
29

MODULA-2 AND SOFTWARE
ENGINEERING

INFORMATIGA1/90

Keywords: modula-2, softvvare engineering,
models, principles

Gustav Pomberger
INstitut fur VVirtschaftsinformatik

Johannes Kepler UniversitI of Linz
A-4040 Linz, Austria, e-mail: K2G0190 a AEARN

Presented at the 1 ̂ ' lnt'1 Modula-2 Conference, October 12-13,1989 Bled-Yugoslavia

OVERVIETVV

The titlc of this papcr draws togclher a programming
languagc, Modula-2, and a discipline in the arca of
Computer science, software engineering. This raiscs several
questions:

What is mcant by softwaic engineering? This is by no
means intendcd to bc a rhetorical question, for the percep-
lions of sortwarc cnginccring's lasks varies pronouncedly
from llie viewpoints of theoreticians and practitioncrs.

Even grcater divergence can be found on the question of
what a programming language has to do with softwarc
engineering. Some consider the choicc of a programming
language of utmost importance to the success of a, softvvare
projcct and the quality of the resulting product, whilc olhcrs
vicw tlie language as the least importanl tool of the dcvcl-
opment process.

Evcn the qucstion of whelhcr programming is more a
science or more an art (or pcrhaps evcn a craft) cvokcs avid
disagreemcnt. I do not want to renew this old feud; I
simply want to establish that clements of ali of thcm are
inherent in soflware developmcnt at this timc, and this is
likely to remain the čase in the futurc.

When I use the term software engineering, I mean the
application of scientific knowledgc for the efficient
produclion and application of reliablc and efficient softvvare
(see [16]).

The succcssful dcvclopment of large software systcms is
usually a multistage process. It usually begins with the
dctcrmination and documentation of the functions and
individual actions that are expected of the software system.
This leads in the specificalion phase to a contract bclween
the client and the soflware dcveloper (rcquirements
definition) that precisely delineates what the softvvare
system must be capablc of.

The spccification phase is follovved by the design phase,
vvhich dctcrmincs vvhat kind of systcm architecture can meet
the givcn requirements. The implementation phase attcnds
to the realization of the complele design concept in a
programming language.

The implementation of every single systcm component
must bc systematically tested. Subsequently the vvhole
system must be tested vvith the goal of finding as many
errors as possible and assuring that the implementation
meets the requiremcnts definition.

Upon completion of the test phase the softvvare is
installcd and hsmded over to the client. The task of soft­
vvare maintenance is bolh to correct errors that arise during
operation and to make system modifications and exten-

sions. This task again includes ali activities mentioncd
above—from the rcvision of the requirements analysis
through renevved tesling.

An engineering discipline is charactcrizcd by the
construction of tools that help to systemizc and rationalize
the product dcvelopment process, to improvc the quality of
products, and to guarantce efficient maintenance. A particu-
larly importanl step in this direclion was the developmcnt
of programming languages as tools intendcd to help to
achieve these goals. Unlike many othcrs, I agrcc vvith
B.W. Boehm that "choosing a programming language is
like choosing a vvife. It is hard to undo after getting in-
volved and not to be taken lightly."

I likevvise agree vvith R. Wiener and R. Sincovcc [22] that
"the choice of a programming language for imptcmenting a
large-scale softvvare systcm is critical becausc the featurcs of
a programming language are strongIy relatcd to the softvvare
engineering process. Languages differ in the degrce to
vvhich they support: readability, modular softvvare construc­
tion, ihe control of side effects, information hiding, data
abstraction, structured flovv control, separate compilation
wiih consistency checking, type chccking among various
components, dynamic memory managcment, and run-time
chccking. Languages that offer strong support in the
above-listed areas provide the basis for constructing reliable
and maintainable softvvare."

I vvill discuss to vvhat extent the principles of softvvare
engineering knovvn today are supported (or not supportcd)
by Modula-2. Detail is reslricted by the sizc and extent of
this papcr. For this reason only the principles that I
consider most importanl vvill be discussed. I vvill bricfly
discuss the characteristics of softvvare developmcnt models
in order to be abic to exp]ore:

• specificalion principles
- requirement exploration by prototyping

• design principles
- module-oriented architecture design
- abstract data structurcs
- abstract data lypcs
- funclional abstraction
- objecl-orientcd design principles

• othcr evaluaiion criteria
- division of labor in softvvare dcvelopment
- structuring in the small (structured programming)
- guaranteeing reliability and maintainability
- exception handling
- reusability of library modulcs
- portabilily

30

SOFTWARE DKVELOPMENT MODKLS

Whcrever pcopic are confronted wilh complcx design tasks
to bc soivcd, i!icy attempt to systcmaticany organize thc
problem solving proccss, that is, to dcfine an approach
model. Such a model detcrmincs which critcria are to
govem thc problem solving process. It dccomposes ihc
problem-solving process into managable steps and
dctcrmines what results must be produced afler execution of
a given step. This enables a stepwise planning, dccision
and implemcntalion process.

These slcps collectivcly and the chronological order of
their execution is known as the sofiware life cycle, an
already classical term in computcr sciencc. The softwarc
life cycle has bcen described in numerous variations and
forms (see [8J, 120), [16], and [18]).

Sludies have shown that thc life cycle-oriented develop-
menl melhod is ihc most commonly used approach in
currenl software development, and that it has in general paid
off. Applicalion in the ficld, however, has also shown ihe
limils and the weakncsses of this approach:

The model is bascd upon thc (incorrcct) assumption ihal
the development process lends to be lincar and. that
iterations bciwcen phascs occur only as cxccptions to the
rule. Strici applicalion of this development melhod requires
ihal one phase can only be begun afler thc prcceding phase
is complcted, that is, when the rcspectivc inlcrmediale
producls are availablc. In reality, howcvcr, a complelc
spccification or a suilable systcm archilecturc can seldom bc
produced straightoff. UsuaIIy thc later phascs have a slrong
impact on Ihe earlier phases.

The strici discriminalion of the individual phascs is an
unacceptable idcali7.ation. In reality thc aclivilics of the
phases overlap and inleraclion betwcen phases is much
more complcx Ihan that exhibited in the sequcnlial
input/output model.

R«]uircmcnu
Aiialysii

RcquiTCincnls
l>:rmilion

nfoimal Dcscription of User Nceds

User intcrfacc Protcrfjrpe and Complcting SpcciHcalion

^ Uicrinlčrfac«

Archilecturc and
CtMnponcnt

Dciign

Atchitccliirc ftnd

L>f Implcmcnlatiim

Sy!ilcm Archilcclure, Componcnct Slnicliirc.
Arch l t edurc and Componcnt IVolot^pcs

Progtam and Documcntalion

I

t.

Ni

_ J

System Tci l

I
I

J-

Opcralion and
Maintcnancc

Figure 1 Protolyping-Orineted Software Life Cyclc

The strictly sequenlial approach Icads to tangible prod­
ucls or componenls bcing availablc only al a rclalively late
stagc. Vet expcrience shows that thc validalion process
cannot gel by without expcriments close to reality. Fur-
thermore, modifications requcsted by the clicnt can only bc
expressed relatively late, and integrating ihem al ihal slage
can Icad to substantial ovcrhead.

It is often assumed—and currenl reports from rcsearch and
industry confirm this assumption—that a proiotyping-

oricntcd development mclhodology can rcsolve some of ihc
weaknesses of Ihe life cycle-orienled development approach.
A protolyping-oriented development is not radically differ-
ent from a purely phasc-oricntcd development slratcgy.
Furlhermore, Ihc two are to bc viewed more as complcmcn-
lary ihan as altcmalive. They differ most in ihc proccdurcs
and the results produced in the individual phascs. Although
the distinction of pha.ses is mainlained, problem analysis
and spccification overlap chronologicany a great dcal, and
design, implemcntalion and lesting very much blcnd into
one anolher (scc Figure 1).

SPECIFICATION PRINCIPLES—EXPLORA-
TION OF USER REOUIREMENTS

As our development model shovvs, one element of knowl-
edge inherent in our dcTinilion of soflware engincering is
lliat the spccification and design processcs should be carricd
oul in a prolotyping-supportcd manncr.

The development of thc user interface, for examplc,
proves an cxceplionally difHcull lask bccausc ihe evaluation
thercof is guided by highly subjeclive critcria and the uscr
is hardly able to define in advance whal hc/shc considers lo
bc convenienl inleraclion. Protolyping is an imporlanl—
and, from my poinl of vicw, in most cases absolutely ncc-
cssary—vchicle for ihe cxploration of user rcquircmcnls and
ihus for ihc specification of uscr inlcrfaces.

We normally dislinguish lwo apjjroaches to prololyping:
reusable code and executable specifications. Modem pro-
gramming languagcs like Modula-2 are signiricanlly bcticr
suiled for producing reusable componenls Ihan was the čase
in older programming. languagcs. Modula-2 is particularly

• handy for the building of module libraries. From ihe vicw-
point of prbtotyping, howevcr, a numbcr of problems
remain unsolvcd if one uscs convcntional programming
languagcs such as Modula-2 for prololyping aclivilics:

• How can ihe functionality of a library modulcs bc
provided gcnerally cnough that thcy can bc intcgratcd
into a given protolype?

• TTic dcgree of abstraction of Modula-2 modulcs is too
low; a prolotypc dcsigncr must rcvise codc for evcry
modification, no malter hovv small, and make his/hcr
changcs directly in thc code; details of thc prolotypc
cannot be discussed wiih the uscr.

• Tumaround timcs for iterativc rcfinemcnts in a proto-
lypc are simply too high.

Although the availability of module libraries is stcadily
improving and thc taxonorpy of soflwarc componenls is
bcginning to emcrge (already it is pKSSsiblc to dislinguish
componenls such as malhcmatical roulinc packagcs, mes-
sage channels, input/output packagcs, parscrs, scanncrs and
fillers lo name a fcw), Modula-2 libraries are only to a
limitcd extenl (if al aH) capablc of mecting the demands of
rcusability of code as rcquired for prototyping.

The olher approach to rapid protolyping, excculable
specifications (an object of inlense rcsearch efforls) is
likewise not supportcd by Modula-2.

Sincc on thc one hand we use Modula-2 as our implemcn­
talion language in most cases in our rcsearch group (and thc
choice of Modula-2 is to be credited with considerablc
incrcases in efficiency and qualily), and on the olher hand
we have recognized the value of protolyping-oriented
software developmenl and evaluated ihis in sevcral rcsearch
projecls, il became necessary lo develop spccial lools for
protoiyping.

31

For ihe prototyping process during the analysis and sf>ec-
ification phases, we dcvelopcd a dcclarative languagc for the
description of executable spccincaiion»—our User Interface
Specification Language (UISL, sce [12] and [17]). Searching
for melhods for integration of high level prototypcs and
application parts writlen in Modula-2 as well as for valida-
lion of a system architeclure before conipletely implement-
ing it, we dcvelopcd SCT, a tool for hybrid exccution of
hybrid software systems (see [1] and [2]). It allows for
hybrid execution of Modula-2 sofiware syslcms at any tirne
during thcir dcvelopment. Designed but not implementcd
modules are simulaled, partially coded modules are inter-
pretcd, and modules which are coded and tcsted are direclly
exccutcd. Furthcrmore, SCT allovvs for execution of hybrid
software systems (systems written in differcnt languages).
This is achievcd by providing the possibility of adding new
execution tools to SCT's hybrid execution syslem (e.g., an
interpreter for a user interface description language).

Applying SCT high levcl prototypes can be easily,en-
hanced wilh Modula-2 codc, allowing the dcvelopment pf
belter exploratory and evoIutionary prototypes. Fur­
thcrmore, SCT supporls the validation of systcm archilcc-
tures rcprcscnted by Modula-2 dcfinition modules by simu-
lating data and control nows. Finally, SCT providcs a com-
fortable interpretative programming environment allowing
for fasl implcmentation and expcrimcntation with differcnt
rcalizations of ihe functionality provided by a module.

SOFTVVARE DESIGN PRINCIPLES

Tite lask of the design phase is the determination of the
architeclure of a software system—ihat is, to decidc how to
build Ihe proposed systcm—with the goal of achieving an
implcmentation that is as efficient as possible and meels ali
quality requirements. Because of thc praclically unlimitcd
number of possibilities of determining the design of a
planncd system, ihc decisions made and ihe mclliods used in
this phase pronounccdly influence ihe qualily of the product
and thcrcby its mainlenance costs and dcgrce of rcliabilily.

The production of complex program •!ystems neccssitatcs
a division of labor; that is, multiple pcrsons are involved
in the software development. It is clcar that softvvarc dc­
velopment is a Creative process, that the expcricnce,
crealivity and innovation of the designer significantly
affects Ihe quality of the product. But as a rulc the com-
plcxity of design decisions is so high Ihat a systematic
approach—a mclhod and associatcd design principlcs—rhust
be adhcred to in order to guarantee a resulting product that
is rcliable and easy to mainlain.

Ali software design involves a process of abstraction.
Objccts and operalions identificd in the real world domain
must be mpdellcd and expTessed as corresponding operations
and objccts of the problem-solving domain.

Module-oriented and object-orienled software design are
fundamental design principlcs resulting from computer
science research in the 60s and 70s. VViener and Sincovec
write [22]:

"No longcr is it necessary for the systcm designer to map
the problem domain to the predefined data and control
siructure preseni in the implemcniation language. Instead,
Ihe designer may create his or her own abstracl data typcs
and functional abstractions and map the real world domain
to these programmer-created abstractions. The mapping,
incidentally, may be much more natural because of the
virtually uniimited range of abstract lypes that can be
invented by the software designer. ... ihc payoff for

modular software design and implcmentation occurs when
rcpairs or addiiions must bc made to a softwarc systcm."

Modulc-Oriented Design Principlcs

The goal of modular system design is the decomposition of
a program syslem into a hierarchy of abstractions about
which Wirth writes [24]: "The principlc motivalion bchind
the partitioning of a program into modules is—bcside ihe
use of modules provided by other programmcrs—the estab-
lishmenl of a hierarchy of abstraction."

The pillars of modular system architeclure are module
independence and data abstraction. Module independcnce
(freedom from interference) mcar« that any module can be
replaced by another module ihat adheres to the module inter­
face without necessitating further changcs in ihe system.
That is, it must be possible to change dctails of the implc­
mentation of a particular module without influencing the
remaining syslcm components.

The basic building blocks of modularly constructcd sofl-
ware syslems are:

• abstract data structurcs

• abstract dala types

functional abstraction

• abstract, explicitly defined module inicrfaccs

Allhough software engineering courses oftcn teach that
design should occur completely indepcndently of the im­
plcmentation language. I believe that this is only useful if
the implemcniation language docs not mcct the requirements
of software engineering. We are aware that a language
rcflects Ihe habits and ihoughl pattcrns of its designer.
There is even a relationship between a natural language and
the way a person who speaks ihe language ihinks. The
same is true for programming languages. The knowledge
Ihat Icnt it its siructure and,lhe concepts ihat form its basis
influenced the way a programmer thinks, his/her design
style, and ihe siructure of the systcm hc/shc dcsigns. The
choice of a programming language oftcn cvcn determincs
how ihe lask is solved because the language supporls or
excludcs cerlain approaches to a solulion. For examplc, a
recursive trec traversal would never come to a Fortan pro-
grammer's mind.

Furtlicrmore, we expcct a good implcmentation language
to be able to reflect the decomposition structurcs, abstrac­
tion levels, data structurcs and module intcrfaccs that are
identificd in the design stage and ihat ihese can bc tcsted at
the interface level before aH the implcmentation dctails are
known.

The degree to which these requircmcnts can be met is
dcpendcnl upon the choice of a programming language. The
question is to what extcnl Modula-2 supporls the above-
named criteria for modular system architcctures.

The Modula-2 Module Concept

TTie rcalizalion of the module definilion as givcn above is
supporled in an elegant marmcr by the module concept of
Modula-2. The modular struclure of Modula-2 can bc viewcd
as a fence that encloses objccts (data structurcs and proce-
dures) and encapsules them apart from thcir environment.
This fence can be ojKned for ihe purpose of communicaiing
wiih the environment. Howcvcr, the programmer must
cxplicitly establish which objccts are to bc made known
(that is, exported) to the outside and which objects ihe

32

module will need (that is, import) from its environment.
This meets the requirements of explicitly defincd module
interfaces.

From the vicwpoint of the abstraction principle, the
export intcrface can be seen as its specification. It con-
tains ali Information regarding what the module is expectcd
to do (that is, what objccts and functions it makes avail-
able) and hidcs ali details of the implementation thercof. It
is thus also useful to separate the texls of the module speci­
fication and its implementation description. Modula-2
mcets this requirement by scparating the definilion and
implementation parts of a module.

One of the most important aspecls of modularIy
constructed software systcms is thus an explicit de.scription
of mutual effects (that is, interdependencics) among mod-
ules. The importance of such explicitness follovvs from the
observation that aH the effects of a local change on the
global system must be completcly dctermincd by the depcn-
ucncy relations. In Modula-2 interfaces of modules as seen
by the programmers are called dcfinilions. Such module
definitions may be regardcd as public projections, and thcre
is exactly one public projcction of each module.

But this situation is Icss than salisfactory. In practicc
wc often encounter situtions in which multiple views of a
module can be scen as bcfitting the problem. Considcr, for
example, a module X for managing asscmbly lists in a pro-
duction planning and control system. It is clcar that a mod­
ule A from the area of design rcquires diffcrcnl access func­
tions than a module B from the area of work schcduling or a
module C from the area of material disposition. A, B and C
aH work wiih the encapsuled data structures in X, alihough
in different ways and with differenl requirements for access
to the data structures of the asscmbly list encapsulated in X.

This is just one of many examples in which multiple
interfaces to a singlc module are nccessary, each with differ­
ent levels of abstraction, in order to guarantec adcquale
application of the module wilh respect to the problem at
hand.

Due to the one-to-one correspondence of modules and
intcrface descriptions in Modula-2, multiple interfaces can-
not be satisfactorily realized. Eithcr aH the different views
are packed into a single intcrface—vvhich increascs the
compIcxity of the intcrface, reduces the safety of the mod­
ule, and destroys part of the abstraction—or the implemen­
tation is duplicated—that is, reusability is lost and main-
tainability is reduced.

Multiple interfaces of modules are thus an important con-
cept in software engincering that is not supporlcd by
Modula-2. Ideas on the implementation of multiple inter­
faces can be found in [10].

Abstract Pata Structures (Information Hiding)

The basic concept of Modula-2 is the establishment of a
hierarchy of abstractions. Naturally, this includes the
implementation of abstract data structures. The problem of
spcciaHy identifying access opcrations to a(n abstract) data
structurc is solvcd in Modula-2 by dividing a capsulc into
two parts; one part visible to the user (the specifications
or intcrface part) and containing the declaration of aH
access operations and any exportcd data lypes; the othcr
part invisibic to the user (the implementation part) and
containing declarations of encapsulated data and algorithms
in the capsule.

The module concept of Modula-2 includes the export of
not just procedures, data types and constants; variables can
likewise be exported (for example, to make access to a sin­
gle data element more efficient). If a variablc is cxportcd,
its value can be changed by the imporiing module.
However, this violates the principle of information hiding
and it must be clear to the importer that he/she is working
wiih global data, and tlie efficiency thereby altained is
countered by the disadvantages of exchanging data via
globa! variables.

Modula-2 thus permits tlie implementation of data cap-
sules, alihough the principle of information hiding is
incompletely realized due to the possibiIity of cxporting
inner data structures togcther wilh thcir structurc. In this
sense it would be dcsirable to have cxporled variables that
can be read but not written to by the client.

Abstract Data Types

Abstract data types are neccssary whcn multiple cxamples of
an abstract data structurc are to be defincd. Abstract data
types can be implemented in Modula-2 by mcans of the
module concept combined wiih the concept of opaquc data
types.

An abstract data type is defincd as an opaque type in the
definition module; that is, its realizalion rcmains hiddcn
from the user and is detcrmined in the implementation mod­
ule—in contrast to Ada—which is a considcrable advantage
from the viewpoint of software engincering.

Unfortunately there is a catch to using opaque data types
in Modula-2. Since the storage rcquiremcnts of abstract data
typcs must be knovvn whcn the definition module is com-
piled, Modula-2 requircs that the concrete typc assigned to
an abstract type must be of fixed lenglh—that is, it must be
a poinler type. Other types, in particular ARRAVs and
RECORDs, are not permittcd as abstract dala lypcs. Thcy
can, hovvever, be realized as dynamically creatcd objccts and
their poinler can bc vicwed as an abstract data typc. This
means a slight loss of efficiency, howcver. I personalIy
considcr the advantage of abstract data typcs to be greater
than the disadvantage of the loss of efficiency.

It is much vvorsc to have to dynamically allocate vari­
ables of abstract data types and to have to cxplicitly frcc
their storage. Furthermore, the statcment x:=y docs not
store a copy of y in x. This is a dangcrous pitfall that can
cause less expcrienced Modula-2 programmers to avoid the
use of abstract data types.

In the process of designing a softwarc systcm, we usually
encounter modules or procedures that have a similar purpose
but operate on data objects of different typcs, for example,
modules for stacks, queues, trees, etc. What we wanl to
have is a construct that permits the definilion of templatcs
for program units that need to be writlen only once and
then tailored to the particular needs at translation tirne.
This would be possiblc with generic units, but gcncric units
are not available in Modula-2.

The data type WORD or ARRAY OF WORD scrvcs as a
lifcbuoy in such cases. This allows, for example, the crc-
ation of a very general stack suitable for accepting simpic
objects (for example, CARDINAL) as well as slruclurcd
objecu (such as ARRAVs and RECORDs). I considcr ihe
omission of generic units (which are most uncomfortable
from the viewpoint of the compiler dcsigner) to bc a clevcr
decision which, because of the self-hclp available in the
tyf>e WORD, is also acceptable at the practilioncr Icvel.

33

Functional Abstraction

Many soflwarc developmenters constnict ihe soflware sys-
tcm architccturc-as a hierarchy of functional componcnts,
i.e., thcy employ the method of task-oricnlcd stcpwise
refinemcnl. Functional aspects are the focus of the mclhod.
Starting with the functional requirements, the task is
dccomposed inlo subtasks; each subtask (functional compo-
nent) is then handlcd scparately and again dccomposed into
subtasks unlil the resuhing subtasks become so simple that
thcy can bc dcscribed with algorithms. That is, lop down
design procccds from the general to the speciTic, from an
idcntiTication of major system componcnts to subcompo-
ncnts and sub-subcomponenis and so forth.

In the implcmentation we want to realize the hierarchical
levels of the systcm architccturc by majjping ihc functional
componcnts onto a sct of (posslbly ncstcd) procedures that
are used to implcment the functional abstractions. The only
languagc features we need to support top down design by
stcpvvise rcfincment are procedures and the ability to group
functional componcnts into functional subsystems.

Through its procedure and module conccpts, Modula-2
complclcly supports this method and permits the interfaces
of the functional componcnts and functional subsystcms to
be dcscribed prccisely, yet, as the design process requires,
abslractly enough.

Object-Oriented Design Principles

A design principlc which has aroused a greal deal of intcrest
recently in computer science is object-oriented systent
design. Rcduced to its fundamcntals, objcct-oricnicd pro­
gramming gencrates softvvarc by rcproducing objcct dcscrip-
tions. An objcct description contains definitions of data
along with the spccifications of actions that can bc applied
to these dala.

In contrast to modular programming, objcct dcscriptions
are only a kind of typc description and do not form actually
existing. constructs as does a module in the sense of
Modula-2. Only when an objcct description is instantiatcd
is an objcct created.

However, object-oriented programming is more than just
using abstract data types. It also involvcs inheritance and
dynamic binding.

An important propcrty of object-oriented system design
is that the objcct dcscriptions do not contain complete def­
initions of the objcct's behavior and altributes, that is, ali
its dala and actions. The objcct dcscriptions are ordercd in
a hierarchy in such a way that at any given hierarchy Icvcl
only such data and actions are speciFied as wcrc not already
defined in supcrordinate objcct dcscriptions. Modificalions
of dala and actions are thcreby made without altering the
supcrordinate object dcscriptions. This distinguishes
object-oriented soflware dcvelopment from module-oricntcd
programming, in which ihe reuse of a module is only pos-
sible without changes in its implcmentation if the module's
function complclely fils into ihe new context wilhout
change.

The strength of object-oriented syslcm design lies in the
possibility of incrementally enhancing and adapting object
dcscriptions without touching their code in the {jrocess.
Instead of the libraries used in modular programming—with
their rcusable function modules whose componcnts can bc
used in the construction of software—object-oriented
programming uscs libraries of object description hierarchies
that form application framevvorks. Examples includc

Smalltalk [9]. MacApp [19] and ET-h-t- [21].

As a rule, object-oriented programming builds on applica-
tions or parts of applications that are adapted to specific
requiremcnls, yet without changing thcsc parts thcmseivcs.
Tlius latcr modifications can be made on the prefabricatcd
application parts that rcmain complclely transparent and
spn-ead to ali derived applications without any further over-
head.

The requirements placed on programming. languagcs
which support object-oriented systcm construction match
those for languages which sujjporl modular systcm construc­
tion in many respects. In addition, they must support the
folIowing concepts (sce [3]):

• Data abstraction: The description of abstract data
types in the sense that they can occur dircctly in the
declaralion of olher data structurcs must bc possible.

• Inheritance: It must be possible to dcrive new data
lypes by extcnding or modifying attributcs and opera-
tions of existing types without needing to modify the
description of the base types. Instanccs of a class C
buill on the basis of a class B are said to inherit the
propcrties of B.

• Polymorphism: The compaiibility of derived data
lypes and their base types must be guarantccd. Object
variabics must be able to assume valucs of different
(bul related) data iypcs at run-time.

• Dynamic binding: In the coursc of operations with
obječts, there must be the possibility of dclcrmining
at run-time the concrete actions to bc executcd
(dcpcndcnt on the current dynamic data type of the
objccts).

In tlic object-oriented nomenclature, an abstract data typc
is knovvn as a class. Every class dcfincs which altributes
its instanccs (the so-callcd objccts) have and which opera­
tions are possible with ihem. Activaling an opcralion with
an objcct is oftcn termed sending a message to the objcct.
The object rcacls by executing a method. A method
dcscribcs which aclions are to scrve as the rcalizaiion of an
operation. This assignment of methods to messages is
dctermined for cach class by the respcctive class dcfinition.
Tlie effect of sending a message differs from procedure invo-
cations in convcntional programming languagcs in that the
determination of which method is to be exccuted occurs at
run tirne.

The question is whether Modula-2 can be used to realize
object-oriented system architectures and, if so, how it can
bc done. Object-oriented programming docs not ncccssarily
require an object-oriented programming language.
Suggcslions on how to implcment objccts in Modula-2 can
be found in [4]. Every individual class can bc defined fti a
separate dcfinition module. Objccts can bc defined as
pointcrs to records wilh two componcnts: a pointer lo a
dala slruclure dcscribing its class and a pointer to the
objecrs data (that is, instance variabics). A class can be
defined by a record containing a pointer to its superclass,
the name of the class, and a collection of procedure vari­
abics which represent the messages understood by objccts
of this class.

Of course, some deficiencies must also be mcntioncd (.sce
[4]). The programmer must be aware of the fact that objects
are implemented as pointcrs. Thus, each objcct must
explicitly be created. Also, the statcmcnt x:=y does not
creale a copy of the objcct y. Instead, a message scnd must
be used. Changing a superclass' dcfinition module requires
changes to ali of its subciasses. The requirement that every

34

class must be dcfincd in a separatc definition module can
lead to a large colleclion of modulcs that is difficuU to
undcrsland and maintain.

Thus I cannot rccommcnd Modula-2 to construct object-
oricntcd syslcm archileclurcs as it was not designcd as an
object-oricntcd languagc. But many of the deficicncics
mentioned above can bc removcd by attaching minor exien-
sions to Modula-2.

Thcre are, of course, some object-oricntcd extensions of
Modula-2, among thcm ModuIa-3 [5] and pl Modula [I I] .
Niklaus Wirth himself also designcd a ncw languagc namcd
Obcron [23] that is bascd on Modula-2. Obcron was not
designcd as an object-oricntcd languagc eilher, but rcadily
lends itself to thc concept using typc exlensions and proce­
dure variablcs. And an expcrimcntal exlcnsion of Oberon,
called Objecl Obcron, has becn developcd that incorporatcs
the conccpts of class, mcthod and message [14]. Including
ihese concepls in Obcron improves ils capabilitics for
object-oricntcd programming.

CmiER EVALUATIOS CRITERU

I have discusscd to what extcnt Modula-2 supports ihc most
importanl soflwarc enginecring principics for ihc explo-
ration of user requiremcnts (protolyping), for maslcring
complexily (structuring in ihe large), for enginecring intcr-
faces (Information hiding, data abstraction), and for thc
design of the architecture of soflwaTe systems (modular sys-
tem construction, object-oricntcd systcm construction).

Beyond thcse aspects, we are inlerestcd from a softwarc
enginecring viewpoint in several other critcria and how
thcse are supporlcd by the choice of Modula-2 as implcmcn-
tation languagc, for example:

• division of labor in software dcvclopmcnt

• structuring in the small (stnicturcd programming)

• guaranieeing reliability and maintainabiliiy

• exccption handling

• rcusability of library modulcs

Division of Labor in Software Devclopment

TTie proccss of dividing ihe work load in soflware dcvclop­
mcnt is significanily supporlcd if:

• separatc interface description and implcmcntalion
description of the system components is possible;

• separale compilation of units wiih strici cross chcck-
ing is possible;

• lype'consislency checking belwcen various compo­
nents is provided; and

• Ihc execution of a program unit is automatically prc-
ventcd if ihe interface of a user component was modi-
ficd and no consistency check followed ihe modifica-
tion.

Ali of thcse properlies are supporlcd by Modula-2. This
reduccs the chances of the hard-to-localizc kind of crrors
ihai arise from incompatible inlerfaccs in dividcd-labor
softvvare devclopment.

The conccpl of separatc compilation coupicd wiih the
cbncepl of strict iype binding contributes to drastically
increased productivity in a dividcd labor sctting in a rcvolu-
tionary way that is unfathomable to programmcrs in con-
veniional languagcs such as Fortran or Cobol, whilc simul-

taneously (and al almost no addilional cost) hcighlcning
7e!iability and maintaiTab:lity.

Structuring in the Small

Thc goal of structuring llie conlrol now of algorilhms is lo
eslablish a corrcspondence betwcen ihc static formulation of
an algorithm and its dynamic bchavior, to thercby rcduce ils
susceplabilily lo errors, and lo enable the vcrification of
the algorithm. The most important measurc in this direc-
lion is the avoidancc of unlimitcd now structurcs which
rcsult from undisciplincd use of unconditional transfcrs of
control (goto slalcments). Thus many considcr thc absolutc
avoidancc of such statemcnts lo bc a fundamcntal rcquirc-
ment of structurcd programming, and lhcy insisl that con­
lrol flow is to be structurcd by including only consiructs
ihal have a singic entry and a singlc exit.

Modula-2 does not complctely mcct ali thcse rcquircments
of fundamentalist structurcd programming, for Modula-2
provides llie RETURN and EXrT statemcnts. But thcse dis-
guised gotos do not compromise the softwarc enginecring
principle in an esscntial manner, and they sometimcs
incrcasc thc cfficiency and readabilily of programs if a
loop/exil is used instcad of some boolean variablcs and a
conditional transfer lesi to circumvcnt ihc nccd for a loop
exil sialcmcnt. This latter lechniquc ofien dctracts from
program clarity.

Allhough it is, of course, clear that good programming
stylc is not characterizcd by ihe abscncc of golo statemcnts
alonc, the lack of a golo stalemcnl in ModuIa-2 forccs pro­
gramming with well-dcfincd transfcrs of control. This is an
importanl propcrty of Modula-2 from ihc viewpoinl of
soflwarc enginecring, and I agree wilh B. Mcycr's obscrva-
lion [13]:

"It is hard to undcrsland that, twcnty ycars aftcr 1968, a
single Ictier about the golo construction should iriggcr end-
less Icttcrs to thc Communications of ihe ACM, many of
thcm advocating ihc use of gotos. Why not Roman numcr-
als?"

Guaranteeing Reliability and Maintainability

Prerequisitcs to a reliable, maintainable software product
include clear, consisteni specincations, followcd by thc
clean design of a modular architecture, followcd by a read-
ablc description of ihe implementatlon, and culminated by a
rigorous, systcmatic tcsting procedure aimcd al bolh thc
individual components and thejr interaction.

Module indcpcndence is certainly one of the most impor­
tanl faclors in the design of reliable and maintainable soft-
ware syslcms. Guaranieeing the reliabilily and maintain-
ability of a program systcm is Icss cxpcnsivc as thc com­
ponents of a program syslem are easier to tunc, to corrccl
or to adapl to new requircmcnts wilhout affccling olhcr parts
of thc sysiem. The ability of the sofiwarc dcsigncrs to cre-
ale module indcpcndence is vcry much rclated to tlie choice
of the programming languagc to bc used in implcmcnting
the system. Thc promincnt concepls of Modula-2, such as
Information hiding, data abstraction, splitting definition
and implcmcntalion of modulcs, and sidc effcci avoidancc
through ihc use of prop)er variable scoping greatly affcct thc
type of design and implementatlon and cnhance reliability
and mainlainability considerably.

The readabililj of an implcmcntalion description is likc-
wisc an importanl critcrion for maintainability. It dcpen-
dcnds on thc slructuredncss of thc systcm, on programming

35

stylc, and on the cxpressive power of the implcmcnlalion
languagc used. Significant improvcmcnts in program rcad-
ability result from:

• the usc of dcscripiivc namcs of arbitrary Icngth

• the ability to dcfinc lypc namcs

• ihe abilily to use abstract data typcs
• the compulsion to use formal object dcclarations (Ihis

servcs as an identifier glossary)
• the possibiIity of reusing identifier namcs in ihe

same program at different levels of locality

The clcar lexical and syntactic construction of Modula-2
and the possibility of meeting the criteria namcd above
assure a high documentation value. So long as an apfjropri-
ate programming style is maintaincd, Modula-2 programs
are more readable than PL/I, Cobol, Fortran or (in particu-
lar) C programs.

An additional important criterion for reliability and main-
tainabilily of a software system is its testability, which
mcans its suitability to chccking its corrcctness and localiz-
ing crrors. The most important criteria for testability, most
of which are fulfillcd by Modula-2 are:

+ Modularily of the system: The system architccturc is
formed by a hicrarchy of abslraclions (modules). The
interaction of modules is explicilly dcfined
(import/export interfaccs). Construcls are providcd
for strucluring modules (functional components).
Each functional component of a module has its own
scope (ncstcd locality).

+ The ability to avoid side ejjfecis: Communicalion
among program units can only occur via explicitly
described interfaccs. Each program component has its
own scope. Combination of data objects is only pos-
sible if their dala types are compatible; implicit con-
vcrsions aie precluded.

+ The abilily to guarantee Information hiding and data
absiraciion: The dala contents of a module and thcir
rcpresentations are not visible to the outsidc and are
thus protccted from procedures that access them. C)nly
procedures declared locally to the data can access the
data structurcs, that is, know their concrete rcpresenta­
tions. The use of extemal data structures is precluded
(module dccoupling).

+ Strucluring of the control flow: The control HONV of
an algorithm rcflects iu slatic structure. That is, the
exclusive use of flow structure constructs with a singic
entry and a single exit is encouragcd.

+ The ability to check the consistency of module and
procedure interfaccs: Intcrface descriptions (imporl/
export procedure interfaccs) are of a nalure that a
compile time check can be made to detcrmine whcther
the client and, the servcr (module/procedure) malch one

. anothcr.

+ The readability of the implementation (see abovc).

+ The availability of run time checking fdcilities such
as range check, indcx check, etc.

— The ability to specify semantic aspects (assertion
mechanism): Procedures and lowcr level units (i.e.,
loops) can be provided with assertions Ihat' dcscribe
semantic aspects of the program segment and can bc
evalualed at r\m time. The underlying idea (see [13])is
programming by contract: "Every structure is charged
with a precise task, defined by a spccification that

States preciscly the obligations on the client, limit-
ing the routine's rcsponsibility (the prcconditions)
and the obligations on the routine, guarantceing the
client a certain result (the posicondiiions)."

Modula-2 not only pcrmits but considcrably supports
these criteria for incrcased tcstability and thcreby for
heightening the reliability and maintainability vvilh a sin­
gle exception. An assertion mechanism as it is found, e.g.,
in Eiffel (13] is lacking in Modula-2. This drawback is,
however, easier to accept in modular programming Ihan in
object-orienled programming becausc dynamic binding can
obscure what actually happcns in an objcct-oriented pro­
gram.

Modula-2 supports measures to guarantee reliability and
maintainability to an incomparabily greater extcnt than
Fortran, Cobol and C, the most-used programming lan-
guages today. Studies in our research area (dcvclopmcnt of
software engineering tools) have shown lliat the ovcrhcad
for testing and maintaining of projects wiih Modula-2 as
implementation language were less Ihan 50% of the ovcr­
hcad in similar projects in vvhich PL/I and C wcre used.

Exception Handling
In the cxecution of a program, events or conditions can
occur (e.g., protocol enors in the transmission of data) that
requirc special treatment. Language constructs for describing
and handling such events (exceptions) contribute to the
reliability and clarity of program systems. Thus a number
of programming languagcs (e.g., Ada, Clu, Eiffel) incorpo-
rale language construcls for exception handling.

Such constructs do not exist in Modula-2, an absence
which has often been identified as a drawback of the lan­
guage^ I cannot agree with this verdict. In aH our projects
I never encountered a čase where programming out exccp-
tion handling posed difficulties or dctracted from the clarity
of the program. Furthermore, it is easily possible to im-
plcmcnt a mechanism for exceplion handling in Modula-2
with the help of coroutines and/or library modules.

Reusability of Library Modules

Modula-2 has providcd us in particular with the scparation
of an intcrface description from the implementation of a
module and the possibility of modifying tlie implementa­
tion without needing to changc anylhing clse in the rest of
the system in which the module is imbcddcd (not cvcn
recompilation). Since the introduction of the module con-
struct in programming languagcs, programmcrs cxpcct sig­
nificant improvement in the reusabilily of prcfabricaicd
software units as well as the creation and distribution of
powerful module libraries.

Typical library modules contain a collcction of proce­
dures that implement oftcn needed funclions and bclong
together in some manncr, e.g., a trigonomctry module; or
they implement an abstract data lype that providcs the
client with a new data type and the opcrations dcfined on it,
e.g., stack, qucue, tree, sparse matrices; or thcy model
physical syslems to operate between hardwarc components
and the rest of the soflware systcm, e.g., device drivers,
Communications modules. In addition to physical systcms,
logical/conceptional systcms are naiurally likewise mod-
elled, i.e., made useful for other software components at a
higher abstraction level,- e.g., graphic modules, database
modules.

In software engineering jjractice the situation oficn ariscs
that a library module almost but nol quite meels the

36

requiremenls of a new application. Modificalions bccomc
ncccssary. If changes only affect thc implcmentation pari,
there is less problem. Howev.er, thc definition part is often
affectcd as well (porhaps a new albcit trivial operation is
needcd). A change in the definition part carrics wilh it thc
ramifications that ali client systcms have to be compilcd
anew. In order to avoid Ihis, there is no alternative bul to
copy the original module and to make ihc changes in the
copy. With tirne ihis can lead to a whole family of differ-
ent yet closeIy related modules. If a fundamental aspect of
this module family needs to bc modified, an aspect vvhich is
common to aH thc membcrs, then each member of the mod­
ule family has to be modified.

Another dravvback that restricts reusability is that mod­
ules in the sense of Modula-2 dcHnc a static object and do
not permit the definition of an object type. A module can
thus not b« defined once and be repeatedly instantiated.
This proves to be a particular impediment in modelling
abstract data types. I have discussed how abstract data
types are reproduced with the module concept: A data object
must be explicitly allocatcd with the invocation of a proce­
dure; the data type itself is referenced with an opaque
pointer. Thus reproduced abstract data types cannot occur
dircctly in olher data stnictures, or be transferred to other
processes, or be output directly to files; one has only the
opaque pointer as reference to the abstract data type.
Special procedures have to bc defined for such opcrations
for each data object and have to bc invoked by the client at
thc right tirne. A disagreeable side effect is that the client
has to treat abstract data types differently from real data
types.

In order to guarantee a sufficient measure of rcusabililty,
it must be possiblc to apply abstract data typcs for defining
arbitrary data structures. Furthermore, it must be possible
to enhance abstract data types in a simplc and ncxib1e
manncr without violating the principle of Information hid-
ing. This is not possible in Modula-2—or at Icast only in
a very troublcsomc manncr. (I alluded to this in the section
on object-orientcd systcm construction.) The reusability of
library modules in Modula-2 ihus docs not completely mect
ihc requiremcnts of modem software engineering. Thus in
our software dcvclopment envirorunent module librarics wcrc
used only for elcmentary tasks.

SUMMARV

My goal was to subject Modula-2 to critical analysis. I
did not do this on the level of D. Moffat, who wrote [15]:
"Modula-2 is not a general purpose language. Every general
purpose language must also include some way to deal wilh
iarge fixed-precision numbers for monetary quantities." I
also did not seek to discuss what N. Wirth's Modula-2
Rcport did not precisely define, as,- e.g., in B.J. Cornclius
[6], [7]. Instead I sought to give an ovcrview of the cxtent
to which the language meets the requircments of software
engineering at thc end of the 80s.

Ncedless to say, at the start of this decade Modula-2 was
a jewel—indced, a diamond—that enrichcd the programming
landscape. TTic ability to combinc multiple procedures into
a module, Information hiding, separatc compilalion with
full interface consistency chccking, ihe ability to formulate
parallel processes by means of ihc elementary concept of
coroutines with various synchroni7.ation mechanisms, the
support of most of the concepls of softwarc engineering
familiar at that time, the high documcntaiion value of
Modula-2, ihc compactness of ihc language, and the elegant
syntax compared to olher programming languages made
Modula-2 a powcrful lool for soflware engineers. Ali this
makes it most incomprchensibic that only a small segment

of software engineering, mainly thc acadcmic scclor, madc
use of this mileslonc language.

Today, at thc end of the 80s, the world looks a litile dif-
ferent. Soflvvare engineering has conlinucd to dcvelop—
inspired by the fruitful works of N. Wirth and oihcrs. Ncw
programming paradigms have thcir consolidation phases
behind them and new rcquiremenls for programming lan­
guages have evolvcd as a consequencc. From my point of
vicw thc most importanl are: ihc availabiliiy of construcis
for rcalizing object-orientcd software architcctures, ihc abil-
iiy to create multiple interfaccs to modules wiih respcct to
objecis, and assertion mechanisms providcd by a language
to increase thc rcliability of programs. It is clear that the
programming languages of thc 70s to vvhich ModuIa-2
belongs cannot complclcly meel these rcquircmcnls. Bul
from my polni of view, ihcsc enhanccments can bc attached
to Modula-2 with minor extensions, the subject of work cur-
rcnlly in progrcss.

One step in Ihis direction was, as mentioncd above, thc
devclopmcnl of Oberon and thc enhanccments Ihal led to
Object Oberon. Modula-2, in terms of thc fundamental con-
cepts of the language and iis cleanness and simpliciiy,
forms a signincaiiily bctter basis for furlhcr dcvclopment in
the directions mentioncd than other programming lan­
guages, in particular C, which is so questionablc from a
soflware engineering viewpoint.

Our research group is among those that are working on
further devclopmcnts in the area of programming lan­
guages—naturally based on ihe solid foundaiion that
Modula-2 provides.

REFERENCES

1. Bischofberger W.. Keller R., 1989, Enhancing the
Soflware Life Cycle by Protolyping, Structurcd
Programming, Vol. 10, No. 1, Springer.

2. Bischofberger W., Pomberger G., 1989, SCT—A Tool
for Hybrid Excculion of Hybrid Soflwarc Systcms,
Proceedings of the First Annual Modula-2 Confcrence,
Bled, Vugoslavia.

3 . Blaschck G., Pomberger G., Stritzingcr A., 1989, A
Comparison of Object-Oriented Programming
Languages, Structurcd Programming, Vol. 10, No. 4,
Springer.

4. Blaschck G., 1989, Implcmentation of Objecis in
Modula-2, Structurcd Programming, Vol. 10. No. 3,
Springer.

5. Cardelli L. ct al.. 1988, Modula-3 Rcport. Olivetti
Research Center.

6. Cornclius B.J. (cd), 1986, Problems wiih ihe Rcport on
Modula-2, Version 8, IST/5/13 NVorking Group papcr
N103, British Standards Institute.

7. Cornclius B.J., 1988, Problems wiih the Language
Modula-2, Softwarc—Praclicc and Expcriencc, Vol 18,
No. 6.

8. Fairlcy R., 1985, Soflvvare Engineering Concepls,
McGraw Hill.

9. Goldbcrg A., Robson D., 1983, Smalltalk-80, The
Language and Its Implcmentation, Addison-WesIey.

10. Gulknechl J.. 1989, Variations on the Role of Module
Interfaccs, Structurcd Programming, Vol. 10, No. 1,
Springer.

37

11. Henne E., et a!.. 1988, Modula-2 User Manual. pl
Gcsellschaft fUr Informatik (German).

12. Kcllcr R., 1989, P ro lo typ ingor i en t i e r t e
Syslcmspc7.inication (Prototyping-Oriented Syslem
Spccificalion), Verlag Dr. Kovač, Hamburg, (German).

13. Meyer B., 1989, From Structured Programming lo
Object-Oriented Design: the Road to Eiffel, Structured
Programming, Vol. 10, No. 1.

14. MessenbOck H., Tempi J., 1989. Object Oberon—A
Modcst Object-Oriented Programming Language,
Structured Programming, Vol. 10, No. 4.

15. Moffat D.V., 1984, Some Concems About ModuIa-2,
Sigplan Notices, Vol. 19, No.12.

16. Pombcrger G., 1986, Software Engineering and Moduia-
2, Premice Hali.

17. Pomberger G., Bischofberger W., Keller R., Schmidl
D., 1988, Topos - A Toolset for Prolotyping-Orientcd

Software Development, Proceedings of ihe CGL4, Pariš.

18. Pressman R.S., 1987, Software Engineering: A
Praciitioncr's Approach, 2nd cdition, McGraw-Hill.

19. Schmuckcr K., 1985, Object-Oriented Programming for
the Macintosh, Hayden.

20. Sommerville I., 1985, Software Engineering, 2nd
edilion, Addison-Wesley.

21 . Weinand A., et al., 1989, Design and Implementalion
of ET+-h, a Seamless Object-Oriented Application
Framework, Structured Programming, Vol. 10, No. 2,
Springer.

22. Wiener R., Sincovec R., 1984, Software Engineering
with Modula-2 and Ada, John Wiley & Sons.

23 . Wirih N., 1987, From Modula-2 to Oberon and the
Programming Language Oberon, ETH Report, Zurich.

24. Wirth N., 1988, Programming in ModuIa-2, 4th
cdition, Springer.

Iskra Delta Development DIvision™
Stegne 15C, 61000 Ljubljana, Vugoslavia

Phone: (-1-38 61)57 45 54
Telex; 31366 yu delta
Fax: (+ 38 61) 32 88 87 and (-f 3861) 55 32 61
E-mail: m@idc.tiucp

Communication and Information Systems (C&IS)

The field of C&IS of Iskra DeltaDevelopmentDIvIsion'" has the extent of the
following professional activities:

• communication among information systems and devices of different product
manufacturers concerning the so-called communicational integration,
advances, and operativeness

• design, development, and consulting in the field of data netvvorks

• HW and SW development, extension, and related services of information
systems operating under VMS, Unix, Xenix, and MS-DOS

• research, development, and production in the field of parallel processing,
overing design and integration of parallel computers, artificial intelligence,
expert systems, netvvorking, neural netvvorks, training, consulting

• Computer graphics: development of HW and SW considering several
international and de facto standards

• reliability and quality control, design, and prediction

• information system integration, design, and consulting In industrlal
environment, particularly in process control concerning povver stafions and
industrlal plants

• VME and Unix based information system integration vvith own and other
standarized HW and SW modules in real tirne environment

• development of computer terminals emulaling IBM, Digital, Honeywell
products, Teletex; and

e development technology and support: design of multi-layer printed circuits;
generating of bar-code; industrlal design; manufacturing of prototypes,
industrlal documentation, and manuals; desk-top publishing; eta

