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OVERVIETVV 

The titlc of this papcr draws togclher a programming 
languagc, Modula-2, and a discipline in the arca of 
Computer science, software engineering. This raiscs several 
questions: 

What is mcant by softwaic engineering? This is by no 
means intendcd to bc a rhetorical question, for the percep-
lions of sortwarc cnginccring's lasks varies pronouncedly 
from llie viewpoints of theoreticians and practitioncrs. 

Even grcater divergence can be found on the question of 
what a programming language has to do with softwarc 
engineering. Some consider the choicc of a programming 
language of utmost importance to the success of a, softvvare 
projcct and the quality of the resulting product, whilc olhcrs 
vicw tlie language as the least importanl tool of the dcvcl-
opment process. 

Evcn the qucstion of whelhcr programming is more a 
science or more an art (or pcrhaps evcn a craft) cvokcs avid 
disagreemcnt. I do not want to renew this old feud; I 
simply want to establish that clements of ali of thcm are 
inherent in soflware developmcnt at this timc, and this is 
likely to remain the čase in the futurc. 

When I use the term software engineering, I mean the 
application of scientific knowledgc for the efficient 
produclion and application of reliablc and efficient softvvare 
(see [16]). 

The succcssful dcvclopment of large software systcms is 
usually a multistage process. It usually begins with the 
dctcrmination and documentation of the functions and 
individual actions that are expected of the software system. 
This leads in the specificalion phase to a contract bclween 
the client and the soflware dcveloper (rcquirements 
definition) that precisely delineates what the softvvare 
system must be capablc of. 

The spccification phase is follovved by the design phase, 
vvhich dctcrmincs vvhat kind of systcm architecture can meet 
the givcn requirements. The implementation phase attcnds 
to the realization of the complele design concept in a 
programming language. 

The implementation of every single systcm component 
must bc systematically tested. Subsequently the vvhole 
system must be tested vvith the goal of finding as many 
errors as possible and assuring that the implementation 
meets the requiremcnts definition. 

Upon completion of the test phase the softvvare is 
installcd and hsmded over to the client. The task of soft­
vvare maintenance is bolh to correct errors that arise during 
operation and to make system modifications and exten-

sions. This task again includes ali activities mentioncd 
above—from the rcvision of the requirements analysis 
through renevved tesling. 

An engineering discipline is charactcrizcd by the 
construction of tools that help to systemizc and rationalize 
the product dcvelopment process, to improvc the quality of 
products, and to guarantce efficient maintenance. A particu-
larly importanl step in this direclion was the developmcnt 
of programming languages as tools intendcd to help to 
achieve these goals. Unlike many othcrs, I agrcc vvith 
B.W. Boehm that "choosing a programming language is 
like choosing a vvife. It is hard to undo after getting in-
volved and not to be taken lightly." 

I likevvise agree vvith R. Wiener and R. Sincovcc [22] that 
"the choice of a programming language for imptcmenting a 
large-scale softvvare systcm is critical becausc the featurcs of 
a programming language are strongIy relatcd to the softvvare 
engineering process. Languages differ in the degrce to 
vvhich they support: readability, modular softvvare construc­
tion, ihe control of side effects, information hiding, data 
abstraction, structured flovv control, separate compilation 
wiih consistency checking, type chccking among various 
components, dynamic memory managcment, and run-time 
chccking. Languages that offer strong support in the 
above-listed areas provide the basis for constructing reliable 
and maintainable softvvare." 

I vvill discuss to vvhat extent the principles of softvvare 
engineering knovvn today are supported (or not supportcd) 
by Modula-2. Detail is reslricted by the sizc and extent of 
this papcr. For this reason only the principles that I 
consider most importanl vvill be discussed. I vvill bricfly 
discuss the characteristics of softvvare developmcnt models 
in order to be abic to exp]ore: 

• specificalion principles 
- requirement exploration by prototyping 

• design principles 
- module-oriented architecture design 
- abstract data structurcs 
- abstract data lypcs 
- funclional abstraction 
- objecl-orientcd design principles 

• othcr evaluaiion criteria 
- division of labor in softvvare dcvelopment 
- structuring in the small (structured programming) 
- guaranteeing reliability and maintainability 
- exception handling 
- reusability of library modulcs 
- portabilily 
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SOFTWARE DKVELOPMENT MODKLS 

Whcrever pcopic are confronted wilh complcx design tasks 
to bc soivcd, i!icy attempt to systcmaticany organize thc 
problem solving proccss, that is, to dcfine an approach 
model. Such a model detcrmincs which critcria are to 
govem thc problem solving process. It dccomposes ihc 
problem-solving process into managable steps and 
dctcrmines what results must be produced afler execution of 
a given step. This enables a stepwise planning, dccision 
and implemcntalion process. 

These slcps collectivcly and the chronological order of 
their execution is known as the sofiware life cycle, an 
already classical term in computcr sciencc. The softwarc 
life cycle has bcen described in numerous variations and 
forms (see [8J, 120), [16], and [18]). 

Sludies have shown that thc life cycle-oriented develop-
menl melhod is ihc most commonly used approach in 
currenl software development, and that it has in general paid 
off. Applicalion in the ficld, however, has also shown ihe 
limils and the weakncsses of this approach: 

The model is bascd upon thc (incorrcct) assumption ihal 
the development process lends to be lincar and. that 
iterations bciwcen phascs occur only as cxccptions to the 
rule. Strici applicalion of this development melhod requires 
ihal one phase can only be begun afler thc prcceding phase 
is complcted, that is, when the rcspectivc inlcrmediale 
producls are availablc. In reality, howcvcr, a complelc 
spccification or a suilable systcm archilecturc can seldom bc 
produced straightoff. UsuaIIy thc later phascs have a slrong 
impact on Ihe earlier phases. 

The strici discriminalion of the individual phascs is an 
unacceptable idcali7.ation. In reality thc aclivilics of the 
phases overlap and inleraclion betwcen phases is much 
more complcx Ihan that exhibited in the sequcnlial 
input/output model. 
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Figure 1 Protolyping-Orineted Software Life Cyclc 

The strictly sequenlial approach Icads to tangible prod­
ucls or componenls bcing availablc only al a rclalively late 
stagc. Vet expcrience shows that thc validalion process 
cannot gel by without expcriments close to reality. Fur-
thermore, modifications requcsted by the clicnt can only bc 
expressed relatively late, and integrating ihem al ihal slage 
can Icad to substantial ovcrhead. 

It is often assumed—and currenl reports from rcsearch and 
industry confirm this assumption—that a proiotyping-

oricntcd development mclhodology can rcsolve some of ihc 
weaknesses of Ihe life cycle-orienled development approach. 
A protolyping-oriented development is not radically differ-
ent from a purely phasc-oricntcd development slratcgy. 
Furlhermore, Ihc two are to bc viewed more as complcmcn-
lary ihan as altcmalive. They differ most in ihc proccdurcs 
and the results produced in the individual phascs. Although 
the distinction of pha.ses is mainlained, problem analysis 
and spccification overlap chronologicany a great dcal, and 
design, implemcntalion and lesting very much blcnd into 
one anolher (scc Figure 1). 

SPECIFICATION PRINCIPLES—EXPLORA-
TION OF USER REOUIREMENTS 

As our development model shovvs, one element of knowl-
edge inherent in our dcTinilion of soflware engincering is 
lliat the spccification and design processcs should be carricd 
oul in a prolotyping-supportcd manncr. 

The development of thc user interface, for examplc, 
proves an cxceplionally difHcull lask bccausc ihe evaluation 
thercof is guided by highly subjeclive critcria and the uscr 
is hardly able to define in advance whal hc/shc considers lo 
bc convenienl inleraclion. Protolyping is an imporlanl— 
and, from my poinl of vicw, in most cases absolutely ncc-
cssary—vchicle for ihe cxploration of user rcquircmcnls and 
ihus for ihc specification of uscr inlcrfaces. 

We normally dislinguish lwo apjjroaches to prololyping: 
reusable code and executable specifications. Modem pro-
gramming languagcs like Modula-2 are signiricanlly bcticr 
suiled for producing reusable componenls Ihan was the čase 
in older programming. languagcs. Modula-2 is particularly 

• handy for the building of module libraries. From ihe vicw-
point of prbtotyping, howevcr, a numbcr of problems 
remain unsolvcd if one uscs convcntional programming 
languagcs such as Modula-2 for prololyping aclivilics: 

• How can ihe functionality of a library modulcs bc 
provided gcnerally cnough that thcy can bc intcgratcd 
into a given protolype? 

• TTic dcgree of abstraction of Modula-2 modulcs is too 
low; a prolotypc dcsigncr must rcvise codc for evcry 
modification, no malter hovv small, and make his/hcr 
changcs directly in thc code; details of thc prolotypc 
cannot be discussed wiih the uscr. 

• Tumaround timcs for iterativc rcfinemcnts in a proto-
lypc are simply too high. 

Although the availability of module libraries is stcadily 
improving and thc taxonorpy of soflwarc componenls is 
bcginning to emcrge (already it is pKSSsiblc to dislinguish 
componenls such as malhcmatical roulinc packagcs, mes-
sage channels, input/output packagcs, parscrs, scanncrs and 
fillers lo name a fcw), Modula-2 libraries are only to a 
limitcd extenl (if al aH) capablc of mecting the demands of 
rcusability of code as rcquired for prototyping. 

The olher approach to rapid protolyping, excculable 
specifications (an object of inlense rcsearch efforls) is 
likewise not supportcd by Modula-2. 

Sincc on thc one hand we use Modula-2 as our implemcn­
talion language in most cases in our rcsearch group (and thc 
choice of Modula-2 is to be credited with considerablc 
incrcases in efficiency and qualily), and on the olher hand 
we have recognized the value of protolyping-oriented 
software developmenl and evaluated ihis in sevcral rcsearch 
projecls, il became necessary lo develop spccial lools for 
protoiyping. 
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For ihe prototyping process during the analysis and sf>ec-
ification phases, we dcvelopcd a dcclarative languagc for the 
description of executable spccincaiion»—our User Interface 
Specification Language (UISL, sce [12] and [17]). Searching 
for melhods for integration of high level prototypcs and 
application parts writlen in Modula-2 as well as for valida-
lion of a system architeclure before conipletely implement-
ing it, we dcvelopcd SCT, a tool for hybrid exccution of 
hybrid software systems (see [1] and [2]). It allows for 
hybrid execution of Modula-2 sofiware syslcms at any tirne 
during thcir dcvelopment. Designed but not implementcd 
modules are simulaled, partially coded modules are inter-
pretcd, and modules which are coded and tcsted are direclly 
exccutcd. Furthcrmore, SCT allovvs for execution of hybrid 
software systems (systems written in differcnt languages). 
This is achievcd by providing the possibility of adding new 
execution tools to SCT's hybrid execution syslem (e.g., an 
interpreter for a user interface description language). 

Applying SCT high levcl prototypes can be easily,en-
hanced wilh Modula-2 codc, allowing the dcvelopment pf 
belter exploratory and evoIutionary prototypes. Fur­
thcrmore, SCT supporls the validation of systcm archilcc-
tures rcprcscnted by Modula-2 dcfinition modules by simu-
lating data and control nows. Finally, SCT providcs a com-
fortable interpretative programming environment allowing 
for fasl implcmentation and expcrimcntation with differcnt 
rcalizations of ihe functionality provided by a module. 

SOFTVVARE DESIGN PRINCIPLES 

Tite lask of the design phase is the determination of the 
architeclure of a software system—ihat is, to decidc how to 
build Ihe proposed systcm—with the goal of achieving an 
implcmentation that is as efficient as possible and meels ali 
quality requirements. Because of thc praclically unlimitcd 
number of possibilities of determining the design of a 
planncd system, ihc decisions made and ihe mclliods used in 
this phase pronounccdly influence ihe qualily of the product 
and thcrcby its mainlenance costs and dcgrce of rcliabilily. 

The production of complex program •!ystems neccssitatcs 
a division of labor; that is, multiple pcrsons are involved 
in the software development. It is clcar that softvvarc dc­
velopment is a Creative process, that the expcricnce, 
crealivity and innovation of the designer significantly 
affects Ihe quality of the product. But as a rulc the com-
plcxity of design decisions is so high Ihat a systematic 
approach—a mclhod and associatcd design principlcs—rhust 
be adhcred to in order to guarantee a resulting product that 
is rcliable and easy to mainlain. 

Ali software design involves a process of abstraction. 
Objccts and operalions identificd in the real world domain 
must be mpdellcd and expTessed as corresponding operations 
and objccts of the problem-solving domain. 

Module-oriented and object-orienled software design are 
fundamental design principlcs resulting from computer 
science research in the 60s and 70s. VViener and Sincovec 
write [22]: 

"No longcr is it necessary for the systcm designer to map 
the problem domain to the predefined data and control 
siructure preseni in the implemcniation language. Instead, 
Ihe designer may create his or her own abstracl data typcs 
and functional abstractions and map the real world domain 
to these programmer-created abstractions. The mapping, 
incidentally, may be much more natural because of the 
virtually uniimited range of abstract lypes that can be 
invented by the software designer. ... ihc payoff for 

modular software design and implcmentation occurs when 
rcpairs or addiiions must bc made to a softwarc systcm." 

Modulc-Oriented Design Principlcs 

The goal of modular system design is the decomposition of 
a program syslem into a hierarchy of abstractions about 
which Wirth writes [24]: "The principlc motivalion bchind 
the partitioning of a program into modules is—bcside ihe 
use of modules provided by other programmcrs—the estab-
lishmenl of a hierarchy of abstraction." 

The pillars of modular system architeclure are module 
independence and data abstraction. Module independcnce 
(freedom from interference) mcar« that any module can be 
replaced by another module ihat adheres to the module inter­
face without necessitating further changcs in ihe system. 
That is, it must be possible to change dctails of the implc­
mentation of a particular module without influencing the 
remaining syslcm components. 

The basic building blocks of modularly constructcd sofl-
ware syslems are: 

• abstract data structurcs 

• abstract dala types 

functional abstraction 

• abstract, explicitly defined module inicrfaccs 

Allhough software engineering courses oftcn teach that 
design should occur completely indepcndently of the im­
plcmentation language. I believe that this is only useful if 
the implemcniation language docs not mcct the requirements 
of software engineering. We are aware that a language 
rcflects Ihe habits and ihoughl pattcrns of its designer. 
There is even a relationship between a natural language and 
the way a person who speaks ihe language ihinks. The 
same is true for programming languages. The knowledge 
Ihat Icnt it its siructure and,lhe concepts ihat form its basis 
influenced the way a programmer thinks, his/her design 
style, and ihe siructure of the systcm hc/shc dcsigns. The 
choice of a programming language oftcn cvcn determincs 
how ihe lask is solved because the language supporls or 
excludcs cerlain approaches to a solulion. For examplc, a 
recursive trec traversal would never come to a Fortan pro-
grammer's mind. 

Furtlicrmore, we expcct a good implcmentation language 
to be able to reflect the decomposition structurcs, abstrac­
tion levels, data structurcs and module intcrfaccs that are 
identificd in the design stage and ihat ihese can bc tcsted at 
the interface level before aH the implcmentation dctails are 
known. 

The degree to which these requircmcnts can be met is 
dcpendcnl upon the choice of a programming language. The 
question is to what extcnl Modula-2 supporls the above-
named criteria for modular system architcctures. 

The Modula-2 Module Concept 

TTie rcalizalion of the module definilion as givcn above is 
supporled in an elegant marmcr by the module concept of 
Modula-2. The modular struclure of Modula-2 can bc viewcd 
as a fence that encloses objccts (data structurcs and proce-
dures) and encapsules them apart from thcir environment. 
This fence can be ojKned for ihe purpose of communicaiing 
wiih the environment. Howcvcr, the programmer must 
cxplicitly establish which objccts are to bc made known 
(that is, exported) to the outside and which objects ihe 
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module will need (that is, import) from its environment. 
This meets the requirements of explicitly defincd module 
interfaces. 

From the vicwpoint of the abstraction principle, the 
export intcrface can be seen as its specification. It con-
tains ali Information regarding what the module is expectcd 
to do (that is, what objccts and functions it makes avail-
able) and hidcs ali details of the implementation thercof. It 
is thus also useful to separate the texls of the module speci­
fication and its implementation description. Modula-2 
mcets this requirement by scparating the definilion and 
implementation parts of a module. 

One of the most important aspecls of modularIy 
constructed software systcms is thus an explicit de.scription 
of mutual effects (that is, interdependencics) among mod-
ules. The importance of such explicitness follovvs from the 
observation that aH the effects of a local change on the 
global system must be completcly dctermincd by the depcn-
ucncy relations. In Modula-2 interfaces of modules as seen 
by the programmers are called dcfinilions. Such module 
definitions may be regardcd as public projections, and thcre 
is exactly one public projcction of each module. 

But this situation is Icss than salisfactory. In practicc 
wc often encounter situtions in which multiple views of a 
module can be scen as bcfitting the problem. Considcr, for 
example, a module X for managing asscmbly lists in a pro-
duction planning and control system. It is clcar that a mod­
ule A from the area of design rcquires diffcrcnl access func­
tions than a module B from the area of work schcduling or a 
module C from the area of material disposition. A, B and C 
aH work wiih the encapsuled data structures in X, alihough 
in different ways and with differenl requirements for access 
to the data structures of the asscmbly list encapsulated in X. 

This is just one of many examples in which multiple 
interfaces to a singlc module are nccessary, each with differ­
ent levels of abstraction, in order to guarantec adcquale 
application of the module wilh respect to the problem at 
hand. 

Due to the one-to-one correspondence of modules and 
intcrface descriptions in Modula-2, multiple interfaces can-
not be satisfactorily realized. Eithcr aH the different views 
are packed into a single intcrface—vvhich increascs the 
compIcxity of the intcrface, reduces the safety of the mod­
ule, and destroys part of the abstraction—or the implemen­
tation is duplicated—that is, reusability is lost and main-
tainability is reduced. 

Multiple interfaces of modules are thus an important con-
cept in software engincering that is not supporlcd by 
Modula-2. Ideas on the implementation of multiple inter­
faces can be found in [10]. 

Abstract Pata Structures (Information Hiding) 

The basic concept of Modula-2 is the establishment of a 
hierarchy of abstractions. Naturally, this includes the 
implementation of abstract data structures. The problem of 
spcciaHy identifying access opcrations to a(n abstract) data 
structurc is solvcd in Modula-2 by dividing a capsulc into 
two parts; one part visible to the user (the specifications 
or intcrface part) and containing the declaration of aH 
access operations and any exportcd data lypes; the othcr 
part invisibic to the user (the implementation part) and 
containing declarations of encapsulated data and algorithms 
in the capsule. 

The module concept of Modula-2 includes the export of 
not just procedures, data types and constants; variables can 
likewise be exported (for example, to make access to a sin­
gle data element more efficient). If a variablc is cxportcd, 
its value can be changed by the imporiing module. 
However, this violates the principle of information hiding 
and it must be clear to the importer that he/she is working 
wiih global data, and tlie efficiency thereby altained is 
countered by the disadvantages of exchanging data via 
globa! variables. 

Modula-2 thus permits tlie implementation of data cap-
sules, alihough the principle of information hiding is 
incompletely realized due to the possibiIity of cxporting 
inner data structures togcther wilh thcir structurc. In this 
sense it would be dcsirable to have cxporled variables that 
can be read but not written to by the client. 

Abstract Data Types 

Abstract data types are neccssary whcn multiple cxamples of 
an abstract data structurc are to be defincd. Abstract data 
types can be implemented in Modula-2 by mcans of the 
module concept combined wiih the concept of opaquc data 
types. 

An abstract data type is defincd as an opaque type in the 
definition module; that is, its realizalion rcmains hiddcn 
from the user and is detcrmined in the implementation mod­
ule—in contrast to Ada—which is a considcrable advantage 
from the viewpoint of software engincering. 

Unfortunately there is a catch to using opaque data types 
in Modula-2. Since the storage rcquiremcnts of abstract data 
typcs must be knovvn whcn the definition module is com-
piled, Modula-2 requircs that the concrete typc assigned to 
an abstract type must be of fixed lenglh—that is, it must be 
a poinler type. Other types, in particular ARRAVs and 
RECORDs, are not permittcd as abstract dala lypcs. Thcy 
can, hovvever, be realized as dynamically creatcd objccts and 
their poinler can bc vicwed as an abstract data typc. This 
means a slight loss of efficiency, howcver. I personalIy 
considcr the advantage of abstract data typcs to be greater 
than the disadvantage of the loss of efficiency. 

It is much vvorsc to have to dynamically allocate vari­
ables of abstract data types and to have to cxplicitly frcc 
their storage. Furthermore, the statcment x:=y docs not 
store a copy of y in x. This is a dangcrous pitfall that can 
cause less expcrienced Modula-2 programmers to avoid the 
use of abstract data types. 

In the process of designing a softwarc systcm, we usually 
encounter modules or procedures that have a similar purpose 
but operate on data objects of different typcs, for example, 
modules for stacks, queues, trees, etc. What we wanl to 
have is a construct that permits the definilion of templatcs 
for program units that need to be writlen only once and 
then tailored to the particular needs at translation tirne. 
This would be possiblc with generic units, but gcncric units 
are not available in Modula-2. 

The data type WORD or ARRAY OF WORD scrvcs as a 
lifcbuoy in such cases. This allows, for example, the crc-
ation of a very general stack suitable for accepting simpic 
objects (for example, CARDINAL) as well as slruclurcd 
objecu (such as ARRAVs and RECORDs). I considcr ihe 
omission of generic units (which are most uncomfortable 
from the viewpoint of the compiler dcsigner) to bc a clevcr 
decision which, because of the self-hclp available in the 
tyf>e WORD, is also acceptable at the practilioncr Icvel. 
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Functional Abstraction 

Many soflwarc developmenters constnict ihe soflware sys-
tcm architccturc-as a hierarchy of functional componcnts, 
i.e., thcy employ the method of task-oricnlcd stcpwise 
refinemcnl. Functional aspects are the focus of the mclhod. 
Starting with the functional requirements, the task is 
dccomposed inlo subtasks; each subtask (functional compo-
nent) is then handlcd scparately and again dccomposed into 
subtasks unlil the resuhing subtasks become so simple that 
thcy can bc dcscribed with algorithms. That is, lop down 
design procccds from the general to the speciTic, from an 
idcntiTication of major system componcnts to subcompo-
ncnts and sub-subcomponenis and so forth. 

In the implcmentation we want to realize the hierarchical 
levels of the systcm architccturc by majjping ihc functional 
componcnts onto a sct of (posslbly ncstcd) procedures that 
are used to implcment the functional abstractions. The only 
languagc features we need to support top down design by 
stcpvvise rcfincment are procedures and the ability to group 
functional componcnts into functional subsystems. 

Through its procedure and module conccpts, Modula-2 
complclcly supports this method and permits the interfaces 
of the functional componcnts and functional subsystcms to 
be dcscribed prccisely, yet, as the design process requires, 
abslractly enough. 

Object-Oriented Design Principles 

A design principlc which has aroused a greal deal of intcrest 
recently in computer science is object-oriented systent 
design. Rcduced to its fundamcntals, objcct-oricnicd pro­
gramming gencrates softvvarc by rcproducing objcct dcscrip-
tions. An objcct description contains definitions of data 
along with the spccifications of actions that can bc applied 
to these dala. 

In contrast to modular programming, objcct dcscriptions 
are only a kind of typc description and do not form actually 
existing. constructs as does a module in the sense of 
Modula-2. Only when an objcct description is instantiatcd 
is an objcct created. 

However, object-oriented programming is more than just 
using abstract data types. It also involvcs inheritance and 
dynamic binding. 

An important propcrty of object-oriented system design 
is that the objcct dcscriptions do not contain complete def­
initions of the objcct's behavior and altributes, that is, ali 
its dala and actions. The objcct dcscriptions are ordercd in 
a hierarchy in such a way that at any given hierarchy Icvcl 
only such data and actions are speciFied as wcrc not already 
defined in supcrordinate objcct dcscriptions. Modificalions 
of dala and actions are thcreby made without altering the 
supcrordinate object dcscriptions. This distinguishes 
object-oriented soflware dcvelopment from module-oricntcd 
programming, in which ihe reuse of a module is only pos-
sible without changes in its implcmentation if the module's 
function complclely fils into ihe new context wilhout 
change. 

The strength of object-oriented syslcm design lies in the 
possibility of incrementally enhancing and adapting object 
dcscriptions without touching their code in the {jrocess. 
Instead of the libraries used in modular programming—with 
their rcusable function modules whose componcnts can bc 
used in the construction of software—object-oriented 
programming uscs libraries of object description hierarchies 
that form application framevvorks. Examples includc 

Smalltalk [9]. MacApp [19] and ET-h-t- [21]. 

As a rule, object-oriented programming builds on applica-
tions or parts of applications that are adapted to specific 
requiremcnls, yet without changing thcsc parts thcmseivcs. 
Tlius latcr modifications can be made on the prefabricatcd 
application parts that rcmain complclely transparent and 
spn-ead to ali derived applications without any further over-
head. 

The requirements placed on programming. languagcs 
which support object-oriented systcm construction match 
those for languages which sujjporl modular systcm construc­
tion in many respects. In addition, they must support the 
folIowing concepts (sce [3]): 

• Data abstraction: The description of abstract data 
types in the sense that they can occur dircctly in the 
declaralion of olher data structurcs must bc possible. 

• Inheritance: It must be possible to dcrive new data 
lypes by extcnding or modifying attributcs and opera-
tions of existing types without needing to modify the 
description of the base types. Instanccs of a class C 
buill on the basis of a class B are said to inherit the 
propcrties of B. 

• Polymorphism: The compaiibility of derived data 
lypes and their base types must be guarantccd. Object 
variabics must be able to assume valucs of different 
(bul related) data iypcs at run-time. 

• Dynamic binding: In the coursc of operations with 
obječts, there must be the possibility of dclcrmining 
at run-time the concrete actions to bc executcd 
(dcpcndcnt on the current dynamic data type of the 
objccts). 

In tlic object-oriented nomenclature, an abstract data typc 
is knovvn as a class. Every class dcfincs which altributes 
its instanccs (the so-callcd objccts) have and which opera­
tions are possible with ihem. Activaling an opcralion with 
an objcct is oftcn termed sending a message to the objcct. 
The object rcacls by executing a method. A method 
dcscribcs which aclions are to scrve as the rcalizaiion of an 
operation. This assignment of methods to messages is 
dctermined for cach class by the respcctive class dcfinition. 
Tlie effect of sending a message differs from procedure invo-
cations in convcntional programming languagcs in that the 
determination of which method is to be exccuted occurs at 
run tirne. 

The question is whether Modula-2 can be used to realize 
object-oriented system architectures and, if so, how it can 
bc done. Object-oriented programming docs not ncccssarily 
require an object-oriented programming language. 
Suggcslions on how to implcment objccts in Modula-2 can 
be found in [4]. Every individual class can bc defined fti a 
separate dcfinition module. Objccts can bc defined as 
pointcrs to records wilh two componcnts: a pointer lo a 
dala slruclure dcscribing its class and a pointer to the 
objecrs data (that is, instance variabics). A class can be 
defined by a record containing a pointer to its superclass, 
the name of the class, and a collection of procedure vari­
abics which represent the messages understood by objccts 
of this class. 

Of course, some deficiencies must also be mcntioncd (.sce 
[4]). The programmer must be aware of the fact that objects 
are implemented as pointcrs. Thus, each objcct must 
explicitly be created. Also, the statcmcnt x:=y does not 
creale a copy of the objcct y. Instead, a message scnd must 
be used. Changing a superclass' dcfinition module requires 
changes to ali of its subciasses. The requirement that every 
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class must be dcfincd in a separatc definition module can 
lead to a large colleclion of modulcs that is difficuU to 
undcrsland and maintain. 

Thus I cannot rccommcnd Modula-2 to construct object-
oricntcd syslcm archileclurcs as it was not designcd as an 
object-oricntcd languagc. But many of the deficicncics 
mentioned above can bc removcd by attaching minor exien-
sions to Modula-2. 

Thcre are, of course, some object-oricntcd extensions of 
Modula-2, among thcm ModuIa-3 [5] and pl Modula [ I I ] . 
Niklaus Wirth himself also designcd a ncw languagc namcd 
Obcron [23] that is bascd on Modula-2. Obcron was not 
designcd as an object-oricntcd languagc eilher, but rcadily 
lends itself to thc concept using typc exlensions and proce­
dure variablcs. And an expcrimcntal exlcnsion of Oberon, 
called Objecl Obcron, has becn developcd that incorporatcs 
the conccpts of class, mcthod and message [14]. Including 
ihese concepls in Obcron improves ils capabilitics for 
object-oricntcd programming. 

CmiER EVALUATIOS CRITERU 

I have discusscd to what extcnt Modula-2 supports ihc most 
importanl soflwarc enginecring principics for ihc explo-
ration of user requiremcnts (protolyping), for maslcring 
complexily (structuring in ihe large), for enginecring intcr-
faces (Information hiding, data abstraction), and for thc 
design of the architecture of soflwaTe systems (modular sys-
tem construction, object-oricntcd systcm construction). 

Beyond thcse aspects, we are inlerestcd from a softwarc 
enginecring viewpoint in several other critcria and how 
thcse are supporlcd by the choice of Modula-2 as implcmcn-
tation languagc, for example: 

• division of labor in software dcvclopmcnt 

• structuring in the small (stnicturcd programming) 

• guaranieeing reliability and maintainabiliiy 

• exccption handling 

• rcusability of library modulcs 

Division of Labor in Software Devclopment 

TTie proccss of dividing ihe work load in soflware dcvclop­
mcnt is significanily supporlcd if: 

• separatc interface description and implcmcntalion 
description of the system components is possible; 

• separale compilation of units wiih strici cross chcck-
ing is possible; 

• lype'consislency checking belwcen various compo­
nents is provided; and 

• Ihc execution of a program unit is automatically prc-
ventcd if ihe interface of a user component was modi-
ficd and no consistency check followed ihe modifica-
tion. 

Ali of thcse properlies are supporlcd by Modula-2. This 
reduccs the chances of the hard-to-localizc kind of crrors 
ihai arise from incompatible inlerfaccs in dividcd-labor 
softvvare devclopment. 

The conccpl of separatc compilation coupicd wiih the 
cbncepl of strict iype binding contributes to drastically 
increased productivity in a dividcd labor sctting in a rcvolu-
tionary way that is unfathomable to programmcrs in con-
veniional languagcs such as Fortran or Cobol, whilc simul-

taneously (and al almost no addilional cost) hcighlcning 
7e!iability and maintaiTab:lity. 

Structuring in the Small 

Thc goal of structuring llie conlrol now of algorilhms is lo 
eslablish a corrcspondence betwcen ihc static formulation of 
an algorithm and its dynamic bchavior, to thercby rcduce ils 
susceplabilily lo errors, and lo enable the vcrification of 
the algorithm. The most important measurc in this direc-
lion is the avoidancc of unlimitcd now structurcs which 
rcsult from undisciplincd use of unconditional transfcrs of 
control (goto slalcments). Thus many considcr thc absolutc 
avoidancc of such statemcnts lo bc a fundamcntal rcquirc-
ment of structurcd programming, and lhcy insisl that con­
lrol flow is to be structurcd by including only consiructs 
ihal have a singic entry and a singlc exit. 

Modula-2 does not complctely mcct ali thcse rcquircments 
of fundamentalist structurcd programming, for Modula-2 
provides llie RETURN and EXrT statemcnts. But thcse dis-
guised gotos do not compromise the softwarc enginecring 
principle in an esscntial manner, and they sometimcs 
incrcasc thc cfficiency and readabilily of programs if a 
loop/exil is used instcad of some boolean variablcs and a 
conditional transfer lesi to circumvcnt ihc nccd for a loop 
exil sialcmcnt. This latter lechniquc ofien dctracts from 
program clarity. 

Allhough it is, of course, clear that good programming 
stylc is not characterizcd by ihe abscncc of golo statemcnts 
alonc, the lack of a golo stalemcnl in ModuIa-2 forccs pro­
gramming with well-dcfincd transfcrs of control. This is an 
importanl propcrty of Modula-2 from ihc viewpoinl of 
soflwarc enginecring, and I agree wilh B. Mcycr's obscrva-
lion [13]: 

"It is hard to undcrsland that, twcnty ycars aftcr 1968, a 
single Ictier about the golo construction should iriggcr end-
less Icttcrs to thc Communications of ihe ACM, many of 
thcm advocating ihc use of gotos. Why not Roman numcr-
als?" 

Guaranteeing Reliability and Maintainability 

Prerequisitcs to a reliable, maintainable software product 
include clear, consisteni specincations, followcd by thc 
clean design of a modular architecture, followcd by a read-
ablc description of ihe implementatlon, and culminated by a 
rigorous, systcmatic tcsting procedure aimcd al bolh thc 
individual components and thejr interaction. 

Module indcpcndence is certainly one of the most impor­
tanl faclors in the design of reliable and maintainable soft-
ware syslcms. Guaranieeing the reliabilily and maintain-
ability of a program systcm is Icss cxpcnsivc as thc com­
ponents of a program syslem are easier to tunc, to corrccl 
or to adapl to new requircmcnts wilhout affccling olhcr parts 
of thc sysiem. The ability of the sofiwarc dcsigncrs to cre-
ale module indcpcndence is vcry much rclated to tlie choice 
of the programming languagc to bc used in implcmcnting 
the system. Thc promincnt concepls of Modula-2, such as 
Information hiding, data abstraction, splitting definition 
and implcmcntalion of modulcs, and sidc effcci avoidancc 
through ihc use of prop)er variable scoping greatly affcct thc 
type of design and implementatlon and cnhance reliability 
and mainlainability considerably. 

The readabililj of an implcmcntalion description is likc-
wisc an importanl critcrion for maintainability. It dcpen-
dcnds on thc slructuredncss of thc systcm, on programming 
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stylc, and on the cxpressive power of the implcmcnlalion 
languagc used. Significant improvcmcnts in program rcad-
ability result from: 

• the usc of dcscripiivc namcs of arbitrary Icngth 

• the ability to dcfinc lypc namcs 

• ihe abilily to use abstract data typcs 
• the compulsion to use formal object dcclarations (Ihis 

servcs as an identifier glossary) 
• the possibiIity of reusing identifier namcs in ihe 

same program at different levels of locality 

The clcar lexical and syntactic construction of Modula-2 
and the possibility of meeting the criteria namcd above 
assure a high documentation value. So long as an apfjropri-
ate programming style is maintaincd, Modula-2 programs 
are more readable than PL/I, Cobol, Fortran or (in particu-
lar) C programs. 

An additional important criterion for reliability and main-
tainabilily of a software system is its testability, which 
mcans its suitability to chccking its corrcctness and localiz-
ing crrors. The most important criteria for testability, most 
of which are fulfillcd by Modula-2 are: 

+ Modularily of the system: The system architccturc is 
formed by a hicrarchy of abslraclions (modules). The 
interaction of modules is explicilly dcfined 
(import/export interfaccs). Construcls are providcd 
for strucluring modules (functional components). 
Each functional component of a module has its own 
scope (ncstcd locality). 

+ The ability to avoid side ejjfecis: Communicalion 
among program units can only occur via explicitly 
described interfaccs. Each program component has its 
own scope. Combination of data objects is only pos-
sible if their dala types are compatible; implicit con-
vcrsions aie precluded. 

+ The abilily to guarantee Information hiding and data 
absiraciion: The dala contents of a module and thcir 
rcpresentations are not visible to the outsidc and are 
thus protccted from procedures that access them. C)nly 
procedures declared locally to the data can access the 
data structurcs, that is, know their concrete rcpresenta­
tions. The use of extemal data structures is precluded 
(module dccoupling). 

+ Strucluring of the control flow: The control HONV of 
an algorithm rcflects iu slatic structure. That is, the 
exclusive use of flow structure constructs with a singic 
entry and a single exit is encouragcd. 

+ The ability to check the consistency of module and 
procedure interfaccs: Intcrface descriptions (imporl/ 
export procedure interfaccs) are of a nalure that a 
compile time check can be made to detcrmine whcther 
the client and, the servcr (module/procedure) malch one 

. anothcr. 

+ The readability of the implementation (see abovc). 

+ The availability of run time checking fdcilities such 
as range check, indcx check, etc. 

— The ability to specify semantic aspects (assertion 
mechanism): Procedures and lowcr level units (i.e., 
loops) can be provided with assertions Ihat' dcscribe 
semantic aspects of the program segment and can bc 
evalualed at r\m time. The underlying idea (see [13])is 
programming by contract: "Every structure is charged 
with a precise task, defined by a spccification that 

States preciscly the obligations on the client, limit-
ing the routine's rcsponsibility (the prcconditions) 
and the obligations on the routine, guarantceing the 
client a certain result (the posicondiiions)." 

Modula-2 not only pcrmits but considcrably supports 
these criteria for incrcased tcstability and thcreby for 
heightening the reliability and maintainability vvilh a sin­
gle exception. An assertion mechanism as it is found, e.g., 
in Eiffel (13] is lacking in Modula-2. This drawback is, 
however, easier to accept in modular programming Ihan in 
object-orienled programming becausc dynamic binding can 
obscure what actually happcns in an objcct-oriented pro­
gram. 

Modula-2 supports measures to guarantee reliability and 
maintainability to an incomparabily greater extcnt than 
Fortran, Cobol and C, the most-used programming lan-
guages today. Studies in our research area (dcvclopmcnt of 
software engineering tools) have shown lliat the ovcrhcad 
for testing and maintaining of projects wiih Modula-2 as 
implementation language were less Ihan 50% of the ovcr­
hcad in similar projects in vvhich PL/I and C wcre used. 

Exception Handling 
In the cxecution of a program, events or conditions can 
occur (e.g., protocol enors in the transmission of data) that 
requirc special treatment. Language constructs for describing 
and handling such events (exceptions) contribute to the 
reliability and clarity of program systems. Thus a number 
of programming languagcs (e.g., Ada, Clu, Eiffel) incorpo-
rale language construcls for exception handling. 

Such constructs do not exist in Modula-2, an absence 
which has often been identified as a drawback of the lan­
guage^ I cannot agree with this verdict. In aH our projects 
I never encountered a čase where programming out exccp-
tion handling posed difficulties or dctracted from the clarity 
of the program. Furthermore, it is easily possible to im-
plcmcnt a mechanism for exceplion handling in Modula-2 
with the help of coroutines and/or library modules. 

Reusability of Library Modules 

Modula-2 has providcd us in particular with the scparation 
of an intcrface description from the implementation of a 
module and the possibility of modifying tlie implementa­
tion without needing to changc anylhing clse in the rest of 
the system in which the module is imbcddcd (not cvcn 
recompilation). Since the introduction of the module con-
struct in programming languagcs, programmcrs cxpcct sig­
nificant improvement in the reusabilily of prcfabricaicd 
software units as well as the creation and distribution of 
powerful module libraries. 

Typical library modules contain a collcction of proce­
dures that implement oftcn needed funclions and bclong 
together in some manncr, e.g., a trigonomctry module; or 
they implement an abstract data lype that providcs the 
client with a new data type and the opcrations dcfined on it, 
e.g., stack, qucue, tree, sparse matrices; or thcy model 
physical syslems to operate between hardwarc components 
and the rest of the soflware systcm, e.g., device drivers, 
Communications modules. In addition to physical systcms, 
logical/conceptional systcms are naiurally likewise mod-
elled, i.e., made useful for other software components at a 
higher abstraction level,- e.g., graphic modules, database 
modules. 

In software engineering jjractice the situation oficn ariscs 
that a library module almost but nol quite meels the 
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requiremenls of a new application. Modificalions bccomc 
ncccssary. If changes only affect thc implcmentation pari, 
there is less problem. Howev.er, thc definition part is often 
affectcd as well (porhaps a new albcit trivial operation is 
needcd). A change in the definition part carrics wilh it thc 
ramifications that ali client systcms have to be compilcd 
anew. In order to avoid Ihis, there is no alternative bul to 
copy the original module and to make ihc changes in the 
copy. With tirne ihis can lead to a whole family of differ-
ent yet closeIy related modules. If a fundamental aspect of 
this module family needs to bc modified, an aspect vvhich is 
common to aH thc membcrs, then each member of the mod­
ule family has to be modified. 

Another dravvback that restricts reusability is that mod­
ules in the sense of Modula-2 dcHnc a static object and do 
not permit the definition of an object type. A module can 
thus not b« defined once and be repeatedly instantiated. 
This proves to be a particular impediment in modelling 
abstract data types. I have discussed how abstract data 
types are reproduced with the module concept: A data object 
must be explicitly allocatcd with the invocation of a proce­
dure; the data type itself is referenced with an opaque 
pointer. Thus reproduced abstract data types cannot occur 
dircctly in olher data stnictures, or be transferred to other 
processes, or be output directly to files; one has only the 
opaque pointer as reference to the abstract data type. 
Special procedures have to bc defined for such opcrations 
for each data object and have to bc invoked by the client at 
thc right tirne. A disagreeable side effect is that the client 
has to treat abstract data types differently from real data 
types. 

In order to guarantee a sufficient measure of rcusabililty, 
it must be possiblc to apply abstract data typcs for defining 
arbitrary data structures. Furthermore, it must be possible 
to enhance abstract data types in a simplc and ncxib1e 
manncr without violating the principle of Information hid-
ing. This is not possible in Modula-2—or at Icast only in 
a very troublcsomc manncr. (I alluded to this in the section 
on object-orientcd systcm construction.) The reusability of 
library modules in Modula-2 ihus docs not completely mect 
ihc requiremcnts of modem software engineering. Thus in 
our software dcvclopment envirorunent module librarics wcrc 
used only for elcmentary tasks. 

SUMMARV 

My goal was to subject Modula-2 to critical analysis. I 
did not do this on the level of D. Moffat, who wrote [15]: 
"Modula-2 is not a general purpose language. Every general 
purpose language must also include some way to deal wilh 
iarge fixed-precision numbers for monetary quantities." I 
also did not seek to discuss what N. Wirth's Modula-2 
Rcport did not precisely define, as,- e.g., in B.J. Cornclius 
[6], [7]. Instead I sought to give an ovcrview of the cxtent 
to which the language meets the requircments of software 
engineering at thc end of the 80s. 

Ncedless to say, at the start of this decade Modula-2 was 
a jewel—indced, a diamond—that enrichcd the programming 
landscape. TTic ability to combinc multiple procedures into 
a module, Information hiding, separatc compilalion with 
full interface consistency chccking, ihe ability to formulate 
parallel processes by means of ihc elementary concept of 
coroutines with various synchroni7.ation mechanisms, the 
support of most of the concepls of softwarc engineering 
familiar at that time, the high documcntaiion value of 
Modula-2, ihc compactness of ihc language, and the elegant 
syntax compared to olher programming languages made 
Modula-2 a powcrful lool for soflware engineers. Ali this 
makes it most incomprchensibic that only a small segment 

of software engineering, mainly thc acadcmic scclor, madc 
use of this mileslonc language. 

Today, at thc end of the 80s, the world looks a litile dif-
ferent. Soflvvare engineering has conlinucd to dcvelop— 
inspired by the fruitful works of N. Wirth and oihcrs. Ncw 
programming paradigms have thcir consolidation phases 
behind them and new rcquiremenls for programming lan­
guages have evolvcd as a consequencc. From my point of 
vicw thc most importanl are: ihc availabiliiy of construcis 
for rcalizing object-orientcd software architcctures, ihc abil-
iiy to create multiple interfaccs to modules wiih respcct to 
objecis, and assertion mechanisms providcd by a language 
to increase thc rcliability of programs. It is clear that the 
programming languages of thc 70s to vvhich ModuIa-2 
belongs cannot complclcly meel these rcquircmcnls. Bul 
from my polni of view, ihcsc enhanccments can bc attached 
to Modula-2 with minor extensions, the subject of work cur-
rcnlly in progrcss. 

One step in Ihis direction was, as mentioncd above, thc 
devclopmcnl of Oberon and thc enhanccments Ihal led to 
Object Oberon. Modula-2, in terms of thc fundamental con-
cepts of the language and iis cleanness and simpliciiy, 
forms a signincaiiily bctter basis for furlhcr dcvclopment in 
the directions mentioncd than other programming lan­
guages, in particular C, which is so questionablc from a 
soflware engineering viewpoint. 

Our research group is among those that are working on 
further devclopmcnts in the area of programming lan­
guages—naturally based on ihe solid foundaiion that 
Modula-2 provides. 
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