
Informatica 38 (2014) 367–376 367

Incremental Hierarchical Fuzzy Model Generated from Multilevel
Fuzzy Support Vector Regression Network

Ling Wang, DongMei Fu and LuLu Wu
School of Automation & Electrical Engineering, University of Science and Technology, Beijing, 100083, China
Key Laboratory of Advanced Control of Iron and Steel Process (Ministry of Education), Beijing, 100083, China

Keywords: FCM clustering, fuzzy association rules, incremental hierarchical fuzzy model, multilevel fuzzy support
vector regression network

Received: March 23, 2014

Fuzzy rule-based systems are nowadays one of the most successful applications of fuzzy logic, but in
complex applications with a large set of variables, the number of rules increases exponentially and the
obtained fuzzy system is scarcely interpretable. Hierarchical fuzzy systems are one of the alternatives
presented in the literature to overcome this problem. This paper presents a multilevel fuzzy support
vector regression network (MFSVRN) model that learns incremental hierarchical structure based on the
Takagi-Sugeno-Kang(TSK) fuzzy system with the aim of coping with the curse of dimensionality and
generalization ability. From the input–output data pairs, the TS-type rules and its parameters are
learned by a combination of fuzzy clustering and linear SVR in this paper. In addition, an efficient input
variable selection method of the incremental multilevel network is proposed based on the FCM
clustering and fuzzy association rules. To achieve high generalization ability, the consequence
parameters of a rule are learned through linear SVR with a new TS-kernel. This paper demonstrates the
capabilities of MFSVRN model by conducting simulations in function approximations and a chaotic
time-series prediction. This paper also compares simulation results from the single-level counterparts-
FSVRN and Jang’s ANFIS model.
Povzetek:Predstavljen je hierarhični mehek model, zgrajen iz večnivojske mehke regresijske mreže.

1 Introduction
As is widely known, fuzzy rule-based systems have been
proposed and successfully applied to solving problems
such as classification, identification, control, etc. At
present, one of the important issues in fuzzy rule-based
systems is how to reduce the total number of involved
rules and their corresponding computation requirements.
In a single fuzzy system, in order to maintain a specified
accuracy, the number of rules grows exponentially with
the number of input variables or input fuzzy sets, but the
interpretability of the fuzzy system is lost.  Hence, to
deal with the “curse of dimensionality” and the rule-
explosion problem, hierarchical fuzzy system (HFS) was
proposed [1] and have attracted much attention in recent
years. Most hierarchical fuzzy systems [2-9] consist of a
number of low-dimensional fuzzy systems in a
hierarchical form, the number of rules can be reduced to
as low as being a linear function of the number of input
variables. A HFS is made up of a set of fuzzy subsystems
or modules. These modules are linked such a way that
the output of a module is the input of other ones. Fig.1
depicts some possible hierarchical models for 4 input
variables and 2 hierarchical levels or 3 hierarchical
levels. The incremental structure is shown in Fig.1(a), in
which the inputs of a module is the output of the previous
ones, along with external variables[2-6]. The aggregated
structure is shown in Fig.1(b), in which the first level is
made up of a set of modules receiving the input

variables, and each variable is used as an input only in a
single module. The outputs of the modules in the first
level are the inputs of the modules which constitute the
next level, and so on [7-9].

Figure1: Example of HFS Structure.

Our research focused on the incremental hierarchical
structure. In this hierarchy, it is important to determine
its input variables and their interactions in different
levels. In general, by analyzing the relative importance of
input variables, the most important input variables are
assigned to the lowest level and the least important input
variables are assigned to the highest level [12-13]. In
order to assign the correlated or coupled input variables
to the same level in hierarchical fuzzy system, Chung
and Duan [13] introduced a correlation matrix to
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determine the correlated or coupled input variables.
In[22], a multi-objective genetic algorithm (MOGA) is
adopted to determine the input variables of each level
module and the hierarchical architecture. In [6], an
evolutionary algorithm (EA) is investigated to select the
input variables and the topology in HFS. But GA and EA
are all very time-consuming searching process.

In the hierarchical fuzzy system design, each single-
level module serves as individual reasoning level. As a
fuzzy reasoning mechanism, Takagi-Sugeno-Kang (TSK)
type is most widely used. The well-known Jang’s
ANFIS[21] model based on layered network architecture
was firstly proposed. In [10] and [11], the neural-fuzzy
network is also used to realize TSK fuzzy reasoning.
Usually, the consequent in Takagi-Sugeno fuzzy model
is a crisp function of antecedent variables, and the
recursive least squares (RLS) is used to determine the
parameters of nonlinear consequents. However, this
further RLS tuning is based on empirical risk
minimization and lack of the high generalization ability.
The idea of solving this parameter estimation problem by
incorporating SVR (support vector regression) into TSK
model has recently attracted a lot of attention [23-24]. In
[23], a SVR-based FNN was proposed that the fuzzy if–
then rules are generated based on the extracted SVs.
Since the number of SVs in an SVR is usually very large,
the model size of a designed FS is equally large. In [24],
fuzzy c -means (FCM) is used to generate fuzzy rules
and their antecedent parameters, the consequent part
parameters are obtained by SVR learning. In contrast to
fuzzy neural network, the use of SVR for TSK learning
has a smaller number of parameters and the use of kernel
transformation retains the SVR’s good generalization
ability.

This paper proposes a multilevel fuzzy support
vector regression network (MFSVRN) model to design a
fuzzy system to solve the dimensionality problem and
generalization performance. In order to achieve efficient
input variables in each level, we adopt the FCM
clustering algorithm [15] and fuzzy association rules
mining method [19] to construct a MLFSVRN model
with incremental architecture. In addition, based on
neuro-fuzzy systems, a novel TSK type fuzzy reasoning
system with support vector regression learning
mechanism called fuzzy support vector regression
network (FSVRN) is applied to the modules of
hierarchical fuzzy system. To improve the prediction
performance of hierarchical fuzzy system, the
consequence parameters of a rule are learned through
linear SVR with a new TS-kernel. In the view of single-
level FSVRN, the overall network-Multilevel fuzzy
support vector regression network (MLFSVRN) is
formulated.

The paper is organized as follows: Section 2 briefly
describes the data mining techniques used in this paper.
Section 3 presents our research methodology including
input selection algorithms and construction of the
multilevel support vector regression network models.
Section 4 shows the experimental results. Finally,
Section 5 concludes the paper with our final remarks.

2 Related knowledge

2.1 Fuzzy C-Means (FCM) clustering
Fuzzy c-Means (FCM) clustering algorithm [15-16] is an
iterative optimization algorithm that minimizes the cost
function (1) subjecting to ];1,0[iju
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is the i th data sample, n is the number of data

points; ),1( m is a weighting constant.

The optimal clusters are produced by minimizing the
objective function.

2.2 Fuzzy association rules
For the numerical data, fuzzy association rules [19] are
easily understood by humans because of the fuzzy
termsets. In order to mine fuzzy association rules, we
apply FCM clustering to transform each of the numeric
variables into fuzzy sets (fuzzy partition) with its
membership function u , and then these fuzzy partitions
are used to generate fuzzy rules. Meanwhile, the centre
of each fuzzy set and the maximum and minimum value
for each partition of the input data points are determined
by FCM. By finding the centre of each partition, we can
label it very easily according to the data point at which
the core occurs. The labelling of each partition is very
important as it helps a lot in the -eventual generation of
fuzzy association rules.

Given a set of records, n is the record number, two
items  pxxxX ,,, 21  and  qyyyY ,,, 21  , p is the

length of the itemset X , q is the length of the itemset Y .

The fuzzy set membership value of variable jx in the

i th record is denoted )( ijxu . The Apriror approach is

used for extracting fuzzy itemsets from a fuzzy data set
based on interesting measures(support and confidence)
and able to generate fuzzy association rules. A fuzzy
association rule is an implication of the
form )()( BisYAisX  . A and B are fuzzy sets that

characterize X and Y respectively. The measures of
support, confidence and correlation have been fuzzified
for the purpose of fuzzy association rules. The fuzzy
support of X is defined as follows.
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Where   nipjxxxX ijii ,,1;,,1   .The

fuzzy support of YX  is defined as follows.
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The fuzzy confidence of YX  is defined as
follows.
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The fuzzy correlation measure of the association
rule YX  can be measured by computing
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In order to mine fuzzy association rules, the
definitions of fuzzy support and fuzzy confidence are
used in Fuzzy Apriori instead of their crisp counterparts
used in Apriori.

3 Multilevel fuzzy SVR network
(MLFSVRN) modelling of
incremental type

In order to determine a multilevel fuzzy SVR network
model, we must determine the model structure and initial
parameters. Based on an incremental type structure like
the one shown in Fig.1(a), it is quite possible to consider
some influential variables to the first level, the less
influential ones to the next level, and so on. To do so, we
must find a set of candidate variables, which play a
significant role in determining the output.

3.1 Variable selection based on FCM
clustering and fuzzy association rules

In this paper, fuzzy association rules are used to select
more representative variables from the original ones to
improve the later prediction performance. The different
fuzzy confidence and fuzzy support values between input
variables and output variables are examined by using
fuzzy association rules. In this paper, cross-validation
with best parameter grid search is adopted to obtain the
best rules. we only report the best rules that are based on
the fuzzy confidence value = 1 and the fuzzy support
value = 0.03.

These rules are further ranked as their importance by
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In particular, according to (8), the rule that has the

importance value less than 0.8 is excluded. As a result,
the extracted rules that relate to the important variables
will be obtained. In order to determine the most
influential input variables, the influence degree of

variables are calculated. The term )( ixID is used to

represent the influence degree (ID) of ix ,i.e.,
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term )( iximportant is used to represent the best result of

the degree of importance of the fuzzy association rules
with ix , which is done by (8), In a similar way, the term

)( ixncorrelatio is used to represent the best result of the

degree of correlation of the fuzzy association rules
with ix , which is done by (7). For all extracted variables

from fuzzy association rules, these two items are added
up and described as
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n

i iiID xncorrelatioximportantSUM .

3.2 Constructing a MLFSVRN model with
incremental architecture

Based upon the analysis method just described in Section
3.1, the influential input variables can be obtained and
consequently a MLFSVRN model with incremental
architecture can be constructed as shown in Fig.2. The
construction algorithm of MLFSVRN Model with
Incremental Architecture can be summarized as follows.

Step 1- Initialization:
The number of levels is h . This identified model is

called model h and its output is denoted by )(hy .

All n input variables are put in a set S . Let

  
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Sx iiID
i

xncorrelatioximportantSUM )()( . A

threshold value incT is set to control the model

structure(the number of levels). A large incT will set the

combination of the representative input variables
rigorously and hence generate complicated networks
while a small value will set the combination of the
representative input variables loosely and generate the
networks with few sublevels. Such arrangement is used
to make the first level reserve enough system information
and let the first level contain at least two input variables.

Step 2- Determination of Level 1:
1) Choose 1n most influential inputs as the input

variables of the first level and write them as )1(
ix ’s. In

order to make the first level contain enough system
information, the value of 1n is determined by
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According to (9), the first level of the model

architecture contain at least two input variables. Here, the

term )( )1(
iximportant is used to represent the best result

of the degree of importance of the fuzzy association rules

with )1(
ix , the term )( )1(

ixncorrelatio is used to represent
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the best result of the degree of correlation of the fuzzy

association rules with )1(
ix .

2) Set the level index 2h . Remove these 1n input

variables from S .
Step 3— Recalculation:
Recalculating IDSUM and the influence degree values

of the variables left in S , i.e.,

Sx
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xID i
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Step 4—Determination of level h :
Choose hn most influential input variables,

i.e., sx h
i ')( , from S and assign them to level h . The

number hn is determined by inc
n

i

h
i TxID

h  
)(

1

)(

and 2hn .

Step 5—Termination:
Remove these hn input variables from S . If S is

empty, the algorithm terminates, otherwise go back to
Step 3, let 1 hh .

Figure 2: The most parsimonious incremental
architecture for a three-level-input system.

3.3 TSK type MLFSVRN model structure
and learning

3.3.1 TSK fuzzy inference algorithm
In this section, a TSK fuzzy inference algorithm in its
each single-level module of MLFSVRN model is
presented. Consider a TSK fuzzy system, the j th fuzzy

rule in level h will have the form
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Where

hn is the total number of input variables (ordinary

system inputs and input from previous level).
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i nix  is input variables being determined

by the proposed method in Section 3 and assigned to this
level;
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Here, )(h
ijm and j correspond to the center and

width of the fuzzy set respectively, which are determined
by FCM clustering.
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If the single-level fuzzy system contains r rules, then
according to the simple weighted sum method [20], the
output would be
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Eq.(14) becomes
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By adopting the kernel trick, a TS-kernel is

integrated as
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Eq.(17) is the output of TSK-type fuzzy system, which is
equivalent to the output of the SVR.

For each level module, the parameters jm
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and j in

the TS-kernels and the number of rules are determined by
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The optimal linear SVR function is

)(

1

)()()()()()( )(),()ˆ()( h
N

k

h
k

hh
k

h
k

hh bzVzVzy 





(19)

Where )(h
k and )(ˆ h

k are solved by SVR. Eq.(19) can be

represented as

)(

1

)()()()(

1

)()(

)(

1

)(

1

)()()(

)(

1 1

)()()()()(

),()(

)()()ˆ(

)()()ˆ()(

h
r

j

h
j

h
TS

h
j

h
r

j

h
j

h
j

h
r

j

h
j

N

k

h
kj

h
k

h
k

h
N

k

r

j

h
kj

h
j

h
k

h
k

h

bmzKwbzVw

bzVzV

bzVzVzy



















 

 



 

 











(20)

Where 



N

k

h
kj

h
k

h
k

h
j zVw

1

)()()()( )()ˆ(


 (21)

According to Eq.(21), the weighting parameters
)(h

jw are obtained.

3.3.2 Structure of single-level modules
The structure of each single-level FSVRN module is
based on the structure like the four-layered Fuzzy neural
network in Fig.3, which consists of the membership
function, fuzzy rules, weighted consequent and output
layers, and their functions are briefly described below in
the our context. In the following descriptions,

)(
,
h
jiO represents the output of the i th node in j th layer of

level h , )(h
lu is the l th input of a certain node in current

layer of level h .
Layer 1: Each node in this layer corresponds to a

membership function of ordinary system inputs and input
from previous level [see (22) and (23)].

)( )()(
1,

)(
1,

h
k

h
i

h
i xMO  ,

HhNi h ,,2,1,,2,1 )(
1   (22)

and

)( )1()(

1,

)(

1, )(
1

)(
1

 hh

N

h

N
yMO hh Hh ,,2  (23)

Here, )( )()(
1,

h
k

h
i xM and )( )1()(

1,)(
1

hh

N
yM h are the

corresponding membership value of the input (or

intermediate) variable connected to it by (12). )(
1

hN is

equal to the total number of inputs to level h , including
the membership value of system inputs and intermediate
input. When 1h , there will not exist any intermediate
inputs and only (22) is applied.

Layer 2: The output of each node in this layer
represents the firing strength of a rule

 



ir

l

h
l

h
i uO

1

)()(
2, .,,2,1 )(

2
hNi  (24)

The determination of (24) is similar with (13).

ir denotes the number of preconditions in rule node i and
)(

2
hN indicates the total number of rules in level h .

Layer 3: The output of each rule is computed in this
layer.

In level 1h where no intermediate variable
appears, the function has the form
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and when 1h
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where )1(
3N and )(

3
hN correspond to the total number of

nodes in the third layer for Level 1and Level

3,respectively.  )(
,
h
ija is the consequent parameter set in

level h , ;1)(
0 hz .

Layer 4: The final output is computed by summing
the outputs of all rules






)(

1

)()(
4,1

h
RN

j

h
l

h uO (27)

)(h
RN is the total number of fuzzy rules in level h , which

equals to )(
2
hN . Eqs.(14), (16), (17), (18) and (20)

determine the output in (27).

Figure 3: The structure of the four-layered network.

3.3.3 Learning algorithm
As we have found in 3.3.1, the consequent part of the
TSK fuzzy inference rule is a linear combination of all
consequent parameters, which can be reconstructed in the
form of linear SVR. So, the linear SVR algorithm is first
applied to evaluate the optimal values of all consequent
parameters of TSK-type MLFSVRN model. Given a set
of training data pairs and setting the desired output of
each single-level module as same as the final system
output. The linear SVR learning algorithm of a TSK-type
MLFSVRN model with incremental architecture is listed
as follows.

Step 1—Initialization:
1) Divide the input variables into H subsets

 Hhxxx h
n

hh

h
,,1,,, )()(

2
)(

1   according to the variable

selection method proposed in Section 3, each of them
attached to a single-level reasoning network module.

2) Set the level index 1h and initialize appropriate
membership function parameters based on the FCM

clustering method. The membership function parameters
of all intermediate variables are fixed according to the
final outputs.

Step 2—Apply Linear SVR to Level h :
In order to evaluate the optimal value of all unknown

consequent parameters )(
,
h
ija , (25),(26) and(27) can be

rewritten in the form of linear SVR according to Eqs.(14),
(16), (17), (18) and (20) . The consequent parameters
then can be evaluated using Linear SVR method with
(15) and (21). Here, the output value y will be used as the

desired value of )(hy .

Step 3—Forward Computation:

The output of Level h , )(hy , can be computed using

the evaluated .')(
, sa h
ij

Step 4—Termination:
Set .1 hh If Hh  , go to Step 2; otherwise, the

training process stops.

(a)

(b)

Figure 4: MLFSVRN model with incremental
architecture (a) six-dimensional example (b) Mackey-
Glass time series.
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4 Simulation results
In this section, the proposed method has been evaluated
for nonlinear system identification and Mackey-Glass
chaotic time-series prediction. Section 4.1 discusses a
six-dimensional example, which is used to validate the
variable selection analysis method described in Sections
3. Section 4.2 discusses the Mackey–Glass chaotic time
series prediction, aiming at demonstrating the
satisfactory learning behavior and good generalization
ability of the MLFSVRN models.

4.1 Six-dimensional example
The six-dimensional nonlinear system was given by the
following equation:

)1exp()sin(5)4( 5432
21

1
5.0

0 xxxxxxy   (28)

A data set of 1000 pair was prepared by drawing the
inputs uniformly from the six-dimensional unit
hypercube. To construct the MLFSVRN with
incremental architecture, using the variable selection
analysis method proposed in Section 3, the input

variables are grouped into three subsets },{ 54 xx 、

 32 , xx 、  10 , xx .The influence degree of each input

variable is evaluated and listed as follows:
ix 0x 1x 2x 3x 4x 5x

ID( ix ) 0.109 0.107 0.176 0.178 0.273 0.270

It can be seen that 4x is the most influential input

among the six and this corresponds very well to what we
can deduce from (28). Furthermore, the influence degree
of 0x and 1x , 2x and 3x , 4x and 5x is about the same and

this again matches with our expectation from (28). Thus,
the effectiveness of the variable selection method is
demonstrated by this example. Here, the threshold is
chosen as incT =0.6, so the incremental architecture can

have 4x and 5x assigned to the first level as inputs. For the

other four input variables, 2x and 3x are put to the

second level, 0x and 1x are put to the third level, as shown

in Fig.4(a).

Table 1: Comparison of the TSK-type MLFSVRN
models from their single-level counterpart FSVRN and
Jang’s ANFIS in Function prediction.

The performance of the proposed TSK-type
MLFSVRN models with incremental architecture has
been evaluated with the Root Mean Square Error

(RMSE). After the liner SVR learning phase with 400
training data pairs, the models were validated by the
testing data set consisting of 600 points. For the purpose
of comparison, the performance of the TSK-type
MLFSVRN models, their single level counterpart, i.e.,
FSVRN model and Jang’s ANFIS model [21] with 400
training data are listed in Table 1. Obviously, the TSK-
type MLFSVRN models has 3 levels, in which the
number of terms for each input is 2, 4, 4, respectively.
The total number of rules is 20, which use much less
fuzzy rules and adjustable parameters than single-level
FSVRN. Furthermore, although the single-level
counterparts-FSVRN has the smallest training RMSE
and testing RMSE, the number of fuzzy rules is more
than our proposed model. The testing RMSE of Jang’s
ANFIS model is biggest among these three models
because it cannot have correct response to unforeseen
inputs when the training samples are limited. So, the
TSK-type MLFSVRN model with incremental
architecture shows relatively better generalization ability.

4.2 Prediction of a chaotic time-series
The Mackey-Glass chaotic differential delay equation is
recognized as a benchmark problem for time-series
prediction which frequently used in the study of chaotic
dynamics and defined as follows [14]:

)(1.0
)(1

)(2.0)(
10

tx
tx

tx

dt

tdx









(29)

When 17 , the equation shows chaotic behavior.
In our simulations, we set .30 In this paper we
used ),30( tx ),24( tx ),18( tx ),12( tx )6( tx and )(tx

as input variables to predict the value of ).6( tx

To construct the MLFSVRN with incremental
architecture, using the variable selection method
proposed in section 3, the input variables are grouped

into three subsets  )30(),24(  txtx 、

 )6(),18(  txtx 、 )}(),12({ txtx  .The influence degree

of each input variable is computed and listed as follows:

It is found that )30( tx and )24( tx are two most
influential input variables. Among three clusters, the
combination of the influence degree
of )30( tx and )24( tx is biggest and less than the

threshold incT =0.6 which consistently follow the

algorithm in section 3. So the incremental architecture
can have )30( tx and )24( tx assigned to the first level

as inputs. For the other four input variables,
)18( tx and )6( tx are put to the second

level, )12( tx and )(tx are put to the third level, as shown
in Fig.4(b).

Rules Error-Train Error-Test

TSK
MLFSVRN

With
Incremental
Architecture

Level 1 4

0.0168 0.0135
Level 2 8
Level 3 8
Total 20

FSVRN 48 0.0003 0.0126
Jang’s
ANFIS

64 0.0005 0.0157

ix )30( tx )24( tx )18( tx )12( tx )6( tx )(tx

ID( ix ) 0.253 0.327 0.087 0.165 0.074 0.173
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Table 2: Comparison of the TSK-type MLFSVRN
models from their single-level counterpart FSVRN and
Jang’s ANFIS in Mackey-Glass chaotic prediction.

In order to evaluate the performance of TSK-type
MLFSVRN models with the Root Mean Square Error
(RMSE), the 200 points of the series
from 700501t and a comparatively larger one
consisting of 700 points of the series
from 829130 t are used as training data, and 500
points from 1329830 t are used as testing data.
According to the variable selection method proposed in
section 3, we obtained 3 levels and the number of fuzzy
rules in each level of the incremental architecture is 9.
For the purpose of comparison, the performance of the
proposed TSK-type MLFSVRN models, their single
level counterpart, i.e., FSVRN model and Jang’s ANFIS
model with 700 training points are listed in Table 2.
From that, it can be seen that the proposed TSK-type
MLFSVRN models uses much less fuzzy rules than other
models. Furthermore, it is found that the MLFSVRN
models perform best among the three models in terms of
training and testing RMSE. Fig.5 shows that the TSK-
type MLFSVRN prediction outputs are close the real
outputs and achieves good generalization ability.

Figure 5: Test Result of the TSK-type MLFSVRN
model.

The above simulations show that our proposed
MLFSVRN models can get rid of the dimensionality
problem fundamentally. TSK-type MLFSVRN models
consume much less fuzzy rules compared with their
single-level counterparts-FSVRN and Jang’s ANFIS.
TSK-type MSFNN models save both fuzzy rules and
adjustable parameters significantly compared with Jang’s
ANFIS.

5 Conclusion
In this paper, a hierarchical TSK-type fuzzy system was
proposed and its applications in system identification and
time-series prediction were studied. In the proposed
method, the major characteristic of such model is that the
consequence of a rule will be used as a fact to another
rule from which the number of fuzzy rules resulted will
no longer be an exponential function of the number of
input variables. The proposed MLFSVRN model is
constructed with incremental architecture. First, some
influential input variables are arranged to different
reasoning levels by analyzing the influence degree of
each input variable based on FCM clustering and fuzzy
association rules. Then, each level reasoning module can
be realized by FSVRN model. Its consequent parameters
are learned by a linear SVR with a new TS-kernel. The
major advantage of using MLFSVRN model other than a
single-level fuzzy system is that the number of fuzzy
rules and parameters involved in modelling process can
be reduced significantly and the generalization ability
can be improved when compared with those required by
the single-level FSVRN systems and Jang’s ANFIS
systems. The effectiveness of the MLFSVRN model has
been demonstrated through two problems. It can
generally be concluded that the proposed method has
higher performance in identification and time-series
prediction in comparison with the other methods.

Funding
This paper is supported by the Fundamental Research
Funds for the Central Universities (No.FRF-SD-12-
009B) and the State Scholarship Fund.

References
[1] G. V. S. Raju, J. Zhou, and R. A. Kisner (1991),

“Hierarchical fuzzy control”, Int. J. Contr., vol. 54
no. 5, pp. 1201–1216.

[2] Cheong F (2007), “A hierarchical fuzzy system
with high input dimensions for forecasting foreign
exchange rates”. IEEE Congress on Evolutionary
Computation, CEC (Singapore), pp. 1642–1647.

[3] Aja-Ferna´ndez S, Alberola-Lo´pez C (2008),
“Matriz modeling of hierarchical fuzzy systems”,
IEEE Trans Fuzzy Syst, vol. 16, no. 3, pp. 585–599.

[4] Zeng X, Goulermas J, Liatsis P, Wang D, Keane J
(2008), “Hierarchical fuzzy systems for function
approximation on discrete input spaces with
application”, IEEE Trans Fuzzy Syst, vol. 16 no. 5,
pp. 1197–1215.

[5] Benftez A, Casillas J (2009), “Genetic learning of
serial hierarchical fuzzy systems for large-scale
problems”. Proceedings of Joint 2009 International
Fuzzy Systems Association World Congress and
2009 European Society of Fuzzy Logic and
Technology Conference (IFSA-EUSFLAT,
Lisbon), pp. 1751–1756.

[6] Zajaczkowski J, Verma B (2008), “Selection and
impact of different topologies in multilayered

Rules Error-Train Error-Test

TSK
MLFSVRN

With
Incremental
Architecture

Level 1 9

0.0253 0.0262
Level 2 9
Level 3 9
Total 27

FSVRN 35 0.0258 0.0352
Jang’s ANFIS 39 0.0275 0.0408



Incremental Hierarchical Fuzzy Model… Informatica 38 (201414) 367-376 375

hierarchical fuzzy systems”, Appl Intell, vol. 36,
no. 3, pp. 564–584.

[7] Salgado P (2008), “Rule generation for hierarchical
collaborative fuzzy system”, Appl Math Modell Sci
Direct, vol. 32, no. 7), pp. 1159–1178.

[8] Joo M, Sudkamp T (2009), “A method of
converting a fuzzy system to a two-layered
hierarchical fuzzy system and its run-time
efficiency”, IEEE Trans Fuzzy Sys, vol. 17, no. 1,
pp. 93–103.

[9] Jelleli T, Alimi A (2010), “Automatic design of a
least complicated hierarchical fuzzy system”. IEEE
International Conference on  Fuzzy Systems
(FUZZ), pp. 1–7.

[10] S. Mitra and Y. Hayashi (2000), “Neuro-fuzzy rule
generation: Survey in soft computing framework”,
IEEE Trans. Neural Net, vol. 11, no. 3, pp. 748–
768.

[11] M. F. Azeem, M. Hanmandlu, N. Ahmad (2003),
“Structure Identification of Generalized Adaptive
Neuro-Fuzzy Inference Systems”, IEEE Trans. On
Fuzzy Systems, vol. 11, no. 5, pp. 666-681.

[12] L. X. Wang (1999), “Analysis and design of
hierarchical fuzzy systems”, IEEE Transactions on
Fuzzy systems, vol. 7, no. 5, pp. 617-624.

[13] F. L Chung and J. C. Duan (2000), “On multistage
fuzzy neural network modelling”, IEEE
Transactions on fuzzy systems, vol. 8, no. 2, pp.
125-142.

[14] M. C. Mackey and L. Glass (1977), “Oscillation
and chaos in physiological control systems”, Sci.,
vol. 197, pp. 287–289.

[15] J. Bezdek (1981), Pattern Recognition With Fuzzy
Objective Function Algorithms.New York: Plenum.

[16] W. Pedrycz (2002), “Collaborative Fuzzy
Clustering”, Pattern Recognition Letters, vol. 23,
no. 14, pp. 1675-1686.

[17] Agrawal R, Imielinski  T, Swami A (1993),
“Mining association rules between sets of items in
large databases”. In Proceedings of the ACM
SIGMOD conference on management of data, pp.
207–216.

[18] Kantardzic M,John Wiley and Sons (2003), Data
mining -Concepts, models, methods, and
algorithms.

[19] Y. C. Lee, T. P. Hong and W. Y. Lin (2004),
“Mining fuzzy association rules with multiple
minimum supports using    maximum constraints”.
The Eighth International Conference on
Knowledge-Based Intelligent Information and
Engineering Systems, Lecture Notes in Computer
Science, pp. 1283-1290.

[20] B. Schölkopf, A.J. Smola (2002), Learning with
Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. Cambridge MA. : MIT
Press.

[21] Jang, J.-S.R (1993). “ANFIS: adaptive-network-
based fuzzy inference system”. IEEE Transactions
on systems, Man and Cybernetics, vol. 23, no. 3,
pp. 665-685.

[22] Tachibana K, Furuhashi T (2002). “A structure
identification method of submodels for hierarchical
fuzzy modeling using the multiple objective genetic
algorithm”, Int J Intell Syst, vol. 17, no. 5, pp. 495–
513.

[23] C. T. Lin, S. F. Liang, C. M. Yeh, and K. W. Fan
(2005), “Fuzzy neural network design using support
vector regression for function approximation with
outliers”, IEEE International Conference on
Systems, Man and Cybernetics, vol. 3, pp. 2763-
2768.

[24] J. M. Leski (2005), “TSK-fuzzy modeling based on
-insensitive learning”, IEEE Trans, Fuzzy Systems,
vol. 13, no. 2, pp. 181-193.


