset ofG. The degree of A, denoted by dG(A), is
the number of edges with precisely one end in A. Moreover if A = {x}, we simply write
dG(x).

Let G be a graph and βG be a Z3-boundary of G. Define a mapping τG : V (G) 7→
{0,±1,±2,±3} such that, for each vertex x ∈ V (G),

τG(x) ≡
{
βG(x) (mod 3)
dG(x) (mod 2).
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Now, the mapping τG can be further extended to any nonempty vertex subset A as follows:

τG(A) ≡
{
βG(A) (mod 3)
dG(A) (mod 2).

where βG(A) ≡
∑
x∈A βG(x) ∈ {0, 1, 2} (mod 3).

Proposition 2.2. Let G be a graph and A be a vertex subset of G.
(1) If dG(A) ≤ 5, then dG(A) ≤ 4 + |τG(A)|.
(2) If dG(A) ≥ 6, then dG(A) ≥ 4 + |τG(A)|.

Proposition 2.2 follows from the fact that |τG(A)| ≤ 3 and dG(A)− |τG(A)| is even.

Lemma 2.3 (Tutte [9]). Let G be a graph.
(1) G has a nowhere-zero 3-flow if and only if G has a modulo 3-orientation.
(2) G has a nowhere-zero 3-flow if and only if G has a βG-orientation with βG = 0.

The following lemma is Theorem 3.1 in [7] by Lovász et al. This lemma will play the
main role in our proofs.

Lemma 2.4 (Lovász, Thomassen, Wu and Zhang [7]). Let G be a graph, βG be a Z3-
boundary of G, and let z0 ∈ V (G) and Dz0 be a pre-orientation of E(z0) of all edges
incident with z0. Assume that

(i) |V (G)| ≥ 3.
(ii) dG(z0) ≤ 4 + |τG(z0)| and d+Dz0 (z0)− d−Dz0 (z0) ≡ βG(z0) (mod 3), and
(iii) dG(A) ≥ 4 + |τG(A)| for each nonempty vertex subset A not containing z0 with

|V (G) \A| > 1.
Then the pre-orientationDz0 ofE(z0) can be extended to an orientationD of the entire

graph G, that is, for every vertex x of G,

d+D(x)− d−D(x) ≡ βG(x) (mod 3).

3 Proof of Theorem 1.13
If not, suppose that G is a counterexample, such that |V (G)| + |E(G)| is as small as
possible. Let P ′ = {x ∈ V (G) : dG(x) = 3} and Q′ = {x ∈ V (G) : dG(x) = 5}.

Claim 3.1. |V (G)| ≥ 3.

Proof. If |V (G)| = 1, then G has a nowhere-zero 3-flow, a contradiction. If |V (G)| = 2,
let V (G) = {x, y}, then all the edges of G are all between x and y. Since G is bridgeless,
|E(G)| ≥ 2. Let a be the integer in {0, 1, 2} such that a ≡ |E(G)| − a (mod 3). Orient a
edges from x to y and the remaining |E(G)| − a edges from y to x. Clearly, the resulting
orientation is a modulo 3-orientation of G, a contradiction. Therefore |V (G)| ≥ 3.

Claim 3.2. G is 3-edge-connected, and G has no nontrivial 3-edge-cuts.

Proof. If G has a vertex x of degree 2, then suppose that xx1, xx2 ∈ E(G). By the
minimality of G, (G− {xx1, xx2}) ∪ {x1x2} has a nowhere-zero 3-flow f ′. However, f ′

can be extended to a nowhere-zero 3-flow f of G, a contradiction. If G has a nontrivial k-
edge-cut (k = 2, 3), then contract one side and find a mod 3-orientation by the minimality
of G. Merge such two mod 3-orientations and we will get one for G, a contradiction.
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Claim 3.3. For any U ⊂ V (G), if dG(U) ≤ 5 and |U | ≥ 2, then U ∩ (P ′ ∪Q′) 6= ∅.

Proof. If not, choose U to be a minimal one such that: for any A ⊂ U with 2 ≤ |A| < |U |,
we have dG(A) ≥ 6.

By the minimality of G, G/U has a modulo 3-orientation D′ which is a partial modulo
3-orientation of G, such that d+D′(x) ≡ d−D′(x) (mod 3) for each x ∈ V (G) \ U .

Let G′ be a graph obtained from G by contracting V (G) \ U as z0 and let βG′ = 0.
(i) Since V (G′) = U + z0, |V (G′)| = |U |+ 1 ≥ 3.
(ii) Since dG′(z0) = dG(U) ≤ 5, by Proposition 2.2 (1), dG′(z0) ≤ 4 + |τG′(z0)|.
(iii) By the assumption and minimality of U , we have that for any A ⊂ U , dG(A) 6= 5

and dG(A) 6= 3. If dG(A) = 4, then dG′(A) = dG(A) = 4 and τG′(A) = βG′(A) =
βG(A) = 0. Thus dG′(A) = 4 = 4 + |τG′(A)|. If dG(A) ≥ 6, then by Proposition 2.2 (2),
dG′(A) = dG(A) ≥ 4 + |τG′(A)|.

By Lemma 2.4, we could see that the pre-orientation of E′(z0) of all edges incident
with z0 can be extended to a βG′ -orientation of G′. Then G has a modulo 3-orientation,
which is a contradiction.

Let G′1 be a graph obtained from G by adding a new vertex z0 and 2|P ′| + |Q′| edges
between z0 and P ′ ∪Q′, such that:

(i) For each vertex v ∈ P ′, we add two arcs with the same direction between it and z0;
and

(ii) For each vertex v ∈ Q′, we add one arc between it and z0.
If 2|P ′| + |Q′| ≤ 5, then all added arcs could be from z0 to P ′ ∪ Q′. Define βG′1 as

follows:
(1) βG′1(x) = 0 if x 6∈ (P ′ ∪Q′) + z0;
(2) βG′1(x) = 1 if x ∈ P ′;
(3) βG′1(x) = 2 if x ∈ Q′;
(4) βG′1(z0) ≡ 2|P ′|+ |Q′| (mod 3) and βG′1(z0) ∈ {0, 1, 2}.
If 2|P ′| + |Q′| = 6 or 7, in this case, if |P ′| 6= 0, choose one vertex v ∈ P ′, such that

the two arcs with ends z0 and v are from v to z0, the other arcs incident with z0 are all
directed from z0. If |P ′| = 0, then two arcs are from Q′ to z0, the others verse. Define βG′1
as follows:

(1) βG′1(x) = 0 if x 6∈ (P ′ ∪Q′) + z0;
(2) βG′1(x) = 2 if x ∈ Q′ and the arc (z0, x) exists or x ∈ P ′ and the two arcs with

ends z0 and x are from x to z0;
(3) βG′1(x) = 1 if x ∈ Q′ and the arc (x, z0) exists or x ∈ P ′ and the two arcs with

ends z0 and x are from z0 to x;
(4) βG′1(z0) ≡ (2|P ′|+ |Q′| − 2)− 2 (mod 3).
Now dG′1(z0) ≤ 4 + |τG′1(z0)| and |V (G′1)| = |V (G)| + 1 ≥ 4. We claim that:

dG′1(A) ≥ 4 + |τG′1(A)|, for each nonempty vertex subset A not containing z0 with
|V (G′1) \A| > 1.

If A ∩ (P ′ ∪Q′) = ∅, then by Claim 3.3, dG(A) = 4 or dG(A) ≥ 6. In each case we
could get that dG′1(A) = dG(A) ≥ 4 + |τG′1(A)|.

If A∩ (P ′∪Q′) 6= ∅, then by Claim 3.2, dG′1(A) ≥ 5. If dG′1(A) = 5, then dG(A) = 3
or 4 and |A ∩ (P ′ ∪ Q′)| = 1, and it follows that βG′1(A) = 1 or 2, and |τG′1(A)| = 1.
Thus dG′1(A) ≥ 4 + |τG′1(A)|. If dG′1(A) ≥ 6, by Proposition 2.2 (2), we have that
dG′1(A) ≥ 4 + |τG′1(A)|.
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Now G′1 satisfies all the conditions of Lemma 2.4. By Lemma 2.4, G′1 has a βG′1 -
orientation extended from the pre-orientation ofE′1(z0) of all edges incident with z0, which
implies that G has a βG-orientation with βG = 0. By Lemma 2.3, G has a nowhere-zero
3-flow, which is a contradiction. �

4 Proof of Theorem 1.18
Assume not. Suppose that G is a counterexample, such that |V (G)| + |E(G)| is as small
as possible. Let S′ = {x ∈ V (G) : dG(x) = 5} and S = {C = ∂G(X) : |C| = 5, X ⊂
V (G)}. Let βG be a Z3-boundary, such that G has no βG-orientation.

Claim 4.1. |V (G)| ≥ 3 and |S′| ≤ |S| ≤ 5.

Proof. Since G is 5-edge-connected, |V (G)| ≥ 2. If |V (G)| = 2, let V (G) = {x, y}, then
all the edges ofG are between x and y, and |E(G)| ≥ 5. LetDx be an orientation of x, such
that d+Dx(x)−d−Dx(x) ≡ βG(x) (mod 3). Since βG is a Z3-boundary, d+Dx(y)−d−Dx(y) ≡
βG(y) (mod 3). Therefore G has a βG-orientation, a contradiction. Hence |V (G)| ≥ 3
and |S′| ≤ |S| ≤ 5.

Claim 4.2. Let U ⊂ V (G) with |U | ≥ 2. If dG(U) = 5, then U ∩ S′ 6= ∅.

Proof. If not, choose U to be a minimal one such that: for any A ⊂ U with 2 ≤ |A| < |U |,
we have dG(A) 6= 5.

By the minimality ofG, G/U has a βG-orientationD′ which is a partial βG-orientation
of G, such that d+D′(x)− d−D′(x) ≡ βG(x) (mod 3) for each x ∈ V (G) \ U .

Let G′ be a graph obtained from G by contracting V (G) \ U as z0, and let βG′ = βG.
(i) Since V (G′) = U + z0, |V (G′)| = |U |+ 1 ≥ 3.
(ii) Since dG′(z0) = dG(U) = 5, by Proposition 2.2 (1), we have that dG′(z0) ≤

4 + |τG′(z0)|.
(iii) By the assumption and minimality of U , we have that for any A ⊂ U , dG(A) 6= 5.
Therefore dG(A) ≥ 6. By Proposition 2.2 (2), dG′(A) = dG(A) ≥ 4 + |τG′(A)|.
By Lemma 2.4, the pre-orientation of E′(z0) of all edges incident with z0 can be ex-

tended to a βG′ -orientation of G′. Therefore, G has a βG-orientation, which is a contradic-
tion.

Let G′1 be a graph obtained from G by adding a new vertex z0 and |S′| arcs from z0 to
S′, such that each vertex in S′ has degree 6 in G′1.

Define βG′1 as follows:
(1) βG′1(x) = βG(x) if x 6∈ S′ + z0;
(2) βG′1(x) ≡ βG(x)− 1 (mod 3) if x ∈ S′;
(3) βG′1(z0) ≡ |S′| (mod 3) and βG′1(z0) ∈ {0, 1, 2}.
Now dG′1(z0) ≤ 4+|τG′1(z0)| and |V (G′1)| = |V (G)|+1 ≥ 4. We claim that dG′1(A) ≥

4 + |τG′1(A)|, for each nonempty vertex subset A not containing z0 with |V (G′1) \A| > 1.
If A ∩ S′ = ∅, then by Claim 4.2, dG′1(A) = dG(A) 6= 5. Thus dG′1(A) ≥ 6. By

Proposition 2.2 (2), dG′1(A) ≥ 4 + |τG′1(A)|.
If A ∩ S′ 6= ∅, then dG′1(A) ≥ dG(A) + 1 ≥ 6. By Proposition 2.2 (2), we have that

dG′1(A) ≥ 4 + |τG′1(A)|.
Now G′1 satisfies all the conditions of Lemma 2.4. By Lemma 2.4, G′1 has a βG′1 -

orientation extended from the pre-orientation ofE′1(z0) of all edges incident with z0, which



98 Ars Math. Contemp. 10 (2016) 91–98

implies that G has a βG-orientation, a contradiction.
The proof is complete. �
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Abstract

We study point – line incidence structures and their properties in the projective plane.
Our motivation is the problem of the existence of (n4) configurations, still open for few
remaining values of n. Our approach is based on quasi-configurations: point – line inci-
dence structures where each point is incident to at least 3 lines and each line is incident
to at least 3 points. We investigate the existence problem for these quasi-configurations,
with a particular attention to 3|4-configurations where each element is 3- or 4-valent. We
use these quasi-configurations to construct the first (374) and (434) configurations. The
existence problem of finding (224), (234), and (264) configurations remains open.

Keywords: Projective arrangements, point – line incidence structure, (nk) configurations.
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1 Introduction
A geometric (nk) configuration is a collection of n points and n lines in the projective
plane such that each point lies on k lines and each line contains k points. We recommend
our reader to consult Grünbaum’s book [7] for a comprehensive presentation and an his-
torical perspective on these configurations. The central problem studied in this book is to
determine for a given k those numbers n for which there exist geometric (nk) configura-
tions. The answer is completely known for k = 3 (geometric (n3) configurations exist if
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Figure 1: Splitting Grünbaum’s geometric (204) configuration [6] into two (103) configu-
rations.

and only if n ≥ 9), partially solved for n = 4 (geometric (n4) configurations exist if and
only if n = 18 or n ≥ 20 with a finite list of possible exceptions), and wide open for k > 4.
Our contribution concerns k = 4, where we provide solutions for two former open cases:
there exist geometric (374) and (434) configurations. Moreover, we study building blocks
for constructing geometric (nk) configurations that might be of some help for clarifying the
final open cases (224), (234), and (264). Many aspects of our presentation appeared dur-
ing our investigation of the case (194) in which there is no geometric (194) configuration,
see [1, 2].

The approach of this paper is to construct geometric (n4) configurations from smaller
building blocks. For example, Grünbaum’s geometric (204) configuration [6] can be con-
structed by superposition of two geometric (103) configurations as illustrated in Figure 1.
To extend this kind of construction, we study an extended notion of point – line configura-
tions, where incidences are not regular but still prescribed.

1.1 Point – line incidence structures

We define a point – line incidence structure as a set P of points and a set L of lines together
with a point – line incidence relation, where two points of P can be incident with at most
one line of L and two lines of L can be incident with at most one point of P . Throughout the
paper, we only consider connected incidence structures, where any two elements of P t L
are connected via a path of incident elements.

For a point – line incident structure (P,L), we denote by pi the number of points of P
contained in i lines of L and similarly by `j the number of lines of L containing j points
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of P . We find it convenient to encode these incidence numbers into a pair of polynomi-
als (P(x),L(y)), called the signature of (P,L), and defined by

P(x) :=
∑

i
pix

i and L(y) :=
∑

j
`jy

j .

For example, the point – line incidence structure represented in Figure 2 has signature
(8x3 + 2x4, 8y3 + 2y4). With these notations, the number of points and lines are given
by |P | = P(1) and |L| = L(1), while the number of point – line incidences is given by
| {(p, `) ∈ P × L | p ∈ `} | = P′(1) = L′(1).

We distinguish three different levels of point – line incidence structures, in increasing
generality:

Geometric Points and lines are ordinary points and lines in the real projective plane P.

Topological Points are ordinary points in P, but lines are pseudolines, i.e., non-separating
simple closed curves of P which cross pairwise precisely once.

Combinatorial Just an abstract incidence structure (P,L) as described above, with no ad-
ditional geometric structure.

In this paper, we are mainly interested in the geometric level. We therefore omit the word
geometric in what follows unless we have to distinguish different levels.

1.2 (nk) configurations

One of the main problems in the theory of point – line incidence structures is to clarify the
existence of regular point – line incidence structures. A k-configuration is a point – line
incidence structure (P,L) where each point of P is contained in k lines of L and each
line of L contains k points of P . In such a configuration, the number of points equals the
number of lines, and thus it has signature (nxk, nyk). If we want to specify the number
of points and lines, we call it an (nk) configuration. We refer to the recent monographs
of Grünbaum [7] and Pisanski and Servatius [8] for comprehensive presentations of these
objects. Classical examples of regular configurations are Pappus’ and Desargues’ configu-
rations, which are respectively (93) and (103) configurations. In the study of the existence
of (n4) configurations there are still a few open cases. Namely, it is known that (geometric)
(n4) configurations exists if and only if n = 18 or n ≥ 20, with the possible exceptions
of n = 22, 23, 26, 37 and 43 [5, 4, 2]. Different methods have been used to obtain the
current results on the existence of 4-configurations:

(i) For n ≤ 16, Bokowski and Schewe [3] used a counting argument based on Euler’s
formula to prove that there exist no (n4) configuration, even topological.

(ii) For small values of n, one can search for all possible (n4) configurations. For n = 17
or 18, one can first enumerate all combinatorial (n4) configurations and search for ge-
ometric realizations among them. This approach was used by Bokowski and Schewe
in [4] to show that there is no (174) configuration and to produce a first (184) config-
uration. Another approach, proposed in [1], is to enumerate directly all topological
(n4) configurations, and to search for geometric realizations among this restricted
family. In this way, we showed that there are precisely two (184) configurations, that
of [4] and another one [1], see Figure 3. For n = 19, we obtained in [1] all 4 028 topo-
logical (194) configurations and the study of their realizability has led to the result
that there is no geometric (194) configuration [2].
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(iii) For larger values of n, one cannot expect a complete classification of (n4) configu-
rations. However, one can construct families of examples of 4-configurations. One
of the key ingredients for such constructions is the use of symmetries. See Figure 1
for the smallest example obtained in this way, and refer to the detailed presentation in
Grünbaum’s recent monograph [7].

(iv) Finally, Bokowski and Schewe introduced in [4] a method to produce (n4) config-
urations from deficient configurations. It consists in finding two point – line inci-
dence structures (P,L) and (P ′, L′) of respective signatures (ax3 + bx4, cy3 + dy4)
and (cx3 + ex4, ay3 + fy4), where a + b + c + e = a + c + d + f = n, and a
projective transformation which sends the 3-valent points of P to points contained in
a 3-valent line of L′, and at the same time the 3-valent lines of L to lines containing
a 3-valent point of P ′. This method was used to obtain the first examples of (294)
and (314) configurations.

In this paper, we are interested in this very last method described above. We are going to
study deficient configurations (see the notion of quasi-configuration and 3|4-configuration
in the next subsection) for the use of them as building blocks for configurations. Our study
has led in particular to first examples of (374) and (434) configurations. Thus the remaining
undecided cases for the existence of (n4) configurations are now only the cases n = 22, 23,
and 26.

1.3 Quasi-configurations

A quasi-configuration (P,L) is a point – line incidence structure in which each point is con-
tained in at least 3 lines and each line contains at least 3 points of P . In other words, the
signature (P,L) of (P,L) satisfies x3 |P(x) and y3 |L(y). The term “quasi-configuration”
for this concept was suggested by Grünbaum to the authors. As observed above, these
quasi-configurations can sometimes be used as building blocks for larger point – line inci-
dence structures.

In this paper, we investigate in particular 3|4-configurations, where each point of P is
contained in 3 or 4 lines of L and each line of L contains 3 or 4 points of P . In other
words, 3|4-configurations are point – line incidence structures whose signature is of the
form (ax3 + bx4, cx3 + dx4) for some a, b, c, d ∈ N satisfying 3a + 4b = 3c + 4d. Note
that their numbers of points and lines do not necessarily coincide. If it is the case, i.e., if
a + b = c + d = n, we speak of an (n3|4) configuration. In this case, a = c and b = d,
the number of points and lines is n = a + b = c + d and the number of incidences
is 3a+ 4b = 3c+ 4d.

We think of an (n3|4) configuration as a deficient (n4) configuration. A good measure
on (n3|4) configurations is the number of missing incidences a. We say that an (n3|4) con-
figuration is optimal if it contains the maximal number of point – line incidences among all
(n3|4) configurations. One objective is to study and classify optimal (n3|4) configurations
for small values of n.

Example 1.1. Figure 2 shows an incidence structure with signature (8x3+2x4, 8y3+2y4).
It is a 103|4-configuration: the 3-valent elements are colored red while the 4-valent elements
are colored blue. We will see in Figure 7 that this 3|4-configuration is not optimal.
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Figure 2: A quasi-configuration with signature (8x3 + 2x4, 8y3 + 2y4).

1.4 Overview

The paper is divided into two parts. In Section 2, we illustrate how quasi-configurations (in
particular 3|4-configurations) can be used as building blocks to construct (n4) configura-
tions, and we obtain in particular examples of (374) and (434) configurations. In Section 3,
we present a counting obstruction for the existence of topological quasi-configurations, and
we study optimal (n3|4) configurations with few points and lines.

2 Constructions
We discuss here different ways to obtain new point – line incidence structures from old
ones. We are in particular interested in the construction of new quasi-configurations from
old ones. We use these techniques to provide the first (374) and (434) configurations.

2.1 Operations on point – line incidence structures

To construct new point – line incidence structures from old ones, we will use the following
operations, illustrated in Section 2.2:

Deletion Deleting elements from a point – line incidence structure yields a smaller inci-
dence structure. Note that deletions do not necessarily preserve connectedness or
quasi-configurations. We can however use deletions in 4-configurations to construct
3|4-configurations if no remaining element is incident to two deleted elements.

Addition As illustrated by the example of Grünbaum’s (204) configuration [6] in Figure 1,
certain point – line incidence structures can be obtained as the disjoint union of two
smaller incidence structures (P,L) and (P ′, L′). In particular, we obtain an (n4)
configuration if (P,L) and (P ′, L′) are 3|4-configurations, if each 3-valent element
of (P,L) is incident to precisely one 3-valent element of (P ′, L′) and conversely,
and if no other incidences appear.

Splitting The reverse operation of addition is splitting: given a point – line incidence struc-
ture, we can split it into two smaller incidence structures. We can require additionally



104 Ars Math. Contemp. 10 (2016) 99–112

Figure 3: Splittings of the two geometric (184) configurations [4, 1] into two (93|4) config-
urations. The rightmost (184) configuration even splits into two (93) configurations. The
points which seem isolated are in fact at infinity in the direction pointed by the correspond-
ing arrow, and are incident to the 4 lines parallel to that direction.

the two resulting incidence structures to be quasi-configurations or even regular con-
figurations. For example, the two geometric (184) configurations [4, 1] as well as
Grünbaum’s (204) configuration [6] are splittable into 3|4-configurations, see Fig-
ures 1 and 3.

Superposition Slightly more general than addition is the superposition, where we allow
the two point – line incidence structures (P,L) and (P ′, L′) to share points or lines.
For example, we can superpose two 2-valent vertices to make one 4-valent vertex.
This idea is used in our construction of (374) and (434) configurations below.

2.2 Examples of constructions

We now illustrate the previous operations and produce 4-configurations from smaller point –
line incidence structures. We start with a simple example.

Example 2.1 (A (384) configuration). It was shown in [2] that no topological (194) con-
figuration can be geometrically realized with points and lines in the projective plane. How-
ever, Figure 4 (left) shows a geometric realization of a topological (194) configuration
where one line has been replaced by a circle. Forgetting this circle, we obtain a 3|4-
configuration with signature (15x4 + 4x3, 18x4). We take two opposite copies of this
3|4-configuration (colored purple and red in Figure 4 (right)) and add two lines (colored
green in Figure 4 (right)) each incident to two points in each copy. We obtain a (384)
configuration.

Using similar ideas, we observe that it is always possible to produce a 4-configuration
from any 3|4-configuration.

Example 2.2 (Any 3|4-configuration generates a 4-configuration). From a 3|4-configura-
tion with signature (ax3 + bx4, cy3 + dy4), we can construct an (n4) configuration where
n = 16a+ 16b+ 4c = 4a+ 16c+ 16d as follows:

(i) We take four translated copies of the 3|4-configuration and add suitable parallel lines
through all 3-valent points.
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Figure 4: (Left) A geometric realization of a topological (194) configuration where one
line has been replaced by a circle. (Right) A (384) configuration built from two copies of
this incidence structure. The construction is explained in full detail in Example 2.1.

(ii) We take the geometric dual of the resulting 3|4-configuration (remember that geo-
metric duality transforms a point p of the projective plane into the line formed by all
points orthogonal to p and conversely).

(iii) We take again four translated copies of this dual 3|4-configuration and add suitable
parallel lines through all 3-valent vertices.

Of course, we can try to obtain other 4-configurations from 3|4-configurations. This
approach was used by Bokowski and Schewe [4] to construct (294) and (314) configura-
tions from the (143|4), (153|4) and (163|4) configurations of Figure 9. We refer to their
paper [4] for an explanation. Here, we elaborate on the same idea to construct two new
relevant (n4) configurations.

Example 2.3 (First (434) configuration). To construct a ((n+m)4) configuration from an
(n4) configuration and an (m4) configuration, we proceed as follows (see Figure 5):

(i) We delete two points not connected by a line in the (n4) configuration and consider
the eight resulting 3-valent lines (colored blue in Figure 5 (top left) and orange in
Figure 5 (top right)).

(ii) We add four points (colored green in Figure 5), each incident with precisely two 3-
valent lines. All points and lines are now 4-valent again, except the four new 2-valent
points.

(iii) We do the same operations in the (m4) configuration.

(iv) Finally, we use a projective transformation that maps the set of four 2-valent points in
the first quasi-configuration onto the set of four 2-valent points in the second quasi-
configuration. This transformation superposes the 2-valent points to make them 4-
valent.
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If this transformation does not superpose other elements than the 2-valent ones and does
not create additional unwanted incidences, it yields the desired ((n +m)4) configuration.
This construction is illustrated on Figure 5, where we obtain a (434) configuration from a
(254) configuration [7] and a (184) configuration [1].

Unfortunately, the method from the previous example cannot provide a (374) configu-
ration since there is no (n4) configuration for n ≤ 17 [4] and for n = 19 [2]. We therefore
need another method, which we describe in the following example.

Example 2.4 (First (374) configuration). To construct a ((n+m−1)4) configuration from
an (n4) configuration and an (m4) configuration, we proceed as follows (see Figure 6):

(i) We delete two points on the same line (colored green in Figure 6) of the (n4) con-
figuration and consider the six resulting 3-valent lines (colored blue in Figure 6 (top
left) and orange in Figure 6 (top right)).

(ii) We add three points (colored green in Figure 6), each incident with precisely two
3-valent lines. All points and lines are now 4-valent again, except the initial 2-valent
line and the three new 2-valent points.

(iii) We do the same operations in the (m4) configuration.

(iv) Finally, we use a projective transformation that maps the set of four 2-valent elements
in the first quasi-configuration onto the set of four 2-valent elements in the second
quasi-configuration. This transformation superposes the 2-valent elements to make
them 4-valent.

If this transformation does not superpose other elements than the 2-valent ones and does not
create additional unwanted incidences, it yields the desired ((n+m− 1)4) configuration.
This construction is illustrated on Figure 6, where we obtain a (374) configuration from a
(204) configuration [7] and a (184) configuration [1].

We invite the reader to try his own constructions, similar to the constructions of Exam-
ples 2.3 and 2.4, using the operations on point – line incidence structures described above.
In this way, one can obtain many (n4) configurations for various values of n. Additional
features can even be imposed, such as non-trivial motions or symmetries. We have however
not been able to find answers to the following question.

Question 1. Can we create a (224) configuration by glueing two quasi-configurations with
11 points and lines each? More generally, can we construct (224), (234), or (264) configu-
rations by superposition of smaller quasi-configurations?

3 Obstructions and optimal 3|4-configurations
In this section, we further investigate point – line incidence structures and 3|4-configura-
tions. We start with a necessary condition for the existence of topological incidence struc-
tures with a given signature. For this, we extend to all topological incidence structures an
argument of Bokowski and Schewe [3] that was used to prove the non-existence of (154)
configurations. We obtain the following inequality.

Proposition 3.1. Let (P,L) be topological incidence structure with signature (P,L). Then

P′′(1) + 2P′(1)− L(1)2 + L(1)− 6P(1) + 6 ≤ 0.
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Figure 5: A (434) configuration built from deficient (254) and (184) configurations. The
construction is explained in full detail in Example 2.3.
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Figure 6: A (374) configuration built from deficient (204) and (184) configurations. The
construction is explained in full detail in Example 2.4.
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Proof. Let pi be the number of i-valent points and `j the number of j-valent lines in the
incidence structure (P,L). The signature (P,L) is P(x) :=

∑
i pix

i and L(y) :=
∑

j `jy
j .

Since the incidence structure is topological, we can draw it on the projective plane such
that no three pseudolines pass through a point which is not in P . We call additional 2-
crossings the intersection points of two lines of L which are not points of P . We consider
the lifting of this drawing on the 2-sphere. We obtain a graph embedded on the sphere,
whose vertices are all points of P together with all additional 2-crossings, whose edges are
the segments of lines of L located between two vertices, and whose faces are the connected
components of the complement of L. Let f0, f1 and f2 denote respectively the number
of vertices, edges and faces of this map. Denoting by deg(p) the number of lines of L
containing a point p ∈ P and similarly by deg(`) the numbers of points of P contained in
a line ` ∈ L, we have

f0 = 2

(
L(1)

2

)
− 2

∑
p∈P

((
deg(p)

2

)
− 1

)
= L(1)

(
L(1)− 1

)
+ 2P(1)−

∑
i

i(i− 1)pi,

f1 = 2
∑
`∈L

deg(`) + 2f0 − 2P(1) = 2
∑
j

j`j + 2f0 − 2P(1) = 2
∑
i

ipi + 2f0 − 2P(1),

f2 = f1 − f0 + 2.

Moreover, since no face is a digon, we have 3f2 ≤ 2f1. Replacing f2 and f1 by the above
expressions, we obtain

0 ≥ 3f2 − 2f1 = f1 − 3f0 + 6 = 2
∑
i

ipi − 4P(1)− f0 + 6

=
∑
i

i(i+ 1)pi − L(1)
(
L(1)− 1

)
− 6
(
P(1)− 1

)
,

and thus the desired inequality.

Corollary 3.2. If (ax3 + bx4, ay3 + by4) is the signature of a topological incidence struc-
ture, then

−(a+ b)2 + 7a+ 15b+ 6 ≤ 0.

The following table provides the minimum value of b for which there could exist a topolog-
ical incidence structure with signature (ax3 + bx4, ay3 + by4):

a 0 1 2 3 4 5 6 7
bmin 16 14 13 11 9 8 6 3

Proof. Direct from Proposition 3.1 with P(x) = ax3 + bx4 and L(y) = ay3 + by4.

For example, there is no topological (154) configuration [3] and no incidence structure
with signature (7x3 + 2x4, 7y3 + 2y4). Compare to Example 1.1 which shows that a
configuration with signature (8x3 + 2x4, 8y3 + 2y4) exists.

Corollary 3.3. A (n3|4) configuration has at most Imax := min

(
4n ,

⌊
n2 + 17n− 6

8

⌋)
incidences. The values of Imax appear in the following table:

n 7 8 9 10 11 12 13 14 15 16
Imax 20 24 28 33 37 42 48 53 59 64
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Proof. Consider an (n3|4) configuration with signature (ax3 + bx4, ay3 + by4) where
a+ b = n. The number of incidences is I :=3a+4b. It can clearly not exceed 4n. For the
second term in the minimum, we apply Corollary 3.2 to get

0 ≥ −(a+ b)2 + 7a+ 15b+ 6

= −(a+ b)2 + 8(3a+ 4b)− 17(a+ b) + 6

= −n2 + 8I − 17n+ 6.

Corollary 3.4. There is no topological (n3|4) configuration if n ≤ 8.

Proof. If n ≤ 7, there is no topological (n3|4) configuration since it should have at least
3n incidences, which is larger than the upper bound of Corollary 3.3. If n = 8, a (83|4)
configuration should be a (83) configuration by Corollary 3.3. But the only combinatorial
(83) configuration is not topological.

To close this section, we exhibit optimal (n3|4) configurations for small values of n,
i.e., (n3|4) configurations which maximize the number of point – line incidences.

Proposition 3.5. For 9 ≤ n ≤ 13, the bound of Corollary 3.3 is tight: there exists (n3|4)

configurations with
⌊
n2+17n−6

8

⌋
incidences.

Proof. For n = 13, we consider the (133|4)-configuration of Figure 7. The homogeneous
coordinates of its points and lines are given by

P :=L :=


ij
1

 ∣∣∣∣∣∣ i, j ∈ {−1, 0, 1}
 ∪


10
0

 ,

01
0

 ,

11
0

 ,

 1
−1
0

 .

For n = 10, 11 or 12, we obtain (n3|4) configurations by removing suitable points and
lines in our (133|4) configuration. The resulting configurations are illustrated in Figure 7.
(Note that for n = 10, we even have two dual ways to suitably remove three points and
three lines from our (133|4) configuration: either we remove three 3-valent points and the
three 4-valent lines containing two of these points, or we remove three 3-valent lines and
the three 4-valent points contained in two of these lines). Finally, for n = 9 we use the
bottom rightmost (93|4) configuration of Figure 7.

As a curiosity, we give another example of an optimal (123|4) configuration which
contains Pappus’ and Desargues’ configurations simultaneously. See Figure 8.

Observe that optimal (n3|4) configurations are given by (n4) configurations for large n,
and that the only remaining cases for optimal (n3|4) configurations are for n = 14, 15,
16, 17, 19, 22, 23, and 26. We have represented in Figure 9 some (153|4) and (163|4)
configurations which we expect to be optimal, although they do not reach the theoretical
upper bound of Corollary 3.3. Observe also that deleting the circle in Figure 4 (left) and
adding one line through two of the resulting 3-valent points provides a (193|4) configuration
with 74 incidences, which is almost optimal since there is no (194) configuration [1, 2]. To
conclude, we thus leave the following question open.

Question 2. What are the optimal (143|4) configurations? Are the (153|4) and (163|4)
configurations in Figure 9 optimal? Is there a (193|4) configuration with 75 incidences.
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Figure 7: Optimal (n3|4) configurations, for n = 13, 12, 11, 10, 9. They have respectively
48, 42, 37, 33, and 28 point – line incidences. The 3-valent elements are colored red while
the 4-valent elements are colored blue.

Figure 8: An optimal (123|4) configuration (left) which contains simultaneously Pappus’
configuration (middle) and Desargues’ configuration (right). In the (123|4) configuration,
the 3-valent elements are colored red while the 4-valent elements are colored blue. In the
Pappus’ and Desargues’ subconfigurations, all elements are 3-valent, but we keep the color
to see the correspondence better.
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Figure 9: Apparently optimal (153|4) and (163|4) configurations. They have 56 and 60
point – line incidences respectively. The 3-valent elements are colored red while the 4-
valent elements are colored blue.
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Abstract

Let ℘ : X̃ → X be a regular covering projection of connected graphs with the group
of covering transformations CT℘ being abelian. Assuming that a group of automorphisms
G ≤ AutX lifts along ℘ to a group G̃ ≤ Aut X̃ , the problem whether the corresponding
exact sequence id → CT℘ → G̃ → G → id splits is analyzed in detail in terms of a
Cayley voltage assignment that reconstructs the projection up to equivalence.

In the above combinatorial setting the extension is given only implicitly: neither G̃
nor the action G → Aut CT℘ nor a 2-cocycle G × G → CT℘, are given. Explicitly
constructing the cover X̃ together with CT℘ and G̃ as permutation groups on X̃ is time
and space consuming whenever CT℘ is large; thus, using the implemented algorithms (for
instance, HasComplement in MAGMA) is far from optimal. Instead, we show that the
minimal required information about the action and the 2-cocycle can be effectively decoded
directly from voltages (without explicitly constructing the cover and the lifted group); one
could then use the standard method by reducing the problem to solving a linear system of
equations over the integers. However, along these lines we here take a slightly different
approach which even does not require any knowledge of cohomology. Time and space
complexity are formally analyzed whenever CT℘ is elementary abelian.
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1 Introduction
A large part of algebraic graph theory is devoted to analyzing structural properties of
graphs with prescribed degree of symmetry in order to classify, enumerate, construct in-
finite families, and to produce catalogs of particular classes of interesting graphs up to a
certain reasonable size. References are too numerous to be listed here, but see for instance
[2, 6, 8, 9, 10, 11, 12, 14, 16, 24, 25, 26, 29, 31, 36, 39, 40, 42, 46, 47, 52, 53, 55], and the
references therein.

It is not surprising, then, that the techniques employed in these studies are fairly rich
and diverse, ranging from pure combinatorial and computational methods to methods from
abstract group theory, permutation groups, combinatorial group theory, linear algebra, rep-
resentation theory, and algebraic topology.

Covering space techniques, and lifting groups of automorphisms along regular cover-
ing projections in particular, play a prominent role in this context. (See Section 2 for exact
definitions of all notions used in this Introduction.) The idea goes back to Djoković [9]
(and to an unpublished work of Conway, see [3, Corollary 19.6]), who constructed first
examples of infinite families of graphs of small valency and maximal degree of transitivity,
and to Biggs [3, Proposition 19.3], who gave a sufficient condition for a group of auto-
morphisms to lift as a semidirect product. While Djoković’s approach is classical in terms
of fundamental groups, Biggs expressed his particular lifting condition combinatorially.
A combinatorial approach to covering projections of graphs in terms of voltages was sys-
tematically developed in the early 70’ by Gross and Tucker, see [20], after having been
introduced by Alpert and Gross [18, 19] in the context of maps on surfaces.

A systematic combinatorial treatment of lifting automorphisms along covering projec-
tions (either in the context of graphs, maps on surfaces, or cell complexes) has been consid-
ered by several authors, see [1, 21, 32, 33, 48, 50] and the references therein. More specific
types of covers, say, with cyclic or elementary abelian groups of covering transformations,
have been extensively studied in [22, 35, 37, 49]; for the applications we refer the reader to
[8, 11, 13, 14, 26, 27, 28, 30, 36, 40, 41, 52, 55]. For some recent results on arc transitive
cubic graphs arising as regular covers with an abelian group of covering transformations
we refer the reader to [7].

Basic lifting techniques in terms of voltages are now well understood, yet several im-
portant issues still remain to be considered. In view of the fact that structural properties of
graphs often rely on the structure and the action of their automorphism groups, one such
topic is investigating the structure of lifted groups – although certain particular questions
along these lines have been addressed, see [3, 15, 33, 51]. Other points of interest are
algorithmic and complexity aspects of lifting automorphisms, which have so far received
even less attention. Certain aspects, but not those considered here, were touched upon in
[34, 48].

Specifically, let ℘ : X̃ → X be a regular covering projection of connected graphs given
in terms of voltages. Assuming that a group G ≤ AutX lifts along ℘, it is of particular
interest to study the corresponding exact sequence id→ CT℘ → G̃→ G→ id. A natural
question in this context is to ask whether the extension is split: on one hand, split extensions
are the most easy ones to analyze, while on the other hand, a restrictive situation stemming
from the fact that the group G, acting on X , acts also on X̃ via its isomorphic complement

E-mail addresses: aleksander.malnic@guest.arnes.si (Aleksander Malnič), pozar.rok@gmail.com (Rok
Požar)
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G to CT℘ within G̃, implies that a lot more information about symmetry properties of X̃
can be derived; moreover, split extensions are frequently encountered in many concrete
examples of graph covers. Describing efficient methods for testing whether a given group
lifts as a split extension of CT℘ is the main objective of this paper.

Methods for testing whether a given extension 1→ K → E → Q→ 1 of finite groups
is split, are known, see [5] and [23, Chapters 7 and 8]. In some way or another, all these
methods use the fact that a set of coset representatives of K in E is a complement to K if
and only if these representatives satisfy the defining relations of Q.

The essential case to be resolved in the first place is that of K being (elementary)
abelian. The idea is to modify an arbitrarily chosen set of coset representatives ofK so that
the defining relations of Q are satisfied, if possible. Since K is normal and abelian, this
modification can be traced in the frame of a certain group algebra, which finally leads to a
system of linear equations over the integers (or rather, over prime fields); the complement
exists if and only if such a system has a solution.

In practice, the extension can be given in several different ways: either (i) in terms of
an epimorphism E → Q, or (ii) in terms of E and the generators of a normal subgroup K,
or (iii) via an action θ : Q → AutK together with a 2-cocycle τ : Q × Q → K. In cases
(i) and (ii), an essential requirement is that one must have enough information about the
extended group E; at least one must know its generators and must be able to perform basic
computations in E. In contrast with (i) and (ii), explicit knowledge about E is not needed
in case (iii) since the extension can be, up to equivalence of extensions, reconstructed as
K ×Q with multiplication rule (a, x)(b, y) = (a+ θx(b) + τ(x, y), xy).

In our setting of graph covers, however, the situation is different and does not fall in
any of the above three cases. Namely, the extension id → CT℘ → G̃ → G → id is
given only implicitly: all the information is encoded in the base graph in terms of voltages
that allow G to lift; in particular, neither G̃ nor the action of G on CT℘ nor a 2-cocycle
are given. Naively translating our setting into the frame of (i) or (ii) and then applying
the algorithm already implemented in MAGMA [4] in terms of permutation groups would
mean to first compute the covering graph X̃ together with CT℘ and G̃ acting on X̃ , which,
unfortunately, is time and space consuming whenever CT℘ is large.

Our situation best fits into the frame of (iii). But in order to follow the approach de-
scribed in [5] and [23, Chapters 7 and 8] we first need to compute the actionG→ Aut CT℘
and the 2-cocycle G × G → CT℘. As we here show, the minimal required information
about these data can indeed be effectively decoded directly from voltages (without explic-
itly constructing the cover and the lifted group). In the actual algorithm, however, we
take an approach which is slightly different and even does not require any knowledge of
cohomology. Namely, instead of modifying an initial transversal and working within an ap-
propriate group algebra, a potential complement is constructed directly in terms of certain
parameters – in view of the fact that a lift of an automorphism is uniquely determined by
the mapping of a single vertex – from which the required system of equations is obtained.
Although the method works whenever CT℘ is abelian, it can be adapted – similarly as in
the general context – to treat the case when CT℘ is solvable as well.

The paper is organized as follows. In Section 2 we review some basic facts about regular
covering projections and lifting automorphisms. In Section 3 we show how to recapture
the lifted group G̃ as a crossed product of CT℘ by G via reconstructing the coupling G→
Out CT℘ and the factor set G × G → CT℘ in terms of voltages, see Theorem 3.1. In
Section 4 we give the necessary and sufficient conditions for G to lift as a split extension
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of CT℘, see Theorem 4.1, and a similar result regarding direct product extensions, see
Theorem 4.3. In Section 5 we provide an algorithm for testing whether the extension is split
whenever CT℘ is abelian, see Subsection 5.1 and Theorem 5.2 in particular. The special
case when CT℘ is elementary abelian together with formal analysis of time and space
complexity is treated in Subsection 5.2, see Theorem 5.6. In Subsection 5.3 we briefly
mention the case when CT℘ is solvable. Concluding remarks are given in Section 6. For a
more substantial account on complexity issues and further applications we refer the reader
to [44, 45].

2 Preliminaries

Graphs. Formally, a graph is an ordered 4-tuple X = (D,V ; beg,−1 ), where D(X) = D
and V (X) = V are disjoint sets of darts and vertices, respectively, beg is the function
assigning to each dart its initial vertex, and −1 is an arbitrary involution on D that creates
edges arising as orbits of −1. For a dart x, its terminal vertex is the vertex end(x) =
beg(x−1). An edge e = {x, x−1} is called a link whenever beg(x) 6= end(x). If beg(x) =
end(x), then the respective edge is either a loop or a semi-edge, depending on whether
x 6= x−1 or x = x−1, respectively.

There are several reasons for treating graphs formally in a manner just described. For
one thing, it is quite versatile for writing down formal proofs; moreover it is indeed natural,
even necessary, to consider graphs with semi-edges in different contexts, for instance when
dealing with graph covers or when studying graphs that are embedded into surfaces. For a
nice use of semi-edges in the context of Cayley graphs we refer the reader to [17].

A walk W : u → v of length n ≥ 0 from a vertex u0 = u to a vertex un = v is a
sequence of vertices and dartsW = u0 x1 u1 x2 u2 . . . un−1 xn un where beg(xj) = uj−1

and end(xj) = uj for all indices j = 1, . . . , n. Its inverse walk W−1 : v → u is the walk
obtained by listing the vertices and darts appearing in W in reverse order. The walk u
is the trivial walk at the vertex u. Walks of length 1 are sometimes referred to as arcs.
A graph is connected if any two vertices are connected by a walk. A walk is reduced if
no two consecutive darts in the walk are inverse to each other. Clearly, each walk W has
an associated reduced walk W obtained by recursively deleting all appearances uxvx−1

of consecutive pairs of inverse darts (together with the respective vertices). Two walks
W,W ′ : u→ v with the same reduction are called homotopic. Homotopy is an equivalence
relation on the set of all walks, with homotopy classes denoted by [W ]. Observe that the
naturally defined product of walksW1W2 by ‘concatenation’, when defined, carries over to
homotopy classes, [W1][W2] = [W1W2]. Assuming the graph X to be connected, the set
of homotopy classes of closed walks u → u, equipped with the above product, defines the
first homotopy group π(X,u). The trivial class 1u = [u] consists of all walks contractible
to u. Note that the isomorphism class of π(X,u) does not depend on u. More precisely,
π(X,u) is isomorphic to the free product of cyclic groups Z or Z2 (where the Z2 factors
correspond bijectively to the set of all semi-edges in X). A generating set for π(X,u) is
provided by fundamental closed walks at u relative to an arbitrarily chosen spanning tree.

LetX andX ′ be graphs. A graph homomorphism f : X → X ′ is an adjacency preserv-
ing mapping taking darts to darts and vertices to vertices, or more precisely, f(beg(x)) =
beg(f(x)) and f(x−1) = f(x)−1. Homomorphisms are composed as functions, (fg)(x) =
f(g(x)). Given a graph X we frequently need to consider the restricted (and the induced)
left action of its group of automorphisms AutX on certain subsets of X , for instance
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the sets of vertices, darts, edges etc. As AutX is by definition a permutation group on the
union V (X)∪D(X) of disjoint sets of vertices and darts, it acts faithfully on V (X)∪D(X).
However, its action on V (X) need not be faithful unless X is simple, that is, if it has no
parallel links, loops, or semi-edges. We say that a group G ≤ AutX acts semiregularly
on X whenever it acts freely on V (X) (meaning that if g ∈ G fixes a vertex it must be the
identity on vertices and darts).

Covers. To fix the notation and terminology, and for easier reading, we quickly review
some essential facts about covers. The interested reader is referred to [20, 33, 54] for more
information.

A covering projection of graphs is a surjective homomorphism ℘ : X̃ → X mapping
the set of darts with a common initial vertex in the covering graph X̃ bijectively to the set
of darts at the image of that vertex in the base graphX . The preimages fibu = ℘−1(u), u ∈
V (X), and fibx = ℘−1(x), x ∈ D(X), are the vertex- and dart-fibres, respectively. From
the definition of a covering projection it immediately follows that for any walk W : u→ v
inX and an arbitrary vertex ũ ∈ fib(u) there is a unique lifted walk W̃ ũ with beg(W̃ ũ) = ũ
that projects to W . This is known as the unique-path lifting property. Consequently, if X
is connected (which will be our standard assumption without loss of generality) then all
fibres have equal cardinality, usually referred to as the number of folds. It is also immediate
that homotopic walks lift to homotopic walks, and that ũ · [W ] = end(W̃ ũ) defines a
‘right action’ of homotopy classes on the vertex set of X̃ . In particular, the fundamental
group π(X,u) acts on the right on fibu, with the stabilizer of ũ ∈ fibu being isomorphic
to π(X̃, ũ). It is precisely this action that is responsible for the structural properties of the
covering.

Covering projections that are particularly important when studying symmetry proper-
ties of covers are the regular covering projections. By definition, a covering projection
℘ : X̃ → X is regular if there exists a semiregular group C ≤ Aut X̃ such that its orbits
on vertices and on darts coincide with vertex- and dart-fibres, respectively. In other words,
C acts regularly on each fibre (hence the name), and so the covering projection is |C|-fold.

Regular covering projections can be grasped combinatorially as follows. First of all,
given a graph X and an (abstract) group Γ, let ζ : D(X) → Γ be a function such that
ζ(x−1) = (ζ(x))−1. (For convenience we shall write ζx = ζ(x) and ζ−1

x = (ζx)−1.) In
this context, Γ is called a voltage group, ζ is a Cayley voltage assignment on X , and ζx
is the voltage of the dart x. We remark that a voltage assignment as above is known as
an ordinary voltage assignment in the literature [20]. With these data we may define the
derived graph Cov(ζ) with vertex set V (X)×Γ and dart setD(X)×Γ, where beg(x, c) =
(beg(x), c) and (x, c)−1 = (x−1, c ζx). The projection onto the first coordinate defines
a regular covering projection ℘ζ : Cov(ζ) → X . The required semiregular group C is
obtained by viewing C = Γ as a group of automorphisms of Cov(ζ) via its left action on
the second coordinates by left multiplication on itself: an element a ∈ Γ maps the vertex
(u, c) to (u, ac) and the dart (x, c) to (x, ac). In addition, call the right action of Γ on itself
by right multiplication a voltage-action. This action determines how walks of length 1 lift:
a walk uxv lifts to walks (u, c)(x, c)(v, c ζx), for c ∈ Γ.

Conversely, with any regular covering projection ℘ : X̃ → X we can associate a Cay-
ley voltage assignment ζ on X such that ℘ζ : Cov(ζ) → X ‘essentially reconstructs’ the
projection ℘ in a sense to be described below. Indeed, let Γ = C be the semiregular group
from the definition of a regular covering. As Γ acts regularly on each fibre we may label
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the vertices and the darts of X̃ by elements of V (X) × Γ and D(X) × Γ, respectively, as
follows. Choosing arbitrarily a vertex ũ ∈ fibu we label the vertex c(ũ) ∈ fibu, c ∈ Γ, by
(u, c). This way we obtain a bijective labeling of fibu by {u} × Γ. Similarly, the darts in
fibx are labeled by {x} × Γ, where (x, c) is the label of the dart in fibx having its initial
vertex labeled by (u, c). For x ∈ D(X), let ζx ∈ Γ be such an element of the voltage group
that (end(x), ζx) is the label of the terminal vertex of the dart in fibx labeled by (x, 1). Then
the terminal vertex of any dart in fibx, say, labeled by (x, c), is labeled by (end(x), cζx).
Clearly, ζx−1 = ζ−1

x . The respective regular covering projection ℘ζ : Cov(ζ) → X is
equivalent to ℘, a concept that we are now going to define.

Two covering projections ℘ : X̃ → X and ℘′ : X̃ ′ → X are isomorphic if there exists
an automorphism g ∈ AutX and an isomorphism g̃ : X̃ → X̃ ′ such that the following
diagram

X̃ X̃ ′

X X

g̃

℘ ℘′

g

is commutative. If in the above diagram one can choose g = id, then the projections are
equivalent. Covering projections are usually studied up to equivalence, or possibly up to
isomorphism (which is considerably more difficult).

A voltage assignment ζ : D(X)→ Γ can be naturally extended to walks as follows: if
W = u0 x1 u1 x2 u2 . . . un−1 xn un, then ζW = ζx1

ζx2
. . . ζxn . Clearly, homotopic walks

carry the same voltage, and so voltages can be assigned to homotopy classes. Moreover,
the ‘right action’ of homotopy classes via unique path-lifting along ℘ζ : Cov(ζ) → X is
essentially the voltage-action: if W : u → v is a walk in X and ũ ∈ fibu is labeled by
(u, c), then ũ · [W ] ∈ fibv is labeled by (v, c ζW ). We may therefore say that the voltage-
action faithfully represents the ‘action’ of homotopy classes, and in particular, the action
of π(X,u). It immediately follows that ζ defines a group homomorphism ζ : π(X,u)→ Γ
(denoted by the same symbol for convenience).

Lifts of automorphisms. An automorphism g ∈ AutX lifts along a covering projection
℘ : X̃ → X if there exists an automorphism g̃ ∈ Aut X̃ such that the diagram

X̃ X̃

X X

g̃

℘ ℘

g

is commutative. The automorphism g̃ then projects to g. A group G ≤ AutX lifts if all
g ∈ G lift. We call such a covering projection G-admissible. The collection of all lifts of
all elements in G form a subgroup G̃ ≤ Aut X̃ , the lift of G. In particular, the lift of the
trivial group is known as the group of covering transformations (or self-equivalences of ℘)
and denoted by CT℘. Moreover, the sequence

id→ CT℘ → G̃→ G→ id
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is short exact. In other words, G̃ is an extension of CT℘ by G, and hence g ∈ G has
exactly |CT℘| distinct lifts, a coset of CT℘ within G̃. Furthermore, if G lifts along a
given projection ℘, then it lifts along any covering projection equivalent to ℘. This allows
us to study lifts of automorphisms combinatorially in terms of voltages, see for instance
[1, 21, 32, 33, 48, 50]. Also note that if G̃ and G̃′ are the lifts of G along equivalent
projections ℘ and ℘′, respectively, then the short exact sequences id→ CT℘ → G̃→ G→
id and id → CT℘′ → G̃′ → G → id are isomorphic. Thus, structural properties of lifted
groups can be studied combinatorially in terms of voltages as well. In this paper we focus
on G-admissible covering projections such that the extension id→ CT℘ → G̃→ G→ id
is split. We call such a covering projection G-split-admissible. Note, however, that the
lifted group G̃ might contain a subgroup H isomorphic to CT℘ such that the extension
id→ H → G̃→ G→ id is split even if id→ CT℘ → G̃→ G→ id is not.

From now on we shall be assuming that covering projections are regular and moreover,
that covering graphs are connected as well. By assuming connectedness we essentially
do not loose on generality, however, we technically gain a lot. Let us remark that if X
is connected, then the covering graph is connected if and only if the fundamental group
π(X,u) acts transitively on fibu. An equivalent requirement in terms of a voltage assign-
ment ζ : D(X) → Γ is that the homomorphic image ζ(π(X,u)) ≤ Γ acts transitively
relative to its voltage-action on Γ, that is, ζ(π(X,u)) = Γ, which in turn amounts to saying
that the voltages assigned to fundamental closed walks at u generate the voltage group Γ.
With the assumption on connectedness, the group CT℘ acts regularly on each fibre, and
hence any lift g̃ of g ∈ AutX , if it exists, is uniquely determined by the mapping of just
one vertex (or dart). Also, the semiregular group C from the definition of a regular cov-
ering is now C = CT℘, and the voltage assignment ζ : D(X) → Γ that reconstructs the
projection takes values in an abstract group Γ ∼= CT℘.

Consider now a regular covering projection ℘ζ : Cov(ζ) → X of connected graphs,
where X is assumed to be finite, and let u0 ∈ V (X) be an arbitrarily chosen base vertex.
By the basic lifting lemma, see [32, Theorem 4.2] and [33, Theorem 7.1], a group G ≤
AutX lifts along ℘ζ if and only if any closed walk W at u0 with ζW = 1 is mapped to a
walk with ζgW = 1, for all g ∈ G. This is equivalent to requiring that for each g ∈ G there
exists an induced automorphism g#u0 ∈ Aut Γ of the voltage group defined locally at u0

by

g#u0 (ζW ) = ζgW , W ∈ π(X,u0).

Note that if the condition is satisfied at u0, it holds locally at any vertex. In general, for
g, h ∈ G the automorphisms g#u and g#v at distinct vertices, as well as the automorphisms
(gh)#u and g#uh#u , differ by an inner automorphism of Γ. More precisely, the follow-
ing holds. (Throughout the paper, Ψt denotes the inner automorphism Ψt(a) = tat−1,
whatever the group. Note further that all automorphisms are composed as functions.)

Proposition 2.1. Let G ≤ AutX be a group of automorphisms that lifts along a regular
covering projection of connected graphs ℘ : X̃ → X given in terms of a voltage assignment
ζ : D(X)→ Γ. Then for any g, h ∈ G we have

Ψg#u (ζQ)ζ−1
gQ

g#v = g#u , Q : v → u,

Ψg#u (ζQ)ζ−1
gQ

(gh)#u = g#uh#u , Q : hu→ u.
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Proof. Let W be a closed walk at v and Q : v → u an arbitrary walk. Then Q−1WQ is a
closed walk at u, and by the definition of induced automorphisms of Γ at v and u we have
g#v (ζW ) = ζgW and g#u(ζQ−1WQ) = ζg(Q−1WQ). Clearly, ζQ−1WQ = ζ −1

Q ζW ζQ and
ζg(Q−1WQ) = ζ−1

gQζgW ζgQ. Since g#u is an automorphism we have

g#u(ζQ)−1g#u(ζW )g#u(ζQ) = ζ−1
gQζgW ζgQ.

Hence Ψg#u (ζQ)ζ−1
gQ

g#v = g#u , and the first part is proved. For the second part, let W be
a closed walk at u and Q : hu→ u an arbitrary walk. Then

(gh)#u(ζW ) = ζghW = g#hu(ζhW ) = g#hu(h#u(ζW )).

Hence (gh)#u = g#huh#u . By the first part we have Ψg#u (ζQ)ζ−1
gQ
g#hu = g#u , and

consequently, Ψg#u (ζQ)ζ−1
gQ

(gh)#u = g#uh#u , as required.

Clearly, the function

#u0
: G→ Aut Γ, g 7→ g#u0 ,

is not a group homomorphism in general. But if we define g# = g#u0 mod Inn Γ, then,
by Proposition 2.1, g# does not depend on u0, and #: G → Out Γ, g 7→ g#, is a ho-
momorphism. In particular, if the covering projection is abelian, meaning that Γ ∼= CT℘
is abelian, then # = #u0

: G → Aut Γ is a homomorphism, which turns Γ into a Z[G]-
module. We shall make substantial use of this fact later on.

If g lifts, denote by Φv,g̃ the permutation on the voltage group Γ corresponding to the
restriction g̃ : fibv → fibgv . In other words,

g̃(v, c) = (gv,Φv,g̃(c)). (2.1)

As it was shown in [32, 33], the mappings of labels at different fibres relate to each other
as follows:

Φu,g̃(c) = Φu,g̃(1) g#u(c) (2.2)
Φv,g̃(c) = Φu,g̃(c) g

#u(ζQ)ζ−1
gQ , (2.3)

where Q : v → u is an arbitrary walk. Finally, for t ∈ Γ we denote by g̃t the uniquely
defined lift of g mapping the vertex in fibu0 labeled by 1 ∈ Γ to the vertex in fibgu0 labeled
by t ∈ Γ, that is,

g̃t(u0, 1) = (gu0, t).

In particular, ĩdt is the covering transformation acting on the second coordinates in Cov(ζ)
by left multiplication by t on Γ. Indeed, since id#u = id for all u ∈ V (X), it follows from
(2.2) and (2.3) that

ĩdt(u, c) = (u, tc).
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3 Extensions in terms of voltages
The method how to recapture a given group extension 1 → K → E → Q → 1 in the
form of a crossed product is known and goes back to Schreier (cf. [38]). First choose
a system of coset representatives of K within E (also called an algebraic transversal)
T = {tx | x ∈ Q} (and usually normalized in the sense that t1 = 1). Then compute the
factor set F : Q×Q→ K defined by

F : (x, y) 7→ txtyt
−1
xy ,

and the function Ψ: Q −→ AutK, x 7→ Ψtx (recall that Ψtx(a) = txat
−1
x ); in general,

Ψ is not a group homomorphism, and is often referred to as the weak action of Q on K
(which, when reduced modulo inner automorphisms of K, gives rise to a homomorphism
Q → OutK known as the coupling or the twisting map). These data determine a group
operation on K ×Q defined by

(a, x)(b, y) = (aΨtx(b)F(x, y), xy).

The resulting group is called the crossed product of K by Q and denoted K ×Ψ,F Q. The
mapping K ×Ψ,F Q → E defined by (a, x) 7→ atx is an isomorphism taking K × 1 onto
K and 1×Q onto the algebraic transversal T , and establishes an equivalence of short exact
sequences

K ×Ψ,F Q

1 K Q 1.

E

Suppose now that a regular covering projection ℘ = ℘ζ : Cov(ζ) → X of connected
graphs is given in terms of a Cayley voltage assignment ζ : D(X) → Γ, and let a group
G ≤ AutX of automorphisms lift to G̃ ≤ Aut Cov(ζ).

In order to recapture G̃ as a crossed product of CT℘ by G let us choose a particular
algebraic transversal by taking tg = 1 for all g ∈ G, that is, T = {g̃1 | g ∈ G}. To compute
the factor set G ×G → CT℘ we need to identify c ∈ Γ such that g̃1h̃1(g̃h)−1

1 = ĩdc. We
do that by evaluating g̃1h̃1 = ĩdc(g̃h)1 at (u0, 1). Using (2.2) and (2.3) we get

c = g#u0 (ζQ)ζ−1
gQ , where Q : hu0 → u0

is arbitrary. As for the weak action G → Aut CT℘ we need to find t ∈ Γ such that
g̃1 ĩdag̃

−1
1 = ĩdt. Evaluating g̃1 ĩda = ĩdtg̃1 at (u0, 1) and using (2.2) we obtain

t = g#u0 (a).

In view of the isomorphism CT℘ ∼= Γ, ĩdt 7→ t, we have an isomorphism of short exact
sequences

id CT℘ G̃ G id

1 Γ G̃ G id.
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Hence the lifted group G̃ can be written, up to isomorphism, as a crossed product Γ×Ψ,FG,
where F : G×G→ Γ is given by F(g, h) = g#u0 (ζQ)ζ−1

gQ and Ψ: G→ Aut Γ is defined
by Ψg = g#u0 . Note that the weak action Ψ is precisely #u0

defined in Preliminaries. We
have therefore proved the following theorem.

Theorem 3.1. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X)→ Γ, and let a group G ≤
AutX of automorphisms lift to G̃ ≤ Aut Cov(ζ). Choosing a base vertex u0 ∈ V (X), let
Ψ: G→ Aut Γ and F : G×G→ Γ be functions defined by

Ψg = g#u0 and F(g, h) = g#u0 (ζQ)ζ−1
gQ , Q : hu0 → u0,

respectively. Then there is an isomorphism

Γ×Ψ,F G→ G̃, (a, g) 7→ g̃a

taking Γ× id onto CT℘ and 1×G onto the algebraic transversal {g̃1 | g ∈ G}. �

4 Split extensions in terms of voltages
Recall that a short exact sequence 1 → K → E → Q → 1 is split if there exists an
algebraic transversal T = {tx |x ∈ Q} which is a subgroup, called a complement to
K within E. Relative to such a complement, the respective factor set F ≡ 1 is trivial
and the weak action Ψ is in fact an action, that is, Ψ: Q → AutK is a homomorphism.
Consequently, recapturing E as the corresponding crossed product results in a semidirect
product K oΨ Q with the group operation (a, x)(b, y) = (aΨtx(b), xy).

In the next theorem, the necessary and sufficient condition for a regular covering pro-
jection ℘ to be G-split-admissible, together with an explicit description of the lifted group
as a semidirect product of CT℘ by G, are given in terms of voltages.

Theorem 4.1. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X) → Γ, and let a group
G ≤ AutX of automorphisms lift to G̃ ≤ Aut Cov(ζ). Then ℘ is G-split admissible if
and only if there exists a normalized function t : G→ Γ (that is, tid = 1) such that

tgh = tgg
#u0 (th) g#u0 (ζQ)ζ−1

gQ (4.1)

where Q : hu0 → u0 is an arbitrary walk. In this case there exists a homomorphism
θ : G→ Aut Γ given by

θg(c) = tgg
#u0 (c)t−1

g , (4.2)

and (a, g) 7→ g̃a tg defines an isomorphism ΓoθG→ G̃ which takes Γ× id onto CT℘ and
id×G onto the algebraic transversal G = {g̃tg | g ∈ G}, a complement to CT℘.

Proof. Let us recover the lifted group G̃ as in Theorem 3.1. The extension splits if and
only if there exists an algebraic transversal {(tg, g), g ∈ G} to Γ× id in Γ×Ψ,F G which
is a subgroup. Equivalently, we must have (tgh, gh) = (tg, g)(th, h). By the definition of
multiplication in Γ×Ψ,F G the right hand side is equal to (tgg

#u0 (th)F(g, h), gh). Hence
the necessary and sufficient condition (4.1) can be expressed as stated in the theorem.

That (4.2) defines a homomorphism can be shown by computation, using (4.1) and
Proposition 2.1. The rest is straightforward as well.
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Remark 4.2. In the abelian case, (4.1) rewrites as tgh = tg + g#u0 (th) + τ(g, h), where
τ(g, h) = F(g, h) = g#u0 (ζQ)− ζgQ is the 2-cocycle. Thus, (4.1) is equivalent to the fact
that τ(g, h) = tgh − tg − g#u0 (th) must be a 2-coboundary. �

From Theorem 4.1 we readily obtain the necessary and sufficient conditions for G to
lift as a direct product extension of CT℘, that is, when CT℘ has a normal complement
within the lifted group G̃.

Theorem 4.3. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X) → Γ. Then G lifts along
℘ as a direct product extension of CT℘ if and only if there exists a normalized function
t : G→ Γ (that is, tid = 1) satisfying

tgh = thζQtgζ
−1
gQ , (4.3)

where Q : hu0 → u0 is an arbitrary walk. In this case, (a, g) 7→ g̃a tg defines an isomor-
phism Γ×G→ G̃ which takes Γ× id onto CT℘ and id×G onto the algebraic transversal
G = {g̃tg | g ∈ G}, a normal complement to CT℘.

Proof. Suppose that G lifts as a direct product such that CT℘ has a normal complement
G = {g̃tg | g ∈ G}. By Theorem 4.1 the respective function t : G → Γ satisfies (4.1).
Normality ofG implies that θg(c) given by (4.2) must be the identity automorphism. Hence
g#u0 (c) = t−1

g ctg , and by (4.1) we have tgh = thζQtgζ
−1
gQ , as required.

For the converse suppose that a function t : G→ Γ satisfies tgh = thζQtgζ
−1
gQ . Taking

h = id we obtain ζgQ = t−1
g ζQtg for all closed walks Q : u0 → u0. Therefore, if ζQ = 1

then ζgQ = 1 for all g ∈ G. By the basic lifting lemma G lifts, and g#u0 takes the form
g#u0 (c) = t−1

g ctg . It follows that tgh = tgg
#u0 (th) g#u0 (ζQ)ζ−1

gQ . By Theorem 4.1 we
have G̃ ∼= Γ oθ G where θg(c) = tgg

#u0 (c)t−1
g = c. Hence G̃ ∼= Γ×G, and the proof is

complete.

Remark 4.4. Notice the subtle difference in assumptions in Theorems 4.1 and 4.3. While
in 4.1 we had to assume in advance that G had a lift, this assumption is not required in 4.3
as condition (4.3) does not involve g#u0 . �

We also note the following. Suppose that G lifts as a split extension of CT℘. In
general, normal and non-normal complements to CT℘ might exist. So a priori knowledge
about a given extension being split does not make it easier to check whether the extension
is actually a direct product extension. In the abelian case, however, things are different
since complements are either all normal or all non-normal. This means that if t : G →
Aut Γ is just any normalized function satisfying (4.1), the extension will be a direct product
extension if and only if the corresponding homomorphism θ as in (4.2) is trivial.

For later reference, see Corollary 5.5, we explicitly record the following corollary.

Corollary 4.5. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X) → Γ. Suppose that G ≤
AutX lifts along ℘ as a split extension. Then G lifts as a direct product extension of CT℘
if and only if ζgW = ζW holds for all closed walks W from a basis of the first homology
group H1(X,Z) and all g from some generating set of G.
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Proof. By Theorem 4.1 there exists a normalized function t : G→ Γ satisfying (4.1). Now,
in the abelian case the extension is a direct product extension if and only if θ as in (4.2)
is trivial. Since θg(c) = g#u0 (c), this amounts to saying that ζgW = ζW must hold for
all closed walks based at u0 and all g ∈ G. Moreover, recall that in the abelian case g#u0

does not depend on u0. Hence the above necessary and sufficient condition can be replaced
by only considering closed walks from a basis of the first homology group. Clearly, it is
enough to consider just the automorphisms from a generating set of G.

Remark 4.6. Note that if the covering projection is abelian and the condition ζgW = ζW
holds true for all closed walks and all g ∈ G, then G clearly lifts (by the basic lifting
lemma). However, the extension might not be split.

As an example, let X be the 2-dipole with vertices 1 and 2 and two parallel links from
1 to 2 defined by the darts a and b. The voltage assignment ζa = ζa−1 = 0, ζb = ζb−1 = 1
in the group Z2 gives rise to a connected covering graph isomorphic to the 4-cycle C4.
Clearly, ζgW = ζW holds for all g ∈ AutX ∼= Z2×Z2 and all closed walks W . However,
the lifted group is isomorphic to D4, viewed as a central extension of Z2 by Z2 × Z2, and
this extension is clearly not split. �

5 Algorithmic aspects
Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected graphs given in
terms of a Cayley voltage assignment ζ : D(X)→ Γ, where X is assumed to be finite, and
let G ≤ AutX be a group of automorphisms. Speaking of algorithmic and complexity is-
sues related to lifting automorphisms one would certainly first need to address the question
of how difficult is to test whether G lifts at all. However, this will not be our concern here;
the problem has been considered, to some extent, in [48].

Assuming that G is known to have a lift we focus on efficient algorithms (in terms
of voltages) for testing if G lifts as a split extension of CT℘. Testing condition (4.1)
of Theorem 4.1 is hard even if Γ is abelian – as one has to take into account all group
elements of G. (Indeed, Theorem 4.1 is of purely theoretical interest.) A much better
alternative would be to consider just the generators, and in fact, one must then assume that
G is given by a presentation, which is sensible assumption. Proposition 5.1 below is a
reformulation of a standard result, c.f. [23, Lemma 2.76], tailored to our present needs. For
completeness we provide the proof.

Proposition 5.1. Let ℘ : X̃ → X be a regular covering projection of connected graphs,
and let G ≤ AutX be a group given by the presentation G = 〈S | R〉, where S =
{g1, g2, . . . , gn} and the R-relations are Rj(g1, g2, . . . , gn) = id, j = 1, 2, . . . ,m. Sup-
pose that G lifts. Then the lifted group G̃ is a split extension of CT℘ if and only if
there are lifts ḡ1, ḡ2, . . . , ḡn of g1, g2, . . . , gn, respectively, satisfying the defining relations
Rj(ḡ1, ḡ2, . . . , ḡn) = id, j = 1, 2, . . . ,m.

Proof. Suppose first that there are lifts ḡ1, ḡ2, . . . , ḡn of g1, g2, . . . , gn satisfying the R-
relations, and letC = 〈ḡ1, ḡ2, . . . , ḡn〉 ≤ G̃. Since theR-relations are the defining relations
of G there exists an epimorphism G → C, gi 7→ ḡi. On the other hand, C projects onto
G, with ḡi 7→ gi. Consequently, C ∼= G. As C isomorphically projects onto G it must
intersect the kernel CT℘ of the projection G̃ → G trivially. Hence C is a complement to
CT℘ within G̃.
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Conversely, suppose that there are lifts ḡ1, ḡ2, . . . , ḡn of g1, g2, . . . , gn such that C =
〈ḡ1, ḡ2, . . . , ḡn〉 ≤ G̃ is a complement to CT℘ within G̃. Then C ∼= G, and since ḡi 7→
gi we have that each automorphism Rj(ḡ1, ḡ2, . . . , ḡn) projects to Rj(g1, g2, . . . , gn) =
id. So Rj(ḡ1, ḡ2, . . . , ḡn) ∈ C belongs to CT℘. As C is the complement we have
Rj(ḡ1, ḡ2, . . . , ḡn) = id, and the proof is complete.

The condition Rj(ḡ1, ḡ2, . . . , ḡn) = id can be tested just by checking whether the au-
tomorphism Rj(ḡ1, ḡ2, . . . , ḡn), which necessarily belongs to CT℘, fixes a vertex. With
our assumption that the covering graph is reconstructed as Cov(ζ) we choose this vertex
to be (u0, 1). Let ḡi(u0, 1) = (giu0, ti), and recall that a lift is uniquely determined by
the image of a single vertex. If t1, t2, . . . , tn are explicitly given, then Rj(ḡ1, ḡ2, . . . , ḡn)
can be evaluated recursively using (2.2) and (2.3). To find whether the required lifts
ḡ1, ḡ2, . . . , ḡn exist by checking the whole set Γn for all possible values of t1, t2, . . . , tn is
far from optimal. The core of the problem is therefore to evaluate Rj(ḡ1, ḡ2, . . . , ḡn) effi-
ciently when t1, t2, . . . , tn are seen as symbolic variables, in which case the requirements
Rj(ḡ1, ḡ2, . . . , ḡn)(u0, 1) = (u0, 1) translate to an equivalent problem of solving a system
of equations in the variables t1, t2, . . . , tn ∈ Γ.

We are faced with two main difficulties. First, to evaluate Rj(ḡ1, ḡ2, . . . , ḡn) using
symbolic variables we need to express g#u0 by a ‘closed formula’, and second, we have to
solve a (possibly a non-linear) system of equations over Γ. Both are rather hopeless if Γ
is nonabelian. On the other hand, if Γ ∼= CT℘ is a finitely presented abelian group, then
the automorphisms of Γ can be represented by integer matrices acting on the left on integer
column vectors representing group elements. (In what follows, we shall be freely using the
term ‘vector’ for ease of expression.) Moreover, as we shall see, in the abelian case the
system of equations results in a linear system over the integers.

5.1 Abelian covers

Let us therefore assume that Γ is abelian, given by a presentation Γ = 〈∆ | Λ〉, where
∆ = {c1, c2, . . . , cr} is a generating set and Λk(c1, c2, . . . , cr) = 0, where k = 1, 2, . . . , s,
are the Λ-relations. Each element c ∈ Γ can be represented by a column vector c ∈ Zr,1
such that

c = [λ1, λ2, . . . , λr]
T , where c =

r∑
i=1

λici.

This representation is unique modulo the kernel (generated by the defining relations Λj) of
the natural quotient projection κ : Zr,1 → Γ. Moreover, any automorphism φ ∈ Aut Γ can
be represented (again not in a unique way) as a matrix over Z by expressing each φ(ci) as
φ(ci) =

∑r
j=1 αji cj , and taking Mφ = [αij ] ∈ Zr,r. Clearly, the following diagram

Zr,1
Mφ−−−−→ Zr,1

κ
y yκ
Γ −−−−→

φ
Γ

is commutative, or in other words, evaluation of the automorphism φ is given by φ(c) =
κ(Mφc).
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Coming back to our original setting of evaluating the lifted automorphisms, recall from
Preliminaries that in the abelian case the automorphism g# = g#u0 does not depend on
the base vertex, and that (gh)# = g#h#. Also, we shall simplify the notation for the
matrix representing g#

i by writing Mi = Mg#i
. In view of (2.2) and (2.3), the formula for

evaluating the lifted automorphism ḡi at an arbitrary vertex (v, c) is now given by

Φv,ḡi(c) = ti + g#
i (c) + g#

i (ζQ)− ζgiQ,

where Q : v → u0 is an arbitrary walk. This can be rewritten in vector form as

Φv,ḡi(c) = ti +Mic+MiζQ − ζgiQ. (5.1)

So far we have overcome part of the problem: representation of g#
i ’s by a ‘closed

formula’. However, since ti’s and the vector c (which linearly depends on ti’s when the
formula is applied recursively while processing Rj) are symbolic variables, the evaluation
requires symbolic computation – and that is something we still want to avoid. To this end
we do the following.

Let t = [t1
T , t2

T , . . . , tn
T ]T ∈ Zrn,1 be the ‘extended’ column of all the vectors

t1, t2, . . . , tn, and let Ei = [0, . . . ,0, I,0, . . . ,0] ∈ Zr,rn be the matrix consisting of n−1
zero submatrices 0 ∈ Zr,r and one identity submatrix I ∈ Zr,r at ‘i-th position’. Clearly,
ti = Eit. At each iteration step of the evaluation we can express the vector c linearly in
terms of t as c = Ajt + bj , for an appropriate matrix Aj ∈ Zr,rn and vector bj ∈ Zr,1,
neither of which depends on t.

Indeed. Suppose that while scanning the relator Rj from right to left we need to evalu-
ate ḡi at vertex (v, κc). Substituting c with Ajt + bj in (5.1) we get

Φv,ḡi(c) = (Ei +MiAj)t +Mi(bj + ζQ)− ζgiQ, Q : v → u0,

and so the label Φv,ḡi(κc) (the modified c as the input at the next step) is again of the form
Ajt + bj , with Aj substituted by Ei +MiAj and bj substituted by Mi(bj + ζQ)− ζgiQ.
Initially, Aj is the zero matrix and bj the zero vector. The method for evaluating the
automorphism Rj(ḡ1, ḡ2, . . . , ḡn) is formally encoded in algorithm Evaluate.

Let the evaluation Rj(ḡ1, ḡ2, . . . , ḡn)(u0, 0) using algorithm Evaluate terminate with
Φu0,Rj (0) = Ajt + bj , for j = 1, 2, . . . ,m. Then Rj(ḡ1, ḡ2, . . . , ḡn)(u0, 0) = (u0, 0) is
equivalent to Ajt + bj ∈ Ker κ, for all j. Putting together we must have

[AT
1 ,A

T
2 , . . . ,A

T
m]T t = −[bT1 , b

T
2 , . . . , b

T
m]T (5.2)

modulo the relations Λj . Introducing additional auxiliary variables x1, x2, . . . , xm ∈ Zs,1
we finally obtain the following linear system over Z


A1 Λ 0 . . . 0
A2 0 Λ . . . 0

...
...

. . .
...

Am 0 . . . Λ




t
x1

x2
...
xm

 = −


b1
b2
...
bm

 , (5.3)

where Λ = [Λ1,Λ2, . . . ,Λs] ∈ Zr,s and Λk is the vector representing the relator Λk.
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Algorithm: Evaluate
Input: word Rj(g1, g2, . . . , gn),

set T of |V (X)| vectors ζQ ∈ Zr,1 with Q : v → u0 for all v ∈ V (X),
list Z of n sets each containing |V (X)| vectors ζgiQ ∈ Zr,1,

listM of n matrices Mi ∈ Zr,r representing g#
i

Output: matrix Aj ∈ Zr,rn, vector bj ∈ Zr,1

1: set Aj ∈ Zr,rn to be the zero matrix and bj ∈ Zr,1 the zero vector; v ← u0;
2: suppose Rj = gkl · · · gk1 ;
3: for i← 1 to l do (*scan word Rj from right to left*)
4: Aj ←M[ki]Aj ; (*multiply Aj on the left by Mki*)
5: for s← 1 to r do (*add Eki to Aj*)
6: Aj [s][r ∗ ki + s]← Aj [s][r ∗ ki + s] + 1;
7: let ζQ ∈ T and ζgkiQ ∈ Z[ki] with Q : v → u0;

8: bj ←M[ki](bj + ζQ)− ζgkiQ;

9: v ← gki(v);
10: return Aj , bj

The problem of testing whether a given extension is split-admissible has now been
reduced to an equivalent problem of checking whether the linear system (5.3) has a solution.
Efficient algorithms for solving a system of linear equations over Z are long known, and
are based on reducing the matrix of coefficients into Hermite or Smith normal form, see
[23, Sections 9.2.3 and 9.2.4].

Theorem 5.2. Let X be a finite connected graph and G ≤ AutX a group of automor-
phisms given by a presentation G = 〈S | R〉, where S = {g1, g2, . . . , gn} is a generat-
ing set and Rj(g1, g2, . . . , gn) = id, j = 1, 2, . . . ,m, are the R-relations. Further, let
℘ = ℘ζ : Cov(ζ) → X be an abelian G-admissible regular covering projection of con-
nected graphs arising from a Cayley voltage assignment ζ : D(X) → Γ. Suppose that the
abelian group Γ is given by a presentation Γ = 〈∆ | Λ〉, where ∆ = {c1, c2, . . . , cr} is a
generating set and Λk(c1, c2, . . . , cr) = 0, k = 1, 2, . . . , s, are the Λ-relations.

Then the short exact sequence id → CT℘ → G̃ → G → id is split if and only if
the system of linear equations (5.3) has a solution in Z. Moreover, let Ω ⊆ Γn be the
set of all solutions of (5.3) reduced relative to the defining relations in Λ. Then Ω is in
bijective correspondence with all complements to CT℘ within G̃ (which correspond to all
derivations G → Γ), and two solutions in Ω correspond to conjugate complements if and
only if they differ by an inner derivation.

Proof. In view of Proposition 5.1 and the above discussion it is clear that the extension
splits if and only if the linear system (5.3) has an integer solution. It is also clear that each
complement to CT℘ in G̃ corresponds to some solution of (5.3), and hence to a solution
in Ω. Moreover, two distinct solutions from Ω give rise to distinct complements. Indeed.
Suppose that (t1, t2, . . . , tn) and (t′1, t

′
2, . . . , t

′
n) are two distinct solutions from Ω giving

rise to the same complement G. Then there is an index i such that ti 6= t′i, that is, ḡi 6= ḡ′i.
As ḡi and ḡ′i are two lifts of the same automorphism gi, we must have ḡ′i = ĩdc ḡi, where
ĩdc ∈ CT℘. But since G is a complement to CT℘ we must have ḡ′i = ḡi, and therefore
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ti = t′i, contrary to the assumption. It follows that all solutions in Ω correspond bijectively
to all complements.

Let G and G
′

be two conjugate complements. Without loss of generality we may as-
sume they are conjugate by an element ĩdc ∈ CT℘, that is, G

′
= ĩdcG ĩd

−1

c . Since for

any ḡ ∈ G the elements ĩdc ḡ ĩd
−1

c and ḡ′ from G
′

both project to g ∈ G we must have
ḡ′ = ĩdc ḡ ĩd

−1

c , for all g ∈ G. Rewrite as

ḡ′ ĩdc = ĩdc ḡ,

and let ḡ(u0, 0) = (gu0, tg) and ḡ′(u0, 0) = (gu0, t
′
g). Then the left hand side maps the

vertex (u0, 0) to (gu0, t
′
g + g#(c)), while the right hand side maps (u0, 0) to (gu0, tg + c).

Hence t′g + g#(c) = tg + c, and so

tg − t′g = δc(g),

where δc ∈ Inn(G,Γ) is an inner derivation. In particular, the above relation holds for
(t1, t2, . . . , tn) and (t′1, t

′
2, . . . , t

′
n) from Ω giving rise to G and G

′
.

For the converse, let (t1, t2, . . . , tn) and (t′1, t
′
2, . . . , t

′
n) from Ω give rise to G and G

′

such that ti − t′i = δc(gi) for i = 1, 2 . . . , n. Then we can work backwards to find that
ḡ′i = ĩdc ḡi ĩd

−1

c for all indices. Hence G and G
′

are conjugate subgroups. This completes
the proof.

Remark 5.3. Theorem 5.2 can be used to compute the first cohomology group H1(G,Γ),
c.f. [23, Section 7.6]. Next, observe that each solution (t1, t2, . . . , tn) ∈ Ω extends
uniquely to a function t : G → Γ satisfying condition (4.1), and that two such functions
differ precisely by a derivation, t′ − t ∈ Der(G,Γ). Thus, the set of functions G → Γ
satisfying condition (4.1) forms a coset of Der(G,Γ) in the group of all functions G → Γ
equipped with pointwise addition. Consequently, an alternative proof of the last statement
in Theorem 5.2 can be given using the standard result which states that two derivations give
rise to conjugate complements if and only if they differ by an inner derivation. �

Remark 5.4. Algorithm Evaluate requires some precomputations. First, we need to com-
pute the vectors ζQ ∈ Zr,1, for some Q : v → u0 and all v ∈ V (X), and consequently,
the vectors representing voltages of fundamental walks at u0. This can be done efficiently
using breadth first search. During the search we also compute the vectors representing
voltages of the mapped paths in order to obtain, upon completion of the search, the vectors
ζgiQ ∈ Zr,1 together with the vectors representing voltages of the mapped fundamental
walks, for each gi. Second, with these data in hand we then build the systems of linear
equations over Z whose solutions give rise to the matrices Mi ∈ Zr,r representing g#

i . �

Theorem 5.2 can also be used for testing whether a given group lifts as a direct product
extension. In view of Corollary 4.5 we first check if the condition ζgW = ζW holds for all
g ∈ S and all closed walks W from a basis of H1(X,Z). If true then G lifts, and we test
whether the extension splits by solving the linear system (5.3) using algorithm Evaluate
with all g#

i = id. Algorithm Evaluate simplifies in that all matrices Mi are now equal
to the identity matrix. Also, since the covering projection is abelian, recall that if some
complement to CT℘ is normal, then all complements are normal. We record this formally
as Corollary 5.5.
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Corollary 5.5. With assumptions and notation above, id → CT℘ → G̃ → G → id is a
direct product extension if and only if the following two conditions are satisfied:

(i) ζgW = ζW holds for all g ∈ S and all closed walks W from a basis of H1(X,Z);

(ii) the (simplified) system of linear equations (5.3) has a solution in Z.

Moreover, in this case the set of solutions of (5.3), reduced relative to the defining relations
in Λ, is in bijective correspondence with normal complements to CT℘ within G̃. �

5.2 Elementary abelian covers

One particular special case worth mentioning is that of CT℘ being elementary abelian.
In this case, Γ can be identified with the vector space over the corresponding prime field,
and the automorphisms of Γ are then viewed as invertible linear transformations. More
precisely, let Γ = Zrp. The generating set {c1, c2, . . . , cr} is now understood to be the stan-
dard generating set (of a vector space), and (5.1) can be viewed as a formula in this vector
space. Consequently, instead of (5.3) we need to find solutions of (5.2) over Zp, which
can be done using Gaussian elimination. This makes computation easier; in particular, we
do not experience difficulties which might otherwise be present with computations over Z
(like uncontrolled integer growth). An algorithm for testing whether the extension is split
now immediately follows from the above discussion. It is formally encoded in algorithm
IsSplit.

Algorithm: IsSplit

Input: Cayley voltage assignment ζ : D(X)→ Zdp giving rise to connected cover,
automorphism group G = 〈g1, g2, . . . , gn |R1, R2, . . . , Rm〉 that lifts

Output: true, if the lifted group is split extension, false otherwise
1: set A ∈ Z0,dn to be the zero matrix and b ∈ Z0,1 the zero vector;
2: take an arbitrary vertex u0 in X;
3: compute set T of |V (X)| vectors ζQ ∈ Zd,1p with Q : v → u0 for all v ∈ V (X);
4: compute list Z of n sets each containing |V (X)| vectors ζgiQ ∈ Zd,1p ;

5: compute listM of n matrices Mi ∈ Zd,d representing g#
i ;

6: for j ← 1 to m do
7: let Aj and bj be the output of evaluating the relator Rj at (u0, 0) using the

algorithm Evaluate;

8: A←
[

A
Aj

]
; b←

[
b
bj

]
;

9: if system A t = −b has a solution then
10: return true
11: else
12: return false

Theorem 5.6. Let ℘ = ℘ζ : Cov(ζ) → X be an elementary abelian regular covering
projection of connected graphs arising from a Cayley voltage assignment ζ : D(X)→ Zdp.
Further, let a given group of automorphisms G = 〈g1, g2, . . . , gn |R1, R2, . . . , Rm〉 lift
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along ℘. Then the algorithm IsSplit tests whether the lifted group is a split extension of
CT℘ by G in

O(n|V (X)|+ nd|D(X)|+ d3r + nd2r + nd3L+ nd3m2)

steps using
O(n|V (X)|+ nd|D(X)|+ nd2m)

memory space, where r is the Betti number of X and L =
∑
j=1,2,...,m |Rj |.

Proof. It remains to consider time and space complexity. The vectors ζWk
representing

the voltages of the fundamental walks Wk, k = 1, 2, . . . , r, at u0 together with the vectors
ζgiWk

representing the voltages of the mapped fundamental walks giWk, i = 1, 2, . . . , n,
as well as the vectors ζQ and ζgiQ can be computed as described in Remark 5.4 using
breadth first search at the cost of O(d) steps per edge; altogether this takes O(n|V (X)|+
nd|D(X)|) steps. As for constructing the matrices Mi ∈ Zd,d we first need to solve d
systems of linear equations:

x1,1 ζW1
+ x1,2 ζW2

+ · · ·+ x1,r ζWr
= e1

x2,1 ζW1
+ x2,2 ζW2

+ · · ·+ x2,r ζWr
= e2

... (5.4)
xd,1 ζW1

+ xd,2 ζW2
+ · · ·+ xd,r ζWr

= ed,

where ei’s are the standard basis vectors of Zd,1p . Solving d systems using Gaussian elim-
ination requires O(d3r) steps. An arbitrary matrix Mi can then be computed in O(d2r)
steps; thus O(nd2r) steps are required to compute n such matrices. Algorithm Evaluate
takes O(nd3|Rj |) steps for evaluating an arbitrary relator Rj . Hence all relators can be
evaluated in O(nd3L) steps, where L =

∑
j=1,2,...,m |Rj |. It remains to solve the system

A b = −b for A ∈ Zdm,dnp and b ∈ Zdn,1p , which takes O(nd3m2) steps using Gaussian
elimination. Hence the problem of testing whether the extension splits can be solved in
O(n|V (X)|+ nd|D(X)|+ d3r + nd2r + nd3L+ nd3m2) steps.

Representing the graphX using adjacency list takesO(|V (X)|+ |D(X)|) space, while
representing a vector in Zd,1p takes O(d) space. Therefore the representation of the Cayley
voltage assignment ζ takesO(|V (X)|+d|D(X)|) space. As for the representation of auto-
morphisms as permutations, this takes O(n|D(X)|) space. During breadth first search we
also need O(n|V (X)|) space to store the mapped vertices, and O(nd|D(X)|) additional
space to store the voltages of the mapped walks. It takes O(nd2) space to store all the ma-
trices Mi, while storing the matrix A ∈ Zdm,dnp takes O(nd2m) space. Putting together,
the space complexity is O(n|D(X)|+ nd|D(X)|+ nd2m).

Example 5.7. Let X be the 3-dipole with vertices 1 and 2 and three parallel links from
1 to 2 defined by the darts a, b and c. The voltage assignment ζa = ζa−1 = (0, 0), ζb =
ζb−1 = (1, 0), ζc = ζc−1 = (0, 1) taking values in the elementary abelian group Z2 × Z2

gives rise to a connected covering graph X̃ isomorphic to the 3-cube graph. Consider
the group G = 〈σ, τ | τ2 = σ3 = τστσ2 = 1〉 acting as a subgroup of AutX , where
σ = (abc)(a−1b−1c−1) and τ = (aa−1)(bb−1)(cc−1). By computation, G lifts along ℘ζ .
We now test whether ℘ζ is split-admissible for the group G.
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Choosing u0 = 1 as the base vertex, let us work through the computation on the first
relator τ2. Observe that Mτ = [ 1 0

0 1 ]. Set Eτ = [ 0 0 1 0
0 0 0 1 ]. Initially we have A1 = [ 0 0 0 0

0 0 0 0 ],
b1 = [ 0

0 ], and v = 1. Scanning the relator from right to left we start with the generator τ .
We multiply A1 on the left by Mτ , and then add Eτ to get A1 = [ 0 0 1 0

0 0 0 1 ]. For the walk
W = 1a2b−11 we have µW = µτW = [ 1

0 ]. So we add µW to b1, multiply the result on the
left byMτ , and subtract µτW to obtain b1 = [ 0

0 ]. Further, mapping the vertex v by τ we get
v = 2. Moving left we scan the generator τ again. Multiplying A1 on the left by Mτ and
adding Eτ gives A1 = [ 0 0 0 0

0 0 0 0 ]. For the walk W = 2c−11 we have µW = µτW = [ 0
1 ].

We then add µW to b1, multiply the result on the left by Mτ , and subtract µτW to get
b1 = [ 0

0 ].
Similarly, the computation on the second relator σ3 gives A2 = [ 0 0 0 0

0 0 0 0 ] and b2 = [ 0
0 ],

while the computation on the third relator τστσ2 results in A3 = [ 0 0 1 1
0 0 1 0 ] and b3 = [ 0

1 ].
Putting together we obtain the following system over Z2 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 0

[ xy
u
v

]
=

 0
0
0
0
0
1

 ,
which is clearly consistent. Thus the projection ℘ζ is G-split-admissible. �

5.3 Solvable covers

The elementary abelian version of Theorem 5.2 can be used to decide whether G lifts as a
split extension of CT℘ whenever CT℘ is solvable.

First recall, c.f. [35, 51], that if q : Z → X is a regular covering projection of connected
graphs, and q = r s where r : Y → X and s : Z → Y are regular covering projections with
CTs a characteristic subgroup of CTq , then q is admissible for a group of automorphisms
G ≤ AutX if and only if G lifts along r and its lift lifts along s (in which case this lift is
the lift of G along q).

The following lemma (c.f. [5, Theorem 4.2]) shows that testing whether the projection
q : Z → X is split-admissible can be reduced to testing whether the projections r : Y → X
and s : Z → Y are split-admissible. We omit the obvious proof.

Lemma 5.8. Let q : Z → X be a regular covering projection of connected graphs, and let
q = r s where r : Y → X and s : Z → Y are regular covering projections with CTs a
characteristic subgroup of CTq . Suppose that q is admissible for a group of automorphisms
G ≤ AutX . Then the following statements are equivalent.

(i) The projection q is split-admissible for G.

(ii) The projection r is split-admissible for G, and s is split-admissible for some comple-
ment to CTr within the G-lift along r. �

Remark 5.9. Denote by G̃ the lift of G along q : Z → X and by H the lift of G along
r : Y → X . Observe that the projection s : Z → Y as in Lemma 5.8(ii) should be checked,
at least in principle, relative to all complements of CTr withinH (in particular, this requires
the construction of all such complements). However, if K is a complement, then any
subgroup conjugate to K is also a complement; and if K lifts along s : Z → Y as a split
extension, then any of its conjugate complements also lifts as a split extension. Therefore,
when applying Lemma 5.8(ii) we only need to consider representatives of conjugacy classes
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of complements within H . A method for constructing such representatives is described in
[5, 23]. �

Coming back to the case when CT℘ is solvable, we first find a series of characteristic
subgroups CT℘ = K0 > K1 > . . . > Kn = id with elementary abelian factorsKj−1/Kj .
The method is known, see [23, Chapter 8]. The covering projection ℘ then decomposes as
X̃ = Xn

℘n→ Xn−1 → . . . → X1
℘1→ X0 = X , where ℘j : Xj → Xj−1 is a regular

elementary abelian covering projection with CT℘j isomorphic to Kj−1/Kj . At each step
we may then recursively apply Lemma 5.8. To this end, one has to explicitly construct
(among other things) the voltage assignments that define the intermediate projections in
the above decomposition. For more details we refer the reader to [44].

6 Concluding remarks
In order to evaluate the performance of the above method for testing whether a given
solvable covering projection is split-admissible the second author has implemented it in
MAGMA [4], as a part of a larger package for computing with graph covers, see [43], and
[44] for a more detailed account on experimental results.

We further remark that in the case of solvable covers one can take an alternative ap-
proach that even does not require explicit reconstruction of the intermediate covering pro-
jections. It is enough to first compute the automorphisms g#u0 and the factor setF(g, h) =
g#u0 (ζQ)ζ−1

gQ (partially as needed) in order to reconstruct the lifted group as a crossed
product, and then consider the decomposition abstractly without reference to covers. This
is discussed in [45].

Acknowledgement. The authors would like to thank the referee for detailed comments
that helped us improve the presentation.
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[43] R. Požar, http://osebje.famnit.upr.si/̃ rok.pozar
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[50] M. Škoviera, A contribution to the theory of voltage graphs, Discrete Math. 61 (1986), 281–
292.

[51] A. Venkatesh, Covers in imprimitevely symmetric graphs, Honours dissertation, Department of
Mathematics and Statistics, University of Western Australia, 1997.

[52] C. Q. Wang and Y. H. Hao, Edge-transitive regular Zn-covers of the Heawood graph, Discrete
Math. 310 (2010), 1752–1758.

[53] L. Wang, S. F. Du and X. Li, A class of semisymmetric graphs, Ars Math. Contemp. 7 (2014),
40–53.

[54] A. T. White, Graphs, Groups, and Surfaces, North-Holland, Amsterdam, 1984 (rev. ed.).

[55] J. X. Zhou and Y. Q. Feng, Semisymmetric elementary abelian covers of the Heawood graph,
Discrete Math. 310 (2010), 3658–3662.



Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 10 (2015) 135–167

Unilateral and equitransitive tilings
by squares of four sizes

Casey Mann
University of Washington – Bothell, School of STEM,
18115 Campus Way N.E., Bothell, WA 98011, USA

Joseph DiNatale
Armstrong Atlantic State University, USA

Emily Peirce
Baylor University, USA

Ellen Vitercik
Columbia University, USA

Received 3 April 2014, accepted 15 July 2014, published online 18 August 2015

Abstract

D. Schattschneider proved that there are exactly eight unilateral and equitransitive
tilings of the plane by squares of three distinct sizes. This article extends Schattschneider’s
methods to determine a classification of all such tilings by squares of four different sizes.
It is determined that there are exactly 39 unilateral and equitransitive tilings by squares of
four different sizes.
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1 Introduction
A two-dimensional tiling, T , is a countable collection of closed topological disks {Ti},
called tiles, such that the interiors of the Ti are pairwise disjoint and the union of the Ti is
the Euclidean plane. A symmetry of T is any planar isometry that maps every tile of T
onto a tile of T . Two tiles T1 and T2 are equivalent if there exists a symmetry of T that
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maps T1 onto T2. The collection of all tiles of T that are equivalent to T1 is called the
transitivity class of T1. T is equitransitive if each set of mutually congruent tiles forms
one transitivity class.

This article will concern only tilings of the plane by squares of a few different sizes. A
connected segment formed by the intersection of two squares of T will be called an edge
of T , and the endpoints of the edges are called vertices of T . T is unilateral if each edge
of the tiling is a side of at most one tile, meaning that if two congruent tiles meet along an
edge, they are never incident along the full length of that edge. The acronym UETn will
refer to a unilateral and equitransitive tiling by squares of n distinct sizes.

A classification of all UET3 tilings is given in [3]. There are only eight UET3 tilings,
shown in Figure 1. Because the classification of UET4 tilings is based on the methology of
[3], it will be helpful to outline those methods here. First, some notation and terminology
must be introduced.

(a) (c.c.c.b, c.a.c.c.a.c,
a.c.a.c.b.a.c.b)

(b) (c.c.b.b, c.a.b.a.c.c,
b.c.b.a.c.b.a.c)

(c) (c.b.c.b, c.c.a.c.c,
b.c.b.c.b.a.b.c)

(d) (c.b.b.b, a.c.c.a.b.a.b,
a.b.c.b.a.b.c.b)

(e) (c.c.c.b, a.c.c.a.c.c,
a.b.c.a.b.c.a.c)

(f) (c.b.c.b, a.c.c.a.c.c,
a.b.c.b.a.b.c.b)

(g) (c.c.c.b, a.c.c.a.c.c,
a.c.a.c.a.b.c.b.a)

(h) (c.c.b.b, a.c.c.c.a.b,
a.b.c.b.c.b.a.c)

Figure 1: The eight UET3 tilings classified in [3].

Let T be a UET4 tiling of squares with side lengths a < b < c < d. The skeleton of
T is the union of all of the edges of the tiling T . A vortex is a tile T ∈ T for which each
edge of the tile is extendable within the skeleton of T in exactly one direction, given an
orientation of T , as in Figure 2.

Figure 2: A vortex tile

A corona of a tile T in a tiling T consists of all tiles in T whose intersection with T
is nonempty. The corona signature of T is an ordered list of the sizes of the tiles in T ’s
corona. In a UET4 tiling the coronas of any two congruent copies of T must be congruent
due to equitransitivity, so the corona signature of T unambiguously describes the corona of
any tile in T that is congruent to T . A sample d corona (i.e. a corona of a d tile) and its
corresponding corona signature are given in Figure 3. The corona signatures of the eight
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UET3 tilings shown in Figure 1 are given as a triplet (a corona signature, b corona signature,
c corona signature). Cyclic permutations of a signature, as well as cyclic permutations of a
signature read in reverse, are considered equivalent to the original signature.

d

c

c
c

d
d

d

a

b
c

Figure 3: This d corona has signature c.d.c.a.b.c.d.c.d.

1.1 Schattschneider’s Method

The method of classification used in [3] to find all UET3 tilings can be roughly described
as follows:

1. Determine all extendable a, b, and c coronas.

2. Determine which 3-tuples of extendable a, b, and c coronas are compatible in terms
of their corona signatures.

3. Determine which 3-tuples of compatible a, b, and c corona signatures give rise to
tilings (and how many).

A similar process will be followed in this article (with the addition of finding all extendable
d corona signatures). It is to be expected that the scope of the UET4 classification problem
is broader in size than the UET3 problem; as a result, the problem is solved through two
major cases. These are the cases where:

1. a and b are adjacent.

2. a and b are not adjacent.

Two tiles are adjacent if their intersection is an edge of the tiling. Sections 2 - 4 concern the
case when a tiles and b tiles are adjacent. While the case where a tiles and b tiles are not
adjacent employs themes established these sections, the differences between these cases
are sufficient to require a separate analysis; this is done in Section 5.

2 UET4 tilings in which a tiles and b tiles are adjacent
The bulk of the work done in classifying all UET4 tilings is enumerating all possible a, b, c,
and d coronas. This job is made manageable by first establishing some necessary equations
relating a, b, c, and d. These equations are established in Subsection 2.1. After establish-
ing a finite set of possible equations relating a, b, c, and d, the coronas corresponding to
these equations are found; this is described in Section 3. Finally, once a set of coronas
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corresponding to an equation or equations is established, the process for constructing the
possible tilings is described in Section 4.

One fact that will be used throughout the article comes from [2], and can be stated as
follows.

Lemma 2.1. Let T be a UET4 tiling of squares with side lengths a < b < c < d. Then all
a and b tiles of T are vortices.

2.1 Equations relating a, b, c, and d

Lemma 2.2. Let T be a UET4 tiling in which a and b are adjacent. Then a + b = c or
a+ b = d.

Proof. Begin by examining an a corona. Because a and b tiles are adjacent vortices, these
two tiles must meet at a corner as shown in Figure 4a. The dashed lines depict the necessary
skeletal extension in T required by the vortex condition on the a and b tiles. It is clear that
a tile or group of tiles must fill the length indicated in Figure 4a exactly in order for these
vortex conditions to hold.

b

a

(a)

b

a

a

b

(b)

b

a

a

b

b
a

(c)

b

a

a

b

b
a b

a

a

(d)

b

a

a

b

b
a b

a

a
b

b
b

b

b

b
b

b

(e)

Figure 4

Suppose a+b 6= c and a+b 6= d. Neither a c tile nor a d tile can fill the space indicated
exactly, so some combination of a and b tiles must be used instead. In fact, the vortex
condition requires that exactly two such tiles be used, and unilaterality implies that exactly
one a tile and one b tile must be used. This yields the arrangement shown in Figure 4b. The
length indicated in 4b brings up the same issue, and following the same logic it is seen that
the arrangement in Figure 4c is the only valid arrangement for this space. The same is true
for the length indicated in Figure 4c, yielding the full a corona found in Figure 4d. Having
now completed an a corona, equitransitivity tells us that every a corona in T must be
identical to this, which generates the patch seen in Figure 4e. The only possible unilateral
and equitransitive tiling that this patch admits contains only a and b tiles and is therefore
UET2.

This gives rise to two subcases within the case of a and b being adjacent, namely that
where a+ b = c and that where a+ b = d. These two cases are considered in turn.

2.1.1 a + b = c

The following two subcases of that when a and b are adjacent and the equation a + b = c
is satisfied are considered separately:
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1. The d tile is not a vortex.

2. The d is a vortex.

The d tile is not a vortex:

d

Figure 5: The extension of a non-vortex d tile.

If d is not a vortex, then is must have a pair of parallel edges that extend into the skeleton
of T as in Figure 5. There must be some combination of a, b, and c tiles which fit perfectly
between the dashed lines in Figure 5. Since a and b are vortices, they must share a corner
with the d tile and therefore one of their edges must be contained in a dashed line. There
are exactly five possible ways to fill the region, all of which are shown in Figure 6.

d d d

d d

c
c c

c c

b

b

b

b

a a

a

a

Figure 6: All possible ways of filling the region between the dashed lines.

This then gives us exactly five possible relationships for d if it is not a vortex:

1. d = a+ b+ c = 2a+ 2b

2. d = b+ c = a+ 2b

3. d = a+ c = 2a+ b

4. d = 2b+ c = 3b+ a

5. d = 2a+ c = 3a+ b

The tile d is a vortex:
If d is a vortex, then the d corona must contain either an a or a b, as explained below;

furthermore, there must be an a or b tile that shares a corner with the d tile to satisfy the
pertinent vortex conditions, as depicted in Figure 7.

a

d

(a)

d

b

(b)

Figure 7
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If this was not the case, then the tiling would be UET2. To see this, notice that since d is a
vortex, there must be tiles which line up exactly with the doted lines in Figure 8a. If there
are no a or b tiles in the corona of the d tile, these tiles must be c tiles, as in Figure 8b.
Finally, the rest of the corona must be made up by d tiles, as in Figure 8c. This patch can
only be extended to a UET2 tiling. Therefore, there must be at least one a or b tile which
shares a corner with the d tile.

d

(a)

d c

c

c

c

(b)

d

d

d
d

d c

c

c

c

(c)

Figure 8: A UET2 corona.

Since a, b, and d are all vortices in this subcase, there must be a combination of tiles
that fits perfectly between the dashed edges indicating edge extentions into the skeleton
of the tiling in Figure 7. No more than three tiles may fit in this space, for if there were
four or more, then the two or more tiles sandwiched in the middle would have to be non-
vortices. However, only c can be a non-vortex, and two c tiles cannot meet edge-to-edge
by the unilateral condition.

Only specific configurations of tiles can fit between the dashed lines. By examining
these configurations and using simple algebra, it is easy to enumerate the possible relation-
ships between d and the smaller square sizes that would allow for a tiling. This analysis is
summarized in Table 1.

Of course, it is possible for a d tile to share a corner with a a or b tile even if d is not
a vortex, which is why some d relations are repeated from the case where d tiles were not
vortices. In this case, however, only those d relationships for which the tile is necessar-
ily a vortex are considered, so any repeated relationships are disregarded, resulting in the
following complete list of d relationships when c = a+ b:

1. d = a+ b+ c = 2a+ 2b

2. d = b+ c = a+ 2b

3. d = a+ c = 2a+ b

4. d = 2b+ c = 3b+ a

5. d = 2a+ c = 3a+ b

6. d = 2b

7. d = 3a

8. d = 3b

2.1.2 Aside: a : b side length proportions

When a + b = c and a and b are adjacent, there are certain tile configurations that are
possible only when the size of b is specifically related to the size of a. By examining
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All
possible
combina-
tions of
two or
three tiles

Could they
fit between
the dashed
lines in
Figure 7a?

If yes, what d
relations are
required for the
configuration to fit
perfectly?

Could they
fit between
the dashed
lines in
Figure 7b?

If yes, what d re-
lations are required
for the configura-
tion to fit perfectly?

a+ b No No
a+ c No No
a+ d Yes a+ d = a+ d

→ No new infor-
mation

No

b + c =
2b+ a

Yes a+ d = a+ 2b
→ d = 2b

No

b+ d No Yes b+ d = b+ d
→ No new infor-
mation

c+ d No No
a+c+a =
3a+ 2b

No Yes b+ d = 3a+ b
→ d = 3a

a+ c+ b =
2a+ 2b

Yes a+ d = 2a+ 2b
→ d = a+ 2b

Yes b+ d = 2a+ 2b
→ d = 2a+ b

a+ c+ d No No
b+ c+ b =
a+ 3b

Yes a+ d = a+ 3b
→ d = 3b

No

b+ c+ d No No

Table 1

these specific configurations for each case, certain a : b ratios are determined that must be
considered; such ratios are determined when a set of tiles must fit perfectly between the
extended edges of two vortices. These specific tile configurations are shown in Figure 9
and Figure 10. Tables showing the arithmetic used to find the a : b ratios are provided
as well. In the first row of both tables, the eight d relations previously generated for this
case (a + b = c and a and b are adjacent) are considered. In the leftmost column, the
configurations as well as the general proportions they necessitate are listed. For example,
in Figure 9a, a b tile and a c tile fit perfectly above two a’s and a c. For this configuration
to occur, b+ c = 2a+ c. Therefore, b = 2a.

It should be noted that the subcases within the case where a+ b = c, each of which is
technically given by a different b side length, are not considered within the actual corona
construction process as separate cases. Instead, the reader should bear them in mind as
corona construction begins within the appropriate specified subcase. It should additionally
be noted that these a : b side relations are only pertinent when a + b = c. They are not
considered in the case where a+ b = d, which follows.

2.1.3 a + b = d

Lemma 2.3. If a+ b = d, then c must be a vortex.

Proof. Suppose the c tile is not a vortex. Then two edges of any c tile must extend into the
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Figure 9

skeleton of the UET4 tiling T as in Figure 11:
It is apparent then that some tile or combination of tiles must fit exactly between the

dashed lines shown above. A d tile is clearly to large to fit between these lines, and a c tile
cannot be placed there by unilaterality. Since a < b < c, then some combination of tiles a
and b must fit between these lines, and since both a and b must be vortices, then in fact only
two tiles may fit between these dashed lines. Because T is unilateral, it is seen that one
a tile and one b tile must fit exactly between the dashed lines in Figure 11. However, this
implies that d = a+ b = c < d, a contradiction. Therefore, there is no tile or combination
of tiles that can fit exactly between the dashed lines above, so c must be a vortex.

Next, enumerate possible ways to express c in terms of a, b, and d within the a+ b = d
case. Note that c < d = a+ b, and observe that when the c tile is surrounded d tiles (as in
Figure 12 below), no further specifications as to values of c can be made.

Setting this special case aside momentarily, continue, using the fact that c must be a
vortex, to find all possible relationships for c based on implications that arise through each
of the three cases found in Figure 13:

Note that in the cases illustrated in 13a and 13b, the skeleton of the tiling T must
extend along the dashed lines by virtue of a, b, and c all being vortices.

Begin with a statement implying the impossibility of the existence of the partial c
corona in Figure 13a in a UET4 tiling.

Lemma 2.4. If a+ b = d in a UET4 tiling, then each c corona will not contain an a.

Proof. Let T be a UET4 tiling such that a + b = d and suppose that the c tile’s corona
contains at least one a tile. Because both a and c are vortices, they must meet at one of
their corners as shown in Figure 13a above; the dashed lines show the necessary skeleton
extension of T also required by this vortex condition. Next, determine which tile or com-
bination of tiles can fit exactly between the dashed lines that extend toward the left from
the union of the left edges of a and c. Were one tile to fill this space, it would have to be
a tile d, which would imply that d = a + c > a + b, a contradiction. Hence more than
one tile must fill this space. Were three tiles to fill this space, then the middle tile in the
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c

Figure 11: Necessary configuration when c is not a vortex

group must be a non-vortex tile; because d is the only non-vortex tile in this case, one of
the three tiles must be a d. Then regardless of the other two tiles chosen, the sum of their
side lengths will always exceed the length a + c between the dashed lines. Hence three
tiles cannot fill this space exactly; it is obvious that four or more tiles similarly cannot fill
the space appropriately. This leaves the case where two tiles exactly fill the space between
these dashed lines. Then all possible combinations of two distinct tiles are listed as follows:
a and b; a and c; a and d; b and c; b and d; c and d. Of these combinations, the only one
that covers the length a + c exactly is the combination a and c. Therefore these two tiles
must be placed along the left edges of a and c from Figure 13a, and this arrangement is
shown below in Figure 14a along with the necessary skeleton extension required by the

c

d

d

d

d

Figure 12: c surrounded by d’s
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Figure 13

vortex conditions of a and c. The same issue arises again: a tile or group of tiles must fit
between the dashed lines that extend downward from the union of the bottom edges of tiles
a1 and c, and by the argument above, only tiles a and c can fill this space exactly. This
logic is repeated again in Figure 14b to arrive at the partial c corona in Figure 14c, and it
is clear by our assumptions that only a tile c can be placed along the top edge of tile a3 to
complete the corona, which is shown in Figure 14d. By equitransitivity, the tiling that this
patch generates is in fact UET2.
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Figure 14: Adjacent a and c tiles results in a UET2 tiling

Having concluded that a a cannot be in the neighborhood of c, next consider the specific
side lengths for c when a + b = d that arise from the configuration in Figure 13b based
on the knowledge that the vortex conditions require that a tile or tiles fit exactly between
the dashed lines that extend toward the left of the union of the left edges of b and c in this
picture. Note that one tile is too small to fill this space completely, four or more tiles are too
large to fill this space completely, and in the case where three tiles exactly fill this space, a
non-vortex tile must be in the middle of the group, forcing one of the three tiles to be a d as
it is our only non-vortex. Using these facts, the following table enumerates all possibilities
where they exist.

Therefore, when c has a tile b in its corona, the side lengths that must be considered are
c = 2a and c = 3a.

The final case to be considered is that in Figure 13c. Now, because no specific relation-
ships for the side length of c can be established when it is surrounded by only d’s, consider
arrangement in Figure 13c where c’s corona contains a tile other than only d. Without loss
of generality, suppose that this non-d tile can be found along the right edge of c in Fig-
ure 13c. It is clear that this tile cannot be a c tile because the resulting tiling would not be
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All possible combina-
tions of two or three tiles

Can this combination fill
the length in question ex-
actly?

If yes, what does this im-
ply about c?

a and b no
a and c no
a and d yes b+ c = a+ d = 2a+ b

→ c = 2a
b and c yes b+ c = b+ d

→ no new info
b and d no
c and d no
a and d and a yes b+ c = 2a+ d = 3a+ b

→ c = 3a
a and d and b no
a and d and c no
b and d and b no
b and d and c no
c and d and c no

Table 4

unilateral. Lemma 2.4 implies that this tile cannot be a a tile. Then the non-d tile that must
be found in c’s corona is a b. Knowing that b must be a vortex, there are two arrangements
that can result from this, shown in Figure 15:

c

d

b

(a)

c

d

b

a

(b)

Figure 15

The arrangement in Figure 15a produces a contradiction because it implies d = b+c >
a + b = d, so the arrangement in Figure 15b is the only viable UET4 possibility. This
arrangement implies b + c = a + d = 2a + b, so c = 2a. Note that this c side length was
already found in Table 4. Therefore, the only c side lengths that must be considered when
a+ b = d are

1. c = 2a

2. c = 3a

along with the case in which c’s corona contains only d tiles, in which case the only restric-
tion is given by b < c < a+ b.

Below is a summary of the side lengths considered when a and b are adjacent.



148 Ars Math. Contemp. 10 (2015) 135–167

c = a+ b d = a+ b
d is not a vortex d is a vortex

1. d = a + b + c =
2a+ 2b

2. d = b+c = a+2b

3. d = a+c = 2a+b

4. d = 2b+ c = 3b+
a

5. d = 2a+c = 3a+
b

1. d = 2b

2. d = 3a

3. d = 3b

1. c = 2a

2. c = 3a

3 Corona Construction

With the general UET4 problem having been effectively divided into subcases within which
the problem can be appropriately examined, exhaustive lists of all possible coronas for the
four sizes of tiles when a and b are adjacent can now be created. The process of con-
structing all possible coronas for a given case is begun by creating squares of the specified
dimensions. Before beginning construction, it should be noted that, for any given tile, there
exists at least one edge that extends into the skeleton of the tiling in no more than one
direction, meaning it is compatible with the following figure:

*

Figure 16

As neighborhoods are constructed, it is assumed that this necessary edge is the top edge
of the tile in question.

The illustration of a partial example of corona construction is now presented so as to
familiarize the reader with the general process used by examining a specific subcase. In
order to illustrate the process used to create all a, b, c, and d coronas for a given set of side
length proportions, a partial example is now outlined. Consider the case where a and b are
adjacent, c = a + b, and d = a + 3b. The process is illustrated here by constructing all
possible d coronas for this case, as these are the most complicated coronas to construct; it
should be noted that c, b, and a coronas would also need to be constructed for this case. It is
known that the arrangement in Figure 16 must appear in any corona, so the tiles that could
be placed in the marked corner in that figure are first considered. An a, b, or c tile could
be placed there, creating three branches shown in Figure 17 that will each be considered in
turn.



C. Mann et al.: Unilateral and equitransitive tilings by squares of four sizes 149

(a) (b) (c)

Figure 17: Three branches to consider for all possible d coronas

Take first the arrangement in Figure 17a; the corona is constructed by placing tiles
around this center d in a clockwise direction. As the remaining length along the top edge
of d is 3b, placing an a or a b next would violate vortex conditions. Hence a c or a d can
come next in the corona, creating two new branches shown below.

(a)

(b)

Figure 18: Two branches from Figure 17a

Consider the arrangement in Figure 18a. The length remaining along the top edge of d
is 2b − a, so neither an a nor a b can come next due to vortex conditions. A c is also not
allowed by unilaterality. A tile d must come next, shown in Figure 19a. Now moving to the
right edge of the center d tile, it is evident that a tile d cannot come next by unilaterality;
again, vortex conditions say that a nor b can be in this next space either. A tile c must
come next, shown in Figure 19b. There is now a distance of 2b along the remaining right
edge of the center d tile, so it is again concluded that only a tile d could come next, seen
in Figure 19c. Similar logic is employed to conclude that, continuing to move clockwise
around the center tile, the remaining sides are covered by a c, then a d, then a c, then a d.
This arrangement is shown in Figure 19d. However, this contradicts the vortex condition on
the a tile, so this arrangement is invalid. Having exhausted all possibilities that could arise
from the arrangement in Figure 18a, it is concluded that no viable coronas come from this
branch, and attention is next given to the arrangement in Figure 18b. In order to minimize
the creation of coronas that are identical up to cyclic permutations of their signature, the
arrangement in Figure 18a is henceforth never considered along any edge of the center d
tile.
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(a) (b)
(c)

(d)

Figure 19: Successively filling the partial corona in Figure 19a

Corona construction proceeding from the branch in Figure 18b continues along the left
edge of the lower d tile, moving clockwise as always. Given this arrangement, it is possible
to satisfy vortex conditions if an a or b were placed next in the corona (note that the side
length b = 2a is required if this next tile is a b; an a is required along the remaining edge
of this b in order to make it a vortex). A tile c could come next as well, but a tile d cannot
by unilaterality. This leads to three additional branches, shown in Figure 20.

(a) (b) (c)

Figure 20: Three branches from Figure 18b

Consider now the arrangement in Figure 20a. Next, vortex conditions eliminate an a
or b, so there are two options for the next tile in the corona, namely a c or a d as shown
in Figure 21. Recall that the arrangement in Figure 21a contains on its right side a partial
corona for which all possibilities were previously exhausted; this branch does not need to
be reconsidered.

(a) (b)

Figure 21: Two branches from Figure 20a
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Consider the arrangement in Figure 21b. A d tile is the only one that could not come
next in the sequence, by unilaterality. The three branches in Figure 22 result (note that the
condition b = 2a is again invoked in Figure 22b).

(a) (b) (c)

Figure 22: Three branches from Figure 21b

Consider the arrangement in Figure 22a. In choosing the next tile, vortex conditions
eliminate a or b, so c or d could come next in the corona, but as placing a c in this position
would lead to a cyclic permutation of an arrangement previously exhausted, only the case
where a d comes next is considered. Following this d (seen in Figure 23a), a tile a, b, or c
could be placed (d being disallowed by unilaterality). These three branches are shown in
Figures 23b, 23c, and 23d.

(a) (b) (c) (d)

Figure 23: Partial corona a.d.a.d.a.d and three resulting branches

As placing a c next in the partial corona of Figure 23b has been shown to be an impos-
sible arrangement (see the branch from Figure 18a), only a d could complete this corona
appropriately. This gives the complete corona signature a.d.a.d.a.d.a.d. Next, the vortex
condition on the first a tile in Figure 23c would require that a combination of tiles fit ex-
actly along the remaining distance 2a+2b along the left edge. Tile lengths require that this
include at least one d tile, which would violate the vortex conditions. Hence the arrange-
ment in Figure 23c does not lead to a viable corona. Finally, the partial corona of Figure
23d can only be completed with a d, again violating the vortex condition on a; no viable
coronas result from this arrangement. Now, all arrangements branching from that in Figure
23a have been exhausted. Figure 22b is the branch that should be returned to next.

The partial example outlined in this section is illustrated by a tree diagram in Figure
24; this shows branches of all possibilities considered along with which branches produce
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viable UET4 coronas and which are unfruitful. The tree diagram shows all branches that
arise from placing an a tile in the asterisked position in Figure 16; those arising from
placing a b or c in that position are not included in the diagram for brevity’s sake.

Figure 24: A tree diagram to accompany the illustration of corona construction found in
Section 4. All d corona possibilities illustrated in Section 4 are pictured here; those omitted
are not featured here either. Coronas in black rectangles are viable UET4 coronas; those in
red rectangles (full or partial) do not lead to viable UET4 coronas. The dotted lines mark
where a step or series of steps (for each of which only one possible tile could appear next)
in the construction process have been omitted for brevity’s sake.

4 Construction of the UET4 Tilings from Viable Coronas

Having compiled a list of all possible a, b, c, and d coronas for each of the cases when
a and b are adjacent, it remains to determine which combinations of these coronas can be
combined to generate a UET4 tiling. The extension of Schattschneider’s method of finding
coronas that correspond to a tiling is illustrated with an example. Consider the case where
a and b are adjacent, c = a + b, and d = 3a. Using the process explained earlier, the
corresponding set of viable coronas are:



C. Mann et al.: Unilateral and equitransitive tilings by squares of four sizes 153

a coronas b coronas c coronas d coronas
b.b.c.b a.b.a.b.a.b.a.b a.b.c.b.a.b.c.b b.d.b.d.b.d.b.d
c.b.c.b a.b.a.b.a.c.c a.b.c.b.a.c.a.c c.d.c.d.c.d.c.d
b.b.c.c a.b.a.b.a.d.c a.b.c.b.c.b.c.b a.d.a.d.a.d.a.d
c.b.c.d a.b.a.c.c.c a.c.a.c.a.c.a.c a.d.a.d.a.d.a.d
c.b.c.c a.b.a.c.d.c b.c.b.c.b.c.b.c a.c.b.c.a.c.b.c
d.b.c.d a.b.a.d.c.c d.d.d.d a.c.b.c.a.c.c.b
d.c.d.d a.b.a.d.d.c a.b.d.c.d.a.c a.c.b.c.a.d.c.b
d.d.c.c a.c.c.a.c.c a.b.d.d.c.a.c a.c.b.c.c.b.a.d
c.d.c.d a.c.c.a.d.c a.b.d.d.d.c a.c.b.c.c.b.a.d
c.d.c.c a.c.c.c.c a.b.d.c.a.b.d a.c.b.c.c.d.c.b
c.c.c.c a.c.c.d.c a.b.d.d.a.b.d a.c.b.c.c.d.c.b
d.d.d.d a.c.c.d.c a.b.d.d.c.d a.c.b.c.c.d.c.b

a.c.d.c.a.b a.b.c.b.c.b.a.c a.c.b.d.b.c.a.d
a.c.d.c.c a.b.c.b.d.c.b a.c.b.d.b.c.c.b
a.c.d.d.c a.b.c.b.d.d.b a.c.b.d.b.d.c.b
a.d.c.a.b.a.b a.b.c.b.d.d.c a.c.b.d.b.d.b.c
a.d.c.a.c.c a.b.c.b.d.c.d a.c.b.d.c.b.a.d
a.d.c.a.d.c a.b.c.b.d.a.b.d a.c.b.d.c.d.c.b
a.d.c.c.a.b a.b.c.b.d.a.d.b a.c.c.b.a.c.b.c
a.d.c.c.c a.b.c.d.b.a.d.b a.c.c.b.a.c.c.b
a.d.c.d.c a.b.c.d.b.a.b.d a.c.c.b.a.d.a.d
a.d.d.c.a.b a.b.d.a.b.d.a.c a.c.c.b.a.d.c.b
a.d.d.c.c a.b.d.a.c.a.b.d a.c.c.d.c.b.a.d
a.d.d.d.c a.b.d.a.c.a.d.b a.c.c.d.c.d.c.b
c.c.c.c a.b.d.a.d.b.a.c a.d.a.d.a.d.c.b
c.c.c.d a.b.d.c.b.a.b.d a.d.a.d.c.d.c.b
c.d.c.d a.b.d.c.b.a.d.b a.d.c.b.a.d.c.b
c.c.d.d b.c.b.c.b.c.d a.d.c.d.c.b.a.d
c.d.d.d b.c.b.c.b.d.d a.d.c.d.c.d.c.b
d.d.d.d b.c.b.c.d.d

b.c.b.d.d.d
b.c.d.b.c.d
b.c.d.b.d.d
b.c.d.d.d
b.d.d.b.d.d
b.d.d.d.d
a.b.d.b.a.b.d
a.b.d.b.a.d.b

a b

c

c
d

Figure 25: An a corona with signature c.b.c.d.

Choose the a corona c.b.c.d, as illustrated in Figure 25. Observe that because of the
tiles neighboring the b tile in Figure 25, and because T is equitransitive, the b corona for
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T must contain the partial corona c.a.c. Likewise, the c corona for T must contain the
partial coronas b.a.d and d.a.b and the d corona for T must contain the partial corona
c.a.c. Finding the partial b coronas that are compatible with our choice of a corona is
easily automated. For example, to find the first partial b corona, find the first instance of b
in the a corona, c.b.c.d. A partial corona signature for b would then be the letter cyclically
preceeding this instance of b, followed by a (since this partial signature is taken from an
a corona signature), followed by the letter cyclically following this instance of b, yielding
the partial b corona signature c.a.c. This process can be repeated for each occurrence of
b and for c and d as well. Note that partial corona signatures that are cyclic permutations
of each other are considered equivalent, and so are reverse orderings. Performing such
a search for partial b, c, and d corona signatures corresponding to the initial choice of a
corona signature, c.b.c.d, yields the following.

A B C D
a corona Partial b coronas Partial c coronas Partial d coronas
c.b.c.d c.a.c b.a.d c.a.c

Search the list of full b coronas for any which contain the partial corona c.a.c. In this
example, after the search is performed, the five matching b coronas include a.c.c.a.c.c,
a.c.c.a.d.c, a.c.c.c.c, a.c.c.d.c and a.c.d.d.c. Use these coronas to create five correspond-
ing 2-tuples of compatible a and b corona signatures (e.g. (c.b.c.d, a.c.c.a.c.c), (c.b.c.d,
a.c.c.a.d.c), etc). For each new 2-tuple (x, y), add the b corona’s corresponding partial a,
c and d coronas to their respective columns as in Table 5.

A B C D E
(x, y)
Tuple

partial a
coronas in
(x, y)

partial b
coronas in
(x, y)

partial c
coronas in
(x, y)

partial d
coronas in
(x, y)

1 (c.b.c.d,
a.c.c.a.c.c)

c.b.c c.a.c a.b.c
b.a.d

c.a.c

2 (c.b.c.d,
a.c.c.a.d.c)

c.b.c
c.b.d

c.a.c d.b.a
a.b.c
b.a.d

a.b.c
c.a.c

3 (c.b.c.d,
a.c.c.c.c)

c.b.c c.a.c a.b.c
c.b.c
b.a.d

c.a.c

4 (c.b.c.d,
a.c.c.d.c)

c.b.c c.a.c a.b.c
c.b.d
d.b.a
b.a.d

c.b.c
c.a.c

5 (c.b.c.d,
a.c.d.d.c)

c.b.c c.a.c a.b.d
b.a.d

c.b.d
c.a.c

Table 5

While each of the b coronas in (x, y) contain the necessary partial b corona signature
c.a.c, some may contain other partial a signatures that are not compatible with the original
choice of a signature in (x, y). For example, the b corona of (x, y) in line 2, a.c.c.a.d.c,
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has the partial a corona c.b.d, which is not contained in the original a corona, c.b.c.d. So
Line 2 is eliminated from further consideration.

Next, for each surviving tuple (x, y) in Table 5, search the list of full c coronas for those
that contain the tuple’s corresponding partial c coronas. For example, the tuple in line 4
has partial c coronas a.b.d, d.b.c, c.b.a and b.a.d. All of these partial coronas are contained
only in full c corona a.b.c.b.d.a.b.d. For each full c corona that is compatible with our
2-tuple (x, y), create a new 3-tuple (x, y, z) by appending compatible c corona signature,
as in column A of Table 6. Also, list the partial a, b, c, and d coronas that are contained in
(x, y, z) (columns B - E).

There are now nineteen viable (x, y, z) tuples. For each of these 3-tuples, check if all
of the partial a and b coronas are contained in the full a and b coronas in the tuple. If not,
remove that tuple. For example, consider the 3-tuple (c.b.c.d, a.c.c.a.c.c, a.b.c.b.d.c.d) of
Line 4. a.c.d is listed as a partial b corona, but a.c.d is not contained in this tuple’s full b
corona, which is a.c.c.a.c.c. Therefore, delete line 4. After performing this check for all of
the tuples, there are only three tuples which pass the test, shown in Table 7.

Finally, search the list of full d coronas that contain all of the partial d coronas for each
(x, y, z) 3-tuple to create a new list of 4-tuples (x, y, z, w) where w is a d corona that is
compatible with the 3-tuple (x, y, z). For this example, this is Column A of Table 8. Add
to this table columns containing the partial a, b, c, and d coronas contained in (x, y, z, w)
which will be used to check the viability of (x, y, z, w) as before.

For each tuple, check if all of the partial a, b and c coronas are contained in the full a, b
and c coronas in the tuple. For the tuple in line 1, this is not the case. Partial a corona b.d.c
is not contained in full a corona c.b.c.d. The tuple in line 2 passes the test.

At this point, from our original conditions and choice of a corona signature, there
remains only one combination of a, b, c, and d coronas that may result in a tiling or tilings.
When this process is automated and performed for all possible cases (e.g. 2a+ b = d)) and
choices of a corona signatures, the following list of 4-tuples (x, y, z, w) is generated.

The process of constructing a tiling is demonstrated using a 4-tuple from Table 9.
Consider the 4-tuple (d.b.c.d, a.d.d.c.c, a.b.c.b.d.c.d, a.c.c.b.d.b.a.d), for which b = 2a,
c = a + b, and d = 2a + b. It is known that b = 2a because it is a necessary condition
for a c tile to have the corona a.b.c.b.d.c.d. The tiles and their coronas are displayed in
Figure 26.

d
d d

d

d

d
d

d

d

a
c

c

c

c

c

c

c

c
b

b b b
b

b

d.b.c.d a.d.d.c.c
a.b.c.b.d.c.d

a.c.c.b.d.b.a.d

a a a

a

Figure 26: (d.b.c.d, a.d.d.c.c, a.b.c.b.d.c.d, a.c.c.b.d.b.a.d), for which b = 2a, c = a + b
and d = 2a+ b

There are many ways to construct a tiling. The end goal is to create a patch that will
tile the plane. For example, start with the d tile and its corona. Complete the coronas of the
tiles which surround the d using reflections and rotations of the coronas in Figure 26. This
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A B C D E
(x, y, z) Tuple partial a coronas in

(x, y, z)
partial b coronas in
(x, y, z)

partial c coronas in
(x, y, z)

partial d coronas in
(x, y, z)

1 (c.b.c.d, a.c.c.a.c.c,
a.b.c.d.b.a.b.d)

b.c.d
b.c.b
c.b.c

c.c.a
a.c.d
c.a.c

a.b.c
b.a.d

a.c.b
c.c.b
c.a.c

2 (c.b.c.d, a.c.c.a.c.c,
a.b.d.c.b.a.d.b)

b.c.b
b.c.d
c.b.c

a.c.c
a.c.d
c.a.c

a.b.c
b.a.d

c.c.b
a.c.b
c.a.c

3 (c.b.c.d, a.c.c.a.c.c,
a.b.c.d.b.a.d.b)

bcb
b.c.d
c.b.c

a.c.d
a.c.c
c.a.c

a.b.c
b.a.d

b.c.c
a.c.b
c.a.c

4 (c.b.c.d, a.c.c.a.c.c,
a.b.c.b.d.c.d)

d.c.b
c.b.c

c.c.a
a.c.d
c.a.c

a.b.c
b.a.d

a.c.b
b.c.c
c.a.c

5 (c.b.c.d, a.c.c.a.c.c,
a.b.d.c.b.a.b.d)

d.c.b
b.c.b
c.b.c

c.c.a
a.c.d
c.a.c

a.b.c
b.a.d

b.c.a
b.c.c
c.a.c

6 (c.b.c.d, a.c.c.a.c.c,
a.b.c.b.d.a.b.d)

d.c.b
c.b.c

a.c.d
a.c.c
c.c.d
c.a.c

a.b.c
b.a.d

b.c.a
c.a.c

7 (c.b.c.d, a.c.c.d.c,
a.b.c.b.d.a.b.d)

d.c.b
c.b.c

a.c.d
a.c.c
c.c.d
c.a.c

a.b.c
c.b.d
d.b.a
b.a.d

b.c.a
c.b.c
c.a.c

8 (c.b.c.d, a.c.d.d.c,
a.b.c.d.b.a.d.b)

b.c.b
b.c.d
c.b.c

a.b.d
b.a.d

a.c.d
a.c.c

b.c.c
a.c.b
c.b.d
c.a.c

9 (c.b.c.d, a.c.d.d.c,
a.b.d.d.c.d)

d.c.b
c.b.c

a.b.d
b.a.d

a.c.d a.c.c
d.c.c
b.c.d
c.b.d
c.a.c

10 (c.b.c.d, a.c.d.d.c,
a.b.d.b.a.b.d)

b.c.d
b.c.b
c.b.c

a.b.d
b.a.d

a.c.d a.c.b
b.c.b
c.b.d
c.a.c

11 (c.b.c.d, a.c.d.d.c,
a.b.d.c.b.a.b.d)

b.c.d
b.c.b
c.b.c

a.b.d
b.a.d

a.c.c
a.c.d

a.c.b
b.c.c
c.b.d
c.a.c

12 (c.b.c.d, a.c.d.d.c,
a.b.d.d.a.b.d)

b.c.d
c.b.c

a.b.d
b.a.d

a.c.d a.c.d
b.c.d
c.b.d
c.a.c

13 (c.b.c.d, a.c.d.d.c,
a.b.d.c.a.b.d)

b.c.d
c.c.b
c.b.c

a.b.d
b.a.d

a.c.d a.c.b
b.c.c
c.b.d
c.a.c

14 (c.b.c.d, a.c.d.d.c,
a.b.d.c.b.a.d.b)

b.c.b
b.c.d
c.b.c

a.b.d
b.a.d

a.c.c
a.c.d

c.c.b
a.c.b
c.b.d
c.a.c

15 (c.b.c.d, a.c.d.d.c,
a.b.d.b.a.d.b)

b.c.b
b.c.d
c.b.c

a.b.d
b.a.d

a.c.d b.c.b
a.c.b
c.b.d
c.a.c

16 (c.b.c.d, a.c.d.d.c,
a.b.d.a.c.a.b.d)

b.c.d
d.c.c
c.c.b
c.b.c

a.b.d
b.a.d

a.c.d b.c.a
c.b.d
c.a.c

17 (c.b.c.d, a.c.d.d.c,
a.b.c.b.d.a.b.d)

d.c.b
c.b.c

a.b.d
b.a.d

d.c.a
a.c.c
c.c.d

b.c.a
c.b.d
c.a.c

18 (c.b.c.d, a.c.d.d.c,
a.b.c.d.b.a.b.d)

b.c.d
b.c.b
c.b.c

a.b.d
b.a.d

a.c.d
a.c.c

a.c.b
c.c.b
c.b.d
c.a.c

19 (c.b.c.d, a.c.d.d.c,
a.b.d.a.b.d.a.c)

b.c.d
d.c.c
c.c.b
c.b.c

a.b.d
b.a.d

a.c.d b.c.a
c.b.d
c.a.c

Table 6
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A B C D E
(x, y, z) Tuple partial a coro-

nas in (x, y, z)
partial b coro-
nas in (x, y, z)

partial c coro-
nas in (x, y, z)

partial d coro-
nas in (x, y, z)

1 (c.b.c.d,
a.c.c.d.c,
a.b.c.b.d.a.b.d)

d.c.b
c.b.c

a.c.d
a.c.c
c.c.d
c.a.c

a.b.c
c.b.d
d.b.a
b.a.d

b.c.a
c.b.c
c.a.c

2 (c.b.c.d,
a.c.d.d.c,
a.b.d.d.c.d)

d.c.b
c.b.c

a.b.d
b.a.d

a.c.d a.c.c
d.c.c
b.c.d
c.b.d
c.a.c

3 (c.b.c.d,
a.c.d.d.c,
a.b.d.d.a.b.d)

b.c.d
c.b.c

a.b.d
b.a.d

a.c.d a.c.d
b.c.d
c.b.d
c.a.c

Table 7

A B C D E
(a, b, c, d) Tu-
ple

Tuple’s partial
a coronas

Tuple’s partial
b coronas

Tuple’s partial
c coronas

Tuple’s partial
d coronas

1 (c.b.c.d,
a.c.c.d.c,
a.b.c.b.d.a.b.d,
a.c.b.c.a.c.c.b)

d.c.b
c.b.c
b.d.c
c.d.c

a.c.d
a.c.c
c.c.d
c.a.c
c.d.a
c.d.c

a.b.c
c.b.d
d.b.a
b.a.d
a.d.b
a.d.c
c.d.b

b.c.a
c.b.c
c.a.c

2 (c.b.c.d,
a.c.c.d.c,
a.b.c.b.d.a.b.d,
a.c.b.c.a.c.b.c)

d.c.b
c.b.c
c.d.c

a.c.d
a.c.c
c.c.d
c.a.c
c.d.c

a.b.c
c.b.d
d.b.a
b.a.d
a.d.b

b.c.a
c.b.c
c.a.c

Table 8

results in the patch illustrated in Figure 27.
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4-tuple Proportions
(d.d.d.d, c.d.c.d, b.d.d.b.d.d, a.d.a.d.c.b.c.d)* d = c+ b
(d.d.d.d, d.c.c.c, b.c.b.c.b.d.d, a.d.a.d.b.c.b.c.d)* d = c+ b
(c.d.c.d, d.d.d.d, a.d.d.a.d.d, a.c.d.b.d.b.d.c)* d = c+ a
(d.d.d.d, c.d.c.d, d.d.d.b.d, a.d.c.d.c.b.c.d)* d = c+ b
(c.d.c.d, d.d.d.d, a.d.d.d.d, a.c.d.c.d.b.d.c)* d = c+ a
(c.c.c.d, d.d.d.d, a.c.a.c.a.d.d, a.c.d.b.d.b.d.c)* d = c+ a
(d.d.c.c, c.d.c.d, a.c.a.d.b.d.d, a.c.d.a.c.b.c.d)* b = 2a; d = c+ a
(d.b.c.d, a.d.d.d.c, a.b.d.a.b.d, a.c.b.d.b.d.b.a.d) d = 2a+ 2b
(d.b.c.d, a.d.d.d.c, a.b.d.a.b.d, a.c.b.d.b.d.a.b.d) d = 2a+ 2b
(d.b.c.d, a.d.c.a.d.c, a.b.d.d.d, a.c.d.c.d.c.b.a.d) b = 3a; d = 2a+ c
(c.b.c.d, a.c.d.c.c, a.b.c.b.d.a.b.d, a.c.b.c.a.c.b.c) d = 3a
(d.b.c.d, a.d.c.d.c, a.b.d.d.b.d, a.c.b.a.d.c.b.c.d) d = a+ 2b
(d.b.c.d, a.d.d.d.c, a.b.d.a.b.d, a.c.b.d.b.d.b.a.d) d = a+ 2b
(d.b.c.d, a.d.d.d.c, a.b.d.a.b.d, a.c.b.d.b.d.a.b.d) d = a+ 2b
(d.b.c.d, a.d.c.c.c, a.b.d.a.b.d, a.c.b.a.d.a.c.b.a.d) d = a+ 2b
(c.b.c.b, a.c.d.c.c, a.b.d.d.b.c.b, b.c.d.c.b.c.d.c) d = a+ 2b
(b.b.c.c, a.b.a.c.d.c, a.b.d.d.b.a.c, b.c.d.c.b.c.d.c) d = a+ 2b
(b.c.b.c, a.c.d.d.c, a.b.d.d.d.b, b.c.d.c.d.c.b.d) d = a+ 2b
(b.c.d.d, a.d.d.c.c, a.b.c.b.d.d, a.c.d.c.b.d.a.b.d) b = 2a; d = a+ 2b
(c.b.c.b, a.c.d.d.c, a.b.d.d.d.b, b.c.d.c.d.b.c.d) d = a+ 2b
(d.b.c.d, a.d.c.a.d.c, a.b.d.b.a.d, a.c.a.d.a.b.c.b.a.d) d = a+ 2b
(d.b.c.d, a.d.d.c.c, a.b.c.b.d.c.d, a.c.c.b.d.a.b.d) d = 2a+ b
(d.b.c.d, a.d.c.a.d.c, a.b.d.c.d.d, a.d.c.a.d.c.c.b) b = 2a; d = 2a+ b
(c.b.c.b, a.c.d.d.c, a.b.d.b.a.b.d.b, b.c.b.d.b.c.b.d) d = 2a+ b
(d.b.c.d, a.d.c.a.d.c, a.b.d.c.d.d, a.c.d.c.c.b.a.d) b = 2a; d = 2a+ b
(d.b.c.d, a.d.c.a.d.c, a.b.d.d.d, a.c.d.c.d.c.b.a.d) d = 2a+ b
(d.b.c.d, a.d.d.c.c, a.b.c.d.b.c.d, a.c.c.b.d.a.b.d) b = 2a; d = 2a+ b
(d.b.c.d, a.d.d.d.c, a.b.d.a.b.d, a.c.b.d.b.d.b.a.d) d = 2a+ b
(d.b.c.d, a.d.d.c.c, a.b.c.b.d.c.d, a.c.c.b.d.b.a.d) b = 2a; d = 2a+ b
(c.b.c.d, a.c.c.a.c.c, a.b.c.b.a.d.d, a.c.d.c.a.c.d.c) d = 2a+ b
(d.b.c.d, a.d.d.d.c, a.b.d.a.b.d, a.c.b.d.b.d.b.a.d) d = 2a+ b
(c.b.c.d, a.c.d.d.c, a.b.d.b.a.d.d, a.c.d.b.c.b.d.c) d = 2a+ b
(c.b.c.c, a.c.d.d.c, a.b.d.b.a.c.a.c, b.c.b.d.b.c.b.d) d = 2a+ b
(c.b.c.d, a.c.d.d.c, a.b.d.a.b.d.d, a.c.d.c.b.d.b.c) d = 2a+ b
(c.b.c.d, a.c.d.d.c, a.b.d.a.b.d.d, a.c.d.b.c.d.b.c) d = 2a+ b
(c.b.c.d, a.c.d.d.c, a.b.d.d.d, a.c.d.c.d.c.b.d.c)** d = 2b+ a
(c.b.c.d., a.c.d.d.c., a.b.d.c.d.d., a.c.d.c.c.b.d.c)** d = 2a+ b
(d.b.c.d., a.d.c.a.d.c., a.b.d.b.a.d.d., a.c.d.a.b.c.b.a.d)** d = 2a+ b
(c.d.c.d., c.c.d.d., a.d.b.c.d.d., a.c.d.c.c.d.b.c)** d = 2a+ b
(c.d.c.d., c.c.d.d., a.d.b.c.b.d.d., a.c.d.b.c.d.b.c)** d = 2a+ b

Table 9: All 4-tuples generated when a+ b = c. Note that all marked with (*) were already
found in Section 2.1. All marked with (**) cannot be extended to create a tiling of the
plane.



C. Mann et al.: Unilateral and equitransitive tilings by squares of four sizes 159

Figure 27: A second layer of the d corona for (d.b.c.d, a.d.d.c.c, a.b.c.b.d.c.d,
a.c.c.b.d.b.a.d).

By adding tiles in a similar manner, such that the coronas are reflections and rotations
of those in Figure 26, as well as deleting tiles where necessary, one will easily find a patch
which can tile the plane unilaterally and equitransitively using translations. Such a patch is
illustrated in Figure 28.

Figure 28: A patch which will tile the plane unilaterally and equitransitively by way of
translations.

However, for some 4-tuples, it will soon become clear that no tiling is possible. For
example, consider the 4-tuple (c.b.c.d, a.c.d.d.c, a.b.d.d.d, a.c.d.c.d.c.b.d.c), for which
c = a + b and d = a + 2b. If one attempts to expand on the d corona in a similar manner
as above - by completing incomplete coronas while adhering to the ordering prescribed by
the 4-tuple - one will encounter the patch in Figure 29.

**
**

Figure 29: A patch which cannot be extended for 4-tuple (c.b.c.d, a.c.d.d.c, a.b.d.d.d,
a.c.d.c.d.c.b.d.c), for which c = a+ b and d = a+ 2b.
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The (*) represent problem areas. To adhere to equitransitivity, one must place a d tile
in these spots. Obviously, this is impossible. For each of the five tilings marked with (**)
in Table 9, a patch which could not be extended was inevitable.

5 a and b are not adjacent

In this case, there are six possible a coronas. These are illustrated in Figure 30. By replac-
ing the a tiles with b tiles in Figure 30, it is clear that there are also exactly six b coronas
when a and b are not adjacent. Lemma 5.1 eliminates one of these six subcases of a coronas
and one of these six subcases of b coronas from consideration in UET4 tilings.

a1

c1

c2

c4

c3

(a)

d1
a1

c1

c2
c3

(b)

d2
a1

c1

c2

d1

(c)

d2
a1

c1

c2
d1

(d)

d2

a1

c1

d1

d3

(e)

d3

a1

d2

d4
d1

(f)

Figure 30: All possible a coronas when a and b are not adjacent

Lemma 5.1. Let T be a UET4 tiling in which a and b are not adjacent. Then a coronas
and b coronas cannot contain only c tiles.

Proof. Suppose that the a corona can contain only c tiles as shown in Figure 31a below.
At least one corner formed by two tiles c must contain a non-a tile; otherwise the resulting
tiling would be UET2. Without loss of generality, suppose that this required corner is that
marked by the asterisk in Figure 31a; it will be determined which tiles can be placed in
the corner marked by the asterisk. Were a b tile to be placed here, then this b tile would
overhang past the right edge of c1. Since every b tile is a a vortex, the length of this
overhang must be covered exactly by a tile (or tiles), and the only tile that can cover this
length b− a while maintaining the appropriate relative side lengths of a, b, c, and d is an a
tile. However, this would contradict a and b not being adjacent. Therefore a d tile must fill
this space as shown in Figure 31b. Next, it is determined which tiles could be placed in the
corner marked by the asterisk in FIgure 31b. Were an a tile to be placed here, there would
be a d tile in its corona and the tiling would cease to be equitransitive by the assumption that
a’s corona contained only c tiles. A c tile cannot fill the asterisked corner by unilaterality, so
the two cases shown in Figures 31c and 31d must be considered, starting with Figure 31c.
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*
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c2

c1

c3

c4

d1

b1

d2

(f)

Figure 31: Progressively building all possible c coronas

The vertical distance remaining along the left edge of tile c2 in this figure is of length a;
hence the only tile that could appropriately fill this remaining edge length is an a tile. How-
ever, the corona of this new a tile would contain a d tile, contrary to hypothesis. Therefore
the arrangement of tiles in Figure 31c does not give rise to a UET4 tiling.

Next consider case illustrated in Figure 31d. Note that, as pictured, the top edge of tile
b1 must line up with the top edge of d1. Were this not the case, either b1 would cease to
be a vortex or would be forced to have an a tile in its neighborhood. Thus, an a tile cannot
be placed in the corner marked by the asterisk because a and b cannot be adjacent; neither
can a b tile be placed there by the unilaterality condition. This leaves the two cases shown
in Figure 31e and 31f. In both of these cases, the remaining vertical distance along the left
edge of c2 is of length a, so the only tile that could fill this space is an a tile. However, the
distance that the bottom edge of c5 in Figure 31e and the bottom edge of d2 in Figure 31f
hang over the left edge of c2 is, in both cases, strictly greater than the length a. Hence
an a tile placed along the remaining left edge of c2 would not be a vortex. Therefore the
arrangement of tiles found in Figure 31d does not give rise to any UET4 tilings.

A nearly identical argument shows that a b tile cannot be surrounded by only c tiles.

Because neither an a tile nor a b tile can have a corona containing only c tiles, then each
of their coronas must contain a d tile. An immediate corollary to this is that each d corona
must contain at least one a tile and at least one b tile. Lemma 5.1 implies that there are five
possible a coronas and five possible b coronas when a and b are not adjacent.

Lemma 5.1 illustrates the analysis of only one possible a corona, but there are 5 more
a coronas to consider, 6 more b coronas, and several possible c and d coronas to consider.
Because each possible corona involves exhaustive examination, it would be impractical
to present such an analysis in a short article. However, the following example illustrates
the methodology used to decide if a given corona is viable. Consider the a corona of
Figure 30d. This corona is reprinted in Figure 32a. Proceed by constructing all possible
d coronas that arise from this arrangement by placing tiles along the edges of the tile d2
in Figure 32a moving in a clockwise direction. There are three subcases here to consider:
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d > a + c, d = a + c, and d < a + c. In this example, only the subcase d = a + c
is demonstrated. To begin enumeration of all possible d coronas that can arise from the
arrangement in Figure 32a, first determine which tiles could be placed in the corner marked
with an asterisk. An a tile cannot be placed there because the vortex restriction on a tiles
would imply that c = d. A c tile cannot be placed there by unilaterality. This gives us two
options to consider: a tile b1 can be placed there or a tile d3 can be placed there. These two
options are shown in Figures 32b and 32c. Note that for the case shown in Figure 32b, the
vortex condition on b tiles and the fact that a tiles and b tiles cannot be adjacent requires
that a+ d = b+ c.
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*
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*
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*

(c)

d2
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c2

c1

d1

d3
c3

*

(d)

Figure 32

In a full analysis, both of the arrangements in 32b and 32c above need to be considered,
but for the purposes of this example, consider only how to fill in the asterisked corner in
Figure 32c. A d tile cannot be placed there by unilaterality; however, an a, a b, or a c
could be placed there under the appropriate conditions. Each of these options needs to
be considered. Examine the arrangement, shown in Figure 32d, where a tile c3 fills the
asterisked corner. Again, it must be determined which tiles can be placed in the asterisked
corner in Figure 32d. Were a tile b placed there, the condition d = a+c implies that the top
edge of b will have overhang past the left edge of d2; then in order for b’s vortex condition
to be satisfied, a tile a would have to be placed along the remaining top edge of b. This
contradicts a and b not being adjacent. A c tile cannot be placed in the asterisked corner by
unilaterality. This leaves two options to consider. The case an a tile in this position is seen
in Figure 33a, and the case where a d tile in this position is seen in Figure 34a.
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Figure 33

Consider first the arrangement shown in Figure 33a. By equitransitivity of a, a tile
c4 must be placed in the asterisked corner so that its corona will match that of a1. This
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is shown in Figure 33b. The asterisked corner Figure 33b can only be filled by a tile d4,
shown in Figure 33c; a and b are not allowed there by the vortex conditions, and c is not
allowed by unilaterality. Then Figure 33c shows a completed d corona. However, since this
d corona contains no b tile, this will not result in a UET4 tiling as a result of a corollary to
Lemma 5.1 and is hence not a viable d corona.
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Figure 34

Next, considering the arrangement shown in Figure 34a, it must be determined which
tiles can be placed in the corner marked by an asterisk. Vortex conditions prohibit an a or
b from being placed there, and a d tile is also not allowed by unilaterality. Then the only
option is to place a tile c4 in this position, shown in Figure 34b. The asterisked corner in
this figure can only be filled by a tile d5, as shown in Figure 34c; a and b are not possible
by vortex conditions and c is not possible by unilaterality. Figure 34c shows a complete d
corona. However, because this corona does not contain a b tile, it is not compatible with a
UET4 tiling.

The next step would be to consider the possibilities when an a tile or a b tile are placed
in the position occupied by c3 in Figure 32d. The method continues in this fashion, enu-
merating all possible tiles that can be placed in a location, moving around a d tile, creating
a branching list of all d coronas and weeding out coronas that are known to be impossible
under our constraints. This is done for the three subcases c > a+c, d = a+c, and d < a+c
for each of the five possible a coronas in Figures 30b-30f, and it seen that d = a+ c is the
only case that yields viable d coronas. It should also be noted that in the case where an a
tile is surrounded by three c tiles and one d tile, as shown in Figure 30b, the same method
used to build around a c tile instead of a d tile. It should also be noted that, at times, it is
necessary to specify certain side lengths for b and c tiles in terms of side lengths of smaller
tiles in order for certain arrangements to be viable. This allows for further flexibility in
corona construction and ensures that all possible potentially viable coronas are found.

Summarizing, the criteria used throughout this method are as follows:

1. Equitransitivity of the tiling T .

• When an a tile is placed in the corona of a larger tile, it is possible to continue
building around the larger tile using the knowledge that every a neighborhood
must be identical to that of the already established a1 corona.
• It is possible that at times the only option is to place a tile within an a tile’s

neighborhood that makes it incompatible with the original a1 corona. In this
case, the method can be ended on this branch, as it will not yield any viable c
or d coronas.
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2. Unilaterality of the tiling T .

3. Vortex conditions on a and b tiles.

4. The requirement that a tiles and b tiles are not adjacent.

5. Relative sizes of tile side lengths: a < b < c < d.

6. Each d corona must contain at least one a tile and at least one b tile.

This method essentially begins with one of the five viable a coronas shown in Figure
30 and then employs the corona construction algorithm outlined previously in Section 3,
building around a tile in the a corona (specifically, around a d tile in Figures 30c, 30d,
and 30e or around a c tile in Figures 30a and 30b) until either a contradiction is reached
for a particular branch or a full corona is reached. Once the construction process has been
completed building around the chosen tile in the corona of the original a tile, one is left
with an exhaustive list of all d coronas (or c coronas, depending on the a corona from
which construction began) that are compatible with the original a corona. Then, using
equitransitivity, the coronas of all new a and d tiles (or c tiles, again depending on the case)
can be completed, expanding the patch until one can either establish that no UET4 tiling
can result (due to failure of equitransitivity, overlapping or gaps between tiles, contradiction
of vortex conditions, etc.) or until full b and c coronas (or b and d coronas) are found. Note
that multiple tilings may result from the same set of a and d coronas (or a and c coronas),
as there may be multiple ways to tile the original patch using these coronas. Table 10 lists
the eleven UET4 tilings found using this method and the necessary side length proprtions
required for the tiling to be generated.

(a corona, b corona, c corona, d corona) Side Relations
(d.d.d.d, c.d.c.d, b.d.d.b.d.d, a.d.a.d.c.b.c.d) c = a+ b; d = c+ b
(d.d.d.d, d.c.c.c, b.c.b.c.b.d.d, a.d.a.d.c.b.c.d) c = a+ b; d = c+ b
(c.d.c.d, d.d.d.d, a.d.d.a.d.d, a.c.d.b.d.b.d.c) c = a+ b; d = c+ a
(d.d.c.c, c.d.c.d, b.d.d.a.c.a.d, a.d.a.c.d.c.b.c) b = 2a; d = c+ a
(d.d.d.d, c.d.c.d, d.d.d.b.d, a.d.c.d.c.b.c.d) c = a+ b; d = c+ b
(c.d.c.d, d.d.d.d, a.d.d.d.d, a.c.d.c.d.b.d.c) c = a+ b; d = c+ a
(c.d.c.d, c.d.c.d, a.d.b.d.d.d, b.c.a.c.d.c.d.c) b = 2a; d = c+ a
(c.c.c.d, d.d.d.d, a.c.a.c.a.d.d, a.c.d.b.d.b.d.c) c = a+ b; d = c+ a
(d.d.c.c, c.d.c.d, a.c.a.d.b.d.d, a.c.d.a.c.b.c.d) b = 2a; c = a+ b; d = c+ a
(c.d.c.d, c.c.d.d, a.d.b.c.b.d.d, a.c.b.d.c.b.d.c) b = 2a; c = 2b; d = c+ a
(c.d.c.d, c.c.d.d, b.c.b.d.d.a.d, a.c.d.c.b.d.b.c) b = 2a; d = c+ a

Table 10

Illustrations of the eleven tilings when a and b are not adjacent can be seen in the final
section. This concludes the case where a tiles and b tiles are not allowed to be adjacent.
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6 The 39 UET4 Tilings

(d.d.d.d, c.d.c.d,
b.d.d.b.d.d,
a.d.a.d.c.b.c.d)
c = a + b
d = c + b

(d.d.d.d, d.c.d.c,
b.d.d.d.d,

a.d.c.d.c.b.c.d)
c = a + b
d = c + b

(d.d.d.d,
c.c.c.d,

b.c.b.d.d.b.c,
a.d.c.b.c.d.a.d)
c = a + b
d = b + c

(c.d.c.d,
d.d.d.d,
a.d.d.d.d,

a.c.d.c.d.b.d.c)
c = a + b
d = c + a

(c.c.d.d,
c.d.c.d,

a.c.a.d.b.d.d,
a.d.a.c.d.c.b.c)

b = 2a
d = c + a

(c.d.c.d,
c.d.c.d,

a.d.b.d.d.d,
a.c.d.c.d.c.b.c)

b = 2a
d = c + a

(c.d.c.d,
c.c.d.d,

a.d.b.c.b.d.d,
a.c.d.c.b.d.b.c)

b = 2a
d = c + a

(c.c.c.d,
d.d.d.d,

a.c.a.c.a.d.d,
a.c.d.b.d.b.d.c)
c = a + b
d = c + a

(d.d.c.c,
c.d.c.d,

a.c.a.d.b.d.d,
a.c.d.a.c.b.c.d)

b = 2a
c = a + b
d = c + a

(c.d.c.d,
c.c.d.d,

a.d.b.c.b.d.d,
a.c.b.d.c.b.d.c)

b = 2a
c = 2b
d = c + a

(c.d.c.d,
d.d.d.d,

a.d.d.a.d.d,
a.c.d.b.d.b.d.c)
c = a + b
d = c + a

Below are the 28 tilings when a and b are adjacent. For all, c = a+ b. d = a+ b does not
generate any tilings.

(d.b.c.d,
a.d.d.d.c,
a.b.d.a.b.d,

a.c.b.d.b.d.a.b.d)
d = 2a + 2b

(d.b.c.d,
a.d.d.d.c,
a.b.d.a.b.d,

a.c.b.d.b.d.b.a.d)
d = 2a + 2b

(d.b.c.d,
a.d.c.a.d.c,
a.b.d.d.d,

a.c.d.c.d.c.b.a.d)
b = 3a
d = 2a + c

(c.b.c.d,
a.c.d.c.c,

a.b.c.b.d.a.b.d,
a.c.b.c.a.c.b.c)

d = 3a

(d.b.c.d,
a.d.c.d.c,
a.b.d.d.b.d,

a.c.b.a.d.c.b.c.d)
d = a + 2b

(d.b.c.d,
a.d.c.a.d.c,
a.b.d.a.b.d,

a.c.b.a.d.a.c.b.
a.d)

d = a + 2b
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(d.b.c.d,
a.d.d.c.c,
a.b.c.b.d.d,

a.d.a.c.d.c.b.d.b)
d = a + 2b

(d.b.c.d,
a.d.c.c.c,

a.b.c.b.c.b.d,
a.c.b.a.d.a.c.b.

a.d)
d = a + 2b

(c.b.c.b,
a.c.d.c.c,

a.b.d.d.b.c.b,
b.c.d.c.b.c.d.c)
d = a + 2b

(b.b.c.c,
a.b.a.c.d.c,
a.b.d.d.b.a.c,
b.c.d.c.b.c.d.c)
d = a + 2b

(b.c.b.c,
a.c.d.d.c,
a.b.d.d.d.b,
b.c.d.c.d.c.b.d)
d = a + 2b

(b.c.d.d,
a.d.d.c.c,
a.b.c.b.d.d,
a.c.d.c.b.d.a.

b.d)
b = 2a
d = a + 2b

(c.b.c.b,
a.c.d.d.c,
a.b.d.d.d.b,
b.c.d.c.d.b.c.d)
d = a + 2b

(d.b.c.d,
a.d.c.a.d.c,
a.b.d.b.a.d,

a.c.a.d.a.b.c.b.
a.d)

d = a + 2b

(d.b.c.d,
a.d.d.c.c,

a.b.c.b.d.c.d,
a.c.c.b.d.a.b.d)

d = 2a
d = 2a + b

(d.b.c.d,
a.d.c.a.d.c,
a.b.d.c.d.d,

a.d.c.a.d.c.c.b)
b = 2a
d = 2a + b

(c.b.c.b,
a.c.d.d.c,

a.b.d.b.a.b.d.b,
b.c.b.d.b.c.b.d)
d = 2a + b

(d.b.c.d,
a.d.c.a.d.c,
a.b.d.c.d.d,

a.c.d.c.c.b.a.d)
b = 2a
d = 2a + b

(d.b.c.d,
a.d.c.a.d.c,
a.b.d.d.d,

a.c.d.c.d.c.b.a.d)
d = 2a + b

(d.b.c.d,
a.d.d.c.c,

a.b.c.d.b.c.d,
a.c.c.b.d.a.b.d)

b = 2a
d = 2a + b

(b.c.d.c,
a.c.d.d.c,

a.b.d.b.a.d.d,
a.c.d.b.c.b.d.c)
d = 2a + b

(d.b.c.d,
a.d.d.c.c,

a.b.c.b.d.c.d,
a.c.c.b.d.b.a.d)

b = 2a
d = 2a + b

(c.b.c.d,
a.c.c.a.c.c,
a.b.c.b.a.d.d,
a.c.d.c.a.c.d.c)
d = 2a + b

(b.c.d.d,
a.d.c.a.d.c,
a.b.d.d.c.d,

a.c.c.d.c.b.a.d)
d = 2a
d = 2a + b

(b.c.d.d,
a.c.c.d.d,

a.b.c.d.b.c.d,
a.c.c.b.d.a.b.d)
d = 2a + b

(c.b.c.c,
a.c.d.d.c,

a.b.d.b.a.c.a.c,
b.c.b.d.b.c.b.d)
d = 2a + b

(c.b.c.d,
a.c.d.d.c,

a.b.d.a.b.d.d,
a.c.d.b.c.d.b.c)
d = 2a + b

(c.b.c.d,
a.c.c.d.d,

a.b.c.d.b.c.d,
a.c.c.b.d.b.a.d)

b = 2a
d = 2a + b
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Abstract

In a paper from 1886, Martinetti enumerated small v3-configurations. One of his tools
was a construction that permits to produce a (v + 1)3-configuration from a v3-configura-
tion. He called configurations that were not constructible in this way irreducible configura-
tions. According to his definition, the irreducible configurations are Pappus’ configuration
and four infinite families of configurations. In 2005, Boben defined a simpler and more
general definition of irreducibility, for which only two v3-configurations, the Fano plane
and Pappus’ configuration, remained irreducible. The present article gives a generaliza-
tion of Boben’s reduction for both balanced and unbalanced (vr, bk)-configurations, and
proves several general results on augmentability and reducibility. Motivation for this work
is found, for example, in the counting and enumeration of configurations.

Keywords: Configuration, irreducible, partial linear space, construction, enumeration.

Math. Subj. Class.: 05B30, 51E26, 14N20.

1 Introduction
An incidence geometry is a triple (P,L, I) whereP is a set of ’points’,L is a set of ’blocks’,
and I is an incidence relation between the elements in P and L. The line spanned by two
points p1 and p2 is the intersection of all blocks containing both p1 and p2. When there
are at most one block containing pi and pj for all pairs of points, then we may identify
the blocks with the lines. Incidence geometries with this property are called partial linear
spaces.

If a point p and a line l are incident, then we say that l goes through p, or that p is on l.
We say that a pair of lines that goes through the same point p meet or intersect in p.
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Figure 1: Examples of balanced and unbalanced configurations. From left to right: Fano
plane (v = b = d = 7 r = k = 3), Pappus’ configuration (v = b = d = 7 r = k = 3),
Affine plane of order 3 (v = 9 b = 12 d = 3 r = 4 k = 3), 6-regular graph on 8 vertices
(v = 8 b = 24 d = 8 r = 6 k = 2)

A combinatorial configuration is a partial linear space in which there are r lines through
every point and k points on every line [4, 5, 6]. We will use the notation (vr, bk)-config-
uration to refer to a combinatorial configuration with v points, b lines, r lines through
every point and k points on every line. The four parameters (vr, bk) are redundant so that
there is only need for the three parameters (d, r, k), where d := v gcd(r,k)

k = b gcd(r,k)
r =

vr
lcm(r,k) =

bk
lcm(r,k) is an integer associated to the configuration that determines the number

of points and lines. We will refer to (d, r, k) as the reduced parameter set of the (vr, bk)-
configuration. When v and b are not known or not important, we will also use the notation
(r, k)-configuration.

We say that a configuration is balanced if r = k. This implies that the number of points
equals the number of lines and the associated integer, so d = v = b. In this case, we will
use the notation vk-configuration. In the literature, configurations with this property are
also called symmetric. When the configuration is unbalanced, i.e. when r 6= k, then v, b
and d are all different. Examples of balanced and unbalanced configurations are given in
Figure 1.

The following necessary conditions for the existence of configurations are well-known.

Lemma 1.1. The lower bound of the number of points v of an (r, k)-configuration is v ≥
r(k − 1) + 1, and the lower bound of the number of lines b is b ≥ k(r − 1) + 1. Also, the
parameters v, b, r, k always satisfy vr = bk.

We say that a parameter set satisfying these two conditions are admissible. In gen-
eral it is difficult to, given some admissible parameter set, determine if there exists some
combinatorial configuration with these parameters. If this is the case, then we say that the
parameter set is configurable. The (point) deficiency of a configuration with parameters
(vr, bk) is the difference δp = v − [r(k − 1) + 1], and the line deficiency is the difference
δl = b− [k(r − 1) + 1]. In balanced configurations the two deficiencies are equal.

In 1886 Martinetti studied the construction of v3-configurations through the addition of
a point and a line to existing v3-configurations [7, 6]. The construction is as follows. Start
with a v3-configuration and assume that there are two parallel lines {a, b, c} and {a′, b′, c′}
such that a and a′ are not collinear. Add a point p and replace the two parallel lines with
the lines {p, b, c}, {p, b′, c′}, {p, a, a′}. The result is a (v + 1)3-configuration. This con-
struction is illustrated in Figure 2. We call such a construction a (Martinetti) augmentation.
The inverse construction gives the smaller configuration from the larger one through the re-
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Figure 2: Martinetti’s augmentation construction. To the left the two parallel lines in the
original v3-configuration, to the right the new incidences in the constructed (v + 1)3-con-
figuration.

moval of one point and one line. We call the inverse construction a (Martinetti) reduction.
Martinetti called a configuration irreducible if it could not be constructed from another
configuration through an augmentation. In other words, a configuration is irreducible if it
does not allow a reduction.

In Martinetti’s original paper he gave two infinite families of irreducible v3-configu-
rations. One consisted of the cyclic configurations with base line {0, 1, 3}, starting with
the smallest v3-configuration, the Fano plane. There is therefore at least one irreducible
v3 configuration for each v ≥ 7. The other family gives one irreducible (10n)3-configura-
tion for each n ∈ Z, starting with Desargues’ configuration. Martinetti claimed that these
families of configurations were the only irreducible v3-configurations, with the addition of
three sporadic examples for v ≤ 10; more precisely, Pappus’ (93)-configuration and two
other 103-configurations. In 2007, Boben published a correction of this list, in which the
two sporadic irreducible 103-configurations were shown to be the first elements in two ad-
ditional infinite families of irreducible (10n)3-configurations, showing that there are four
infinite families of irreducible v3-configurations [2].

Theorem 1.2 (Martinetti - Boben). The list of (Martinetti) irreducible configurations are

• the cyclic configurations with base line {0, 1, 3}. The smallest configuration in this
family is the Fano plane,

• the three infinite families T1(n), T2(n), T3(n), on 10n points. The smallest configu-
ration in T1(n) is Desargues’ configuration, and

• Pappus’ configuration.

It results that, of several possible constructions of (v+1)3 configurations from v3-con-
figurations, Martinetti’s construction is just one example. In 2000, Carstens et al. presented
a rather complex set of reductions for which they claimed that the only irreducible config-
uration was the smallest v3 configuration - the Fano plane [3]. However, in 2003, Ravnik
used computer calculations to show that (at least) the Desargues configuration is also ir-
reducible with respect to this set of reductions [8]. In 2005, Boben presented a simpler
definition of reduction in terms of the Levi graph of the configuration. The Levi graph is a
lossless representation of the incidences of the points and lines in form of a bipartite graph
of girth at least six, and if r = k = 3, then it is a cubic graph. In [1], a reduction by the
point p and the line l of the v3-configuration with Levi graph Gv is defined as the Levi
graph Gv−1 of a (v − 1)3-configuration obtained from Gv by removing the point vertex p
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and the line vertex l fromGv and then connecting their neighbors in such way that the result
remains cubic and bipartite. We call this construction a (Boben) reduction. A configuration
is (Boben) irreducible if it does not admit a (Boben) reduction. According to Boben, with
respect to this reduction, there are only two irreducible v3-configurations.

Theorem 1.3 (Boben). The only (Boben) irreducible v3-configurations are the Fano plane
and the Pappus configuration.

This article presents a generalization of Boben’s reduction to (r, k)-configurations for
any r, k ≥ 2, elaborates on the augmentation of v3 and v4-configurations and provides
some results that ensure irreducibility or reducibility in the general case. Augmentation
and reductions of configurations are particularly interesting for the purpose of counting
configurations.

2 Reducibility of balanced configurations
Balanced configurations are better studied than unbalanced configurations. This section
presents results on augmentation and reduction constructions for balanced configurations.

2.1 Augmentation of balanced configurations

The construction presented next is an augmenting construction for balanced vk-configura-
tions.

Definition 1. Let Cv = (P,L, I) be a vk-configuration. Assume that there is a subset of k
points Q ⊆ P and a subset of k lines M ⊆ L, such that

• there is a bijection f : Q→M such that the image of a point q is a line f(q) through
that point,

• two points q, q′ ∈ Q either are not collinear, or are collinear only on the line f(q) or
on the line f(q′), and

• two lines m,m′ ∈M either do not meet, or meet only in the point f−1(m) or in the
point f−1(m′).

Then there is a (v + 1)k-configuration Cv+1, constructed from Cv through the following
augmentation procedure:
For all q in Q, replace each incidence (q, f(q)) with

• the incidence (p, f(q)), where p is a new point, and

• the incidence (q, l), where l is a new line.

Proposition 2.1. The result of the above construction is a (v + 1)k-configuration Cv+1.

Proof. In Cv , two points q, q′ ∈ Q are either not collinear, or collinear on f(q) or f(q′).
Since the incidences (q, f(q)) and (q′, f(q′)) have been removed in Cv+1, it is clear that in
Cv+1, the points in Q are collinear only once, on the line l. Analogously, in Cv two lines
m,m′ ∈M either do not meet, or meet only in the point f−1(m) or in the point f−1(m′).
Since the incidences (m, f−1(m)) and (m′, f−1(m′)) have been removed in Cv+1, it is
clear that in Cv+1 the lines in M meet only once, in p. This also shows that any point
in Cv+1 is collinear with p at most once, and that any line in Cv+1 meets l at most once.
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Indeed, the points in Cv+1 that are collinear with p are the points on the lines in M , and
since these lines only meet once in Cv+1, we see that any point in Cv+1 is collinear with p
at most once. Also, the lines in Cv+1 that meet l are the lines through the points in Q, and
since these points are collinear only once, in l, we see that any line in Cv+1 meets l at most
once. Now, these are the only incidences affected by the construction, and consequently, it
is proved that Cv+1 is a partial linear space with v + 1 points and v + 1 lines. Finally, it is
clear that there are k points on each line and k lines through every point, so that Cv+1 is a
(v + 1)k-configuration.

Remark 2.2. The observant reader will find that there are other augmentation constructions
which cannot be directly realized by following the steps described above. However, if
we allow a final swapping of the incidences involved in the construction, then also these
constructions may be described using Proposition 2.1. One example of this is Martinetti’s
augmentation. Consider Q = {a, a′, a′′} and M = {{a, b, c}, {a′, b′, c′}, {a′′, b′′, c′′}},
such that {a, b, c} and {a′, b′, c′} are parallel lines and a and a′ are not collinear, and no
restrictions other than those in Proposition 2.1 are put on a′′ and {a′′, b′′, c′′}, and define
f(a) = {a, b, c}, f(a′) = {a′, b′, c′} and f(a′′) = {a′′, b′′, c′′}. Replace the ocurrences of
the points in Q on the lines inM with incidences to a new point p so that the resulting lines
are {p, b, c}, {p, b′, c′}, {p, b′′, c′′}, and put the points in Q on a new line {a, a′, a′′}. Now
swap the incidences (p, {p, b′′, c′′} and (a′′, {a, a′, a′′}) to obtain Martinetti’s construction.
We see that the original line {a′′, b′′, c′′} is then left untouched, in consistency with the fact
that Martinetti’s construction only involved two lines.

Using Proposition 2.1 it is not difficult to prove the following well-known result.

Corollary 2.3. There is a v3-configuration for all admissible parameters.

Proof. Any v3-configuration is augmentable. Indeed, if the v3-configuration has a triangle,
then its three points Q = {q1, q2, q3} and its three lines M = {m1,m2,m3} together with
the map f(qi) = mi satisfy the conditions in Proposition 2.1. For an illustration of the
augmentation in this case, see Figure 3. If the configuration has no triangles, then consider
a path starting at a point q1 of three lines l1, l2 and l3, intersecting in two points q2 and q3.
Then Q = q1, q2, q3 and M = {m1,m2,m3} satisfy the conditions of Proposition 2.1.
Therefore there is a (v + 1)3-configuration whenever there is a v3-configuration. The
smallest v3-configuration is the Fano plane, with v = 7, and the result follows.

When k is larger than 3, the situation is more complex. Indeed, the projective plane of
order 3 is a 134-configuration which is not augmentable. However, if a v4-configuration
has at least deficiency one, then it is augmentable.

Corollary 2.4. There is a v4-configuration for all admissible parameters.

Proof. Any v4-configuration of deficiency at least one is augmentable. Indeed, if the
deficiency is at least one, then there are points Q = {q1, q2, q3, q4} and lines M =
{m1,m2,m3,m4} forming either a quadrangle with M as sides and Q as vertices, or
an open path q1m1q2m2q3m3q4m4 such that the conditions of Proposition 2.1 are satis-
fied. Therefore there is a (v + 1)4-configuration whenever there is a v4-configuration. The
smallest v4-configuration is the projective plane of order 3, and there exists also a 144-con-
figuration. This latter configuration has deficiency one, and the result follows.
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Figure 3: The new (squared) point and the new (plotted) line of a (v+1)3-configuration to
the right, added to a triangle in the original v3-configuration to the left.

2.2 Reduction of balanced configurations

The inverse of the augmentation construction is the reduction.

Definition 2. A reduction of a balanced configuration (P,L, I) is a triple (p, l, f ′) where
p is a point, l is a line, and f ′ is an injective function f ′ : Q′ →M ′, where

• Q′ = {q ∈ P : q ∈ l and q 6= p}, and

• M ′ = {m ∈ L : p ∈ m and m 6= l},

such that q is not collinear with r ∈ f ′(q), except possibly through l or with p. A configu-
ration is reducible if it admits a reduction. Otherwise it is irreducible.

Lemma 2.5. If a configuration (P,L, I) admits a reduction as in Definition 2, then there
is a reduced configuration (P \ {p}, L \ {l}, Ĩ) obtained from (P,L, I) by replacing the
incidences (p, f ′(q)) and (q, l) for q ∈ Q′ with the incidences (q, f ′(q)) and removing the
point p and the line l.

Proof. Each point is on the same number of lines, and each line goes through the same
number of points in (P \ {p}, L \ {l}, Ĩ) as in (P,L, I). The definition of f ′ ensures that
any two lines in (P \ {p}, L \ {l}, Ĩ) meet in at most one point.

Lemma 2.6. The reduction is the inverse construction of the augmentation.

Proof. Let Cv = (P,L, I) be a vk-configuration with a set Q = {q1, . . . , qk} of k points
and a set M = {m1, . . . ,mk} of k lines satisfying the requirements in Proposition 2.1.
Consider the incidences in the augmented (v+1)k-configurationCv+1 which are not inCv .
These incidences are (p, f(qi)) and (qi, l), for i ∈ {1 . . . k}. Also consider the incidences
that were removed from Cv in the construction of Cv+1, (qi, f(qi)), for i ∈ {1 . . . k}. As
described in Remark 2.2 and Remark 2.8, some of the incidences involved in the augmen-
tation may be swapped afterwards. This is only relevant if the incidences is of the form
(p, f(qi)) and (qi, l) (which produces the incidence (p, l), so that the new point and the
new line are incident). In this case, let Q′ = Q \ {qi} and M ′ = M \ {f(qi)}, otherwise,
let Q′ = Q and M =M ′. Define the reduction (p, l, f ′) with f ′ : Q′ →M ′ the restriction
of f to Q′. This is a well-defined reduction, since q ∈ Q′ is not collinear with any point
r on f(q) in Cv+1 except possibly with p or through l. Replace the incidences (p, f(q))
and (q, l) for q ∈ Q′ with the incidences (q, f(q)) and remove the point p and the line l.
This reduction produces a vk-configuration with the same incidences as Cv , hence equal to
Cv .
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Observe that according to Definition 2, a balanced configuration is irreducible exactly
if it is impossible to remove one point and one line and obtain a new configuration, through
modifications that only affect the incidences of the removed point and line. This is the
same definition of irreducibility as the one used by Boben in the case of v3-configurations,
although he expressed it in terms of the Levi graph. Martinetti’s irreducibility is the special
case in which the removed point p is on the removed line l = {p, a, a′}, so that Q′ =
{a, a′}, M ′ = {{p, b, c}, {p, b′, c′}} and f ′ : Q′ → M ′ is defined by f ′(a) = {p, b, c}
and f ′(a′) = {p, b′, c′}. The reduction then consists in removing p and l and replacing the
appearances of p in m ∈ M with f ′−1(m). Note that no incidence swapping was needed
when describing Martinetti’s reduction in terms of Definition 2.

The somewhat awkward definition of reducibility for balanced configurations can also
be restated as follows.

Corollary 2.7. A balanced configuration vk is reducible if and only if it contains one line
l and one point p, such that the points qi on l and the lines mi through p can be labelled
so that qi is not collinear with any point on mi except possibly through l or with p, for
i ∈ [1, k].

Proof. Indeed, the function f(pi) = li for pi 6= p gives a reduction (p, l, f).

Remark 2.8. The general form of the augmentation and reduction constructions implies
that the resulting configuration may fail to be connected. However, there is choice in the
constructions. It is always possible to make the resulting configuration connected. In prac-
tice, this can be achieved by swapping two incidences located in different connected com-
ponents, as described for example in [9]. That is, if (p, q) and (p′, q′) are two incidences in
two different connected components, then replace these incidences with (p, q′) and (p′, q).
By repeating this process as long as the configuration have at least two connected compo-
nents, eventually a connected configuration is obtained. If the incidences (p, q) and (p′, q′)
are not incidences of the old configuration, but instead both come from the augmentation
or the reduction construction, then the incidence swapping gives a configuration that would
have resulted from another choice in the construction. Note that Martinetti’s augmentation
is described in this way in Remark 2.2.

3 Unbalanced configurations
It is not possible to reduce unbalanced configurations through the removal of one point and
one line. This is a consequence of the necessary condition for the existence of a config-
uration vr = bk. Indeed, vr = bk implies that (v − 1)r/k = vr/k − r/k = b − r/k
so that (v − 1)r 6= (b − 1)k, whenever r 6= k. In this context, the reduced parameter set
(d, r, k) is useful - the parameter set (d, r, k) is admissible for every integer d satisfying
d ≥ gcd(r, k)(r(k − 1) + 1)/k. Therefore, a reduction should, given a (d, r, k)-configu-
ration, produce a (d − 1, r, k)-configuration through the removal of an appropiate number
of points and lines, using only modifications that affect the incidences of these removed
points and lines. More precisely, the number of points to remove is k/ gcd(r, k) and the
number of lines is r/ gcd(r, k).

3.1 Augmentation of unbalanced configurations

In [9] we described a construction of a (d1 + · · · + dn + 1, r, k)-configuration from n
configurations with parameters (d1, r, k), . . . , (dn, r, k). By applying this construction to
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a single configuration with parameters (d, r, k), one obtains a (d + 1, r, k)-configuration
through an augmentation construction. The requirement for this construction to work is that
the original configuration contains a set of rk/ gcd(r, k) pointsQ and a set of rk/ gcd(r, k)
lines M with a special property.

Definition 3. Let Cd = (P,L, I) be a (d, r, k)-configuration. Assume that there is a
multiset Q of rk/ gcd(r, k) (not necessarily distinct) points in P and a multiset M of
rk/ gcd(r, k) (not necessarily distinct) lines in L such that

• there is a bijection f : Q→M such that the image of a point q is a line f(q) through
that point,

• Q can be partitioned into r/ gcd(r, k) parts, each of cardinality k, such that two
points q and q′ in each part, either are not collinear, or are collinear only on the line
f(q) or on the line f(q′), and

• M can be partitioned into k/ gcd(r, k) parts, each of cardinality r, such that two
lines m and m′ in each part either do not meet, or meet only in the point f−1(m) or
in the point f−1(m′).

Then there is a (d + 1, r, k)-configuration, constructed from Cd through the following
augmentation procedure:
For all q in Q, replace each incidence (q, f(q)) with

• the incidence (p, f(q)), where p is a point from a set R of k/ gcd(r, k) new points,
in a way that ensures that each point in N is on exactly r lines, and

• the incidence (q, l), where l is a line from a set N of r/ gcd(r, k) new lines, in a way
that ensures that each line in N contains exactly k points.

Proposition 3.1. The result of the above construction is a (d+ 1, r, k)-configuration.

The proof of Proposition 3.1 is only slightly more involved than the proof of Propo-
sition 2.1, which is the special case r = k. For more details of in the general case, see
[9].

Example 3.2. The finite affine plane of order 3 is a (3, 4, 3)-configuration (P,L, I) with 9
points and 12 lines (see Figure 1). Label the points P as 1, . . . , 9 so that the lines L are

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},

{2, 4, 9}, {3, 5, 7}, {1, 6, 8}, {3, 4, 8}, {1, 5, 9}, {2, 6, 7}.

An augmentation requires 12 points and 12 lines, and we use M = L, Q the multiset
consisting of P with the three points 1, 2, 9 repeated, and the bijection f : Q→M defined
by

f(11) = {1, 2, 3} f(12) = {1, 6, 8} f(21) = {2, 4, 9}
f(22) = {2, 6, 7} f(3) = {3, 5, 7} f(4) = {3, 4, 8}
f(5) = {1, 5, 9} f(6) = {4, 5, 6} f(7) = {1, 4, 7}
f(8) = {2, 5, 8} f(91) = {3, 6, 9} f(92) = {7, 8, 9}

where x1 and x2 denotes the first and the second occurrence of x in Q. This gives, with the
new points p1, p2, p3 and the new lines l1, l2, l3, l4, a (4, 4, 3)-configuration with 12 points
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1, . . . , 9, p1, p2, p3 and 16 lines

{p1, 1, 4} {p1, 2, 3} {p1, 5, 7} {p1, 6, 8}
{p2, 2, 5} {p2, 6, 7} {p2, 3, 8} {p2, 4, 9}
{p3, 3, 6} {p3, 4, 5} {p3, 1, 9} {p3, 7, 8}
{1, 3, 7} = l1 {2, 4, 8} = l2 {5, 6, 9} = l3 {1, 2, 9} = l4.

The partition of Q was

{1, 3, 7}, {2, 4, 8}, {5, 6, 9}, {1, 2, 9}

and the partition of M was

{{1, 2, 3}, {1, 4, 7}, {3, 5, 7}, {1, 6, 8}},

{{2, 4, 9}, {2, 5, 8}, {3, 4, 8}, {2, 6, 7}},

{{3, 6, 9}, {4, 5, 6}, {1, 5, 9}, {7, 8, 9}}.

3.2 Reduction of unbalanced configurations

The inverse of the augmentation construction is a reduction, which is a generalization of
the reduction described in Definition 2.

Definition 4. A reduction of an unbalanced configuration (P,L, I) is a triple (R,N, f ′)
where R is a set of k/ gcd(r, k) points, N is a set of r/ gcd(r, k) lines, and f ′ is a bijection
between multisets f ′ : Q′ →M ′, where

• Q′ = {q ∈ P : ∃l ∈ N : q ∈ l and q 6∈ R}, and

• M ′ = {m ∈ L : ∃p ∈ R : p ∈ m and m 6∈ N},

such that q is not collinear with r ∈ f(q), except possibly through one of the lines in
N or with one of the points in R. Both Q′ and M ′ are multisets and as such they may
contain some element more than once. A configuration is reducible if it admits a reduction.
Otherwise it is irreducible.

Lemma 3.3. If a configuration (P,L, I) admits a reduction as in Definition 4, then there
is a reduced configuration (P \ R,L \ N, Ĩ) obtained from (P,L, I) by replacing the
incidences (p, f ′(q)) and (q, l) for q ∈ Q′ with the incidences (q, f ′(q)) and removing the
points in R and the lines in N .

Proof. Each point is on the same number of lines, and each line goes through the same
number of points in (P \ {p}, L \ {l}, Ĩ) as in (P,L, I). The definition of f ′ ensures that
any two lines in (P \R,L \N, Ĩ) meet in at most one point.

Lemma 3.4. The reduction is the inverse construction of the augmentation.

Proof. Let Cd be a (d, r, k)-configuration with a set Q = {q1, . . . , qrk/ gcd(r,k)} of points,
a set M = {m1, . . . ,mrk/ gcd(r,k)} of lines and a bijection f : Q → M , satisfying the
requirements of Definition 3. Consider the incidences in the augmented (d + 1, r, k)-
configuration Cd+1 which are not in Cd. These incidences are (p, f(qi)) and (qi, l), for
i ∈ {1 . . . rk/ gcd(r, k)}, for some p ∈ R and some l ∈ N (if no swapping is allowed).
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Also consider the incidences that were removed from Cd in the construction of Cd+1,
(qi, f(qi)), for i ∈ {1 . . . rk/ gcd(r, k)}. If we allow, for some set of indices I , the inci-
dences (qi, l) and (p, f(qi)), i ∈ I , to be swapped afterwards, making the lines in N and
the points in R incident, then let Q′ = Q \ {qi : i ∈ I} and M ′ = M \ {f(qi) ∈ I},
otherwise, let Q′ = Q and M = M ′. Define the reduction (R,N, f ′) with f ′ : Q′ → M ′

the restriction of f to Q′. This is a well-defined reduction, since q ∈ Q′ is not collinear
with any point r on f(q) in Cd+1 except possibly with some p ∈ R or through some l ∈ N .
For all p ∈ R and all l ∈ N , replace the incidences (p, f(q)) and (q, l) for q ∈ Q′ with
the incidences (q, f(q)) and remove the point p and the line l. This reduction produces a
(d, r, k)-configuration with the same incidences as Cd, hence equal to Cd.

Remark 3.5. Remark 2.8, regarding the connectedness of the result of the augmentation
and the reduction constructions, is valid also for unbalanced configurations.

4 Irreducibility and reducibility in configurations
We would like to characterize the set of irreducible configurations. The results presented
next provide some progress in this direction.

4.1 Irreducibility in small configurations

The smallest (r, k)-configurations are the linear spaces, whenever they exist. Examples of
linear spaces are projective and affine planes. The inexistence of smaller (r, k)-configu-
rations clearly implies that the linear spaces are irreducible. However, as the next results
states, there are also other (r, k)-configurations that are necessarily irreducible because
they are small.

Lemma 4.1. Any (r, k)-configuration with point deficiency δp < k− (r+k)/ gcd(r, k) or
line deficiency δl < r − (r + k)/ gcd(r, k) is irreducible.

Proof. In a reducible configuration there are points Q′ and lines M ′ and a bijection f ′ :
Q′ → M ′ such that q ∈ Q′ is not collinear with any of the k points on f ′(q) ∈ M ′,
except possibly with some of the k/ gcd(r, k) removed points R, or through some of the
r/ gcd(r, k) removed lines N . This condition is equivalent to requiring that f ′(q) ∈ M ′
does not meet any of the r lines through q, except possibly on some of the k/ gcd(r, k)
removed points R, or through some of the r/ gcd(r, k) removed lines N . But, if the point
deficiency v − [r(k − 1) + 1] is smaller than k − (r + k)/ gcd(r, k), then for any point q
there is no line m such that q is only collinear with the points on m on either some points
in R or through some lines in N , so the configuration must be irreducible. Analogously,
if the line deficiency b − [k(r − 1) + 1] is smaller than r − (r + k)/ gcd(r, k), then for
any line m there is no point q = f ′−1(m) such that m does not meet any of the points
through q, except if it is a line in N or if the intersection point is a point in R, and again,
the configuration must be irreducible.

This bound is sharp in the meaning that there are reducible (r, k)-configurations of
deficiency δp = k − (r + k)/ gcd(r, k) and δl = r − (r + k)/ gcd(r, k). For example, the
Möbius-Kantor 83-configuration, with deficiency δp = δl = 3−(3+3)/3 = 1, is reducible.
Indeed, for v3-configurations, Lemma 4.1 is only relevant for deficiency 0. From [1] we
know that the irreducible v3-configurations are the Fano plane (of deficiency 0) and the
Pappus’ configuration. However, Pappus’ configuration has deficiency 3, so Lemma 4.1
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does not apply. But when k is larger than 3, then Lemma 4.1 can imply the irreducibility
of more than one (r, k)-configuration. Indeed, for r = k = 4, the two configurations 134
and 144 must be irreducible, for r = k = 5, the configurations 215 and 235 have deficiency
0 and 2, so they are both irreducible. There is no configuration with parameters 225. For
r = k = 6, the configurations 316 and 346 are both irreducible, since they have deficiencies
0 and 3, hence smaller than 4. There are no configurations 326 and 336. For k = 7, the only
configuration with deficiency strictly smaller than 5 that is known to exist is of deficiency
2, with parameters 457. There are no configurations 437 and 447. If the configurations 467
and 477 exist, then they are irreducible. For a reference on the existence and non-existence
of small balanced configurations, see for example [5].

4.2 Irreducible configurations and transversality - Pappus’ configuration

The irreducibility of the Fano plane can be explained by Lemma 4.1. The reason why
Pappus’ configuration is irreducible is different, and based on transversality.

A transversal design TDλ(k, n) is a k-uniform incidence geometry on kn points, al-
lowing a partition of k groups of n elements, such that any group and any block contain
exactly one common point, and every pair of points from distinct groups is contained in
exactly λ blocks. A transversal design TDλ(k, n) is resolvable if the set of blocks can be
partitioned into parallel classes of blocks, such that each class forms a partition of the point
set.

When λ = 1, then the design is a (knn, n2k)-configuration, and we call the blocks lines.
There is a TD1(k, n) whenever there is an affine plane of order n and k ≤ n. Indeed,
just take the points on k lines in a parallel class of the affine plane and restrict the rest of
the lines to these points. Pappus’ configuration can be constructed in this way from the
affine plane of order 3, by restricting to the points on all the 3 lines in one of its 4 classes
of parallel lines. Since the points on these 3 lines are all points in the affine plane, in
this case the construction consists of eliminating one parallel class of lines from the affine
plane. By instead restricting to the points on only two lines in one of the parallel classes,
a transversal design TD1(2, 3) is obtained, which is a (63, 92)-configuration, that is, the
bipartite complete graph on 6 vertices.

Lemma 4.2. A resolvable transversal design TD1(k, n) is irreducible if

k ≥ (k + r)/ gcd(r, k) + 1.

Proof. Let T = TD1(k, n) be a resolvable transversal design. Let p be a point in T and
m1, . . . ,mr the lines through p. Then m1, . . . ,mr are in different parallel classes. Let l be
a line in T and q a point on l. Then q is collinear with all points on the lines m1, . . . ,mr

except one on each line, which belong to the same group as q (q is not collinear with
itself). At most (r + k)/ gcd(r, k) of these incidences will not obstruct a reduction, since
a reduction removes k/ gcd(r, k) points and r/ gcd(r, k) lines. Therefore, since the point
p and the line l were chosen arbitrarily, if k ≥ (k + r)/ gcd(r, k) + 1, then it is not
possible to find a reduction of T that removes p and l (and possibly other points and lines).
More precisely, there is no f ′ mapping q to mi, for some i, such that q is not collinear
with any point on mi, except possibly with the k/ gcd(r, k) removed points or through the
r/ gcd(r, k) removed lines.
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Note that this proves that Pappus’ configuration, which is a TD1(3, 3), is irreducible,
but it does not prove the same fact for the TD1(2, 3). Indeed, the latter is reducible, as is
any graph with deficiency high enough. Observe that the deficiency of a transversal design
TD1(k, n) satisfies d = n − 1 ≥ k − 1, so that these irreducible configurations are not
covered by Lemma 4.1.

4.3 Reducibility in large configurations

When the deficiency is large enough, then reducibility can be ensured.

Lemma 4.3. A (vr, bk)-configuration is reducible if b ≥ 1 + r+ r(k − 1)(r− 1) + r(r−
1)2(k − 1)2

Proof. Given a point p there are at most r + r(k − 1)(r − 1) + r(r − 1)2(k − 1)2 lines
containing at least one point at distance one or two from p. This bound is attained if the
configuration is triangle-, quadrangle-, and pentagonal-free. If the configuration contains
an additional line l, then l contains only points at distance at least three from p. In other
words, the points on l are not collinear with any point that is collinear with p. This implies
that the configuration is reducible.

In a balanced vk-configuration, the number of lines b equals the number of points v.
Therefore, in this case the bound also takes the form v ≥ 1 + k + k(k − 1)2 + k(k − 1)4.
This is not a sharp bound, indeed, for v3-configuration it can only ensure reducibility for
v ≥ 64, but we know that all v3-configurations are reducible for v ≥ 10.

The irreducibility of vk-configurations with v between these lower and upper bounds,
is still in general an open question. It is of course possible to test a given configuration,
by hand or with the help of a computer. However, for exact enumeration purposes it is of
course interesting to have exact general results.

5 Conclusions
We have seen that it is possible to define irreducibility not only for (vk) configuration,
but for (vr, bk)-configurations in general. Augmentation and reduction constructions for
(vr, bk)-configurations have been defined in a general manner, and several general results
on augmentability and reducibility have been described. Irreducibility has been proved
for configurations with point deficiency δp < k − (r + k)/ gcd(r, k) or line deficiency
δl < r − (r + k)/ gcd(r, k), and for (some) transversal designs TD1(k, n). A TD1(k, n)
has point deficiency n−1 = r−1 and line deficiency r2−rk+k−1. For r = k = 3, these
are the only irreducible configurations, and at this point, no other irreducible configurations
are known in the general case. There is an upper bound for irreducibility requiring the
number of lines to satisfy b < 1 + r + r(k − 1)(r − 1) + r(r − 1)2(k − 1)2. This bound
is not sharp, and a better bound would probably set the point deficiency closer to r.

The author is aware of at least two applications of augmentations and reductions of
configurations. One is the enumeration of configurations, the other is the use of configu-
rations in cryptography and coding theory. When a configuration is used to define a key-
distribution scheme, and new parties join or leave, augmentation and reduction construc-
tions can modify the structure while minimizing the costs of key-reassignment. However,
it is important to be aware of the fact that the constructions described in this paper may fail
to preserve interesting properties.
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1 Introduction
The theory of Riemann surfaces was founded in classical works by B. Riemann and A.
Hurwitz. A Riemann surface was originally defined in terms of branched coverings over
the Riemann sphere. An important class of surfaces consists of hyperelliptic surfaces,
which are defined as branched double coverings of the Riemann sphere.

It is well known that any surface of genus 2 is hyperelliptic. The Farkas-Accola theorem
([1], [6]) states that any unbranched two fold covering of a surface of genus 2 is also
a hyperelliptic surface. In [2] Accola showed that an irregular three fold covering of a
Riemann surface of genus 2 is also hyperelliptic, while its regular three fold covering is a
two fold covering of the torus. Define a Riemann surface be be γ−hyperelliptic if it is a
two fold branched covering of a genus γ surface. The basic properties of γ-hyperelliptic
surfaces and their automorphism groups are investigated in the papers ([1], [4], [13]).

Over the last decade, discrete versions of the theory of Riemann surfaces have been
addressed in numerous studies. In these theories, finite graphs play the role of Riemann
surfaces, while holomorphic mappings are replaced by harmonic ones. Harmonic map-
pings of graphs are also known as wrapped quasi-coverings or just branched coverings of
graphs. The foundation of this theory was done in the paper [12] in terms of dual voltage
assignment. Later, the theory was developed from different points of view by H. Urakawa
[14], M. Baker and S. Norine [3], S. Corry [5] and others.

The discrete theory found effective applications in coding theory, stochastic theory, and
financial mathematics. References concerning this subject can be found in [3].

The basic objects of research in this paper are graphs and their coverings. By a graph,
we mean a finite connected multigraph X, possibly with loops.

Denote by H1(X) the integer homology group of X. The genus g of a graph X is
defined as the rank of H1(X) (that is, as the Betti number or the cyclomatic number of a
graph). Denote by V and E the number of vertices and edges of X respectively. Then

g = 1− V + E. (1.1)

A graph is said to be hyperelliptic if it is a double branched covering of a tree. Note that
any two-edge connected graph of genus 2 is hyperelliptic [3].

In this paper we introduce a notion of γ-hyperelliptic graph. A graph is said to be γ-
hyperelliptic if it is a two fold branched covering of a genus γ graph. The corresponding
covering involution is called γ−hyperelliptic.

The aim of the paper is to provide some criteria for the involution τ acting on a graphX
of genus g to be γ-hyperelliptic. We suppose that τ acts freely and without edge inversion
on the set of directed edges of X.

The main results of the paper are Theorems 4.1 and 4.3. Theorem 4.1 gives two criteria
for an involution acting on a graph X of genus g with fixed points to be γ-hyperelliptic.
Theorem 4.3 provides necessary and sufficient conditions for a γ-hyperelliptic involution
to act without fixed points.

2 Preliminary results
In this paper, by a graph X we mean a finite connected multigraph, possibly with loops.
See, for example, paper [9] for a formal definition of the graph with multiple edges and
loops. All edges of X, including loops, are provided by two possible orientations. Denote
by V(X) the set of vertices of X and by E(X) the set of directed edges of X. We introduce



A. Mednykh and I. Mednykh: On γ−hyperellipticity of graphs 185

two maps s, t : E(X) → V(X) sending an edge e ∈ E(X) to its source and terminate
vertices s(e) and t(e) respectively. We will use also a fixed point free involution e → ē of
E(X) (reversal of orientation) such that s(ē) = t(e) and s(e) = t(ē).

We put St(x) = StX(x) = {e ∈ E(X) : s(e) = x} for the star of x and call deg (x) =
|St(x)| the degree (or valency) of x.

2.1 Morphisms of graphs

A morphism of graphs ϕ : X → Y sends vertices to vertices, edges to edges, and, for any
e ∈ E(X), ϕ(s(e)) = s(ϕ(e)), ϕ(t(e)) = t(ϕ(e)), and ϕ(ē) = ϕ(e). For x ∈ X we then
have the local map

ϕx : StX(x)→ StY (ϕ(x)).

We call ϕ locally surjective or bijective, respectively, if ϕx has this property for all x ∈ X.
We call ϕ a covering if ϕ is surjective and locally bijective. A bijective morphism is called
an isomorphism, and an isomorphism ϕ : X → X is called an automorphism.

2.2 Harmonic morphisms

Let X, X ′ be graphs. Let ϕ : X → X ′ be a morphism of graphs. We now come to one of
the key definitions in this paper.

A morphism ϕ : X → X ′ is said to be harmonic (or branched covering) if, for all
x ∈ V(X), y ∈ V(X ′) such that y = ϕ(x), the quantity |e ∈ E(X) : x = s(e), ϕ(e) = e′|
is the same for all edges e′ ∈ E(X ′) such that y = s(e′).

We note that an arbitrary covering of graphs is a harmonic morphism. Let ϕ : X → X ′

be harmonic and let x ∈ V(X). Define the multiplicity of ϕ at x by

mϕ(x) = |e ∈ E(X) : x = s(e), ϕ(e) = e′| (2.1)

for any edge e′ ∈ E(X ′) such that ϕ(x) = s(e′).By the definition of a harmonic morphism,
mϕ(x) is independent of the choice of e′.

If deg (x) denotes the degree of a vertex x, we have the following formula relating
degrees and the multiplicity:

deg (x) = deg (ϕ(x))mϕ(x). (2.2)

We define the degree of a harmonic morphism ϕ : X → X ′ by the formula

deg (ϕ) = |e ∈ E(X) : ϕ(e) = e′| (2.3)

for any edge e′ ∈ E(X ′). By the following lemma (see [3], Lemma 2.2) the right-hand side
of (2.3) does not depend on the choice of e′ (and therefore deg (ϕ) is well defined):

Lemma 2.1. The quantity |e ∈ E(X) : ϕ(e) = e′| is independent of the choice of e′ ∈
E(X ′).

2.3 The γ-hyperelliptic graphs and involutions

A graph X is said to be γ-hyperelliptic if there is a two fold harmonic map ϕ : X → X ′ on
a graph X ′ of genus γ. That is, a graph is γ-hyperelliptic if it is a two fold branched cover-
ing of a genus γ graph. The corresponding covering involution τ is called γ-hyperelliptic.
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Recall that the covering involution of ϕ is an order two automorphism τ of graph X satis-
fying ϕ ◦ τ = ϕ.

Since morphism ϕ is harmonic, by Lemma 2.1 each directed edge of X ′ has exactly
two preimages in the set E(X) of directed edges of X. Hence, τ permutes these preimages
and, consequently, acts freely on the set E(X). In the category of graphs we deal with, all
morphisms send vertices to vertices, edges to edges and loops to loops. In particular, this
implies that the covering involution τ acts on X without edge inversion. That is, for every
edge e of X we have τ(e) 6= ē.

On the other hand, if τ is an order two automorphism of a graph X acting freely on the
set of directed edges E(X) and without edge inversion, then the factor space X ′ = X/〈τ〉
is a graph and the canonical map X → X ′ = X/〈τ〉 is harmonic.

Summarizing, we characterize a γ-hyperelliptic involution on graph X as an involution
acting on the set E(X) freely, without edge inversion, and such that genus of the factor
graph X/〈τ〉 is γ.

The case γ = 0 corresponds to hyperelliptic graphs and hyperelliptic involutions de-
fined earlier in [3] in a more general aspect.

2.4 The Riemann-Hurwitz formula for γ-hyperelliptic involution

Let τ be a γ-hyperelliptic involution acting on a graph X of genus g. Then genus of the
factor graphX ′ = X/〈τ〉 is γ. Consider the induced harmonic morphism ϕ : X → X ′. By
the previous section, τ has neither fixed nor invertible edges, but it may have fixed vertices.
For any vertex a ∈ V(X) the multiplicity mϕ(x) of ϕ at x is equal to 1 or 2. If mϕ(x) = 1

then the local map ϕx : StX(x) → StX
′
(ϕ(x)) is bijective. Then the vertex ϕ(x) has

two preimages x and τ(x). So, x is not fixed by τ. If mϕ(x) = 2 then the local map
ϕx : StX(x) → StX

′
(ϕ(x)) is two-to-one on the edges and ϕ(x) has only one preimage

x = τ(x). That is, x is a fixed point of τ.
Denote by V and E the number of vertices and undirected edges of X respectively.

Define in a similar way the numbers V′ and E′ for the graph X ′. Since τ acts freely on
edges we have E = 2E′. Let τ have r fixed points on X. Then there are exactly r vertices
of X ′ with the unique preimage under ϕ. Hence, V = 2V′ − r. By formula (1.1) we have
g − 1 = E− V and γ − 1 = E′ − V′. Finally, we obtain

g − 1 = 2(γ − 1) + r. (2.4)

This is a discrete version of the classical Riemann-Hurwitz formula from the theory of
Riemann surfaces. More general statement of the Riemann-Hurwitz formula for the groups
acting on a graph with fixed and invertible edges one can find in [10].

3 Homological basis adapted to the action of an involution
The main results of this section are Theorems 3.2 and 3.5. They can be considered as
discrete versions of the results attained earlier for Riemann surfaces by Jane Gilman [7].
We start with the following definition.

Definition 3.1. Let X be a finite connected graph and τ be an involution acting freely and
without edge inversion on the set of directed edges of X. Suppose that τ has at least one
fixed vertex on X. A homological basis B in H1(X) is said to be adapted to τ if it consists
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of the elements Bi, Ci, i = 1, . . . , s, Dj , j = 1, . . . , t such that

τ∗(Bi) = Ci, τ∗(Ci) = Bi and τ(Dj) = −Dj .

The following theorem yields the conditions on τ to get an adapted homological basis.

Theorem 3.2. Let X be a finite connected graph and τ is an involution acting freely and
without edge inversion on the set of directed edges of X. Suppose that τ has at least one
fixed vertex on X. Then H1(X) has a basis adopted to τ.

Proof. We prove the theorem using induction by genus g = g(X). If g = 0 then X is a
tree, H1(X) = {0} is a trivial group and B = {0} is a homological basis adapted to τ.
For g > 1 graph X has at least one nontrivial cycle E. Provide E one of its two possible
orientations ~E. Let − ~E be the same cycle with the opposite orientation. There are three
possibilities:

(i) τ( ~E) 6= ± ~E,

(ii) τ( ~E) = ~E,

(iii) τ( ~E) = − ~E.

In the case (i) we set E′ = τ(E) and consider an edge e ∈ E \ E′. Let e′ = τ(e) then
e′ ∈ E′ \E. Denote by s(e) and t(e) the source and terminate vertices of edge e. Consider
the graph X ′ = X \ {e, e′}. Since e and e′ are not in E, the set E \ e is a path in X ′ from
t(e) to s(e). In a similar way,E′\e′ is a path inX ′ connecting vertices t(e′) and s(e′). That
is, X ′ is a connected graph of genus g(X ′) = g(X) − 2. Note that τ leaves the graph X ′

invariant. Moreover, τ acts without edge inversion on the set of directed edges of X ′ and
has the same set of fixed vertices as before. By induction, X ′ already has a homological
basis B′ adapted to τ. Recall that B′ consist of g(X ′) elements. Consider the cycles E
and E′ as elements of H1(X). We add E and E′ to B′ to form the set B = B′ ∪ {E,E′}
of homological cycles in H1(X). Since edges e and e′ are included only in homological
cycles E and E′ respectively, the set B consists of g(X ′) + 2 = g(X) linear independent
elements of H1(X). Therefore, B is a τ -adopted basis in H1(X).

Now let us consider the case (ii). Since τ( ~E) = ~E, the cycle E is invariant under the
action of τ. The involution τ has no fixed points on E since it preserves the orientation and
acts freely on the set of directed edges of E. Let v be a fixed point of τ on X, then v is
not a vertex of E. Consider a shortest path λ from v to E. Then λ has no common edges
with E. Denote by w the terminate point of λ. Set λ′ = τ(λ) and w′ = τ(w). Then λ′ is a
path from v to w′, and λ′ and E have no edges in common. Denote by γ a path in the cycle
E from w to w′ and by γ′ = τ(γ) the respective path from w′ to w. Consider two cycles
F = λγ(λ′)−1 and F = λ′γ′λ−1. Since the cycle E is not trivial, there exists an edge e
in E with the source s(e) = w. Then e belongs to F and the respective edge e′ = τ(e)
belongs to F ′.

Note that e ∈ F \ F ′ and e′ ∈ F ′ \ F. Moreover, graphs F \ {e} and F ′ \ {e′}
share v as a common vertex. Hence, the graph X ′ = X \ {e, e′} is a connected graph
and its genus g(X ′) = g(X) − 2. The involution τ acts on X ′ satisfying conditions of
the theorem. By induction, there is a homological basis B′ in H1(X ′) consisting of g(X ′)
elements and adapted to τ. Consider the set B = B′ ∪ {F, F ′} of homological cycles in
H1(X). The elements of B are linear independent. Indeed, the elements of B′ are already
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linear independent, but F and F ′ are the only elements of B containing edges e and e′

respectively. Hence, g(X) elements of B form a basis in H1(X) adapted to τ.
In the case (iii) we have τ( ~E) = − ~E. It means that τ leaves cycleE invariant reversing

the orientation of its edges. By assumption, τ acts without edge inversion. Then τ has
exactly two fixed points v and w on E. Let e be the edge of E with the source s(e) = v
and e′ = τ(e). Consider the graph X ′ = X \ {e, e′}.

Suppose that graphX ′ is connected. Then X ′ contains a path γ from v to w. The union
E ∪ γ is a connected graph of genus at least two. So, it contains a cycle F passing through
e which differs from E. Then τ(~F ) 6= ~F and the proof follows from the case (i).

Now we suppose that graph X ′ is disconnected. The X ′ consists of two connected
components X ′1 and X ′2 containing the vertices v an w respectively. Since v and w are
fixed by τ, both X ′1 and X ′2 satisfy the conditions of the theorem. Also we have g(X) =
g(X ′1) + g(X ′2) + 1.

By inductive assumption, X ′1 and X ′2 admit homological bases B′1 and B′2 adapted to
τ. Consider the cycle E as an element of H1(X). Then the set B = B′1 ∪ B′2 ∪ {E} gives a
homological basis in H1(X) adapted to τ.

Remark 3.3. The condition on τ to have fixed points in Theorem 3.2 is essential. Indeed,
consider a cyclic graph X on even number of vertices. Let τ act on X by the order two
rotation. Then τ acts fixed point free on the vertices of X. The homology group H1(X) is
generated by a cycle A and τ∗(A) = A. That is, τ∗ acts trivially on H1(X).

To investigate the action of τ without fixed points, we introduce the following defini-
tion.

Definition 3.4. Let X be a finite connected graph and τ be an involution acting on X
without fixed vertices. A homological basis B in H1(X) is said to be adapted to τ if it
consists of the elements A,Bi, Ci, i = 1, . . . , s such that

τ∗(A) = A, τ∗(Bi) = Ci, τ∗(Ci) = Bi, i = 1, . . . , s.

Theorem 3.5. Let X be a finite connected graph of genus g. Let τ be an involution acting
on X without edge inversion. Suppose that τ has no fixed vertices. Then genus g is an odd
number and H1(X) has a basis adapted to τ.

Proof. The first statement of the theorem follows from the Riemann-Hurwitz formula. In
our case, it has the form g− 1 = 2(γ− 1), where γ is the genus of the factor graph X/〈τ〉.
Since γ ≥ 0 we have g ≥ 1. Hence, g = 2(γ − 1) + 1 is a positive odd number.

We prove the second statement of the theorem using induction by genus g. If g = 1
then X has only one cycle E. Provide E one of its two possible orientations ~E. Then
τ( ~E) = ± ~E. By assumption, τ acts without edge inversion. Then in the case τ( ~E) = − ~E
it has two fixed points. This is impossible, since τ acts fixed point free. So, τ( ~E) = ~E and
B = {E} is the basis in H1(X) adapted to τ.

Since g = g(X) is an odd number, one can assume that g ≥ 3. Consider an arbitrary
cycle E in X. Choosing an orientation ~E on E we have two possibilities: (i) τ( ~E) 6= ± ~E
and (ii) τ( ~E) = ~E. By the above arguments, the case τ( ~E) = − ~E is impossible.
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In the case (i) we set E′ = τ(E). Since E 6= E′, there are edges e ∈ E and e′ =
τ(e) ∈ E′ such that e ∈ E \ E′ and e′ ∈ E′ \ E. Then X ′ = X \ {e, e′} is a connected
graph of genus g(X ′) = g(X) − 2 ≥ 1. Graph X ′ is invariant under τ and satisfies the
conditions of the theorem. By induction, H1(X ′) has a τ -adapted basis B′. Consider the
cycles E and E′ as elements of H1(X). Then B = B′ ∪ {E,E′} is a basis in H1(X)
adopted to τ.

In the case (ii) we have τ(E) = E. Choose an edge e ∈ E and set e′ = τ(e). Then
e′ ∈ E and e 6= e′. Consider the graph X = X ′ \ {e, e′}. If X ′ is disconnected, it
consists of two components X ′1 and X ′2 permuted by τ. Thereby g(X ′1) = g(X ′2) = g′

and g(X) = 2g′+ 1. Let the group H1(X ′1) be generated by cycles B1, B2, . . . , Bg′ . Then
H1(X ′2) is generated by cycles C1, C2, . . . , Cg′ , where Ci = τ(Bi), i = 1, . . . , g′ and

B = {B1, B2, . . . , Bg′ , C1, C2, . . . , Cg′ , E}

is the required τ -adapted basis in H1(X).
Now, let the graph X = X ′ \ {e, e′} be connected. Then there is a path γ from s(e) to

t(e) in X ′. The genus of graph E ∪ γ is at least two, so E ∪ γ contains a cycle F such that
τ(F ) 6= F. Then τ(~F ) 6= ±~F and we are back to the case (i).

4 Main results
Now we apply the Theorems 3.2 and 3.5 to establish the main results of the paper. They
are given in Theorems 4.1 and 4.3.

Theorem 4.1 gives two criteria for an involution acting on a graph X of genus g with
fixed points to be γ-hyperelliptic. Theorem 4.3 provides necessary and sufficient conditions
for a γ-hyperelliptic involution to act without fixed points.

Theorem 4.1. Let X be a finite connected graph of genus g. Consider an involution τ
acting freely and without edge inversion on the set of directed edges of X. Denote by τ∗ the
induced action of τ on the first homology group H1(X). Suppose that τ has at least one
fixed vertex on X. Then the following conditions are equivalent:

(i) the genus of factor graph X/〈τ〉 is equal to γ;

(ii) there is a basis in the homology group H1(X) whose g elements are either invertible
or split into γ interchangeable pairs under the action of τ∗;

(iii) tr H1(X) (τ∗) = 2γ − g.

Proof. Suppose that τ has r ≥ 1 fixed points on V(X).
We show that (i) implies (ii). By Theorem 3.2 there exists a homological basis B

in H1(X) adapted to τ. Without loss of generality, we can assume that B consists of s
interchangeable pairsBi, Ci, i = 1, . . . , s, andDj , j = 1, . . . , t invertible elements, where
s and t are non-negative integers related by the equation

2s+ t = g. (4.1)

Then the induced action τ∗ of τ on H1(X) is given by the formulas:

τ∗(Bi) = Ci, τ∗(Ci) = Bi, i = 1, . . . , s and τ∗(Dj) = −Dj , j = 1, . . . , t.
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Consider the matrix representation of τ∗ in the basis B. Then we have:

τ∗ =



J . . . 0 0 . . . 0
...

...
...

...
0 . . . J 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 −1 . . . 0
...

...
...

...
0 . . . 0 0 . . . −1



 2s

 t

,

︸ ︷︷ ︸
2s

︸ ︷︷ ︸
t

where

J =

(
0 1
1 0

)
.

Using the above matrix representation, by direct calculation we obtain

tr H1(X) (τ∗) = −t. (4.2)

At the same time, by the Hopf-Lefschetz formula [8] we have

tr H1(X) (τ∗) = 1− r, (4.3)

where r is the number of fixed point of τ on the graphX.Now we use the Riemann-Hurwitz
formula

g − 1 = 2(γ − 1) + r (4.4)

to find s and t through g and γ. From (4.2), (4.3) and (4.4) we have t = r − 1 = g − 2γ.
Hence, taking into account (4.1) we conclude that s = γ.

These are the statements (iii) and (ii) of the theorem.
We note that (iii) follows from (ii) by direct calculations. To finish the proof, we have

to show that (iii) implies (i). Again, by the Hopf-Lefschetz formula we have (4.3). Hence
2γ − g = 1 − r. Equivalently, g − 1 = 2(γ − 1) + r. By Riemann-Hurwitz formula we
conclude that γ is genus of the factor graph X/〈τ〉.

The equivalence of conditions (i) and (ii) for γ = 0 was established earlier by the
second named author in ([11], Lemma 1).

The following result is an immediate consequence from the proof of Theorem 4.1.

Corollary 4.2. Let τ be the same as in Theorem 4.1 and

{Bi, Ci, i = 1, . . . , γ,Dj , j = 1, . . . , t}, τ∗(Bi) = Ci, τ∗(Ci) = Bi, τ∗(Dj) = Dj ,

be a homological basis in H1(X) adapted to τ. Then g(X/〈τ〉) = γ and the number of
fixed vertices of τ is t+ 1.
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Theorem 4.3. Let X be a finite connected graph of genus g ≥ 1. Consider an involution
τ acting freely and without edge inversion on the set of directed edges of X. Denote by τ∗
the induced action of τ on the first homology group H1(X) and by γ the genus of factor
graph X/〈τ〉. Then τ acts fixed point free on the set of vertices of X if and only if one of
the following conditions is satisfied:

(i) genera g and γ are related by the Schreier formula g − 1 = 2(γ − 1);

(ii) there is a basis {A,Bi, Ci, i = 1, . . . , γ − 1} in the homology group H1(X) such
that τ∗(A) = A, τ∗(Bi) = Ci, τ∗(Ci) = Bi;

(iii) tr H1(X) (τ∗) = 1.

Proof. Let r be the number of fixed vertices of τ. Then (i) immediately follows from the
Riemann-Hurwitz formula (4.4).

We show that (ii) and (i) are equivalent. Indeed, by Theorem 3.5 the group H1(X) has
a basis B adapted to τ and consisting of g elements. By (i) we have g = 2(γ − 1) + 1. So,
γ − 1 elements of B are permutable by τ∗ and one of them is fixed by τ∗. This is exactly
the statement (ii).

To prove that (ii) implies (i) we note that the basis B = {A,Bi, Ci, i = 1, . . . , γ − 1}
of the H1(X) consists of 2(γ − 1) + 1 elements. Hence, g = 2(γ − 1) + 1 and the
Schreier formula holds. Calculating trace of τ∗ in the basis B, we obtain tr H1(X) (τ∗) =
1. Therefore, (iii) follows from (ii). Finally, let tr H1

(X) (τ∗) = 1. Then, by the Hopf-
Lefschetz formula the number r of the fixed points of τ is equal to 0. Then again, by (4.4)
we get (i).
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Abstract

Regular oriented hypermaps are triples (G; a, b) consisting of a finite 2-generated group
G and a pair a, b of generators of G, where the left cosets of 〈a〉, 〈b〉 and 〈ab〉 describe re-
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which 〈a〉 is normal in G) have chirality index a divisor of n (the hyperface valency) and
the non “canonical metacyclic” have chirality index p. We end the paper by counting, for
each positive integer n and each prime p, the number of regular oriented hypermaps with p
hyperfaces of valency n.

Keywords: hypermaps, maps, hypergraphs, regularity, orientably regular, chirality

Math. Subj. Class.: 05E18, 05E15, 20B25, 05C25, 05C30

∗This work was supported by Portuguese funds through the CIDMA–Center for Research and Development in
Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT–Fundação para
a Ciência e a Tecnologia), within project PEst-OE/MAT/UI4106/2014.

E-mail addresses: breda@ua.pt (Antonio Breda d’Azevedo), maria.elisa@ua.pt (Maria Elisa Fernandes)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



194 Ars Math. Contemp. 10 (2016) 193–209

1 Introduction
Hypermaps (surface embeddings of hypergraphs), introduced by Cori [10] in 1975, have
acquired great importance in recent years as a connection between permutations, extended
triangle groups, Riemann surfaces, algebraic curves and Galois groups. As highlighted
by Grothendieck [14], the absolute Galois group of the field of algebraic numbers acts
faithfully on dessins d’enfants (hypermaps), combinatorial objects that, by Belyi’s theorem
[1], characterise the Riemann surfaces defined (as projective algebraic curves) over the field
of algebraic numbers. The correspondence between hypermaps and Riemann surfaces is in
general difficult to study, but becomes more manageable if the hypermaps are uniform (that
is, if all hyperfaces have the same size n, all hypervertices have the same degree k and all
hyperedges have the same size m) and particularly better handled when they are regular.

In this paper we concentrate on regular oriented hypermaps, which are algebraically
characterised by triplesH = (G; a, b) consisting of a finite 2-generated group G and a pair
a, b of generators of G; such triples encode cellular embeddings of regular hypergraphs
(bipartite graphs1) on compact orientable surfaces of genus

g =
2− (|G/l〈b〉|+ |G/l〈ab〉|+ |G/l〈a〉|)

2
,

whereG/lH stands for the left cosets of the subgroupH inG and |X| the cardinality ofX .
The left cosets of 〈a〉, 〈b〉 and 〈ab〉 determine the hyperfaces, hypervertices and hyperedges
ofH. Regular oriented maps are regular oriented hypermaps (G; a, b) in which the product
ab has order 2.

Regular (cellular-) embeddings of graphs in orientable surfaces (regular orientable
maps) have been classified for certain classes of graphs. The closest to the present pa-
per is the classification of orientable regular embeddings of graphs of given order. This has
been achieved for simple graphs of prime order [13] and of order a product of two primes
[12], giving rise respectively to classifications of the regular oriented simple maps of prime
order, and of order a product of two primes. Regular oriented maps of type {|a|, |b|} are
regular hypermaps of type (|b|, 2, |a|). Here |g| is the order of g.

Up to a duality a primer hypermap is a generalisation of a simple map (map with un-
derlying simple graph). In [4] we classified the primer hypermaps with prime number of
hyperfaces (left cosets of 〈a〉 in G) and now we extend the classification to regular ori-
ented hypermaps with prime number of hyperfaces – or, by duality, to a classification of
the regular oriented hypermaps with prime number of hypervertices (left cosets of 〈b〉 ) or
hyperedges (left cosets of 〈ab〉 ).

There has been some contributions to the classification of regular (oriented or non-
oriented) hypermaps by given number of hyperfaces; namely, on regular hypermaps (non-
oriented hypermaps, which include non-orientable hypermaps and hypermaps with border)
with one and two hyperfaces [9], on non-orientable regular hypermaps with a prime number
of hyperfaces [19], on chiral hypermaps up to 4 hyperfaces [7], and on regular oriented
hypermaps up to 5 hyperfaces [3].

This paper has five sections. The first is the actual introduction which includes two
subsections, one giving a quick overview of the theory of regular oriented hypermaps and
the second giving an overview of “primer” hypermaps. In this subsection we write down
the most important results of [4] that are used in the third section. For a complementary

1Graphs in this paper are pseudographs, that is, they may have multiple edges, loops and free-edges.
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reading on these subjects we address the reader to [16, 17, 11, 7, 5, 4]. In the second
section we introduce some families of hypermaps, called “derivations”, that arise from a
given regular oriented hypermap, and explore their properties. The third is the classification
of the regular oriented hypermaps with p (prime) hyperfaces, and this will be achieved by
“lifting” the “primer” hypermaps with p hyperfaces classified in [4]. In the fourth section,
we compute the chirality group and the “H-sequences” (an extension of type) of the regular
oriented hypermaps with p hyperfaces. And finally in the fifth section we compute the
number of regular oriented hypermaps with p hyperfaces of valency n.

Functions in this paper are read from right to left.

1.1 Regular oriented hypermaps

An (finite) oriented hypermap is a triple H = (Ω; a, b) consisting of a finite set Ω (the
set of darts) and two permutations a and b that generate a transitive group G (called the
monodromy group) on Ω. Hyperfaces, hypervertices and hyperedges ofH are orbits of 〈a〉,
〈b〉 and 〈ab〉 respectively, and incidence is given by non-empty intersection of orbits. Here
abmeans a followed by b since functions and actions in this paper are supposed to act from
right. H is uniform if the permutations a, b and ab are regular permutations; this means that
all the hyperfaces have common valency, all the hypervertices have common degree and all
the hyperedges have common valency. In general we have |Ω| ≥ |G|. If |Ω| = |G|, that is,
if G acts regularly on Ω, then we say thatH is a regular oriented hypermap. In such case Ω
can be replaced by G and the right actions of a and b by right multiplication. Conversely,
any finite two generated groupG = 〈a, b〉 determines a regular oriented hypermap (G; a, b)
where the monodromy elements a and b are the respective right permutation representations
of a and b on G. The above triple describes a cellular embedding of a hypergraph G in an
oriented surface S (i.e., an orientable surface with a fixed orientation). Viewing G as a
bipartite graph, with the set of vertices partitioned into black vertices and white vertices,
the hypermap H can be seen as a bipartite mapM where the black vertices of G represent
the hypervertices, the white vertices the hyperedges and the faces of M the hyperfaces
[18]. In this representation the edges of G are the darts of H and the permutations a and
b locally permute the darts counter clockwise (CCW) around hyperfaces and hypervertices
respectively (actually in the literature it is more common a and b be permutations of darts
CCW around hypervertices and hyperedges, and usually denoted by R and L).

�

��

�� ���

Figure 1: The effect of the permutations a, b and ab on a dart ω.

The type of a regular oriented hypermap H is a triple (k,m, n) where the positive
integers k = |b|, m = |ab|, n = |a| are the valencies of the hypervertices, hyper-
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edges and hyperfaces, in this order. An extended version of the type is the H-sequence
[k,m, n ; V,E, F ; |G|] where (k,m, n) is the type, V , E and F are respectively the num-
ber of hypervertices, hyperedges and hyperfaces, and |G| is the size of G (or the number of
darts ofH). The Euler characteristic of the underlying surface S is the characteristic ofH,
and it is given by the formula χ = V + E + F − |G|.

If H = (G; a, b) and H′ = (G′; a′, b′) are two regular oriented hypermaps, then H
covers H ′ if the assignment a 7→ a′, b 7→ b′ can be extended to a (canonical) epimorphism
of monodromy groups G → G′ . The hypermap H is isomorphic to H′, H ∼= H′, if
the canonical epimorphism G 7→ G′, is an isomorphism. A hypermap is reflexible if it is
isomorphic to its mirror image H = (G; a−1, b−1), otherwise it is chiral. The chirality
group of H is the smallest normal subgroup X(H) of G such that H/X(H) is reflexible.
This group ranges from X(H) = 1, when H is reflexible, to X(H) = Mon(H) when H
is totally chiral [5, 6]. The Chirality index ofH is the size κ = κ(H) = |X(H)|.

Let ∆ denote the free product C2 ∗ C2 ∗ C2 generated by r0, r1 and r2, and Γ be the
normal subgroup of index 2 in ∆ generated by a = r0r1 and b = r1r2, a free group of
rank 2. Any regular oriented hypermapH corresponds an unique normal subgroup H in Γ,
called the fundamental hypermap subgroup, such thatH ∼= (Γ/H;Ha,Hb). In this context
the chirality group ofH is given by X(H) = HH/H , where H = Hr1 . If 〈a, b | R(a, b)〉
is a presentation of the monodromy group G, where R(a, b) denotes a set of relators on a
and b, then the chirality group of H is X(H) = 〈R(a−1, b−1)〉G, the normal closure in G
of the subgroup generated by R(a−1, b−1) [2].

The regular oriented hypermapsH = (G; a, b) with 1 and 2 hyperfaces are all reflexible
and the chiral hypermaps with 3 and 4 hyperfaces are all (face-)canonical metacyclic, that
is, the monodromy group G is the metacyclic group 〈a, b | an = 1, bm = as, bab−1 = at〉
with (t − 1)s = 0 modn and tm = 1 modn. Equally we say that (G; a, b) is vertex-
canonical (resp. edge-canonical) metacyclic if 〈b〉 (resp. 〈ab〉) is normal in G. H is
vertex-canonical (resp. edge-canonical) metacyclic if and only if Hδ1 (resp. Hδ0) is face-
canonical metacyclic, where δ1 is the dual operation a 7→ b−1, b 7→ a−1 that transpose
hypervertices with hyperfaces, and δ0 is the dual operation a 7→ ab, b 7→ b−1 that transpose
hyperedges with hyperfaces. Another dual operation is the mirror operation µ : a 7→ a−1,
b 7→ b−1 that maps H to its mirror image Hµ = H. Face-, vertex- and edge-canonical
metacyclic hypermaps have cyclic chirality groups with chirality index n

gcd(n, t2−1) ; while

the chirality group of a face-canonical hypermap is generated by at
2−1 [7], the chirality

group of a vertex- or edge-canonical metacyclic hypermap is generated by (at
2−1δ1)−1 =

bt
2−1 or by at

2−1δ0 = (ab)t
2−1, respectively [8, Lemma 2.1]. Therefore a (face-, vertex-

or edge-) canonical metacyclic hypermap is chiral if and only if t2 6= 1 modn.
By canonical metacyclic we just mean face-canonical metacyclic.
In contrast, most of the hypermaps appearing in the classification [3] are not canoni-

cal metacyclic. However, we will show that all regular oriented hypermaps with a prime
number of hyperfaces have metacyclic automorphism groups, though not necessarily being
(face-, vertex- or edge-) canonical metacyclic hypermaps.

1.2 Primer hypermaps

We can use the equivalence of Proposition 11 of [4] for our definition of primer hypermap
as it gives a good general idea behind the concept. A (face-) primer hypermap is a regular
oriented hypermap with no non-trivial regular proper quotients with the same number of
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hyperfaces.
Any regular hypermapH = (G; a, b) covers a unique primer hypermap P = P(H). In

particular the hyperface valency l of its primer hypermap divides the hyperface valency n of
H. For consistency we reserve the letter ` to denote the valency of a hyperface of a primer
hypermap and set aside the letter n for the valency of a hyperface of a non necessarily
primer hypermap.

This primer hypermap can be constructed in the following way. When the elements
of G act on G (set of darts) on the right they act as monodromy elements, but when they
act on the left they act as automorphisms of H. Therefore each element γ ∈ G induces
an automorphism ϕγ : g 7→ γg of H. In particular the automorphisms ϕa : g 7→ ag and
ϕb : g 7→ bg, induced by a and b, correspond to one-step global counter-clockwise rotations
about the hyperface and the hypervertex (respectively) that contain the identity dart. Since
H is regular we have Aut(H) = 〈ϕa, ϕb〉 ∼= G and since functions in this paper act on the
right, ϕγ1γ2 = ϕγ2ϕγ1 and thus ϕ(γ1γ2)−1 = ϕγ−1

1
ϕγ−1

2
, and so,

H = (G; a, b) ∼= (Aut(H); (ϕa)−1, (ϕb)
−1) .

The action of Aut(H) on H induces a transitive action of Aut(H) on the set of the hy-
perfaces F = G/l〈a〉 of H, where the symbol G/lK represents the left cosets of K in G.
Under this action, each ϕγ ∈ Aut(H), or equivalently each γ ∈ G, determines a permu-
tation πγ ∈ Sym(F) defined by g〈a〉 7→ γg〈a〉. In particular, the automorphisms ϕa and
ϕb give rise to permutations A = πa

−1 and B = πb
−1 on F . Labelling the hyperfaces

of H by 1, 2, . . . , F , the permutations A and B are elements of the symmetric group SF .
Let P be the subgroup of SF generated by A and B. Then P = P(H) = (P ;A,B) is
the primer hypermap determined by H. The subgroup P of SF generated by A and B
is called the (face-) primer group of H. We note that we are not adopting the notation
P = (P ;A−1, B−1) we have used in [4].

The function Π : G −→ P , γ 7→ γΠ = πγ
−1 = πγ−1 which maps a 7→ A and

b 7→ B, is an epimorphism with kernelKern(Π) = 〈a|A|〉 (Proposition 5 of [4]). Therefore
it induces an epimorphism Π : H −→ P branched over hyperfaces. Moreover, since
P ∼= G/〈a|A|〉, we get:

Corollary 7 [4]: for any word r(A,B) onA,B, r(A,B) = 1 if and only if r(a, b) = au

for some u = 0 mod |A|”.
To recognise a canonical metacyclic hypermap from its primer we have the following

proposition:
Proposition 4 [4]: H is (face-) canonical metacyclic if and only if A = 1.
The chirality group of the primer hypermap is a factor group of the chirality group of

the hypermap (Proposition 9 of [4]), that is, X(P(H)) = X(H)/K for some K. Conse-
quently, the chirality index κ(P(H)) divides κ(H). Hence if P(H) is chiral then alsoH is
chiral. The converse is not true.

The main theorem of [4] says:
Theorem 16 [4]: P is a primer hypermap with p (prime) hyperfaces (each of valency `)
if and only if P ∼= Pp,`,tk = (M(p, `, 0, t); y, xyk) for some `, t ∈ {1, . . . , p − 1} and
k ∈ {0, ..., ` − 1} such that: (1) ` is a divisor of p − 1 , (2) t` = 1 mod p , (3) if
` > 1 , ti 6= 1 mod p for each i ∈ {1, 2, ..., `− 1}. Here M(p, `, 0, t) is the metacyclic
group 〈x, y | xp = y` = 1, xy = xt〉 = 〈x〉 o 〈y〉. Different parameters k, ` and t
correspond to non-isomorphic primer hypermaps with p hyperfaces of valency `.
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Note that ifH is a regular oriented hypermap with p (not necessarily prime) hyperfaces,
each of valency n, then H covers a unique primer hypermap P with p hyperfaces, each of
valency ` with ` dividing n. Also useful is the following corolloary:
Corollary 17 [4]: The H-sequences of the primer hypermaps Pp,`,tk given above are

(1) [p, p, 1 ; 1, 1, p ; p] if k = 0 and ` = 1 (⇒ t = 1) ;

(2) [p, `, ` ; `, p, p ; `p] if k = 0 and ` > 1 (⇒ p > 2) ;

(3) [`, p, ` ; p, `, p ; `p] if k = `− 1 > 0 (⇒ p > 2) ;

(4)
[

`

(`, k)
,

`

(`, k + 1)
, ` ; p(`, k), p(`, k + 1), p ; `p

]
if 0 < k < `− 1 (⇒ p > 2) ,

where, for space saving, (u, v) stands for gcd(u, v), the greatest common divider of u and
v.

2 Derivations
Before we start with the classification, we introduce several families of regular oriented
hypermaps that are derived from a given hypermap. These families together with their
properties will be useful later on.

Let H = (G; a, b) be a regular (oriented) hypermap with F hyperfaces of valency
n. The following regular hypermaps, which we call derivations of H, all have the same
number of hyperfaces F , and the same hyperface-valency n.

(1) The mirrorH = (G; a−1, b−1);

(2) The mid-mirror Mm(H) := (G; a, b−1);

(3) The k-Left family Lk(H) := (G; a, akb), for each k ∈ {1, ..., n− 1},

(4) The k-Right family Rk(H) := Lk(H)
ak

= (G; aa
k

, (akb)a
k

) = (G; a, bak), and

(5) The (0, 1)-dual D(0,1)(H) = Mm(L1(H)) = (G; a, (ab)−1); this is the hypermap
resulting fromH by swapping hypervertices with hyperedges.

One easily sees thatH = H, Mm(Mm(H)) = H,D(0,1)(D(0,1)(H)) = H,
Ln−k(Lk(H)) = Lk(Ln−k(H)) = H and Rn−k(Rk(H)) = Rk(Rn−k(H)) = H.

Let D(H) denote one of the derivations of H. Then D defines an operation D : H 7→
D(H) that takes a regular oriented hypermap with F hyperfaces of valency n to a regular
oriented hypermap with F hyperfaces of valency n. This operation has the inverse defined
by

D−1 =

 D if D is the mirror, mid-mirror or the (0, 1)-dual
Ln−k if D = Lk
Rn−k if D = Rk .

Denote by Π, Π, ΠM , ΠL and ΠR the corresponding homomorphisms G −→ Sp,
γ 7→ πγ−1 . For example, Π : a 7→ πa−1 , b 7→ πb−1 and ΠL : a 7→ πa−1 , akb 7→ πb−1a−k .
As bΠL = (a−kakb)ΠL = a−kΠL a

kbΠL = πakπb−1a−k = πb−1a−k ak = πb−1 , then
ΠL = Π. Similarly we have Π = Π = ΠL = ΠM . Since the primer hypermap of H is
P(H) = (GΠ; aΠ, bΠ) andH is primer if and only if Ker(Π) = 1, we immediately have,

Proposition 2.1. LetH be a regular hypermap and P(H) be its primer hypermap. Then
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(1) P(D(H)) = D(P(H)), for any derivation D ofH.

(2) H is primer if and only if any of its derivations is primer .

Let FP denote the family of regular hypermaps with primer hypermap P . As an im-
mediate consequence of above, D(FP) = FD(P), and, as a consequence of this, we have
D(H) ∈ FP ⇔ H ∈ FD−1(P).

Let H = (G; a, b) be a regular hypermap and 〈a, b | R(a, b)〉 be a presentation for the
monodromy groupG. Let x = X(a, b) and y = Y (a, b) be another pair of generators ofG.
Then the original generators a and b can be written as words in x and y, say a = A(x, y)
and b = B(x, y).

Proposition 2.2. If the change of generators a to x and b to y produce no extra relations,
that is, if x = X(A(x, y), B(x, y)) and y = Y (A(x, y), B(x, y)) are not new relations,
and there is a w ∈ G such that the conjugations Aw = w−1Aw and Bw = w−1Bw

coincide with their inverse order words, in symbols Aw =
←−
A and Bw =

←−
B , then both

hypermapsH = (G; a, b) and Q = (G;x, y) have the same chirality group.

Proof. The non-existence of any extra relations implies that 〈x, y | R
(
A(x, y), B(x, y)

)
〉

is another presentation of G, this time as a function of the new generators x and y. By
Theorem 1 of [2] we have,

X(Q) = 〈R(A(x−1, y−1), B(x−1, y−1))〉G = 〈R(
←−
A (x, y)

−1
,
←−
B (x, y)

−1
)〉G

= 〈R(Aw(x, y)
−1
, Bw(x, y)

−1
)〉G

= 〈R(A(x, y)
−1
, B(x, y)

−1
)〉G = 〈R(a−1, b−1)〉G

= X(H) .

We saw in Proposition 2.1 thatH is primer if and only if any of its derivations D(H) is
also primer. Now we show that this is also true for chirality.

Corollary 2.3. Let D be a derivation of H. Then X(D(H)) = X(H); that is H and its
derivations D(H) all share the same chirality group. In particular, if some derivation ofH
is chiral then alsoH is chiral.

Proof. In Proposition 2.2 take w = id if Q = H or Mm(H), and take w = a−k if
Q = Lk(H) or Rk(H).

Consider the families P
p

I
= {P

p,1,1

0 }, P
p

II
= {P

p,`,t

0 }
`,t

with ` > 1, P
p

III
= {P

p,`,t

`−1 }`,t
with ` > 1, andP

p

IV
= {P

p,`,t

k }
k,`,t

with ` > 1 and 0 < k < `−1, of the primer hypermaps
with H-sequences (1), (2), (3) and (4) respectively, of Corollary 17 [4]. Then P

p

III
=

R`−1(P
p

II
) and P

p

IV
= Rk(P

p

II
). Taking into account Corollary 2.3 and [7, Corollary 9]

for the chirality group of canonical metacyclic hypermap, we have the following result
shown in [4]:

Corollary 2.4. If P = Pp,`,tk = (G; y, xyk) is a primer hypermap with p hyperfaces (p
prime) then

X(P) =

 1 (reflexible) if P ∈ P
p

I

〈yt
2−1〉 if P ∈ P

p

II
,P

p

III
or P

p

IV
.
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3 The classification
Let p be a prime number. We now proceed with the classification of the regular oriented
hypermaps with p hyperfaces. Let H = (G; a, b) be a regular oriented hypermap with p
hyperfaces (of valency n) and P = (GΠ; aΠ, bΠ) = (P ;A,B) be its primer hypermap,
which also has p hyperfaces. In what follows,

M(n, p, u, t) := 〈a, b | an = 1, bp = au, b−1ab = at〉

is the metacyclic group with parameters n, p, u, t, and

Gp,`,tn,u,v := 〈a, b | an = 1, bp = au, [a`, b] = 1, bab−t = av〉 .

Before we state and prove the main theorem, we first prove the following lemma,

Lemma 3.1. Let G = 〈a, b〉, p an odd prime and t, ` positive integers such that t 6=
1 mod p, t` = 1 mod p and p = 1 mod `. If (i) bp ∈ 〈a`〉, (ii) biab−it ∈ 〈a`〉a, for
any i = 1, 2, . . . , p , then b� a`, where the symbol � means “commutes with”.

Proof. As t` = 1 mod p, by (i) we have bt
`−1 ∈ 〈a`〉. On the other hand, taking i =

1, t, t2, . . . , t`−1, (ii) yields the following information bab−t, btab−t
2

, ..., bt
`−1

ab−t
`

∈
〈a`〉a. Multiplying the first i of these words (in the same order as shown) and the last
` − i words we get baib−t

i

∈ 〈a`〉ai and bt
i

a`−ib−t
`

∈ 〈a`〉a`−i, respectively. Then
ba`b−t

`

∈ 〈a`〉 and thus

ba`b−1 = (ba`b−t
`

) bt
`−1 = aV

for some V = 0 mod `. On the other hand,

bt
i

a`b−t
i

= (bt
i

a`−ib−1)(baib−t
i

) = (baib−t
i

)(bt
i

a`−ib−1) = ba`b−1 = aV

for each i ∈ {0, ..., ` − 1, `}. Consequently, b(t
i−1)a`b1−t

i

= b−1aV b = a` for every
integer i ∈ {0, ..., `− 1, `}. Taking i = ` we get

[a`, bt
i−1] = 1, i = 0, ..., `.

In particular,

b(t−1)+(t2−1)+...+(t`−1−1) = b(1+t+t
2+...+t`−1)−` � a` . (3.1)

As t 6= 1 mod p and t` − 1 = (t − 1)(1 + t + t2 + ... + t`−1) = 0 mod p, one has
(1 + t+ t2 + ...+ t`−1) = 0 mod p, and so by (3.1) we have b` � a`. As ` is a divisor of
p− 1, we also have bp−1 � a`. Consequently

[a`, b] = 1.

Theorem 3.2. If H = (G; a, b) is a regular oriented hypermap with p (prime) hyperfaces,
each of valency n, thenH is isomorphic to one of the following hypermaps:
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(1) CMn,p,u,t = (M(n, p, u, t); a , b) for some u, t ∈ {0, 1, . . . , n− 1} such that

(t− 1)u = 0 modn and tp = 1 modn ;

(2) Hp,`,t,kn,u,v = (Gp,`,tn,u,v; a , ba
k) (p odd prime) , for some ` ∈ {2, . . . , n},

u, v ∈ {0, . . . , n− 1}, k ∈ {0, ..., `− 1} and t ∈ {2, . . . , p− 1} such that

(H1) gcd(p− 1, n) = 0 mod ` ,
(H2) t` = 1 mod p and ti 6= 1 mod p for i ∈ {1, 2, ..., `− 1}

(that is, t has order ` in Z∗p = Zp\{0}) ,
(H3) u = 0 mod `, v = 1 mod ` and
(H4) (t− 1)u+ p(v − 1) = 0 modn .

Moreover, all these hypermaps Hp,`,t,kn,u,v for `, t, k, n, u, v satisfying the above condi-
tions, have p hyperfaces of valency n, and different parameters (`, t, k, u, v) correspond to
non-isomorphic hypermaps with p hyperfaces of valency n.

Proof. Let H = (G; a, b) be a regular oriented hypermap with p (prime) hyperfaces and
P = (P ;A,B) be its primer hypermap where A = aΠ and B = bΠ. By Theorem 16 of
[4], P = Pp,`,tk , for some k, ` and t. We treat separately the following cases: A=1 (Case
1), A 6= 1 and |B| = p (Case 2) and A 6= 1 and |B| 6= p (Case 3).

Case 1. If A = 1 then H is canonical metacyclic and P = P is the spherical cyclic
hypermap Cp = (Cp; 1, B) (Proposition 4 of [4]). Then H is isomorphic to CMn,p,u,t =
(M(n, p, u, t); a, b) for some u and t such that (t− 1)u = 0 modn and tp = 1 modn. �

Case 2. |A| = ` > 1 and |B| = p. By Theorem 16 of [4], and Corollary 17 of [4] (see
also §1.2), P(H) = Pp,`,t0 = (P ;A,B), where

P = 〈A,B | A` = 1, Bp = 1, A−1BA = Bt〉 , (3.2)

for some t ∈ {1, . . . , p − 1} such that t` = 1 mod p and ti 6= 1 mod p for i =
1, 2, ..., `− 1. By Proposition 15 of [4], ` is a divisor of p− 1 (that is, p = 1 mod `).

From A−1BA = Bt we deduce that BiAB−it = A for each integer i. Applying
Corollary 7 of [4] (see also §1.2 ), we derive the following relations in G:

(i) an = 1 with n = 0 mod `;
(ii) bp = au, u = 0 mod `;

(iii) biab−it = avi , vi = 1 mod `, i = 1, ..., p− 1 (also true for i = p).

These equations define a group that is right factorised byK = 〈a〉 into p cosets. Indeed, on
the one handK,Kb, . . . ,Kbp−1 are distinct cosets because p is the smallest positive integer
such that bp belongs to K = 〈A〉, and on the other hand, since {0, t, 2t, ..., (p− 1)t} is a
complete set of residues modulo p, equation (iii) implies that the set of right cosets of K in
G is G/rK = {K, Kb, ... , Kbp−1}. Hence the monodromy group ofH is given by

G = 〈a, b | an = 1, bp = au, biab−it = avi , i = 1, ..., p− 1〉
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for some integers n = 0 mod `, u = 0 mod ` and vi = 1 mod `, i = 1, ..., p − 1. We
now simplify this presentation.

From relation (iii) we have biab−it ∈ 〈a`〉a, valid for any i. By Lemma 3.1 ,

[a`, b] = 1.

Adding the relation [a`, b] = 1 to the presentation of G, some relations of the previous
presentation will turn out to be redundant. From (iii), i = 1, we deduce b2ab−2t =
b(bab−t)b−t = bav1b−t = av1−1bab−t = a2v1−1 = a2(v1−1)+1; and more generally

biab−it = ai(v1−1)+1, i = 1, ..., p− 1 and p.

Thus all the relations in (iii) except the first one are redundant. Now for i = p we also have
bpab−pt = a(1−t)u+1; therefore a(1−t)u+1 = ap(v1−1)+1 which implies

(1− t)u = p(v1 − 1) modn.

The hypermapH is then isomorphic toHp,`,t,0n,u,v := (Gp,`,tn,u,v; a, b), where

Gp,`,tn,u,v = 〈a, b | an = 1, bp = au, [a`, b] = 1, bab−t = av〉 ,

for some `, t, n, u and v such that p = 1 mod `, t` = 1 mod p, ti 6= 1 mod p for
each i ∈ {1, 2, ..., ` − 1}, u = 0 mod `, v = 1 mod `, n = 0 mod ` and (1 − t)u =
p(v − 1) modn.

Conversely, we show that if H = Hp,`,t,0n,u,v for some `, t, n, u, v satisfying the above
conditions, then H has p hyperfaces of valency n. Factoring G = Gp,`,tn,u,v by the normal
subgroup 〈a`〉 yields the monodromy group of the primer hypermap P = Pp,`,t0 with p
hyperfaces of valency `. Then ` divides |a| and so both P = H/〈a`〉 andH have the same
number of hyperfaces, p.

As gcd(t − 1, p) = 1 there exist integers c and d such that c(t − 1) + dp = 1. Then
the assignment a 7→ a, b 7→ ac(1−v)+du turn each of the relators of G into the identity of
Cn = 〈a | an = 1〉 and so it defines an epimorphism from G to the cyclic group Cn. This
proves that the order of a in G is n. ConsequentlyH has p hyperfaces of valency n. �

Case 3. |A| = ` > 1 and |B| 6= p. By Theorem 16 of [4], and Corollary 17 of [4],

P(H) = Pp,`,tk = (M(p, `, 0, t);A, βAk) = Rk((M(p, `, 0, t);A, β)) = Rk(Pp,`,t0 )

for some k ∈ {0, ..., `− 1} and t ∈ {1, 2, . . . , p− 1}, where M(p, `, 0, t) = 〈β,A | βp =
A` = 1, βA = βt〉 = 〈β〉 o 〈A〉 and (1) ` is a divisor of p − 1 , (2) t` = 1 mod p and
(3) if ` > 1 , ti 6= 1 mod p for each i ∈ {1, 2, ..., `− 1}.

Then P(R`−k(H)) = Pp,`,t0 . By case 2, R`−k(H) = Hp,`,t,0n,u,v = (Gp,`,tn,u,v; a, b). Thus

H = Hp,`,t,kn,u,v := Rk(Hp,`,t,0n,u,v ) = (Gp,`,tn,u,v; a , ba
k) ,

for some k ∈ {0, ..., `− 1}. �

Finally we show that different parameters lead to different hypermaps.
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(1) If CMn,p,u,t = (M ; a, b) ∼= CMn′,p′,u′,t′ = (M ′;α, β) then p′ = p and n′ = n,
since the number of hyperfaces and their valencies should be the same. Then it becomes
obvious that we must have u′ = u and t′ = t since these parameters run from 0 to n− 1.
(2) IfHp,`,t,kn,u,v

∼= Hp
′,`′,t′,k′

n′,u′,v′ , then, as above, we must have p′ = p and n′ = n. Looking at
the primer hypermaps,

P(Hp,`,t,kn,u,v ) = Pp,`,tk
∼= P(Hp,`

′,t′,k′

n,u′,v′ ) = Pp,`,t
′

k′ ,

this forces `′ = `, t′ = t and k′ = k (Theorem 16 [4]). But then we have Hp,`,t,kn,u,v =

Rk(Hp,`,t,0n,u,v ) and Hp,`,t,kn,u′,v′ = Rk(Hp,`,t,0n,u′,v′), so we must also have Hp,`,t,0n,u,v
∼= Hp,`,t,0n,u′,v′ . It is

now clear that this isomorphism implies u′ = u and v′ = v, since u, u′, v, v′ are restrict to
{0, . . . , n− 1}.

Each hypermapH with p hyperfaces, p prime, with each hyperface of valency n, covers
only one primer hypermap also with p hyperfaces of valency ` = |A| (a divisor of n). This
primer hypermap is

P(CMn,p,u,t) = Cp = (Cp; 1, B) , ifH = CMn,p,u,t, or

P(Hp,`,t,kn,u,v ) = Pp,`,tk = (Gp,`,t0 ; a, bak) , ifH = Hp,`,t,kn,u,v .

Among the hypermaps in the familyHp,`,t,kn,u,v many of them share the same group and are
distinguished by different pairs of generators. In the previous proof we find the requisites
necessary to prove that Gp,`,tn,u,v is a metacyclic group.

Proposition 3.3. Gp,`,tn,u,v is a metacyclic group isomorphic to Gp,`,tn,0,1 = M(p, n, 0, t) =

〈β, α | βp = 1, αn = 1, α−1βα = βt〉 under the isomorphism ψ : a 7→ α, b 7→ βαθ,
where θ = c(1 − v) + du, for some c, d satisfying c(t − 1) + dp = 1 = gcd(t − 1, p).
Moreover, Hp,`,t,kn,u,v

∼= Rθ+k(Hp,`,tn ), where Hp,`,tn is the canonical metacyclic hypermap
(Gp,`,tn,0,1;α, β).

Proof. Consider the group

Gp,`,tn,0,1 = 〈α, β | αn = 1, βp = 1, βαβ−t = α〉
= 〈β, α | βp = 1, αn = 1, α−1βα = βt〉
= M(p, n, 0, t) .

Note that βαβ−t = α⇔ α−1βα = βt implies that βiαβ−it = α for any i; so by Lemma
3.1, [α`, β] = 1. This group, being metacyclic, has order np. Note also that the condition
t` = 1 mod p is stronger than the metacyclic condition tn = 1 mod p. Let c and d be
such that c(t− 1) + dp = 1, and let θ = c(1− v) + du. Then

θ = 0 mod `, so αθ ∈ Z(Gp,`,tn,0,1) ,

θp = cp(1− v) + pdu = c(t− 1)u+ pdu = (c(t− 1) + pd)u = u , and

θ(1− t) = (1− t)c(1− v) + (1− t)u d
= (1− t)c(1− v) + p(v − 1)d
= (t− 1)c(v − 1) + p(v − 1)d
= (v − 1)((t− 1)c+ pd)
= v − 1 .
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The assignment ψ : a 7→ α, b 7→ βαθ, transfers the relators of Gp,`,tn,u,v to relators of Gp,`,tn,0,1

as we can observe:

1) an −→ αn = 1,

2) bpa−u −→ (βαθ)pα−u = βpαθpα−u = αuα−u = 1,

3) [a`, b] −→ [α`, βαθ] = [α`, β] = 1,

4) bab−ta−v −→ βαθα(βαθ)−tα−v = βαβ−tαθα−θtα−v

= αθ(1−t)αα−v = αv−1α1−v = 1,

By the Substitution Test [15, Theorem 4, pg 29], ψ : Gp,`,tn,u,v → Gp,`,tn,0,1 is an epimor-
phism. As |Gp,`,tn,0,1| = |Gp,`,tn,u,v|, ψ is indeed an isomorphism and thus Gp,`,tn,u,v is metacyclic.
This isomorphism also shows that Hp,`,tn,u,v = Hp,`,t,0n,u,v is isomorphic to Rθ(Hp,`,tn ). Then
Hp,`,t,kn,u,v = Rk(Hp,`,tn,u,v)

∼= Rθ+k(Hp,`,tn ).

Corollary 3.4. IfH is a regular oriented hypermap with a prime number of hyperfaces then
its automorphism group is metacyclic, thoughH is not necessarily canonical metacyclic.

4 Chirality groups and H-sequences

Theorem 4.1. The chirality groups of CMn,p,u,t andHp,`,t,kn,u,v are the cyclic groups 〈at
2−1〉

and 〈bt
2−1〉 respectively. The chirality index of CMn,p,u,t is n

(n,t2−1) while the chirality

index ofHp,`,t,kn,u,v is

p

gcd(p, t2 − 1)
=

{
1 , t = p− 1
p , t ∈ {2, . . . , p− 2}

Proof. The canonical metacyclic hypermap CMn,p,u,t has chirality group 〈at
2−1〉 [7].

By Proposition 3.3, Hp,`,t,kn,u,v = Rθ+k
(
Hp,`,tn

)
and, by Proposition 2.3, Hp,`,t,kn,u,v has the

same chirality group as the vertex-canonical metacyclic hypermap Hp,`,tn = (Gp,`,tn ; a, b),
where

Gp,`,tn = M(p, n, 0, t) = 〈b, a | bp = 1, an = 1, a−1ba = bt〉 .

HenceHp,`,t,kn,u,v has chirality group 〈bt
2−1〉 [7], a subgroup of the cyclic group 〈b〉 of order

p (prime). If Hp,`,t,kn,u,v is not reflexible (bt
2−1 6= 1 ⇔ t 6= −1 mod p, since t ≥ 2), it must

has order p, and thusHp,`,t,kn,u,v has chirality index κ = p.

Corollary 4.2. If H is a regular oriented hypermap with a prime number of hyperfaces
and its primer hypermap is P = (P ;A,B), with A 6= 1, then H is reflexible if and only if
|A| = 2.
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Theorem 4.3. The H-sequences of the hypermaps of Theorem 3.2 are

CMn,p,u,t :

[
pn

(n, u)
,

pn

(n, tp−1 + ...+ 1 + u)
, n ; (n, u), (n, tp−1 + ...+ 1 + u), p ; pn

]
Hp,`,t,0n,u,v :

[
pn

(n, u)
,

n

(n, θ + 1)
, n ; (n, u), p(n, θ + 1), p ; pn

]

Hp,`,t,`−1n,u,v :

[
n

(n, θ + `− 1)
, ((

pn

(n, u)
,
n

`
)), n ; p(n, θ + `− 1),

pn

(( pn
(n,u) ,

n
` ))
, p ; pn

]

Hp,`,t,kn,u,v :

[
n

(n, θ + k)
,

n

(n, θ + k + 1)
, n ; p(n, θ + k), p(n, θ + k + 1), p ; pn

]
,

(0<k<`−1)

where, for space saving, (u, v) stands for gcd(u, v), ((u, v)) stands for lcm(u, v), the least
common multiple of u and v, θ = c(1 − v) + du, and c and d are integers such that
c(t− 1) + dp = 1 = (t− 1, p).

Proof. Recall that the H-sequence ofH = (G; a, b) is a sequence of numbers

[|b|, |ab|, |a|;V,E, F ; |G|]

where |b| (the order of b) is the hypervertex-valency, |ab| is the hyperedge-valency, |a| is
the hyperface-valency, V = |G|

|b| is the number of hypervertices, E = |G|
|ab| is the number of

hyperedges and F = |G|
|a| is the number of hyperfaces.

• For the canonical metacyclic hypermap CMn,p,u,t = (G; a, b), where

G = M(n, p, u, t) = 〈a, b | an = 1, bp = au, b−1ab = at〉,

it is clear that |a| = n, |b| = pn
gcd(n,u) and |G| = pn. We only need to calculate

|ab| = |ba|. From the relation b−1ab = at we get: amb = bamt and abm = bmat
m

,
for any positive integer m. From this we easily derive

(ba)m = bmat
m−1+···+t+1 .

Now as CMn,p,u,t covers P = (Cp; 1, B), the order of ba is a multiple of p. As
(ba)p = at

p−1+···+t+1+u, then |ba| = pn
gcd(n,tp−1+...+1+u) . The rest of the H-

sequence is easily determined from these values.

• For H = Hp,`,t,0n,u,v = (G; a, b), where G = Gp,`,tn,u,v , we also have |a| = n, |b| =
pn

gcd(n,u) and by Proposition 3.3, |G| = pn. Therefore we only need to calculate
|ab| = |ba|.

• For H = Hp,`,t,`−1n,u,v = (G; a, ba`−1), where G = Gp,`,tn,u,v , we have |a| = n,
|aba`−1| = |ba`| = lcm(|b|, |a`|) = lcm( pn

gcd(n,u) ,
n
` ), where |G| = pn. There-

fore we only need to calculate |ba`−1|.
• For H = Hp,`,t,kn,u,v = (G; a, bak), where G = Gp,`,tn,u,v , we have |a| = n, |abak| =

|bak+1| and |G| = pn. Therefore we only need to calculate |bak+1|.
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To complete the H-sequence in the last three cases, we need to calculate the order of
ajb for j ∈ {1, ..., ` − 1}, within the group G = Gp,`,tn,u,v . This group is isomorphic to
the metacyclic group M(p, n, 0, t) = 〈β, α | βp = 1, αn = 1, βα = βt〉 under the
isomorphism ψ : G → M(p, n, 0, t), a 7→ α, b 7→ βαθ (Proposition 3.3), where θ =
c(1−v)+du (which is a multiple of `), and c and d are integers such that c(t−1)+dp = 1.
Then the order of ajb is the order of αjβαθ = αθ+jβ = αiβ, where i = θ+ j 6= 0 mod `.
We now follow the proof of Corollary 17 of [4] to compute the order of βαi.

The third equation of M(p, n, 0, t) implies that βα
i

= βt
i

⇔ βαi = αiβt
i

. By
induction we get

(βαi)m = αimβt
im+ti(m−1)+···+ti = αimβV (m) ,

where V (m) = tim + ti(m−1) + · · · + ti = ti(ti(m−1) + · · · + t + 1). Let U(m) =
ti(m−1) + · · ·+ t+ 1. Now the order of βαi is the least positive integer m such that

(βαi)m=1⇔ αimβV (m) = 1⇔ αim = β−V (m) ∈ 〈α〉∩〈β〉 = 1⇔ αim = βV (m) = 1.

Hence m is multiple of |αi|. On the other hand, β has order p and βV (m) = 1⇔ V (m) =
0 mod p⇔ tiU(m) = 0 mod p⇔ U(m) = 0 mod p, since t ∈ Z∗p = {1, 2, . . . , p− 1}.
Now ` | p − 1 and t` = 1 mod p and tq 6= 1 mod p, for any q < `, that is tq 6= 1 mod p

for any q 6= 0 mod `. Since i = θ + j 6= 0 mod `, then U(m) = tim−1
ti−1 , and so

U(m) = 0 mod p ⇔ tim = 1 mod p .

Thus, if m is just the order of αi, that is, if m = n
gcd(n,i) , then im is a multiple of n and

so a multiple of ` (n = 0 mod `), and consequently m also satisfies βV (m) = 1. Hence
|βαi| = |αi|, that is,

|ajb| = |βαθ+j | = |αθ+j | = n

gcd(n, θ + j)
.

5 Number of hypermaps with p hyperfaces
To count the number of regular oriented hypermaps with p (prime) hyperfaces of valency n
it suffices to count the different parameters appearing in items (1) and (2) of Theorem 3.2.
Let NH(1)(p, n) be the number of regular oriented hypermaps CMn,p,u,t in item (1) with
p hyperfaces of valency n, and NH(2)(p, n) be the number of regular oriented hypermaps
Hp,`,t,kn,u,v in item (2) with p hyperfaces of valency n. Then

(1) Denote by Up(n) the subgroup of the units of Zn whose elements t satisfy tp =
1 modn. Let µ(t) be the number of solutions u of (t− 1)u = 0 modn. Then

NH(1)(p, n) =
∑

t∈Up(n)

µ(t) =
∑

t∈Up(n)

gcd(t− 1, n) .

Now let NRH(1)(p, n) and NCH(1)(p, n) be the number of reflexible and chiral
(respectively) regular oriented canonical metacyclic hypermaps H = CMn,p,u,t in
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item (1) with p hyperfaces of valency n. By Theorem 4.1, H is reflexible if and
only if t2 = 1 modn. This implies that tm = 1 modn for any even m, and so,
combining with tp = 1 modn, we get t = 1 modn. Then

NRH(1)(p, n) = gcd(0, n) = n

and

NCH(1)(p, n) =
∑

t∈U∗p (n)

gcd(t− 1, n) ,

where U∗p (n) = {t ∈ Up(n) | t 6= 1 modn}.

(2) Denote by ℘(t, `) the number of pairs (u, v) satisfying the equations u = 0 mod `,
v − 1 = 0 mod ` and (H4). Since k freely ranges in {0, 1, . . . , `− 1}, then

NH(2)(p, n) =
∑

`|gcd(p−1,n)
`>1

∑
t∈G`

∑
k

℘(t, `) =
∑

`|gcd(p−1,n)
`>1

∑
t∈G`

`℘(t, `) ,

where G` is the set of elements of order ` in the cyclic group Zp∗ = Cp−1. Since
p and t − 1 are coprimes, the number of pairs of solutions (u, v − 1) mod n of
(H4) is exactly n; so the number ℘(t, `) of solutions pairs (u, v − 1) modn which
are multiple of `, where n = 0 mod `, of (H4), is the number of solutions pairs
(u` ,

v−1
` ) mod n

` of

u

`
(t− 1) +

v − 1

`
p = 0 mod

n

`
,

which is exactly ℘(t, `) = n
` . Therefore

NH(2)(p, n) =
∑

`|gcd(p−1,n)
`>1

∑
t∈G`

`
n

`
= n

∑
`|gcd(p−1,n)

`>1

Φ(`) ,

where Φ is the Euler Phi-function. In the special case when p is a Fermat prime, p−1
is a power of 2 and so NH(2)(p, n) = 0 for n odd. The total number NH(p, n) of
regular oriented hypermaps with p (prime) hyperfaces of valency n is then given by:

NH(p, n) = NH(1)(p, n) +NH(2)(p, n)

=
∑

t∈Up(n)

gcd(t− 1, n) +
∑

`|gcd(p−1,n)
`>1

nΦ(`) .

Denote by NRH(2)(p, n) and NCH(2)(p, n) the number of reflexible and chiral (re-
spectively) regular oriented hypermaps H = Hp,`,t,kn,u,v in item (2). By Theorem 4.1,
H is reflexible if and only if t = −1 mod p. This is equivalent to ` = 2 (and this
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implies n even). Hence

NRH(2)(p, n) =

{
0 , if n is odd,

n , if n is even.

NCH(2)(p, n) = n
∑

`|gcd(p−1,n)
`>2

Φ(`) .

Note that if n is odd thenHp,`,t,kn,u,v is chiral with chirality index p.

Denoting byNRH(p, n) andNCH(p, n) the number of reflexible and chiral regular
oriented hypermaps with p (prime) hyperfaces of valency n, then

NRH(p, n) = NRH(1)(p, n) +NRH(2)(p, n) =

{
n , if n is odd,

2n , if n is even.

and NCH(p, n) = NCH(1)(p, n) +NCH(2)(p, n).
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