MODULA-2 AND SOFTWARE
ENGINEERING

- Keywords: modula-2, software engineering,
models, principles

- Presented at the 15" Int'l Modula-2 Conference, October 12-13, 1989 Bled-Yugoslavia

OVERVIEW

The title of this paper draws together a programming
language, Modula-2, and a discipline in the arca of
computer science, software engineering. This raises several
questions:

What is meant by software engincering? This is by no
means intended to be a rhetorical question, for the percep-
tions of software engineering’s tasks varies pronouncedly
from the viewpoints of theorcticians and practitioners.

Even greater divergence can be found on the question of
what a programming language has to do with sofltware
engineering. Some consider the choice of a programming
language of utmost importance to the success of a software
project and the quality of the resulting product, while others
view the language as the least important tool of the devel-
opment process.

Even the question of whether programming is more a
science or more an art (or perhaps even a craft) cvokes avid
disagreement. 1 do not want to renew this old feud; I

simply want to establish that clements of all of them are’

inherent in software development at this time, and this is
. likely to remain the case in the future.

When I use the term software enginecering, I mcan the
application of scientific knowledge for the efficient
production and application of reliable and efficient software
(see [16]).

The success{ul development of large software systems is
usually a multistage process. It usually begins with the
determination and documeniation of the functions and
individual actions that are expected of the softwarc system.
This leads in the specification phase to a contract between
the client and the software dcveloper (requirements
definition) that precisely delineates what the software
system must be capable of.

The specification phase is followed by the design phase,

which determines what kind of system architecture can meet

the given requirements. The implecmentation phase attends
to the realization of the complete design concept in a
programming language.

The implementation of every single system component
must be systematically tested. Subsequently the whole
system must be tested with the goal of finding as many
errors as possible and assuring that the implementation
meets the requirements definition.

Upon completion of the test phase the sofiware is
installed and handed over to the client. The task of soft-
ware maintenance is both to correct errors that arise during
operation and to make system modifications and exten-

INFORMATICA 1/90

Gustav Pomberger

INstitut fur Wirtschaftsinformatik

Johannes Kepler Universitl of Linz

A-4040 Linz, Austria, e-mail: K2G0190 a AEARN

sions. This task again includes all activitics mentioned
above—I(rom the revision of the requirements analysis
through renewed testing. ’

An cngincering discipline is characterized by the
construction of tools that help to systemize and rationalize
the product development process, to improve the quality of
products, and to guarantee cfficient maintenance. A particu-
larly important step in this direction was the development
of programming languages as tools intended to help to
achieve these goals. Unlike many others, [agree with
B.W. Bochm that “choosing a programming language is-
like choosing a wife. It is hard to undo after gelting in-
volved and not to be taken lightly.”

I likewise agree with R. Wiener and R. Sincovec [22] that
“the choice of a programming language for implementing a
large-scale software system is critical because the features of
a programming language are strongly related to the software
engincering process. Languages differ in the degree to
which they support: readability, modular software construc-
tion, the control of side effects, information hiding, data
abstraction, structured flow control, separate compilation .
with consistency checking, type checking among various
components, dynamic memory management, and run-time
checking. Languages that offer strong support in the
above-listed arcas provide the basis for constructing reliable
and maintainable software.”

I will discuss to what extent the principles of software

- engineering known today are supported (or not supported)

by Modula-2. Detail is restricted by the size and extent of
this paper. For this reason only the principles that I
consider most important will be discussed. [will briefly
discuss the characteristics of software development models
in order to be able to explore: -

» specification principles
- requirement exploration by prototyping
+ design principles :
- modulc-oriented architecture design
- abstract data structures
- abstract data types
- functional abstraction
- object-oriented design principles
» other evaluation- criteria
- division of labor in software development
- structuring in the small (structured progrémming)
- guaranteeing reliability and maintainability
- exception handling
- reusability of library modules
- portability

SOFTWARE DEVELOPMENT MODELS

Wherever people are confronted with complex design tasks
to be solved, they attempt to systematically organize the
problem solving process, that is, to define an approach
model. Such a model determines which criteria are to
govern the problem solving process. It decomposes the
problem-solving process into managable steps and
determines what results must be produced after execution of
a given step. This enables a stepwise planning, decision
and implementation process.

These steps collectively and the chronological order of
their execution is known as the soliware life cycle, an
already classical term in computer science. The software
life cycle has becen described in numerous variations and
forms (see [8], [20], [16], and [18]).

Studies have shown that the life cycle-oriented develop-
ment method is the most commonly used approach in
current software development, and that it has in general paid
off. Application in the field, however, has also shown the
limits and the weaknesses of this approach:

The model is based upon the (incorrect) assumption that
the development process tends to be lincar and _that
iterations between phases occur only as exceptions to the
rule. Strict application of this development method requires
that one phase can only be begun after the preceding phase
is completed, that is, when the respective intermediate
products are available. In reality, however, a complete
specification or a suitable system architecture can seldom be
produced straightoff. Usually the later phases have a strong
impact on the carlier phases.

The strict discrimination of the individual phases is an
unacceptable idealization. In reality the activities of the
phases overlap and interaction between phases is much
more complex than that exhibited in the sequential
input/output model.

Informal Description of User Needs

Requirements

P User Interface Prototype and Completing Specification
Definition ol bttt 4

User imerface

“ Architecture and

Component System Architccture, Componenct Structure,
Design Architecture and Component Prototypes
7 Atehitéctuce dnd
.. Component ™.
7 Prototyping
MI Program and Documentalion

Final Product

Opcration and
Maintcnance

Figure 1 Prototyping-Orineted Software Life Cycle

The strictly sequential approach leads to tangible prod-
ucts or components being available only at a relatively late
stage. Yet experience shows that the validation process
cannot get by without experiments close to reality. Fur-
thermore, modifications requested by the client can only be
expressed relatively late, and integrating them at that stage
can lead to substantial overhead.

It is often assumed—and current reports from research and
industry confirm this assumption—that a prototyping-

30

oricnted development methodology can resolve some of the
weaknesses of the life cycle-oriented development approach.
A prototyping-oriented development is not radically differ-
ent from a purcly phase-oriented development strategy.
Furthermore, the two are to be viewed more as complemen-
lary than as alternative. They differ most in the procedures
and the results produced in the individual phases. Although
the distinction of phases is maintained, problem analysis
and specification overlap chronologically a great deal, and
design, implementation and testing very much blend into
one another (sece Figure 1).

SPECIFICATION PRINCIPLES—EXPLORA-
TION OF USER REQUIREMENTS

- handy for the building of module libraries.

As our development model shows, one element of knowl-
edge inherent in our definition of software engincering is
that the specification and design processes should be carried
out in a prototyping-supported manner.

The development of the user interface, for example,
proves an exceplionally dif(icult task because the evaluation
thercof is guided by highly subjective criteria and the user
is hardly able to define in advance what he/she considers to
be convenient intcraction. Prototyping is an important—
and, from my point of view, in most cases absolutely nec-
essary—vehicle for the exploration of user requirements and
thus for the specification of user interfaces.

We normally distinguish two approaches to prototyping:
reusable code and executable specifications. Modemn pro-
gramming languages like Modula-2 are significantly better
suited for producing reusable components than was the case
in_older programming. languages. Modula-2 is particularly
From the view-
point of prototyping, however, a number of problems
remain unsolved if onc uses conventional programming
languages such as Modula-2 for protolyping activities:

¢« How can the functionality of a library modules be
provided gencrally enough that they can be integrated
into a given prototype?

» The degree of abstraction of Modula-2 modules is too
low; a prototype designer must revise code for every
modification, no matter how small, and make his/her
changes directly in the code; details of the prototype
cannot be discussed with the user.

e Tumnaround times for iterative refinements in a proto-
type are simply too high.

Although the availability of module librarics is steadily
improving and the taxonomy of software components is
beginning to emerge (already it is possible lo distinguish
components such as mathematical routine packages, mes-
sage channels, input/output packages, parscrs, scanners and
filters to name a few), Modula-2 librarics are only to a
limited extent (if at all) capable of mecting the demands of
reusability of code as required for prototyping.

The other approach to rapid prototyping, execcutable
specifications (an object of intense research clforts) is
likewise not supported by Modula-2.

Since on the one hand we use Modula-2 as our implemen-
tation language in most cases in our research group (and the
choice of Modula-2 is to be credited with considerable
increases in efficiency and quality), and on the other hand
we have recognized the value of prototyping-oriented
software development and evaluated this in several research
projects, it became necessary to develop special tools for
prototyping.

For the prototyping process during the analysis and spec-
ification phases, we developed a declarative language for the
description of executable specifications—our User Interface
Specification Language (UISL, see [12] and [17]). Searching
for methods for integration of high level prototypes and
application parts written in Modula-2 as well as for valida-
tion of a system architecture before completely implement-
ing it, we developed SCT, a tool for hybrid execcution of
hybrid software systems (see [1] and [2]). It allows for
hybrid execution of Modula-2 software systems at any time
during their development. Designed but not implemented
modules are simulated, partially coded modules are inter-
preted, and modules which are coded and tested are directly
exccuted. Furthermore, SCT allows for execution of hybrid
software systems (systems written in different languages).
This is achieved by providing the possibility of adding new
exccution tools to SCT's hybrid execution system (e.g., an
interpreter for a user interface description language).

Applying SCT high level prototypes can be ecasily .en-
hanced with Modula-2 code, allowing the development of
better exploratory and evolutionary prototypes. Fur-
thermore, SCT supports the validation of system architec-
tures represented by Modula-2 definition modules by simu-
lating data and control flows. Finally, SCT provides a com-
fortable interprctative programming environment allowing
for fast implementation and experimentation with different
realizations of the functionality provided by a module.

SOFTWARE DESIGN PRINCIPLES

The task of the design phase is the determination of the
architecture of a sofiware system—that is, to decide how to
build the proposed system—with the goal of achieving an
implementation that is as efficient as possible and meets all
quality requirements. Because of ‘the practically unlimited
number of possibilities of determining the design of a
planned system, the decisions made and the methods used in
this phase pronouncedly influence the quality of the product
and thercby its maintenance costs and degree of reliability.

The production of complex program systems necessilates
a division of labor; that is, multiple persons are involved
in the software development. It is clear that software de-
velopment is a creative process, that the experience,
creativity and ‘innovation of the designer significantly
affects the quality of the product. But as a rule the com-
plexity of design decisions is so high that a systematic
approach—a method and associated design principles—rust
be adhered to in order to guarantee a resulting product that
is rcliable and easy to maintain.

All software design involves a process of abstraction.
Objects and operations identified in.the real world domain
must be modelled and expressed as corresponding operations
and objects of the problem-solving domain,

Module-oriented and object-oriented software design are
fundamental design principles resulting from computer
science research in the 60s and 70s. Wiener and Sincovec
write {22]:

“No longer is it necessary for the system designer to map
the problem domain to the predeflined data and control
structure present in the implementation language. Instead,
the designer may create his or her own absiract data types
and functional abstractions and map the real world domain
to these programmer-created abstractions. The mapping,
incidentally, may be much more natural because of the
virtually unlimited range of abstract types that can be
invented by the software designer. . the payoff for

3t

modular software design and implementation occurs when
repairs or additions must be made to a software system.”

Module-Oriented- Design Principles'

of software engineering.

The goal of modular system design is the decomposition of
a program system into a hierarchy of abstractions about
which Wirth writes [24]: “The principle motivation behind
the partitioning of a program into modules is—beside the
use of modules provided by other programmers—the estab-
lishment of a hierarchy of abstraction.”

The pillars of modular system architecture are module
independence and data abstraction. Module independence
(freedom from .interference) means that any module can be
replaced by another module that adheres to the module inter-
face without necessitating further changes in the system.
That is, it must be possible to change details of the imple-
mentation of a particular module without influencing the
remaining system components.

The basic building blocks of modularly constructed soft-
ware syslems are:

« abstract data structures
« abstract data types
» functional absiraction

» abstract, explicitly defined module interfaces

Although software engineering courses often teach that
design should occur completely independently of the im-
plementation language. I believe that this is only useful if
the implementation language does not mcet the requirements
We are aware that a language
reflects the habits and thought patterns of its designer.
There is even a relationship between a natural language and
the way a person who speaks the language thinks. The
same is true for programming languages. The knowledge
that lent it its structure and, the concepts that form its basis
influenced the way a programmer thinks, his/her design
style, and the structure of the system he/she designs. The
choice of a programming language oftcn even determines
how the task is solved because the language supports or
excludes certain approaches to a solution. For example, a
recursive tree traversal would never come to a Fortan pro-
grammer’s mind.

Furthermore, we expect a good implementation language
to be able to reflect the decomposition structurcs, abstrac-
tion levels, data structures and module interfaces that are -
identified in the design stage and that these can be tested at
the interface level before all the implementation details arc
known.

The degree to which these requirements can be met is
dependent upon the choice of a programming language. The
question is to what extent Modula-2 supports the above-
named criteria for modular system architectures.

The Modula-2 Module Concept

The recalization of the module definition as given above is
supported in an elegant manner by the module concept of
Modula-2. The modular structure of Modula-2 can be viewed
as a fence that encloses objects (data structures and proce-
dures) and encapsules them apart from their environment.
This fence can be opened for the purpose of communicating
with the environment. However, the programmer must
explicitly establish which objects are to bec made known
(that is, exported) to the outside and which objects the

module will need (that is, import) from its environment.
This meets the requirements of explicitly delined module
interfaces.

From the viewpoint of the abstraction principle, the
export interface can be seen as its specification. It con-
tains all information regarding what the module is expected
to do (that is, what objects and functions it makes avail-
able) and hides all details of the implementation thereof. It
is thus also useful to separate the texts of the module speci-
fication and its implementation description. Modula-2
meets this requirement by separating the definition and
implementation parts of a module.

One of the most important aspects of modularly
constructed software systems is thus an explicit description
of mutual effects (that is, interdependencies) among mod-
ules. The importance of such explicitness follows from the
observation that all the effects of a local change on the
global system must be completely determined by the depen-
dency relations. In Modula-2 interfaces of modules as seen
by the programmers are called definitions. Such module
definitions may be regarded as public projections, and there
is exactly one public projection of each module.

But this situation is less than satisfactory. 1In practice
we often encounter situtions in which multiple views of a
module can be scen as befitting the problem. Consider, for
example, a module X for managing assembly lists in a pro-
duction planning and control system. It is clear that a mod-
ule A from the arca of design requires different access func-
tions than a module B from the area of work scheduling or a
module C from the area of material disposition. A, B and C
all work with the encapsuled data structures in X, although
in different ways and with different requirements for access
to the data structures of the assembly list encapsulated in X.

This is just one of many examples in which multiple
interfaces to a single module are necessary, each with differ-
ent levels of abstraction, in order to guarantee adequate
application of the module with respect to the problem at
hand.

Due to the one-to-one correspondence of modules and
interface descriptions in Modula-2, multiple interfaces can-
not be satisfactorily realized. Either all the different views
are packed into a single interface—which increases the
complexity of the interface, reduces the safety of the mod-
ule, and destroys part of the abstraction—or the implemen-
tation is duplicated—that is, reusability is lost and main-
tainability is reduced.

Multiple interfaces of modules are thus an important con-
cept in software engineering that is not supported by
Modula-2. Ideas on the implementation of multiple inter-
faces can be found in [10].

Abstract Data Structures (Information Hiding)

The basic concept of Modula-2 is the establishment of a
hierarchy of abstractions. Naturally, this includes the
implementation of abstract data structures. The problem of
specially identifying access operations to a(n abstract) data
structure is solved in Modula-2 by dividing a capsule into
two parts: one part visible to the user (the specifications
or interface part) and containing the declaration of all
access operations and any exported data types; the other
part invisible to the user (the implementation part) and
containing declarations of encapsulated data and algorithms
in the capsule.

32

The module concept of Modula-2 includes the export of
not just procedures, data types and constants; variables can
likewise be exported (for example, to make access to a sin-
gle data element more efficient). If a variable is exported,
its value can be changed by the importing module.
However, this violates the principle of information hiding
and it must be clear to the importer that he/she is working
with global data, and the efficiency thereby attained is
countered by the disadvantages of exchanging data via
global variables.

Modula-2 thus permits the implementation of data cap-
sules, although the principle of information hiding is
incompletely realized due to the possibility of exporting
inner data structures together with their structure. In this
sense it would be desirable to have exported variables that
can be read but not written to by the client.

Abstract Data Types

Abstract data types are necessary when multiple examples of
an abstract data structure are to be defined. Abstract data
types can be implemented in Modula-2 by means of the
module concept combined with the concept of opaque data
types.

An abstract data type is defined as an opaque type in the
definition module; that is, its realizalion remains hidden
from the user and is determined in the implementation mod-
ule—in contrast to Ada—which is a considerable advantage
from the viewpoint of software engineering.

Unfortunately there is a catch to using opaque data types
in Modula-2. Since the storage requirements of abstract data
types must be known when the definition module is com-
piled, Modula-2 requires that the concrete type assigned to
an abstract type must be of fixed length—that is, it must be
a pointer type. Other types, in particular ARRAYs and
RECORD:s, are not permitted as abstract data types. They
can, however, be realized as dynamically created objects and
their pointer can be viewed as an abstract data type. This
means a slight loss of efficiency, however. 1 personally
consider the advantage of abstract data types to be greater
than the disadvantage of the loss of efficiency.

It is much worse to have to dynamically allocate vari-
ables of abstract data types and to have to explicitly free
their storage. Furthermore, the statement x:=y does not
store a copy of y in x. This is a dangerous pitfall that can
cause less experienced Modula-2 programmers to avoid the
use of abstract data types.

In the process of designing a software system, we usually
encounter modules or procedures that have a similar purpose
but operate on data objects of different types, for example,
modules for stacks, quecues, trees, etc. What we want to
have is a construct that permits the definition of templates
for program units that nced to be written only once and
then tailored to the particular needs atl translation time.
This would be possible with generic units, but generic units
are not available in Modula-2. .

The data type WORD or ARRAY OF WORD serves as a
lifebuoy in such cases. This allows, for example, the cre-
ation of a very general stack suitable for accepting simple
objects (for example, CARDINAL) as well as structured
objects (such as ARRAYs and RECORD:s). I consider the
omission of generic units (which are most uncomfortable
from the viewpoint of the compiler designer) to be a clever
decision which, because of the sell-help available in the
type WORD, is also acceptable at the practitioner level.

Functional Abstraction

Many software developmenters construct the software sys-
tem architecture-as a hierarchy of functional components,
i.e,, they employ the method of task-oriented stepwise
refinement. Functional aspects are the focus of the method.
Starting with the functional requirements, the task is
decomposed into subtasks; each subtask (functional compo-
nent) is then handled separately and again decomposed into
subtasks until the resulting subtasks become so simple that
thcy can be described with algorithms. That is, top down
design proceeds from the general to the specific, from an
identification of major system components to subcompo-
nents and sub-subcomponents and so forth.

In the implecmentation we want to realize the hierarchical
levels of the system architecture by mapping the functional
components onto a set of (possibly nested) procedures that

are used to implement the functional absiractions. The only.

language features we need to support top down design by
stepwise refinement are procedures and the ability to group
functional components into functional subsystems.

Through its procedure and module concepts, Modula-2
completely supports this method and permits the interfaces
of the functional components and functional subsystems to
be described precisely, yet, as the design process requires,
abstractly enough.

Object-Oriented Design Principles

A design principle which has aroused a great deal of intcrest
recently in computer science is object-oriented system
design. Reduced to its fundamentals, object-oriented pro-
gramming gencrates software by reproducing object descrip-
tions. An object description contains definitions of data
along with the specifications of actions that can be applied
to these data.

In contrast to modular programming, object descriptions
are only a kind of type description and do not form actually
existing. constructs as does a module in the sense of
Modula-2. Only when an object description is instantiated
is an object created.

However, object-oriented programming. is more than just
using abstract data types. It also involves inheritance and
dynamic binding.

An important property of object-oriented system design
is that the object descriptions do not contain complete def-
initions of the object’s behavior and attributes, that is, ail
its data and actions. The object descriptions are ordered in
a hierarchy in such a way that at any given hierarchy level
only such data and actions are specified as were not already
defined in superordinate object descriptions. Modifications
of data and actions are thereby made without altering the
superordinate object descriptions. This distinguishes
object-oriented sofiware development from module-oriented
programiming, in which the reuse of a module is only pos-
sible without changes in its implementation if the module's
function completely fits into the new context without
change.

The strength of object-oriented system design lies in the
possibility of incrementally enhancing and adapting object
descriptions without touching their code in the process.
Instead of the libraries used in modular programming—with
their reusable function modules whose components can be
used in the construction of software—object-oriented
programming uses libraries of object description hierarchies
that form application frameworks. Examples include

33

Smalltatk [9], MacApp [19] and ET++ {21].

As a rule, object-oriented programming builds on applica-
tions or parts of applications that are adapted to specific
requirements, yet without changing these parts themselves.
Thus later modifications can be made on the prefabricated
application parts that remain completely transparent and

spread to all derived applications without any further over-
head.

The requirements placed on programming . languages
which support object-oriented system construction match
those for languages which support modular system construc-
tion in many respects. In addition, they must support the
following concepts (see [3]):

» Data abstraction: The description of abstract data
types in the sensc that they can occur directly in the
declaration of other data structures must be possible.

» Inheritance: It must be possible to derive new data
types by extending or modifying attributes and opera-
tions of existing types without needing to modify the
description of the base types. Instances of a class C
built on the basis of a class B are said to inherit the
properties of B.

» Polymorphism: The compatibility of derived data
types and their base types must be guarantced. Object
variables must be able to assume values of different
(but related) data types at run-time,

* Dynamic binding: In the course of operations with
objects, there must be the possibility of determining
at run-time the concrete actions to be executed
(dependent on the current dynamic data type of the
objects).

In the object-oriented nomenclature, an abstract data type
is known as a class. Every class defines which attributes
its instances (the so-called objects) have and which opera-
tions are possible with them.. Activating an operation with
an object is often termed sending a message to the object.
The object reacts by executing a method. A method
describes which actions are to serve as the realization of an
operation. This assignment of methods to messages is
determined for each class by the respective class definition.
The effect of sending a message differs from procedure invo-
cations in conventional programming languages in that the
determination of which method is. to be exccuted occurs at
run time.

The question is whether Modula-2 can be used to realize
object-oriented system architectures and, if so, how it can
be done. Object-oriented programming does not necessarily
require an objcct-oriented programming language.
Suggestions on how to implement objects in Modula-2 can
be found in [4]. Every individual class can be deflined b a
separate definition module. Objects can be defined as
pointers to records with two components: a pointer to a
data structure describing its class and a pointer to the
object's data (that is, instance variables). A class can be
defined by a record containing a pointer to its superclass,
the name of the class, and a collection of procedure vari-
ables which represent the messages understood by objects
of this class.

Of course, some deficiencies must also be mentioned (see
[4]). The programmer must be aware of the fact that objects
are implemented as pointers. Thus, each object must
explicitly be created. Also, the statement x:=y does not
create a copy of the object y. Instead, a message send must
be used. Changing a superclass’ definition module requires
changes to all of its subclasses. The requirement that every

class must be defined in a separate definition module can
lead to a large collection of modules that ic difficult to
understand and maintain.

Thus I cannot recommend Modula-2 to construct object-
oriented system architectures as it was not designed as an
objcct-oriented language. But many of the deficiencies
mentioned above can be removed by attaching minor exten-
sions to Modula-2.

There are, of course, some object-oriented extensions of
Modula-2, among them Modula-3 [5] and pl Modula [11).
Niklaus Wirth himself also designed a new language named
Oberon [23] that is based on Modula.2, Obecron was not
designed as an object-oriented language either, but readily

lends itself to the concept using type extensions and proce- .

dure variables. And an experimental extension of Oberon,
called Object Oberon, has been developed that incorporates
the concepts of class, method and message {14]. Including
these concepts in Oberon improves its capabilities for
object-oriented programming.

OTHER EVALUATION CRITERIA

I have discussed to what extent Modula-2 supports the most
important software enginecering principles for the explo-
ration of user requirements (prototyping), for mastering
complexity (structuring in the large), for engincering inter-
faces (information hiding, data abswraction), and for the
design of the architecture of software systems (modular sys-
tem construction, object-oricnted system construction).

Beyond these aspects, we are interested from a software
engineering viewpoint in several other criteria and how
these are supported by the choice of Modula-2 as implemen-
tation language, for example:

» division of labor in software development

+ structuring in the small (structured programming)
+ guarantecing reliability and maintainability

+ exception handling

< reusability of library modules

Division of Labor in Software Development

The process of dividing the work load in software develop-
ment is significantly supported if:

+ separate interface description and implementation
description of the system components is possible;

« separate compilation of units with strict cross check-
ing is possible;

» lype consistency checking between various compo-
nents is provided; and

* the execution of a program unit is automatically pre-
vented if the interface of a user component was modi-
fied and no consistency check followed the modifica-
tion.

All of these properties are supported by Modula-2. This
reduces the chances of the hard-to-localize kind of errors
that arise from incompatible interfaces in divided-labor
software development.

The concept of separate compilation coupled with the
concept of strict type binding contributes to drastically
increased productivity in a divided labor setting in a revolu-
tionary way that is unfathomable to programmers in con-
ventional languages such as Fortran or Cobol, while simul-

34

taneously (and at almost no additional cost) heightening
reliability and maintainability.

Structuring in the Small

The goal of structuring the control flow of algorithms is to
establish a correspondence between the static formulation of
an algorithm and its dynamic behavior, to thereby reduce its
susceptability to errors, and to enable the verification of
the algorithm. The most important measure in this direc-
tion is the avoidance of unlimited flow structures which
result from undisciplined use of unconditional transfers of
control (goto statements). Thus many consider the absolute
avoidance of such statements to be a fundamental require-
ment of structured programming, and they insist that con-
trol flow is to be structured by including only constructs
that have a single entry and a single exit.

Modula-2 does not completely meet all these requirements
of fundamentalist structured programming, for Modula-2
provides the RETURN and EXIT statcments. But these dis-
guised gotos do not compromise the software engineering
principle in an essential manner, and they sometimes
increase the efficiency and readability of programs if a
loop/exit is used instead of some boolean variables and a
conditional transfer test to circumvent the need for a loop
exit statement. This latter technique often detracts from
program clarity.

Although it is, of course, clear that good programming
style is not characterized by the absence of goto statements
alone, the lack of a goto statement in Modula-2 forces pro-
gramming with well-defined transfers of control. This is an
important property of Modula-2 from the viewpoint of
software enginecring, and I agree with B. Meyer’'s observa-
tion {13}):

“It is hard to understand that, twenty ycars after 1968, a
single letter about the goto construction should trigger end-
less letters to the Communications of the ACM, many of
them advocating the use of gotos. Why not Roman numer-
als?”

Guaranteeing Reliability and Maintainability

Prerequisites to a reliable, maintainable software product
include clear, consistent specifications, followed by the
clean design of a modular architecture, followed by a read-
able description of the implementation, and culminated by a
rigorous, systematic testing procedurc aimed at both the
individual components and their interaction.

Module independence is certainly one of the most impor-
tant factors in the design of reliable and maintainable soft-
ware systems. Guaranteeing the reliability and maintain-
ability of a program system is less expensive as the com-
ponents of a program system are easier to tune, to correct
or to adapt to new requircments without affecting other parts
of the system. The ability of the software designers to cre-
ate module independence is very much related to the choice
of the programming language to be used in implementing
the system. The prominent concepts of Modula-2, such as
information hiding, data abstraction, splitting definition
and implementation of modules, and side effect avoidance
through the use of proper variable scoping greatly affect the
type of design and implementation and enhance reliability
and maintainability considerably.

The readability of an implementation description is like-
wise an important criterion for maintainability. It depen-
dends on the structuredness of the system, on programming

style, and on the cxpressive power of the implementation
language used. Significant 1mprovcmcnls in program read-
ability result from:

« the use of descriptive names of arbitrary length
+ the ability to define type names
» the ability to use abstract data types

* the compulsion to use formal object declarations (this
serves as an identifier glossary)

» the possibility of reusing identifier names in the
same program at different levels of locality

The clear lexical and syntactic construction of Modula-2
and the possibility of meeting the criteria named above
assure a high documentation value. So long as an appropri-
ate programming style is maintained, Modula-2 programs
are more readable than PL/I, Cobol, Forlran or (in particu-
lar) C programs.

An additional important criterion for reliability and main-
tainability of a software system is its festability, which
means its suitability to checking its correctness and localiz-
ing errors. The most important criteria for testability, most
of which are fulfilled by Modula-2 are:

+ Modularity of the system: The system architecture is
formed by a hierarchy of abstractions (modules). The
interaction of modules is explicitly defined
(import/export interfaces). Constructs are provided
for structuring modules (functional components).

Each functional component of a module has its own

scope (nested locality).

+ The ability to avoid side effects: Communication
among program units can only occur via explicitly
described interfaces. Each program component has its
own scope. Combination of data objects is only pos-
sible if their data types are compalible; implicit con-
versions are precluded.

+ The ability to guarantee information hiding and data
abstraction: The data contents of a module and their
1epresentations are not visible to the outside and are
thus protected from procedures that access them, Only
procedures declared locally to the data can access the
data structures, that is, know their concrete representa-
tions. The use of external data structures is precluded
(module decoupling).

+ Structuring of the control flow: The control flow of
an algorithm reflects its static structure. That is, the
exclusive use of flow structure constructs with a single
entry and a single exit is encouraged.

+ The ability to check the consistency of module and
procedure interfaces: Interface descriptions (import/
export procedure interfaces) are of a nature that a
compile time check can be made to determine whether
the client and the server (module/procedure) maich one
. another.

+ The readability of the implementation (sec above).

+ The availability of run time checking facilities such
as range check, index check, etc.

— The ability to specify semantic aspects (assertion
mechanism): Procedures and lower lével units (i.e.,
loops) can be provided with assertions that describe
semantic aspects of the program scgment and can be
evaluated at run time. The underlying idea (see [13])is
programming by contract: “Every structure is charged
with a precise task, defined by a specification that

35

states precisely the obligations on the clicnt, limit-
ing the routine’s responsibility (the preconditions)
and the obligations on the routine, guarantecing the
client a certain result (the posiconditions).” ‘

Modula-2 not only permits but considerably supports
these criteria for increased testability and thereby for
heightening the reliability and maintainabilily with a sin-
gle exception. An assertion mechanism as it is found, e. 8-
in Eiffel [13] is lacking in Modula-2. This drawback is,
however, easier to accept in modular programming than in
object-oriented programming because dynamic binding can
obscure what actually happens in an object-oriented pro-
gram. :

Modula-2 supports measures to guarantee reliability and -
maintainability to an incomparabily greater extent than
Fortran, Cobol and C, the most-used programming lan-
guages today. Studies in our research area (development of
software engineering tools) have shown that the overhead
for testing and maintaining of projects with Modula-2 as
implementation language were less than 50% of the over-
head in similar projects in which PL/I and C were used.

Exception Handling

In the execution of a program, events or conditions can
occur (e.g., protocol errors in the transmission of data) that
require special treatment. Language constructs for describing
and handling such events (exceptions) contribute to the
reliability and clarity of program systems. Thus a number
of programming languages (e.g., Ada, Clu, Eiffel) incorpo-
rate language constructs for exception handling.

Such constructs do not exist in Modula-2, an abscnce
which has often been identified as a drawback of the lan-
guage. 1 cannot agree with this verdict. In all our projects
I never encountered a case where programming out excep- .
tion handling posed difficulties or detracted from the clarity
of the program. Furthermore, it is easily possible to im-
plement a mechanism for exception handling in Modula-2
with the help of coroutines and/or library modules.

Reusability of Library Modules

Modula-2 has provided us in particular with the separation
of an interface description from the implementation of a
module and the possibility of modifying the implementa-
tion without needing to change anything cise in the rest of
the system in which the module is imbedded (not even
recompilation). Since the introduction of the module con-
struct in programming languages, programmers expect sig-
nificant improvement in the reusability of prefabricated
software units as well as the creation and distribution of
powerful module libraries.

Typical library modules contain a collection of proce-
dures that implement often needed functions and belong
together in some manner, e.g., a trigonometry module; or
they implement an abstract data type that provides the
client with a new data type and the operations defined on it,
e.g., stack, queue, tree, sparse matrices; or thcy model
physical systems to operate beiween hardware components
and the rest of the software system, e.g., device drivers,
communications modules. In addition to physical systems,
logical/conceptional systems are naturally likewise mod-
elled, i.e., made useful for other software components at a
higher abstraction level, e.g., graphic modules, database
modules.

In sofiware engineering practice the situation often arises
that a library module almost but not quite meets the

requirements of a new application. Modifications become
necessary. If changes only affect the implementation part,
there is less problem. However, the definition part is often
affected as well (perhaps a new albeit trivial operation is
needed). A change in the definition part carries with it the
ramifications that all client systems have to be compiled
anew. In order to avoid this, there is no alternative but to
copy the original module and to make the changes in the
copy. With time this can lead to a whole family of differ-
ent yet closely related modules. If a fundamental aspect of
this module family needs to be modified, an aspect which is
common to all the members, then each member of the mod-
ule family has to be modified.

Another drawback that restricts reusability is that mod-
ules in the sense of Modula-2 define a static object and do
not permit the definition of an object type. A module can
thus -not be defined once and be repeatedly instantiated.
This proves to be a particular impediment in modelling
abstract data types. 1 have discussed how abstract data
types are reproduced with the module concept: A data object
must be explicitly allocated with the invocation of a proce-
dure; the data type itself is referenced with an opaque
pointer. Thus reproduced abstract data types cannot occur
directly in other data structures, or be transferred to other
processes, or be output directly to files; one has only the
opaque pointer as reference to the abstract data type.
Special procedures have to be defined for such operations
for each data object and have to be invoked by the client at
the right time. A disagreeable side effect is that the client
has to treat abstract data types differently from real data
types.

In order to guarantee a sufficient measure of reusabililty,
it must be possible to apply abstract data types for defining
arbitrary data structures. Furthermore, it must be possible
to enhance abstract data types in a simple and flexible
manner without violating the principle of information hid-
ing. This is not possible in Modula-2—or at least only in
a very troublesome manner. (I alluded to this in the section
on object-oriented system construction.) The reusability of
library modules in Modula-2 thus does not completely mect
the requirements of modern software engineering. Thus in
our software development environment module libraries were
used only for elementary tasks.

SUMMARY

My goal was to subject Modula-2 to critical analysis. I
did not do this on the level of D. Moffat, who wrote [15]:
“Modula-2 is not a general purpose language. Every general
purpose language must also include some way to deal with
large fixed-precision numbers for monetary quantities.” [
also did not seek to discuss what N. Wirth’s Modula-2
Report did not precisely define, sas, e.g., in B.J. Comnelius
[6], [7}. Instead I sought to give an overview of the extent
to which the language meets the requirements of software
engineering at the end of the 80s.

. Needless to say, at the start of this decade Modula-2 was
a jewel—indeced, a diamond—that enriched the programming
landscape. The ability to combine multiple procedures into
a module, information hiding, separate compilation with
full interface consistency checking, the- ability to formulate
parallel processes by means of the elementary concept of

coroutines with various synchronization mechanisms, the

support of most of the concepts of software engineering
familiar at that time, the high documentation value of
Modula-2, the compactness of the language, and the elegant
syntax compared to other programming languages made
Modula-2 a powerful tool for sofiware engineers, All this
makes it most incomprehensible that only a small segment

36

of software engineering, mainly the academic scctor, made
use of this milestone language.

Today,. at the end of the 80s, the world looks a little dif-
ferent. Software engineering has continued to develop—
inspired by the fruitful works of N. Wirth and others. New
programming paradigms have their consolidation phases
behind them and new requirements for programming lan-
guages have evolved as a consequence. From my point of
view the most important are: the availability of constructs
for realizing object-oriented software architcctures, the abil-
ity to create multiple interfaces to modules with respect to
objects, and assertion mechanisms provided by a language
to increase the reliability of programs. It is clear that the
programming languages of the 70s to which Modula-2
belongs cannot completely meet these requircments. But
from my point of view, these enhancements can be attached
to Modula-2 with minor extensions, the subject of work cur-
rently in progress.

One step in this direction was, as mentioned above, the
development of Oberon and the enhancements that led to
Object Oberon. Modula-2, in terms of the fundamental con-
cepts of the language and its cleanness and simplicity,
forms a significantly better basis for further development in
the directions mentioned than other programming lan-
guages, in particular C, which is so questionable from a
software engineering viewpoint.

Our research group is among those that are working on
further developments in the area of programming lan-
guages—naturally based on the solid foundation that
Modula-2 provides.

REFERENCES

1. Bischofberger W., Keller R., 1989, Enhancing the
Software Life Cycle by Prototyping, Structured
Programming, Vol. 10, No. 1, Springer.

2. Bischofberger W., Pomberger G., 1989, SCT—A Tool
for Hybrid Execution of Hybrid Softwarc Systems,
Proceedings of the First Annual Modula-2 Conference,
Bled, Yugoslavia.

3. Blaschek G., Pomberger G., Stritzinger A, 1989, A
Comparison of Object-Oriented Programming
Languages, Structured Programming, Vol. 10, No. 4,
Springer.

4. Blaschek G., 1989, Implementation of Oi)jccls in
Modula-2, Structured Programming, Vol. 10, No. 3,
Springer.

5. Cardelli L. et al.,, 1988, Modula-3 Report, Olivetti
Research Center.

6. Cornelius B.J. (ed), 1986, Problems with the Report on
Modula-2, Version 8, 1ST/5/13 Working Group paper
N103, British Standards Institute.

7. Cornelius B.J,, 1988, Problems with the Language
Modula-2, Software—Practice and Experience, Vol 18,
No. 6.

8. Fairley R., 1985, Software Enginecring Concepts,
McGraw Hill.

9. Goldberg A., Robson D., 1983, Smalltalk-80, The
Language and Its Implementation, Addison-Wesley.

10. Gutknecht 1., 1989, Variations on the Role of Module
Interfaces, Structured Programming, Vol. 10, No. 1,
Springer.

11.

12.

13.

14.

15.

16.

17.

Henne E., et al., 1988, Modula-2 User Manual, pl
Gesellschaft fur Informatik (German).

Keller R., 1989, Prototypingorientierte
Systemspezifikation (Prototyping-Oriented System
Specification), Verlag Dr. Kovac, Hamburg, (German).

Meyer B., 1989, From Structured Programming to
Object-Oriented Design: the Road to Eiffel, Structured
Programming, Vol. 10, No. 1.

Msssenbock H., Templ J., 1989, Object Oberon—A
Modest Object-Oriented Programming Language,
Structured Programming, Vol. 10, No. 4.

Moffat D.V,, 1984, Some Concerns About Modula-2,
Sigplan Notices, Vol. 19, No.12.

Pomberger G., 1986, Software Engineering and Modula-
2, Prentice Hall.

Pomberger G., Bischofberger W., Keller R., Schmidt
D., 1988, Topos - A Toolset for Prototyping-Oriented

37

18.

19.

20.

21.

22.

23.

24,

Sofiware Development, Proceedings of the CGLA, Paris.

Pressman R.S., 1987, Software Engincering: A
Practitioner’s Approach, 2nd edition, McGraw-Hill,

Schmucker K., 1985, Object-Oriented Programming for
the Macintosh, Hayden.

Sommerville 1., 1985, Software Engineering, 2nd

edition, Addison-Wesley.

Weinand A, et al,, 1989, Design and Implementation
of ET++, a Seamless Object-Oriented Application
Framework, Structured Programming, Vol. 10, No. 2,
Springer.

Wiener R., Sincovec R., 1984, Software Engineering
with Modula-2 and Ada, John Wiley & Sons.

Wirth N., 1987, From Modula-2 to Oberon and the
Programming Language Oberon, ETH Report, Zurich.

Wirth N., 1988, Programming in Modula-2, 4th
edition, Springer.

Telex: 31366 yu delta

E-mail: rri@idc.uucp

following professional activities:

advances, and operativeness

Phone: (+3861) 57 45 54

Iskra Delta Development Division™
Stegne 15C, 61000 Ljubljana, Yugoslavia

Fax: (+3861) 32 88 87 and (+38 61) 55 32 61

Communication and Information Systems (C&IS)

The field of C&IS of Iskra DeltaDevelopmentDivision™ has the extent of the

e communication among information systems and devices of different product
manufacturers concerning the so-called communicational integration,

¢ design, development, and consulting in the field of data networks

« HW and SW development, extension, and related services of information

systems operating under VMS, Unix, Xenix, and MS-DOS

research, development, and production in the field of parallel processing,
overing design and integration of parallel computers, artificial intelligence,
expert systems, networking, neural networks, training, consulting

computer graphics: development of HW and SW considering several

international and de facto standards

reliability and quality control, design, and prediction

information system integration, design, and consulting in industrial
environment, particularly in process control concerning power stations and
industrial plants :

VME and Unix based information system integration with own and other
standarized HW and SW modules in real time environment

development of computer terminals emulating 1BM, Digital, Honeywell
products, Teletex; and

development technology and support: design of multi-tayer printed circuits;
generating of bar-code; industrial design; manufacturing of prototypes,
industrial documentation, and manuals; desk-top publishing; etc.

