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Abstract

Let Γ denote a non-bipartite distance-regular graph with vertex set X , diameter D ≥ 3,
and valency k ≥ 3. Fix x ∈ X and let T = T (x) denote the Terwilliger algebra of Γ with
respect to x. For any z ∈ X and for 0 ≤ i ≤ D, let Γi(z) = {w ∈ X : ∂(z, w) = i}. For
y ∈ Γ1(x), abbreviate Di

j = Di
j(x, y) = Γi(x) ∩ Γj(y) (0 ≤ i, j ≤ D). For 1 ≤ i ≤ D

and for a given y, we define maps Hi : D
i
i → Z and Vi : Di

i−1 ∪D
i−1
i → Z as follows:

Hi(z) = |Γ1(z) ∩Di−1
i−1|, Vi(z) = |Γ1(z) ∩Di−1

i−1|.

We assume that for every y ∈ Γ1(x) and for 2 ≤ i ≤ D, the corresponding mapsHi and Vi
are constant, and that these constants do not depend on the choice of y. We further assume
that the constant value of Hi is nonzero for 2 ≤ i ≤ D. We show that every irreducible
T -module of endpoint 1 is thin. Furthermore, we show Γ has exactly three irreducible
T -modules of endpoint 1, up to isomorphism, if and only if three certain combinatorial
conditions hold. As examples, we show that the Johnson graphs J(n,m) where n ≥ 7,
3 ≤ m < n/2 satisfy all of these conditions.
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1 Introduction
This paper is motivated by a desire to find a combinatorial characterization of the distance-
regular graphs with exactly three irreducible modules (up to isomorphism) of the Ter-
williger algebra with endpoint 1, all of which are thin (see Sections 2, 3 for formal def-
initions). This is a difficult problem which we will not complete in this paper. To begin, we
find combinatorial conditions under which a distance-regular graph is 1-thin. When these
combinatorial conditions hold, we identify additional combinatorial conditions that hold if
and only if the distance-regular graph has exactly three irreducible T -modules of endpoint
1, up to isomorphism.

Let Γ denote a distance-regular graph with diameter D ≥ 3 and valency k ≥ 3. Let
X denote the vertex set of Γ. For x ∈ X , let T = T (x) denote the Terwilliger algebra
of Γ with respect to x. It is known that there exists a unique irreducible T -module with
endpoint 0, and this module is thin [5, Proposition 8.4]. It is also known that Γ is bipartite
or almost-bipartite if and only if Γ has exactly one irreducible T -module of endpoint 1,
up to isomorphism, and this module is thin [4, Theorem 1.3]. Furthermore, Curtin and
Nomura have shown that Γ is pseudo-1-homogeneous with respect to x with a1 6= 0 if and
only if Γ has exactly two irreducible T -modules of endpoint 1, up to isomorphism, both of
which are thin [4, Theorem 1.6].

For any z ∈ X and any integer i ≥ 0, let Γi(z) = {w ∈ X : ∂(z, w) = i}. For y ∈
Γ1(x) and integers i, j ≥ 0, abbreviate Di

j = Di
j(x, y) = Γi(x) ∩ Γj(y). For 1 ≤ i ≤ D

and for a given y, we define maps Hi : D
i
i → Z, Ki : D

i
i → Z and Vi : Di

i−1 ∪D
i−1
i → Z

as follows:

Hi(z) = |Γ1(z) ∩Di−1
i−1|, Ki(z) = |Γ1(z) ∩Di+1

i+1|, Vi(z) = |Γ1(z) ∩Di−1
i−1|.

Our main result is the following.

Theorem 1.1. Let Γ = (X,R) denote a non-bipartite distance-regular graph with diame-
ter D ≥ 3 and valency k ≥ 3, and fix vertex x ∈ X . Assume that for every y ∈ Γ1(x) and
for 2 ≤ i ≤ D, the corresponding maps Hi and Vi are constant, and that these constants
do not depend on the choice of y. Also assume that the constant value of Hi is nonzero for
2 ≤ i ≤ D. Then Γ is 1-thin with respect to x.

We need the following definition.

Definition 1.2. With the assumptions of Theorem 1.1, for y ∈ Γ1(x) let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D) and let K1 denote the corresponding map. Let B = B(y) denote the
adjacency matrix of the subgraph of Γ induced on D1

1 . Observe that B ∈ MatD1
1
(C), and

so the rows and the columns of B are indexed by the elements of D1
1 . Let j ∈ CD1

1 denote
the all-ones column vector with rows indexed by the elements of D1

1 .

With reference to Definition 1.2, we denote by P1, P2 and P3 the following properties
of Γ:

P1: There exists y ∈ Γ1(x) such that K1 is not a constant.

P2: For every y, z ∈ Γ1(x) with ∂(y, z) ∈ {0, 2}, the number of walks of length 3 inside
Γ1(x) from y to z is a constant number, which depends only on ∂(y, z) (and not on
the choice of y, z).
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P3: There exist scalars α, β such that for every y ∈ Γ1(x) we have

B2j = αBj + βj.

We prove the following.

Theorem 1.3. With reference to Definition 1.2, Γ has exactly three irreducible T -modules
of endpoint 1, up to isomorphism, if and only if properties P1, P2, and P3 hold. We note
these three T -modules are all thin by Theorem 1.1.

Finally, we show that the Johnson graphs J(n,m) where n ≥ 7, 3 ≤ m < n/2 satisfy
the assumptions in Theorem 1.1 and the equivalent conditions in Theorem 1.3.

2 Preliminaries
In this section we review some definitions and basic results concerning distance-regular
graphs. See the book of Brouwer, Cohen and Neumaier [2] for more background informa-
tion.

Let C denote the complex number field and let X denote a nonempty finite set. Let
MatX(C) denote the C-algebra consisting of all matrices whose rows and columns are
indexed by X and whose entries are in C. Let V = CX denote the vector space over C
consisting of column vectors whose coordinates are indexed by X and whose entries are
in C. We observe MatX(C) acts on V by left multiplication. We call V the standard
module. We endow V with the Hermitian inner product 〈 , 〉 that satisfies 〈u, v〉 = utv for
u, v ∈ V , where t denotes transpose and denotes complex conjugation. For y ∈ X let
ŷ denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We
observe {ŷ | y ∈ X} is an orthonormal basis for V . The following will be useful: for each
B ∈ MatX(C) we have

〈u,Bv〉 = 〈Btu, v〉 (u, v ∈ V ). (2.1)

Let Γ = (X,R) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function
for Γ, and set D := max{∂(x, y) | x, y ∈ X}. We call D the diameter of Γ. For a vertex
x ∈ X and an integer i ≥ 0 let Γi(x) denote the set of vertices at distance i from x.
We abbreviate Γ(x) = Γ1(x). For an integer k ≥ 0 we say Γ is regular with valency k
whenever |Γ(x)| = k for all x ∈ X . We say Γ is distance-regular whenever for all integers
h, i, j (0 ≤ h, i, j ≤ D) and for all vertices x, y ∈ X with ∂(x, y) = h, the number

phij = |Γi(x) ∩ Γj(y)|

is independent of x and y. The phij are called the intersection numbers of Γ.
For the rest of this paper we assume Γ is distance-regular with diameter D ≥ 3. Note

that phij = phji for 0 ≤ h, i, j ≤ D. For convenience set ci := pi1,i−1 (1 ≤ i ≤ D),
ai := pi1i (0 ≤ i ≤ D), bi := pi1,i+1 (0 ≤ i ≤ D − 1), ki := p0

ii (0 ≤ i ≤ D), and
c0 = bD = 0. By the triangle inequality the following hold for 0 ≤ h, i, j ≤ D: (i) phij = 0

if one of h, i, j is greater than the sum of the other two; (ii) phij 6= 0 if one of h, i, j equals
the sum of the other two. In particular ci 6= 0 for 1 ≤ i ≤ D and bi 6= 0 for 0 ≤ i ≤ D−1.
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We observe that Γ is regular with valency k = k1 = b0 and that ci + ai + bi = k for
0 ≤ i ≤ D. Note that ki = |Γi(x)| for x ∈ X and 0 ≤ i ≤ D.

We recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D let Ai denote the matrix in
MatX(C) with (x, y)-entry

(Ai)xy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i
(x, y ∈ X). (2.2)

We call Ai the ith distance matrix of Γ. We abbreviate A := A1 and call this the adjacency
matrix of Γ. We observe (ai) A0 = I; (aii)

∑D
i=0Ai = J ; (aiii) Ai = Ai (0 ≤ i ≤ D);

(aiv) Ati = Ai (0 ≤ i ≤ D); (av) AiAj =
∑D
h=0 p

h
ijAh (0 ≤ i, j ≤ D), where I (resp.

J) denotes the identity matrix (resp. all 1’s matrix) in MatX(C). Using these facts we find
A0, A1, . . . , AD is a basis for a commutative subalgebra M of MatX(C). We call M the
Bose-Mesner algebra of Γ. It turns out that A generates M [1, p. 190]. By [2, p. 45],
M has a second basis E0, E1, . . . , ED such that (ei) E0 = |X|−1J ; (eii)

∑D
i=0Ei = I;

(eiii) Ei = Ei (0 ≤ i ≤ D); (eiv) Eti = Ei (0 ≤ i ≤ D); (ev) EiEj = δijEi (0 ≤ i, j ≤
D). We call E0, E1, . . . , ED the primitive idempotents of Γ.

3 The Terwilliger algebra
Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and valency k ≥ 3.
In this section we recall the dual Bose-Mesner algebra and the Terwilliger algebra of Γ. Fix
a vertex x ∈ X. We view x as a “base vertex.” For 0 ≤ i ≤ D let E∗i = E∗i (x) denote the
diagonal matrix in MatX(C) with (y, y)-entry

(E∗i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i
(y ∈ X).

We call E∗i the ith dual idempotent of Γ with respect to x [11, p. 378]. We observe
(i)
∑D
i=0E

∗
i = I; (ii) E∗i = E∗i (0 ≤ i ≤ D); (iii) E∗ti = E∗i (0 ≤ i ≤ D);

(iv) E∗i E
∗
j = δijE

∗
i (0 ≤ i, j ≤ D). By these facts E∗0 , E

∗
1 , . . . , E

∗
D form a basis for

a commutative subalgebra M∗ = M∗(x) of MatX(C). We call M∗ the dual Bose-Mesner
algebra of Γ with respect to x [11, p. 378]. For 0 ≤ i ≤ D we have

E∗i V = span{ŷ | y ∈ Γi(x)}

so dimE∗i V = ki. We call E∗i V the ith subconstituent of Γ with respect to x. Note that

V = E∗0V + E∗1V + · · ·+ E∗DV (orthogonal direct sum).

Moreover E∗i is the projection from V onto E∗i V for 0 ≤ i ≤ D.
We recall the Terwilliger algebra of Γ. Let T = T (x) denote the subalgebra of

MatX(C) generated by M , M∗. We call T the Terwilliger algebra of Γ with respect to x
[11, Definition 3.3]. Recall M (resp. M∗) is generated by A (resp. E∗0 , E

∗
1 , . . . , E

∗
D) so T

is generated by A,E∗0 , E
∗
1 , . . . , E

∗
D. We observe T has finite dimension. By construction

T is closed under the conjugate-transpose map so T is semi-simple [11, Lemma 3.4(i)].
By a T -module we mean a subspace W of V such that SW ⊆ W for all S ∈ T . Let

W denote a T -module. Then W is said to be irreducible whenever W is nonzero and W
contains no T -modules other than 0 and W .
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By [6, Corollary 6.2] any T -module is an orthogonal direct sum of irreducible T -
modules. In particular the standard module V is an orthogonal direct sum of irreducible
T -modules. Let W, W ′ denote T -modules. By an isomorphism of T -modules from W to
W ′ we mean an isomorphism of vector spaces σ : W → W ′ such that (σS − Sσ)W = 0
for all S ∈ T . The T -modules W , W ′ are said to be isomorphic whenever there ex-
ists an isomorphism of T -modules from W to W ′. By [3, Lemma 3.3] any two non-
isomorphic irreducible T -modules are orthogonal. Let W denote an irreducible T -module.
By [11, Lemma 3.4(iii)] W is an orthogonal direct sum of the nonvanishing spaces among
E∗0W,E

∗
1W, . . . , E

∗
DW . By the endpoint ofW we mean min{i | 0 ≤ i ≤ D, E∗iW 6= 0}.

By the diameter of W we mean |{i | 0 ≤ i ≤ D, E∗iW 6= 0}| − 1. We say W is thin if
dim(E∗iW ) ≤ 1 for 0 ≤ i ≤ D. We say Γ is 1-thin with respect to x if every T -module
with endpoint 1 is thin.

By [5, Proposition 8.3, Proposition 8.4] Mx̂ is the unique irreducible T -module with
endpoint 0 and the unique irreducible T -module with diameter D. Moreover Mx̂ is the
unique irreducible T -module on which E0 does not vanish. We call Mx̂ the primary mod-
ule. We observe that vectors si (0 ≤ i ≤ D) form a basis for Mx̂, where

si =
∑

y∈Γi(x)

ŷ. (3.1)

Lemma 3.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3
and distance matrices Ai (0 ≤ i ≤ D). Fix a vertex x ∈ X and let E∗i = E∗i (x)
(0 ≤ i ≤ D) denote the dual idempotents with respect to x. For 0 ≤ h, i, j ≤ D, the
matrix E∗hAiE

∗
j = 0 whenever any one of h, i, j is bigger than the sum of the other two.

Proof. Routine using elementary matrix multiplication.

The following result will be crucial later in the paper.

Lemma 3.2. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. Fix a
vertex x ∈ X and let E∗i = E∗i (x) (0 ≤ i ≤ D) denote the dual idempotents with respect
to x. Let T = T (x) denote the Terwilliger algebra of Γ with respect to x. Assume that (up
to isomorphism) Γ has exactly three irreducible T -modules with endpoint 1, and that these
modules are all thin. Let F1, F2, F3, F4, F5 ∈ T and pick an integer i, 1 ≤ i ≤ D. Then
the matrices

E∗i F1E
∗
1 , E

∗
i F2E

∗
1 , E

∗
i F3E

∗
1 , E

∗
i F4E

∗
1 , E

∗
i F5E

∗
1

are linearly dependent.

Proof. Let V0 denote the primary module of Γ, and let V` (1 ≤ ` ≤ 3) denote pairwise
non-isomorphic irreducible T -modules with endpoint 1. Define vectors v` (0 ≤ ` ≤ 3) as
follows. If E∗i V` = 0, then let v` = 0. Otherwise, let v` be an arbitrary nonzero vector of
E∗i V`. Furthermore, for 0 ≤ ` ≤ 3 fix a nonzero u` ∈ E∗1V`. As modules V` (0 ≤ ` ≤ 3)
are thin, there exist scalars λ`j (1 ≤ j ≤ 5, 0 ≤ ` ≤ 3) such that

E∗i FjE
∗
1u` = λ`jv`.
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Consider now the following homogeneous system of linear equations:


λ0

1 λ0
2 λ0

3 λ0
4 λ0

5

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5

λ3
1 λ3

2 λ3
3 λ3

4 λ3
5



α1

α2

α3

α4

α5

 =


0
0
0
0

 . (3.2)

Observe that the above system has a nontrivial solution, and let (µ1, µ2, µ3, µ4, µ5)t denote
one of its nontrivial solutions. We will now show that

∑5
j=1 µjE

∗
i FjE

∗
1 = 0. First, pick

an arbitrary u ∈ E∗1V`, for some ` (0 ≤ ` ≤ 3). As module V` is thin, there exists a scalar
λ, such that u = λu`. Now we have

5∑
j=1

µjE
∗
i FjE

∗
1u = λ

5∑
j=1

µjE
∗
i FjE

∗
1u` = λ

5∑
j=1

µjλ
`
jv` = λv`

5∑
j=1

µjλ
`
j = 0. (3.3)

Assume now that W is an irreducible T -module with endpoint 1 and note that W is iso-
morphic to V` for some 1 ≤ ` ≤ 3. Pick arbitrary w ∈ E∗1W . Let σ : V` 7→ W be a
T -module isomorphism and let u ∈ E∗1V` be such that w = σ(u). Now by (3.3) we have
that

5∑
j=1

µjE
∗
i FjE

∗
1w =

5∑
j=1

µjE
∗
i FjE

∗
1σ(u) = σ

( 5∑
j=1

µjE
∗
i FjE

∗
1u

)
= 0. (3.4)

For 1 ≤ ` ≤ 3 let V` denote the sum of all irreducible T -modules with endpoint 1, which
are isomorphic to V`. Observe that

E∗1V = E∗1V0 + E∗1V1 + E∗1V2 + E∗1V3 (orthogonal sum). (3.5)

Pick now an arbitrary v ∈ E∗1V . Note that by (3.5) v is a sum of vectors vξ, where ξ belongs
to some index set Ξ, and each vξ is contained in E∗1Wξ, where Wξ is either V0, or isomor-
phic to V` for some 1 ≤ ` ≤ 3. By (3.4) we have that

∑5
j=1 µjE

∗
i FjE

∗
1vξ = 0 for each

ξ ∈ Ξ, and consequently
∑5
j=1 µjE

∗
i FjE

∗
1v = 0. This shows that

∑5
j=1 µjE

∗
i FjE

∗
1 = 0.

As at least one of µj (1 ≤ j ≤ 5) is nonzero (recall that (µ1, µ2, µ3, µ4, µ5)t is a nontrivial
solution of (3.2)), the result follows.

4 The local eigenvalues
In order to discuss the thin irreducible T -modules with endpoint 1, we first recall some
parameters called the local eigenvalues. We will use the notation from [7].

Definition 4.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3,
valency k ≥ 3 and adjacency matrix A. Fix a vertex x ∈ X . We let ∆ = ∆(x) denote the
graph (X̆, R̆), where

X̆ = {y ∈ X | ∂(x, y) = 1},
R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 1}.
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The graph ∆ has exactly k vertices and is regular with valency a1. We let Ă denote
the adjacency matrix of ∆. The matrix Ă is symmetric with real entries, and thus Ă is
diagonalizable with real eigenvalues. We let η1, η2, . . . , ηk denote the eigenvalues of Ă.
We call η1, η2, . . . , ηk the local eigenvalues of Γ with respect to x.

We now consider the first subconstituent E∗1V . We recall the dimension of E∗1V is k.
Observe E∗1V is invariant under the action of E∗1AE

∗
1 . We note that for an appropriate

ordering of the vertices of Γ, we have

E∗1AE
∗
1 =

(
Ă 0
0 0

)
,

where Ă is from Definition 4.1. Hence the action of E∗1AE
∗
1 on E∗1V is essentially the

adjacency map for ∆. In particular the action of E∗1AE
∗
1 on E∗1V is diagonalizable with

eigenvalues η1, η2, . . . , ηk. We observe the vector s1 from (3.1) is contained in E∗1V . One
may easily show that s1 is an eigenvector for E∗1AE

∗
1 with eigenvalue a1. Reordering the

eigenvalues if necessary, we have η1 = a1. For the rest of this paper, we assume the local
eigenvalues are ordered in this way. Now consider the the orthogonal complement of s1 in
E∗1V . By (2.1), this space is invariant under multiplication byE∗1AE

∗
1 . Thus the restriction

of the matrix E∗1AE
∗
1 to this space is diagonalizable with eigenvalues η2, η3, . . . , ηk.

Definition 4.2. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3,
valency k ≥ 3 and adjacency matrix A. Fix a vertex x ∈ X , and let T = T (x) denote the
Terwilliger algebra of Γ with respect to x. Let W denote a thin irreducible T -module with
endpoint 1. Observe E∗1W is a 1-dimensional eigenspace for E∗1AE

∗
1 ; let η denote the cor-

responding eigenvalue. We observeE∗1W is contained inE∗1V so η is one of η2, η3, . . . , ηk.
We refer to η as the local eigenvalue of W .

Theorem 4.3 ([14, Theorem 12.1]). Let Γ = (X,R) denote a distance-regular graph with
diameter D ≥ 3 and valency k ≥ 3. Fix a vertex x ∈ X , and let T = T (x) denote
the Terwilliger algebra of Γ with respect to x. Let W denote a thin irreducible T -module
with endpoint 1 and local eigenvalue η. Let W ′ denote an irreducible T -module. Then the
following (i), (ii) are equivalent.

(i) W and W ′ are isomorphic as T -modules.

(ii) W ′ is thin with endpoint 1 and local eigenvalue η.

Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and valency k ≥
3. Fix a vertex x ∈ X , and let T = T (x) denote the Terwilliger algebra of Γ with respect to
x. Recall that in Section 3, we said that the standard module V is an orthogonal direct sum
of irreducible T -modules. Let W denote an irreducible T -module. By the multiplicity of
W , we mean the number of irreducible T -modules in the above decomposition which are
isomorphic to W . It is well-known that this number is independent of the decomposition
of V .

Theorem 4.4 ([14, Theorem 12.9]). Let Γ = (X,R) denote a distance-regular graph with
diameter D ≥ 3 and valency k ≥ 3. Fix a vertex x ∈ X , and let T = T (x) denote the
Terwilliger algebra of Γ with respect to x. With reference to Definition 4.1, the following
are equivalent.
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(i) For every i (2 ≤ i ≤ k), there exists a thin irreducible T -module W of endpoint
1 with local eigenvalue ηi. Moreover, the multiplicity with which ηi appears in the
list η2, η3, . . . , ηk is equal to the multiplicity with which W appears in the standard
decomposition of V .

(ii) Γ is 1-thin with respect to x.

With reference to Theorem 4.4, we note that if Γ is 1-thin with respect to x, then the
number of non-isomorphic irreducible T -modules of endpoint 1 is equal to the number of
distinct local eigenvalues in the list η2, η3, . . . , ηk. We will need this fact later in the paper.

5 The matrices L, F , R
Let Γ = (X,R) denote a distance-regular graph with diameterD ≥ 3. Fix a vertex x ∈ X .
In this section we recall certain matrices L, F , R of the Terwilliger algebra T = T (x).

Definition 5.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
adjacency matrix A. Fix a vertex x ∈ X and let E∗i = E∗i (x) (0 ≤ i ≤ D) denote the dual
idempotents with respect to x. We define matrices L = L(x), F = F (x), R = R(x) by

L =

D∑
h=1

E∗h−1AE
∗
h, F =

D∑
h=0

E∗hAE
∗
h, R =

D−1∑
h=0

E∗h+1AE
∗
h.

Note that A = L + F + R [3, Lemma 4.4]. We call L, F , and R the lowering matrix, the
flat matrix, and the raising matrix of Γ with respect to x, respectively.

Lemma 5.2. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. We fix x ∈ X and let L = L(x), F = F (x) and R = R(x) be as in
Definition 5.1. For y, z ∈ X the following (i)–(iii) hold.

(i) Lzy = 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y)− 1, and 0 otherwise.

(ii) Fzy = 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y), and 0 otherwise.

(iii) Rzy = 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y) + 1, and 0 otherwise.

Proof. Immediate from Definition 5.1 and elementary matrix multiplication.

With the notation of Lemma 5.2, we display the (z, y)-entry of certain products of the
matrices L, F and R. To do this we need another definition.

A sequence of vertices [y0, y1, . . . , yt] of Γ is a walk in Γ if yi−1yi is an edge for
1 ≤ i ≤ t.

Lemma 5.3. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. We fix x ∈ X and let L = L(x), F = F (x) and R = R(x) be as
in Definition 5.1. Choose y, z ∈ X and let m denote a positive integer. Assume that
y ∈ Γi(x). Then the following (i)–(vi) hold.

(i) The (z, y)-entry of Rm is equal to the number of walks [y = y0, y1, . . . , ym = z],
such that yj ∈ Γi+j(x) for 0 ≤ j ≤ m.

(ii) The (z, y)-entry ofRmL is equal to the number of walks [y = y0, y1, . . . , ym+1 = z],
such that yj ∈ Γi−2+j(x) for 1 ≤ j ≤ m+ 1.
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(iii) The (z, y)-entry ofLRm is equal to the number of walks [y = y0, y1, . . . , ym+1 = z],
such that yj ∈ Γi+j(x) for 0 ≤ j ≤ m and ym+1 ∈ Γi+m−1(x).

(iv) The (z, y)-entry of RmF is equal to the number of walks [y = y0, y1, . . . , ym+1 =
z], such that yj ∈ Γi−1+j(x) for 1 ≤ j ≤ m+ 1.

(v) The (z, y)-entry of FRm is equal to the number of walks [y = y0, y1, . . . , ym+1 =
z], such that yj ∈ Γi+j(x) for 0 ≤ j ≤ m and ym+1 ∈ Γi+m(x).

(vi) The (z, y)-entry of Fm is equal to the number of walks [y = y0, y1, . . . , ym = z],
such that yj ∈ Γi(x) for 0 ≤ j ≤ m.

Proof. Immediate from Lemma 5.2 and elementary matrix multiplication.

6 The sets D i
j

Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. In this section we
display a certain partition of X that we find useful.

Definition 6.1. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. Pick x ∈ X and y ∈ Γ(x). For 0 ≤ i, j ≤ D we define Di

j = Di
j(x, y) by

Di
j = Γi(x) ∩ Γj(y).

For notational convenience we set Di
j = ∅ if i or j is contained in {−1, D + 1}. Please

refer to Figure 1 for a diagram of this partition.

y

x
D12

D12

D23

D23

D11 D22

Di+1

Di+1

D -1
i

D -1
i

D -1
-1 Dii

D -2
-1

D -1
-2

D -1

D -1

D -1
-1 D

D -2
-1

D -1
-2
D

D
D

D

D
D

D

D
D

D
D

D
i

i

i

i

i
i

i
i

i
i

Figure 1: The partition with reference to Definition 6.1.

We now recall some properties of sets Di
j .

Lemma 6.2 ([10, Lemma 4.2]). With reference to Definition 6.1 the following (i), (ii) hold
for 0 ≤ i, j ≤ D.

(i) |Di
j | = p1

ij .

(ii) Di
j = ∅ if and only if p1

ij = 0.

Observe that for 1 ≤ i ≤ D we have p1
i,i−1 = ciki/k 6= 0 by [2, p. 134]. Therefore,

Di
i−1 and Di−1

i are nonempty for 1 ≤ i ≤ D.

Lemma 6.3 ([9, Lemma 2.11]). With reference to Definition 6.1 pick an integer i (1 ≤ i ≤
D). Then the following (i), (ii) hold.
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(i) Each z ∈ Di
i−1 (resp. Di−1

i ) is adjacent to
(a) precisely ci−1 vertices in Di−1

i−2 (resp. Di−2
i−1),

(b) precisely ci − ci−1 − |Γ(z) ∩Di−1
i−1| vertices in Di−1

i (resp. Di
i−1),

(c) precisely ai−1 − |Γ(z) ∩Di−1
i−1| vertices in Di

i−1 (resp. Di−1
i ),

(d) precisely bi vertices in Di+1
i (resp. Di

i+1),
(e) precisely ai − ai−1 + |Γ(z) ∩Di−1

i−1| vertices in Di
i .

(ii) Each z ∈ Di
i is adjacent to

(a) precisely ci − |Γ(z) ∩Di−1
i−1| vertices in Di

i−1,
(b) precisely ci − |Γ(z) ∩Di−1

i−1| vertices in Di−1
i ,

(c) precisely bi − |Γ(z) ∩Di+1
i+1| vertices in Di+1

i ,
(d) precisely bi − |Γ(z) ∩Di+1

i+1| vertices in Di
i+1,

(e) precisely ai − bi − ci + |Γ(z) ∩Di−1
i−1|+ |Γ(z) ∩Di+1

i+1| vertices in Di
i .

In view of the above lemma we have the following definition.

Definition 6.4. With reference to Definition 6.1, for 1 ≤ i ≤ D we define mapsHi : D
i
i →

Z, Ki : D
i
i → Z and Vi : Di

i−1 ∪D
i−1
i → Z as follows:

Hi(z) = |Γ(z) ∩Di−1
i−1|, Ki(z) = |Γ(z) ∩Di+1

i+1|, Vi(z) = |Γ(z) ∩Di−1
i−1|.

We have the following observation.

Lemma 6.5. With reference to Definition 6.4, fix an integer i (2 ≤ i ≤ D) and assume that
there exist integers m1,m2, such that Vi(z) = m1 for every z ∈ Di−1

i and Vi(z) = m2 for
every z ∈ Di

i−1. Then m1 = m2.

Proof. By Lemma 6.3(i) and using a simple double-counting argument we find that

|Di−1
i |(ci − ci−1 −m1) = |Di

i−1|(ci − ci−1 −m2).

As |Di−1
i | = |Di

i−1| 6= 0 by the comment below Lemma 6.2, the result follows.

For the rest of the paper we assume the following situation.

Definition 6.6. Let Γ = (X,R) denote a non-bipartite distance-regular graph with diame-
ter D ≥ 3, valency k ≥ 3, and distance matrices Ai (0 ≤ i ≤ D). We abbreviate A := A1.
Fix x ∈ X and let E∗i = E∗i (x) (0 ≤ i ≤ D) denote the dual idempotents with respect
to x. Let T = T (x) denote the Terwilliger algebra with respect to x. Let ∆ = ∆(x)
be as in Definition 4.1. Let matrices L = L(x), F = F (x), R = R(x) be as defined in
Definition 5.1. For y ∈ Γ(x), let sets Di

j(x, y) (0 ≤ i, j ≤ D) and the corresponding maps
Hi,Ki, Vi (1 ≤ i ≤ D) be as defined in Definition 6.1 and Definition 6.4. We assume
that for every y ∈ Γ(x) and for every 2 ≤ i ≤ D, the corresponding maps Hi and Vi are
constant, and that these constants do not depend on the choice of y. We denote the constant
value of Hi (Vi, respectively) by hi (vi, respectively). We further assume that hi 6= 0 for
2 ≤ i ≤ D.

Remark 6.7. With reference to Definition 6.6, pick y ∈ Γ(x) and let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D). Since Γ is assumed to be non-bipartite, aj 6= 0 for some integer j
(1 ≤ j ≤ D). It follows that Dj

j 6= ∅ by Lemma 6.2(ii) and [2, p. 127]. But since each
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hi 6= 0 (2 ≤ i ≤ D), we conclude each of sets Dj−1
j−1, D

j−2
j−2, . . . , D

1
1 is nonempty. Since

D1
1 6= ∅, we have a1 6= 0. Now by [2, Proposition 5.5.1], we find ai 6= 0 for 1 ≤ i ≤ D−1.

Thus Di
i 6= ∅ for 1 ≤ i ≤ D − 1. However, with our assumptions of Definition 6.6, it is

possible that aD = 0 and DD
D = ∅. In this case, we make the convention that hD := 1.

Finally, we wish to make clear that while we are assuming the maps Hi and Vi are constant
for 2 ≤ i ≤ D, we are not making any such global assumptions about the maps Ki.

7 Some products in T

With reference to Definition 6.6, in this section we display the values of the entries of
certain products in T .

Lemma 7.1. With reference to Definition 6.6, pick y ∈ Γ(x) and let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D). Pick an integer i (1 ≤ i ≤ D), and let z ∈ Γi(x). Then the following
(i)–(iii) hold.

(i) (Ri−1)zy =

{
ci−1ci−2 · · · c1 if z ∈ Di

i−1,

0 otherwise.

(ii) (RiL)zy = cici−1 · · · c1.

(iii) (LRi)zy =


bicici−1 · · · c1 if z ∈ Di

i−1,

(bi −Ki(z))cici−1 · · · c1 if z ∈ Di
i,

(ci+1 − ci − vi+1)cici−1 · · · c1 if z ∈ Di
i+1.

Proof. First we observe that, by the triangle inequality, we have ∂(y, z) ∈ {i− 1, i, i+ 1}.
(i): By Lemma 5.3(i), the (z, y)-entry of Ri−1 is equal to the number of walks [y =

y0, y1, . . . , yi−1 = z], such that yj ∈ Γ1+j(x) for 0 ≤ j ≤ i − 1. Observe that there
are no such walks if ∂(y, z) ≥ i. If ∂(y, z) = i − 1, then it is easy to see that yj ∈
Γj+1(x) ∩ Γj(y) = Dj+1

j for 0 ≤ j ≤ i − 1. Lemma 6.3(i) now implies that the number
of such walks is equal to ci−1ci−2 · · · c1.

(ii): By Lemma 5.3(ii), the (z, y)-entry of RiL is equal to the number of walks [y =
y0, y1, . . . , yi+1 = z], such that yj ∈ Γj−1(x) for 1 ≤ j ≤ i + 1. Observe that this
implies that y1 = x. On the other hand, since z ∈ Γi(x), there are cici−1 · · · c1 walks
[x = y1, y2, . . . , yi+1 = z], such that yj ∈ Γj−1(x) for 1 ≤ j ≤ i+ 1. The result follows.

(iii): By Lemma 5.3(iii), the (z, y)-entry of LRi is equal to the number of walks [y =
y0, y1, . . . , yi+1 = z], such that yj ∈ Γj+1(x) for 0 ≤ j ≤ i. It follows that yj ∈ Dj+1

j

for 0 ≤ j ≤ i. Furthermore, observe that by Lemma 6.3, z has exactly ci+1 − ci − vi+1

neighbours inDi+1
i if ∂(y, z) = i+1 (that is, if z ∈ Di

i+1), exactly bi−Ki(z) neighbours in
Di+1
i if ∂(y, z) = i (that is, if z ∈ Di

i), and exactly bi neighbours inDi+1
i if ∂(y, z) = i−1

(that is, if z ∈ Di
i−1). Moreover, by Lemma 6.3(i), for any vertex yi ∈ Di+1

i , the number
of walks [y = y0, y1, . . . , yi], such that yj ∈ Dj+1

j for 0 ≤ j ≤ i, is equal to cici−1 · · · c1.
The result follows.

Lemma 7.2. With reference to Definition 6.6, pick y ∈ Γ(x) and let Di
j = Di

j(x, y)
(0 ≤ i, j ≤ D). Pick an integer i (1 ≤ i ≤ D), and let z ∈ Γi(x). Then the following (i),
(ii) hold.
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(i) (Ri−1F )zy =


∑i−1
j=1 ci−1ci−2 · · · cj+1vj+1hjhj−1 · · ·h2 if z ∈ Di

i−1,

hihi−1 · · ·h2 if z ∈ Di
i,

0 if z ∈ Di
i+1.

(ii) (FRi−1)zy =


(ai−1 − vi)ci−1ci−2 · · · c1 if z ∈ Di

i−1,

(ci − hi)ci−1ci−2 · · · c1 if z ∈ Di
i,

0 if z ∈ Di
i+1.

Proof. The proof is very similar to the proof of Lemma 7.1, so we omit the details. We
only provide a sketch of the proof.

(i): We would like to count the number of walks of length i−1 from z toD1
1 . First, this

number is 0 if z ∈ Di
i+1. If z ∈ Di

i , then this walk must pass through sets Di−1
i−1, D

i−2
i−2,

. . . , D2
2 . Observe the number of such walks is equal to hihi−1 · · ·h2. Finally, suppose

z ∈ Di
i−1. For any walk of length i − 1 from z to D1

1 , there must exist some in-
teger 1 ≤ j ≤ i − 1 such that this walk passes through sets Di−1

i−2, D
i−2
i−3, . . . , D

j+1
j ,

Dj
j , D

j−1
j−1, . . . , D

2
2, D

1
1 . By Lemma 6.3, the number of such walks (for a fixed j) is

ci−1ci−2 · · · cj+1vj+1hjhj−1 · · ·h2. The result follows.
(ii): Here we note that z has 0 neighbours in Di

i−1 if z ∈ Di
i+1, ci − hi neighbours

in Di
i−1 if z ∈ Di

i , and ai−1 − vi neighbours in Di
i−1 if z ∈ Di

i−1. Moreover, there are
ci−1ci−2 · · · c1 walks of length i− 1 from each vertex of Di

i−1 to y.

8 Proof of the main result
In this section we will prove our main result. With reference to Definition 6.6, we will
show that Γ is 1-thin with respect to x.

Lemma 8.1. With reference to Definition 6.6, fix an integer i (1 ≤ i ≤ D). Then there
exist scalars λ1, λ2 such that

E∗i FR
i−1E∗1 = λ1E

∗
i R

i−1E∗1 + λ2E
∗
i R

i−1FE∗1 . (8.1)

Proof. Let z, y ∈ X . We shall show the (z, y)-entry of both sides of (8.1) agree. Note that
we may assume z ∈ Γi(x), y ∈ Γ(x); otherwise the (z, y)-entry of both sides of (8.1) is
zero. Let D`

j = D`
j(x, y) (0 ≤ `, j ≤ D) and define scalars λ1, λ2 as follows:

λ1 = ai−1 − vi −
(ci − hi)

∑i−1
j=1 ci−1ci−2 · · · cj+1vj+1hjhj−1 · · ·h2

hihi−1 · · ·h2
,

λ2 =
(ci − hi)ci−1ci−2 · · · c1

hihi−1 · · ·h2
.

Treating separately the cases where z ∈ Di
i−1, D

i
i, D

i
i+1, it’s now routine using Lem-

ma 7.1(i) and Lemma 7.2 to check that the (z, y)-entry of both sides of (8.1) agree.

Lemma 8.2. With reference to Definition 6.6,

E∗i Ai−1E
∗
1 =

1

c1c2 · · · ci−1
E∗i R

i−1E∗1 (1 ≤ i ≤ D). (8.2)
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Proof. Let z, y ∈ X . Observe the (z, y)-entries of both sides of (8.2) are zero unless
z ∈ Γi(x), y ∈ Γ(x). When z ∈ Γi(x), y ∈ Γ(x), the (z, y)-entries of both sides of (8.2)
are equal by (2.2) and Lemma 7.1(i). The result follows.

Lemma 8.3. With reference to Definition 6.6, assume v ∈ E∗1V is an eigenvector for F .
Then

E∗i AiE
∗
1v ∈ span{Ri−1v} (1 ≤ i ≤ D). (8.3)

Proof. We proceed by induction on i. For i = 1, the result is immediate since v is an
eigenvector for F . Now assume the result is true for a fixed i, 1 ≤ i ≤ D − 1. By [2,
p. 127],

ci+1Ai+1 = AAi − aiAi − bi−1Ai−1.

Using this equation, Lemma 3.1, Definition 5.1, and Lemma 8.2, we find

ci+1E
∗
i+1Ai+1E

∗
1v = E∗i+1AAiE

∗
1v − aiE∗i+1AiE

∗
1v

= E∗i+1(R+ F + L)AiE
∗
1v −

ai
c1c2 · · · ci

E∗i+1R
iE∗1v

= RE∗i AiE
∗
1v + FE∗i+1AiE

∗
1v −

ai
c1c2 · · · ci

E∗i+1R
iE∗1v.

(8.4)

Observe FE∗i+1AiE
∗
1v = (c1c2 · · · ci)−1E∗i+1FR

iE∗1v by (8.2), and E∗i+1FR
iE∗1v ∈

span{Riv} by Lemma 8.1 and the fact that v is an eigenvector for F . Using this informa-
tion along with (8.4) and the inductive hypothesis, we find E∗i+1Ai+1E

∗
1v ∈ span{Riv},

as desired.

Lemma 8.4. With reference to Definition 6.6, let U denote the sum of all T -modules of
endpoint 1. Assume v ∈ E∗1U is an eigenvector for F . Then Lv = 0 and LRiv ∈
span{Ri−1v} for 1 ≤ i ≤ D − 1.

Proof. Since v is contained in a sum of irreducible T -modules of endpoint 1, we find
Lv = 0. By [5, Propositions 8.3(ii), 8.4], the primary module is the unique irreducible
T -module upon which J does not vanish. Thus JE∗1v = 0, and for 1 ≤ j ≤ D − 1,

0 = E∗j JE
∗
1v = E∗j (

D∑
t=0

At)E
∗
1v

= E∗jAj−1E
∗
1v + E∗jAjE

∗
1v + E∗jAj+1E

∗
1v.

Thus E∗jAj+1E
∗
1v = −E∗jAj−1E

∗
1v − E∗jAjE∗1v, and so by Lemma 8.2 and Lemma 8.3,

E∗jAj+1E
∗
1v ∈ span{Rj−1v} (1 ≤ j ≤ D − 1). (8.5)

Now fix an integer i (1 ≤ i ≤ D − 1). By [2, p. 127],

AAi = ci+1Ai+1 + aiAi + bi−1Ai−1.

Thus
E∗i AAiE

∗
1v = ci+1E

∗
i Ai+1E

∗
1v + aiE

∗
i AiE

∗
1v + bi−1E

∗
i Ai−1E

∗
1v. (8.6)

In view of (8.6), and using (8.5), (8.3), (8.2), we find

E∗i AAiE
∗
1v ∈ span{Ri−1v}. (8.7)
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Now using Definition 5.1 and (8.2),

E∗i AAiE
∗
1v = E∗i (R+ F + L)AiE

∗
1v

= RE∗i−1AiE
∗
1v + FE∗i AiE

∗
1v + LE∗i+1AiE

∗
1v

= RE∗i−1AiE
∗
1v + FE∗i AiE

∗
1v +

1

c1c2 · · · ci
LRiv.

Thus
LRiv = c1c2 · · · ci(E∗i AAiE∗1v −RE∗i−1AiE

∗
1v − FE∗i AiE∗1v).

Recalling that v is an eigenvector for F , the result now follows from (8.7), (8.5), (8.3),
(8.1).

We now present our main result. With reference to Definition 6.6, let W denote an
irreducible T -module of endpoint 1, and observe by Definition 5.1 that FE∗1W ⊆ E∗1W .
Thus, there is a nonzero vector v ∈ E∗1W such that v is an eigenvector for F . We shall
show W is thin.

Theorem 8.5. With reference to Definition 6.6, letW denote an irreducible T -module with
endpoint 1. Choose nonzero v ∈ E∗1W which is an eigenvector for F . Then the following
set spans W :

{v,Rv,R2v, . . . , RD−1v}. (8.8)

In particular, W is thin.

Proof. We first show thatW is spanned by the vectors in (8.8). LetW ′ denote the subspace
of V spanned by the vectors in (8.8) and note that W ′ ⊆ W . We claim that W ′ is T -
invariant. Observe that since RE∗j V ⊆ E∗j+1V for 0 ≤ j ≤ D − 1, W ′ is invariant
under the action of E∗j for 0 ≤ j ≤ D, and so W ′ is M∗-invariant. By definition and
since RE∗DV = 0, W ′ is invariant under R. From Lemma 8.1, Lemma 8.4, and the fact
that v is an eigenvector for F , it follows that W ′ is also invariant under F and L. Since
A = R + F + L and since A generates M , W ′ is M -invariant. The claim follows. Hence
W ′ is a T -module, and it is nonzero since v ∈W ′. By the irreducibility of W we have that
W ′ = W . Since for 0 ≤ j ≤ D−1 we have Rjv ∈ E∗j+1W , it follows that W is thin.

9 Special case – two modules with endpoint 1
With reference to Definition 6.6, in this section we consider the case where Γ has (up to
isomorphism) exactly two irreducible T -modules with endpoint 1. Note that these modules
are thin by Theorem 8.5. Observe that in this case it follows from the comments of Section 4
that the local graph ∆ = ∆(x) has either two or three distinct eigenvalues. In the former
case ∆ is a disjoint union of complete graphs (with order a1 +1), while in the latter case ∆
is a strongly regular graph (see [8, Chapter 10, Lemma 1.5]). We observe that ∆ has one of
these two forms if and only if the map K1 is constant for every y ∈ Γ(x), and this constant
does not depend on y.

Proposition 9.1. With reference to Definition 6.6, assume that ∆ is a disjoint union of
k/(a1 + 1) cliques of order a1 + 1. Let W denote an irreducible T -module with endpoint
1. Then W is thin with local eigenvalue a1 or −1.



M. S. MacLean and Š. Miklavič: On a certain class of 1-thin distance-regular graphs 201

Proof. Recall that W is thin by Theorem 8.5. Let η denote the local eigenvalue of W , and
note that η is an eigenvalue of ∆ by the comments of Section 4. But the eigenvalues of ∆
are a1 (with multiplicity k/(a1 + 1) > 1) and −1 (with multiplicity k − k/(a1 + 1) =
ka1/(a1 + 1)). The result follows.

Proposition 9.2. With reference to Definition 6.6, assume that ∆ is a connected strongly
regular graph with parameters (k, a1, λ, v2). Let W denote an irreducible T -module with
endpoint 1. Then W is thin with local eigenvalue η2 or η3, where

η2, η3 =
λ− v2 ±

√
(λ− v2)2 + 4(a1 − v2)

2
. (9.1)

Proof. Recall that W is thin by Theorem 8.5. Let η denote the local eigenvalue of W ,
and recall that η is an eigenvalue of ∆. Therefore, by the well-known formula for the
eigenvalues of a connected strongly regular graph, the eigenvalues of Γ(x) are η1 = a1

(with multiplicity 1), and scalars η2, η3 from (9.1). The result follows.

Theorem 9.3. With reference to Definition 6.6, assume that for every y ∈ Γ(x) the mapK1

is constant, and that this constant does not depend on y. Then Γ has (up to isomorphism)
exactly two irreducible T -modules with endpoint 1, both of which are thin. In particular,
for every 1 ≤ i ≤ D − 1, the map Ki is constant, and this constant does not depend on y
(in other words, Γ is pseudo-1-homogeneous with respect to x in the sense of Curtin and
Nomura [4]).

Proof. Recall that every irreducible T -module of Γ is thin by Theorem 8.5. Therefore, by
Theorem 4.3, two irreducible T -modules with endpoint 1 are isomorphic if and only if they
have the same local eigenvalue. As K1 is constant and this constant does not depend on y,
the local graph ∆ is either a disjoint union of cliques of order a1 +1, or connected strongly
regular graph. The first part of the above theorem now follows from Propositions 9.1 and
9.2. The second part follows from [4, Theorem 1.6].

10 Special case – three modules with endpoint 1
With reference to Definition 6.6, in this section we consider the case where Γ has (up
to isomorphism) exactly three irreducible T -modules with endpoint 1. Note that these
modules are thin by Theorem 8.5. It follows from the comments in Section 4 that this
situation occurs if and only if the local graph ∆ is either disconnected with exactly three
distinct eigenvalues, or connected with exactly four distinct eigenvalues. Moreover, ∆ is
not connected if and only if v2 = 0. But if v2 = 0, then it is easy to see that ∆ is a disjoint
union of complete graphs (with order a1 + 1), and has therefore 2 distinct eigenvalues.
This shows that v2 6= 0, and so ∆ is connected with exactly four distinct eigenvalues. To
describe this case we need the following definition.

Definition 10.1. With reference to Definition 6.6, for y ∈ Γ(x) let B = B(y) denote the
adjacency matrix of the subgraph of Γ induced on D1

1 . Observe that B ∈ MatD1
1
(C), and

so the rows and the columns of B are indexed by the elements of D1
1 . Let j ∈ CD1

1 denote
the all-ones column vector with rows indexed by the elements of D1

1 .

Lemma 10.2. With reference to Definition 10.1, pick y ∈ Γ(x). Then for every z ∈ D1
1 we

have
K1(z) = b1 − a1 + (Bj)z + 1.
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Proof. Observe that (Bj)z is equal to the number of neighbours that z has in D1
1 . There-

fore, z has a1−1−(Bj)z neighbours inD1
2 . But as z also hasK1(z) neighbours inD2

2 and
no neighbours in D3

2 , it must have b1 −K1(z) neighbours in D1
2 . The result follows.

With reference to Definition 10.1, we now describe three properties that Γ could have.

Definition 10.3. With reference to Definition 10.1, we denote by P1, P2 and P3 the fol-
lowing properties of Γ:

P1: There exists y ∈ Γ(x) such that K1 is not a constant.

P2: For every y, z ∈ Γ(x) with ∂(y, z) ∈ {0, 2}, the number of walks of length 3 from y
to z in graph ∆ is a constant number, which depends only on ∂(y, z) (and not on the
choice of y, z).

P3: There exist scalars α, β such that for every y ∈ Γ(x) we have

B2j = αBj + βj.

With reference to Definition 10.3, in the rest of this section we prove that Γ has proper-
ties P1, P2, P3 if and only if Γ has (up to isomorphism) exactly three irreducible T -modules
with endpoint 1.

Proposition 10.4. With reference to Definition 10.3, assume that Γ has (up to isomorphism)
exactly three irreducible T -modules with endpoint 1. Then Γ has property P1.

Proof. Assume on the contrary thatK1 is a constant for every y ∈ Γ(x). We claim that this
constant is independent of the choice of y ∈ Γ(x). Pick y ∈ Γ(x) and let Di

j = Di
j(x, y).

Denote the constant value of K1 = K1(y) by κ = κ(y). Observe that every vertex in
D1

2 has v2 neighbours in D1
1 , and that every vertex in D1

1 has b1 − κ neighbours in D1
2 .

As |D1
2| = b1 and |D1

1| = a1, this gives us a1(b1 − κ) = b1v2. This shows that κ is
independent of the choice of y ∈ Γ(x). By Theorem 9.3, Γ has up to isomorphism at
most two irreducible modules with endpoint 1, a contradiction. This shows that Γ has
property P1.

Lemma 10.5. With reference to Definition 10.3, assume that Γ has (up to isomorphism)
exactly three irreducible T -modules with endpoint 1. Then

E∗1F
3E∗1 = E∗1

(
µ1LR+ µ2RL+ µ3F + µ4F

2
)
E∗1 (10.1)

for some scalars µi (1 ≤ i ≤ 4).

Proof. By Lemma 3.2, there exist scalars λ1, λ2, λ3, λ4, λ5, not all zero, such that

E∗1
(
λ1LR+ λ2RL+ λ3F + λ4F

2 + λ5F
3
)
E∗1 = 0. (10.2)

We claim that λ5 6= 0. Assume on the contrary that λ5 = 0. By Proposition 10.4, there
exists y ∈ Γ(x) such that K1 = K1(y) is not a constant. Pick such y and let Di

j =

Di
j(x, y). Let z ∈ D1

1 . We now compute the (z, y)-entry of (10.2). By Lemma 7.1(ii),(iii),
the (z, y) entry of E∗1LRE

∗
1 (E∗1RLE

∗
1 , respectively) is b1 −K1(z) (1, respectively). By

Lemma 5.3(vi), the (z, y)-entry of E∗1FE
∗
1 is 1, and the (z, y)-entry of E∗1F

2E∗1 is equal
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to the number of neighbours of z in D1
1 . But by Lemma 10.2, the number of neighbours of

z in D1
1 is equal to a1 − 1− b1 +K1(z). It follows from the above comments that

λ1(b1 −K1(z)) + λ2 + λ3 + λ4(a1 − 1− b1 +K1(z)) = 0.

Note that by the assumption the map K1 is not constant, and so the above equality implies
λ4 = λ1. Therefore λ1(a1 − 1) + λ2 + λ3 = 0.

We now compute the (y, y)-entry of (10.2). Similarly as above we get

λ1(k − 1) + λ2 = 0.

Finally, pick z ∈ D1
2 . By computing the (y, z)-entry of (10.2) we get

λ1(c2 − 1) + λ2 = 0.

It follows easily from the above equations that λ1 = λ2 = λ3 = λ4 = 0, a contradiction.
This shows that λ5 6= 0 and so

E∗1F
3E∗1 = E∗1

(
µ1LR+ µ2RL+ µ3F + µ4F

2
)
E∗1 ,

where µi = −λi/λ5 for 1 ≤ i ≤ 4.

Theorem 10.6. With reference to Definition 10.3, assume that Γ has (up to isomorphism)
exactly three irreducible T -modules with endpoint 1. Then Γ has properties P2 and P3.

Proof. Note that for every y, z ∈ Γ(x), the (z, y)-entry of E∗1F
3E∗1 is equal to the number

of walks of length 3 from y to z in graph ∆. Pick y, z ∈ Γ(x) such that ∂(y, z) ∈ {0, 2}.
We compute the (z, y)-entry of (10.1). Using Lemma 5.3(vi) and Lemma 7.1(ii),(iii) we
find that

(E∗i F
3E∗1 )zy =

{
µ1b1 + µ2 + µ4a1 if z = y,

µ1(c2 − v2 − 1) + µ2 + µ4v2 if z 6= y.

This shows that Γ has property P2.
Pick now y, z ∈ Γ(x) such that ∂(y, z) = 1 and let Di

j = Di
j(x, y). Let K1 denote the

corresponding map, and let B = B(y). Let [y = y0, y1, y2, y3 = z] be a walk of length 3
from y to z in ∆. We will say that this walk is of type 0 if y2 = y, of type 1 if y2 ∈ D1

1 , and
of type 2 if y2 ∈ D1

2 . It is clear that we have a1 walks of type 0 and (a1 − 1 − (Bj)z)v2

walks of type 2. Similarly, there are (B2j)z walks of type 1. So there are in total

a1 + (a1 − 1− (Bj)z)v2 + (B2j)z

walks of length 3 from y to z in ∆.
We now compute the (z, y)-entry of the right side of (10.1). Using Lemma 7.1(iii) and

Lemma 10.2, we find that the (z, y)-entry of E∗1LRE
∗
1 is equal to

b1 −K1(z) = a1 − (Bj)z − 1.

It is easy to see that the (z, y)-entries ofE∗1RLE
∗
1 andE∗1FE

∗
1 are both equal to 1. Finally,

the (z, y)-entry of E∗1F
2E∗1 is equal to the number of neighbours of z in D1

1 , that is to
(Bj)z . It now follows from the above comments that

a1 + (a1 − 1− (Bj)z)v2 + (B2j)z = µ1(a1 − (Bj)z − 1) + µ2 + µ3 + µ4(Bj)z.
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This shows that
(B2j)z = α(Bj)z + β

for some scalars α, β, which are independent of the choice of vertices y, z. This proves that
Γ has property P3.

We now assume that Γ has properties P1, P2 and P3. We will show that this implies
that Γ has (up to isomorphism) exactly three irreducible T -modules with endpoint 1.

Definition 10.7. With reference to Definition 10.3, assume that Γ has properties P1, P2
and P3, and recall that X̆ = Γ(x). Recall also that for any y, z ∈ X̆ with ∂(y, z) ∈ {0, 2},
the number of walks of length 3 from y to z in ∆ is a constant number, which depends
just on the distance between y and z. We denote this number by w0 if y = z and by w2

if ∂(y, z) = 2. Recall that Ă = Ă(x) ∈ MatX̆(C) denotes the adjacency matrix of ∆.
Furthermore, let Ĭ denote the identity matrix of MatX̆(C) and let J̆ denote the all-ones
matrix of MatX̆(C).

We now display the entries of Ă, Ă2 and Ă3.

Proposition 10.8. With reference to Definition 10.7, the following (i)–(iii) hold for all
z, y ∈ X̆ .

(i)

(Ă)zy =

{
1 if ∂(y, z) = 1,

0 otherwise.

(ii)

(Ă2)zy =


a1 if y = z,

(Bj)z if ∂(y, z) = 1,

v2 if ∂(y, z) = 2,

where B = B(y).

(iii)

(Ă3)zy =


w0 if y = z,

a1 + v2(a1 − 1) + (Bj)z(α− v2) + β if ∂(y, z) = 1,

w2 if ∂(y, z) = 2,

where B = B(y) and α, β are from Definition 10.3.

Proof. Recall that for i ≥ 0, the (z, y)-entry of Ăi is equal to the number of walks of length
i from y to z in ∆. Parts (i), (ii) follow. We now prove part (iii).

Note that the result is clear if y = z or if ∂(y, z) = 2. Therefore, assume ∂(y, z) = 1.
Similarly as in the proof of Theorem 10.6, we split the walks of length 3 between y and
z into three types, depending on whether the third vertex of the walk is equal to y, or is
a neighbour of y, or is at distance 2 from y. There are a1 walks of the first type, (B2j)z
walks of the second type, and (a1 − 1 − (Bj)z)v2 walks of the third type. Recall that by
property P3 we have B2j = αBj + βj, and so the result follows.
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Proposition 10.9. With reference to Definition 10.7, we have

Ă3 = (α− v2)Ă2 + (a1 + β + v2(a1 − 1 + α− v2)− w2)Ă

+ (w0 − w2 + (α− v2)(v2 − a1))Ĭ + (w2 − (α− v2)v2)J̆ ,
(10.3)

where α, β are from Definition 10.3.

Proof. Pick y, z ∈ X̆ . It follows from Proposition 10.8 that the (z, y)-entry of the left side
and the right side of (10.3) agree. This proves the proposition.

Theorem 10.10. With reference to Definition 10.7, ∆ has exactly four distinct eigenvalues.

Proof. Observe that ∆ is connected and regular with valency a1, so a1 is an eigenvalue of
∆ with multiplicity 1. The corresponding eigenvector is the all-ones vector in CX̆ , which
we denote by j̆. Let θ denote an eigenvalue of ∆ which is different from a1, and let w
denote a corresponding eigenvector. Note that w and j̆ are orthogonal, and so applying
(10.3) to w we get

θ3w = (α− v2)θ2w + (a1 + β + v2(a1 − 1 + α− v2)− w2)θw

+ (w0 − w2 + (α− v2)(v2 − a1))w.

As w is nonzero, we have

θ3 = (α− v2)θ2 + (a1 +β+ v2(a1− 1 +α− v2)−w2)θ+w0−w2 + (α− v2)(v2−a1).

This shows that ∆ could have at most four different eigenvalues. Now if ∆ has fewer
than four different eigenvalues, then ∆ is strongly regular [8, Chapter 10, Lemma 1.5],
and so (Bj)z is constant for every y, z ∈ X̆ with z ∈ Γ(y), where B = B(y) and j
is from Definition 10.1. By Lemma 10.2, K1 is constant for every y ∈ X̆ , contradicting
property P1.

Theorem 10.11. With reference to Definition 10.7, Γ has (up to isomorphism) exactly three
irreducible T -modules with endpoint 1.

Proof. Recall that Γ is 1-thin with respect to x by Theorem 8.5. The result now follows
from Theorems 4.3, 4.4, and 10.10.

11 Example: Johnson graphs
Pick a positive integer n ≥ 2 and let m denote an integer (0 ≤ m ≤ n). The vertices of
the Johnson graph J(n,m) are the m-element subsets of {1, 2, . . . , n}. Vertices x, y are
adjacent if and only if the cardinality of x ∩ y is equal to m − 1. It follows that if x, y
are arbitrary vertices of J(n,m), then ∂(x, y) = m − |x ∩ y|. Therefore, the diameter
D of J(n,m) is equal to min{m,n −m}. Recall that J(n,m) is distance-transitive (see
[2, Theorem 9.1.2]), and so it is also distance-regular. It is well known that J(n,m) is
isomorphic to J(n, n −m), so we will assume that m ≤ n/2, which implies D = m. In
fact, if n is even and m = n/2, then J(2m,m) is 1-homogeneous (see [9]), and so we
assume from here on that m < n/2. As we are also assuming that D ≥ 3, we therefore
have m ≥ 3, n ≥ 7. For more details on Johnson graphs, see [2, Section 9.1].
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Pick adjacent vertices x, y of J(n,m), and let Di
j = Di

j(x, y) be as defined in Defini-
tion 6.1. For 1 ≤ i ≤ D let maps Hi, Ki and Vi be as defined in Definition 6.4. The main
purposes of this section are to describe maps Hi, Ki and Vi in detail and to show J(n,m)
satisfies the assumptions of Definitions 6.6 and 10.7. As J(n,m) is distance-transitive, it is
also arc-transitive, and so we can assume that x = {1, 2, . . . ,m}, y = {2, 3, . . . ,m + 1}.
We start with a description of the sets Di

j .

Proposition 11.1. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let x =
{1, 2, . . . ,m}, y = {2, 3, . . . ,m+ 1} be adjacent vertices of J(n,m). Let Di

j = Di
j(x, y)

be as defined in Definition 6.1. Then for 1 ≤ i ≤ D, the set Di−1
i (Di

i−1, respectively)
consists of vertices of the form {1} ∪ A ∪ B ({m + 1} ∪ A ∪ B, respectively), where
A ⊆ {2, 3, . . . ,m} with |A| = m− i and B ⊆ {m+ 2,m+ 3, . . . , n} with |B| = i− 1.

Proof. Routine.

To describe sets Di
i , we need the following definition.

Definition 11.2. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let
x = {1, 2, . . . ,m}, y = {2, 3, . . . ,m+ 1} be adjacent vertices of J(n,m).

(i) For 1 ≤ i ≤ D−1, define setDi
i(0) to be the set of vertices of the form {1,m+1}∪

A∪B, whereA ⊆ {2, 3, . . . ,m}with |A| = m−i−1 andB ⊆ {m+2,m+3, . . . , n}
with |B| = i− 1. We define D0

0(0) = DD
D(0) = ∅.

(ii) For 1 ≤ i ≤ D, define set Di
i(1) to be the set of vertices of the form A ∪ B, where

A ⊆ {2, 3, . . . ,m} with |A| = m− i, andB ⊆ {m+2,m+3, . . . , n} with |B| = i.
We define D0

0(1) = ∅.

Please refer to Figure 2 for a diagram of this partition.

y

x
D12

D12

D23

D23

Di+1

Di+1

D -1
i

D -1i

D -2
-1

D -1
-2

D -1

D -1

D -2
-1

D -1
-2
D

D

D
D

DD
D

D

i
i

i

i
ii

i

i

DDD (1)-1
-1Dii(1) DDD(1)

DDD (0)-1
-1Dii(0)Dii (0)-1

-1

Dii (1)-1
-1

D11(0)

D11(1)

D22(0)

D22(1)

Figure 2: The partition with reference to Definition 11.2. For further information about
which sets in the diagram are connected by edges, please refer to the propositions and
corollaries later in this section.

Proposition 11.3. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let
x = {1, 2, . . . ,m}, y = {2, 3, . . . ,m + 1} be adjacent vertices of J(n,m). Let Di

j =

Di
j(x, y) be as defined in Definition 6.1 and let Di

i(0), Di
i(1) be as in Definition 11.2.

Then for 1 ≤ i ≤ D−1 we have thatDi
i is a disjoint union ofDi

i(0) andDi
i(1). Moreover,

DD
D = DD

D(1).

Proof. Routine.
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We now first describe the maps Vi.

Proposition 11.4. With the notation of Proposition 11.3, let the maps Vi be as defined in
Definition 6.4. Then for 1 ≤ i ≤ D and any z ∈ Di

i−1 ∪D
i−1
i we have

Vi(z) = 2(i− 1).

In particular, the maps Vi are constant.

Proof. Note that the result is clear for i = 1, so pick 2 ≤ i ≤ D and assume z ∈ Di−1
i (case

z ∈ Di
i−1 is treated similarly and we omit the details). First recall that by the definition of

map Vi and by Proposition 11.3 we have

Vi(z) = |Γ(z) ∩Di−1
i−1| = |Γ(z) ∩Di−1

i−1(0)|+ |Γ(z) ∩Di−1
i−1(1)|.

Recall also that by Proposition 11.1 there exist subsetsA ⊆ {2, 3, . . . ,m}with |A| = m−i
and B ⊆ {m + 2,m + 3, . . . , n} with |B| = i − 1, such that z = {1} ∪ A ∪ B. We first
count the number of neighbours of z in Di−1

i−1(1). As vertices contained in Di−1
i−1(1) do not

contain the number 1 as an element, vertex w ∈ Di−1
i−1(1) will be adjacent with z if and

only if
w = A ∪B ∪ {`}

for some ` ∈ {2, 3, . . . ,m} \ A. Therefore, there are exactly m − 1 − (m − i) = i − 1
neighbours of z in Di−1

i−1(1). We now count the number of neighbours of z in Di−1
i−1(0).

As vertices contained in Di−1
i−1(0) contain numbers 1 and m + 1 as elements, vertex w ∈

Di−1
i−1(0) will be adjacent with z if and only if

w = ({1,m+ 1} ∪A ∪B) \ {`}

for some ` ∈ B. Therefore, there are exactly i− 1 neighbours of z in Di−1
i−1(0). The result

follows.

Proposition 11.5. With the notation of Proposition 11.3, for 1 ≤ i ≤ D − 1 and for any
z ∈ Di

i(0) the following (i), (ii) hold.

(i) |Γ(z) ∩Di−1
i−1(0)| = i(i− 1).

(ii) |Γ(z) ∩Di−1
i−1(1)| = 0.

Proof. Note that the result is clear for i = 1, so pick 2 ≤ i ≤ D−1 and z ∈ Di
i(0). Recall

that z = {1,m+ 1} ∪ A ∪ B for some subsets A ⊆ {2, 3, . . . ,m} with |A| = m− i− 1
and B ⊆ {m+ 2,m+ 3, . . . , n} with |B| = i− 1.

(i): Note that w ∈ Di−1
i−1(0) is adjacent with z if and only if w = {1,m+ 1}∪A′ ∪B′,

whereA′ = A∪{`1} for some `1 ∈ {2, 3, . . . ,m}\A andB′ = B\{`2} for some `2 ∈ B.
We have m− 1− (m− i− 1) = i choices for `1 and i− 1 choices for `2. It follows that z
has i(i− 1) neighbours in Di−1

i−1(0).
(ii): Recall that if w is an element of Di−1

i−1(1), then 1 and m+ 1 are not elements of w.
On the other hand, 1 and m+ 1 are elements of z, and so z and w are not adjacent.

Proposition 11.6. With the notation of Proposition 11.3, for 1 ≤ i ≤ D and for any
z ∈ Di

i(1) the following (i), (ii) hold.
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(i) |Γ(z) ∩Di−1
i−1(1)| = i(i− 1).

(ii) |Γ(z) ∩Di−1
i−1(0)| = 0.

Proof. Similar to the proof of Proposition 11.5.

Corollary 11.7. With the notation of Proposition 11.3, let the maps Hi be as defined in
Definition 6.4. Then for 1 ≤ i ≤ D and any z ∈ Di

i we have

Hi(z) = i(i− 1).

In particular, the maps Hi are constant.

Proof. Immediate from Propositions 11.5 and 11.6 and since Di
i is a disjoint union of

Di
i(0) and Di

i(1).

Proposition 11.8. With the notation of Proposition 11.3, for 1 ≤ i ≤ D − 1 and for any
z ∈ Di

i(0) the following (i), (ii) hold.

(i) |Γ(z) ∩Di+1
i+1(0)| = (m− i− 1)(n−m− i).

(ii) |Γ(z) ∩Di+1
i+1(1)| = 0.

Proof. Pick 1 ≤ i ≤ D − 1 and z ∈ Di
i(0). Recall that z = {1,m+ 1} ∪A ∪B for some

subsets A ⊆ {2, 3, . . . ,m} with |A| = m − i − 1 and B ⊆ {m + 2,m + 3, . . . , n} with
|B| = i− 1.

(i): Note that w ∈ Di+1
i+1(0) is adjacent with z if and only if w = {1,m+ 1}∪A′ ∪B′,

where A′ = A \ {`1} for some `1 ∈ A and B′ = B ∪ {`2} for some `2 ∈ {m + 2,m +
3, . . . , n}\B. We therefore havem−i−1 choices for `1 and (n−m−1)−(i−1) = n−m−i
choices for `2. It follows that z has (m− i− 1)(n−m− i) neighbours in Di+1

i+1(0).
(ii): Immediate from Proposition 11.6(ii).

Proposition 11.9. With the notation of Proposition 11.3, for 1 ≤ i ≤ D − 1 and for any
z ∈ Di

i(1) the following (i), (ii) hold.

(i) |Γ(z) ∩Di+1
i+1(1)| = (m− i)(n−m− i− 1).

(ii) |Γ(z) ∩Di+1
i+1(0)| = 0.

Proof. Similar to the proof of Proposition 11.8.

Corollary 11.10. With the notation of Proposition 11.3, let the maps Ki be as defined in
Definition 6.4. Then for 1 ≤ i ≤ D − 1 and any z ∈ Di

i we have

Ki(z) =

{
(m− i− 1)(n−m− i) if z ∈ Di

i(0),

(m− i)(n−m− i− 1) if z ∈ Di
i(1).

In particular, maps Ki are not constant.

Proof. The first part of the corollary follows immediately from Propositions 11.8 and 11.9
and since Di

i is a disjoint union of Di
i(0) and Di

i(1). For the second part, observe that if
Ki is a constant, then we have n = 2m, contradicting our assumption m < n/2.

Proposition 11.11. With the notation of Proposition 11.3, the following (i)–(iii) hold.
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(i) Every z ∈ D1
2 has 1 neighbour inD1

1(0), 1 neighbour inD1
1(1), and n−4 neighbours

in D1
2 .

(ii) Every z ∈ D1
1(0) has n−m− 1 neighbours in D1

2 , m− 2 neighbours in D1
1(0), and

no neighbours in D1
1(1).

(iii) Every z ∈ D1
1(1) has m− 1 neighbours in D1

2 , n−m− 2 neighbours in D1
1(1), and

no neighbours in D1
1(0).

Consequently, the partition {{y}, D1
1(0), D1

1(1), D1
2} of Γ(x) is equitable.

Proof. First observe that it follows from the proof of Proposition 11.4 that each z ∈ D1
2

has 1 neighbour in D1
1(0) and 1 neighbour in D1

1(1). Consequently, z has a1 − 2 = n− 4
neighbours in D1

2 . Next observe that each vertex from D1
1(0) contains 1 and m + 1 as

elements, while 1 and m + 1 are not elements of any vertex from D1
1(1). Consequently,

there are no edges between vertices ofD1
1(0) andD1

1(1). Furthermore, by Corollary 11.10,
each vertex inD1

1(0) has (m−2)(n−m−1) neighbours inD2
2 , while each vertex inD1

1(1)
has (m− 1)(n−m− 2) neighbours in D2

2 . The other claims of the above proposition now
follow from the fact that intersection numbers a1 and b1 of J(n,m) are equal to n− 2 and
(m− 1)(n−m− 1), respectively.

Theorem 11.12. Pick positive integers n and m with n ≥ 7, 3 ≤ m < n/2, and let
Γ = J(n,m). Pick x ∈ V (Γ) and let T = T (x). Then Γ has (up to isomorphism) exactly
three irreducible T -modules with endpoint 1, and these modules are all thin.

Proof. As Γ is arc transitive, it follows from Proposition 11.4 and Corollary 11.7 that maps
Vi and Hi (2 ≤ i ≤ D) are constant for every y ∈ Γ(x), and that these constants are
nonzero and independent of the choice of y. By Theorem 8.5, Γ is 1-thin. By Corol-
lary 11.10, the map K1 is not constant for any y ∈ Γ(x). Pick y, z ∈ Γ(x) and let
B = B(y) be as defined in Definition 10.1. It follows from Proposition 11.11 that the
number of walks of length 3 from y to z in ∆ = ∆(x) depends only on the distance be-
tween y and z when ∂(y, z) ∈ {0, 2}. Finally, by Proposition 11.11 we also have that
B2j = αBj + βj, where α = n − 4, β = −(n −m − 2)(m − 2), and j is from Defini-
tion 10.1. Therefore Γ has properties P1, P2 and P3, and so, by Theorem 10.11, Γ has (up
to isomorphism) exactly three irreducible T -modules with endpoint 1.
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Štefko Miklavič https://orcid.org/0000-0002-2878-0745

References
[1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, The Ben-

jamin/Cummings Publishing, Menlo Park, CA, 1984.

[2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, volume 18 of
Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1989, doi:
10.1007/978-3-642-74341-2.

[3] B. Curtin, Bipartite distance-regular graphs, Part I, Graphs Combin. 15 (1999), 143–158, doi:
10.1007/s003730050049.



210 Ars Math. Contemp. 18 (2020) 187–210

[4] B. Curtin and K. Nomura, 1-homogeneous, pseudo-1-homogeneous, and 1-thin distance-
regular graphs, J. Comb. Theory Ser. B 93 (2005), 279–302, doi:10.1016/j.jctb.2004.10.003.

[5] E. S. Egge, A generalization of the Terwilliger algebra, J. Algebra 233 (2000), 213–252, doi:
10.1006/jabr.2000.8420.

[6] J. T. Go, The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002), 399–429,
doi:10.1006/eujc.2000.0514.

[7] J. T. Go and P. Terwilliger, Tight distance-regular graphs and the subconstituent algebra, Euro-
pean J. Combin. 23 (2002), 793–816, doi:10.1006/eujc.2002.0597.

[8] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall Mathematics Series, Chapman &
Hall, New York, 1993.
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Abstract

The total number of partitions of a finite set into nonempty ordered subsets such that r
distinguished elements belong to distinct ordered blocks can be described as sums of r-Lah
numbers. In this paper we study this possible variant of Bell-like numbers, as well as the
related r-Lah polynomials.

Keywords: Summed r-Lah numbers, r-Lah polynomials.

Math. Subj. Class. (2020): 05A18, 05A19, 11B73

1 Introduction
Bell numbers play a crucial role in enumerative combinatorics. The nth Bell number Bn
counts the number of partitions of an n-element set, or in other words, it is the sum of
Stirling numbers of the second kind

{
n
k

}
(k = 0, . . . , n). In connection with these numbers,

it is possible to introduce the nth Bell polynomial

Bn(x) =

n∑
j=0

{
n

j

}
xj ,

whose value at 1 is simply Bn(1) = Bn. (These polynomials should not be confused with
partial Bell polynomials which are multivariate polynomials.)

Using r-Stirling numbers of the second kind
{
n
k

}
r

defined by L. Carlitz [5], A. Z. Broder
[4], and later rediscovered by R. Merris [12], I. Mező [13, 14] introduced and investigated
the corresponding r-Bell numbers Bn,r as the number of partitions of a set with n + r
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elements such that r distinguished elements belong to distinct blocks, and the r-Bell poly-
nomials as

Bn,r(x) =

n∑
j=0

{
n

j

}
r

xj .

(We have to mention that there is some confusion in notation of r-Stirling numbers in the
literature, therefore we need to underline that for various reasons, we prefer to denote by{
n
k

}
r

the number of partitions of an (n+ r)-element set into k + r nonempty subsets such
that r distinguished elements belong to distinct blocks.) The r-Bell numbers were studied
from a graph theoretical point of view by Zs. Kereskényi-Balogh and G. Nyul [9]. We shall
discuss these numbers and polynomials in detail in Section 2.

Lah numbers
⌊
n
k

⌋
, named after I. Lah [10, 11], are close relatives of Stirling numbers.

Sometimes they are called Stirling numbers of the third kind. G. Nyul and G. Rácz [19]
defined and extensively studied the r-generalization of Lah numbers. The r-Lah number⌊
n
k

⌋
r

is the number of partitions of a set with n+ r elements into k + r nonempty ordered
subsets such that r distinguished elements have to be in distinct ordered blocks. We notice
that some identities for r-Lah numbers were derived by H. Belbachir, A. Belkhir [1] and
H. Belbachir, E. Bousbaa [2], and they appear as the results of substitutions into partial
r-Bell polynomials by M. Mihoubi and M. Rahmani [17]. The r-Lah numbers are special
cases of r-Whitney-Lah numbers defined by G.-S. Cheon and J.-H. Jung [6] (see also [8]),
and recently M. Shattuck [21] introduced a further generalization of these numbers.

Similarly to Bell numbers, one could be interested in summation

Ln =

n∑
j=0

⌊
n

j

⌋
of Lah numbers. Although these numbers slightly appear in the literature [7, 18, 20, 22],
they have not been studied systematically yet. This will be done in our paper at a more
general level, namely we shall prove several properties of sums Ln,r of r-Lah numbers and
r-Lah polynomials Ln,r(x), for instance, we express summed r-Lah numbers by sums of
(r − s)-Lah numbers, we derive Spivey and Dobiński type identities, second-order linear
recurrence relations, exponential generating functions. Finally, we show that r-Lah polyno-
mials have only real roots. We prefer purely combinatorial arguments in the proofs where it
is possible. As we shall see, some of these results could be viewed as the summed or poly-
nomial counterparts of certain theorems from [19]. They are also included in this paper,
because we aim to give a self-contained presentation of these numbers and polynomials.

2 r-Bell numbers and r-Bell polynomials
Above, we have defined r-Bell numbers and r-Bell polynomials. In the following table
we collect their properties, especially those ones which correspond to our theorems about
summed r-Lah numbers and r-Lah polynomials. We indicate the references for the known
identities (star symbol means that a certain paper contains the formula only for r-Bell
numbers, not for polynomials), but it also contains some new results. For example, to
the best of our knowledge, the Spivey type identity never appeared previously in this full
generality. All of these properties can be proved along the lines of our proofs in the next
section. We notice that these proofs are based on a completely new idea even for several
known identities of the table. We should draw attention to that our purely combinatorial
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argument will fail to work in the most general case (Theorem 3.3) for r-Lah polynomials,
but even so, it works for r-Bell numbers and polynomials.

Table 1: Properties of r-Bell numbers and r-Bell polynomials.

Bn,0(x) = Bn(x) [14], xBn,1(x) = Bn+1(x)

Bn,r(x) =
n∑
j=0

(
n
j

)
Bj,r−s(x)s

n−j [16]

Bn,r(x) =
n∑
j=0

(
n
j

)
Bj,r−1(x) [14]

Bn,r(x) =
n∑
j=0

(
n
j

)
Bj(x)r

n−j [5]*, [14]

Bm+n,r(x) =
m∑
i=0

n∑
j=0

{
m
i

}
r

(
n
j

)
Bj,r−s(x)(i+ s)n−jxi

Bm+n,r(x) =
m∑
i=0

n∑
j=0

{
m
i

}
r

(
n
j

)
Bj,r(x)i

n−jxi [16]

Bm+n,r(x) =
m∑
i=0

n∑
j=0

{
m
i

}
r

(
n
j

)
Bj,r−1(x)(i+ 1)n−jxi

Bm+n,r(x) =
m∑
i=0

n∑
j=0

{
m
i

}
r

(
n
j

)
Bj(x)(i+ r)n−jxi [15]*, [16]

Bn,r(x) =
1

exp(x)

∞∑
j=0

(j+r)n

j! xj [14]

∞∑
n=0

Bn,r(x)
n! yn = exp (x (exp(y)− 1) + ry) [5]*, [14]

The roots of Bn,r(x) are simple, real and negative (r ≥ 1). [13]

3 Summed r-Lah numbers and r-Lah polynomials
We begin this section with the exact definitions of summed r-Lah numbers and r-Lah
polynomials, which can be viewed as relatives of r-Bell numbers and polynomials (in the
sense that r-Lah numbers are relatives of r-Stirling numbers of the second kind).

For non-negative integers n, r, not both 0, denote by Ln,r the number of partitions of a
set with n+ r elements into nonempty ordered subsets such that r distinguished elements
belong to distinct ordered blocks. Moreover, let L0,0 = 1. We can call Ln,r the nth
summed r-Lah number, because the formula

Ln,r =

n∑
j=0

⌊
n

j

⌋
r

immediately follows from the definitions. This suggests us to define the polynomial ana-
logues of these numbers. If n, r ≥ 0, then the nth r-Lah polynomial is

Ln,r(x) =

n∑
j=0

⌊
n

j

⌋
r

xj .
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If we have no distinguished elements, then the summands in the first formula and the coef-
ficients of the polynomial are the ordinary Lah numbers. In this case, we simply call them
the nth summed Lah number and Lah polynomial, and denote them by Ln and Ln(x).

Obviously, Ln,r(x) is a monic polynomial of degree n with non-negative integer coef-
ficients. Since Ln,r(1) = Ln,r, it is enough to state our theorems for r-Lah polynomials
throughout this paper, the corresponding properties for summed r-Lah numbers follows
simply by the substitution x = 1.

It will be useful to associate a combinatorial interpretation to r-Lah polynomials, as
well. If n, r ≥ 0, not both 0, and c ≥ 1, then Ln,r(c) counts the number of partitions of a
set with n + r elements into nonempty ordered subsets and colourings of the blocks with
c colours such that r distinguished elements belong to distinct uncoloured ordered blocks.
For brevity, in the rest of the paper we shall call these objects c-coloured r-Lah partitions
of an (n+ r)-element set into ordered blocks.

If r = 0 or r = 1, then we have no restriction for the partition into ordered blocks,
hence Ln,0(x) = Ln(x) and xLn,1(x) = Ln+1(x) (n ≥ 0).

In our first theorem, we express r-Lah polynomials in terms of (r−s)-Lah polynomials.
It is the polynomial counterpart and could be derived directly from [19, Theorem 3.4], but
we carry out the necessary modification of the combinatorial proof.

Theorem 3.1. If n, r, s ≥ 0 and s ≤ r, then

Ln,r(x) =

n∑
j=0

(
n

j

)
Lj,r−s(x)(2s)

n−j .

Proof. We may assume that n, r are not both 0, and let c be a positive integer. Then,
Ln,r(c) is the number of c-coloured r-Lah partitions of an (n+ r)-element set into ordered
blocks. These can be enumerated in another way:

Let j be the number of those non-distinguished elements which belong to other ordered
blocks than the first s distinguished elements (j = 0, . . . , n). We can choose them in

(
n
j

)
ways, thereafter we have Lj,r−s(c) possibilities for their c-coloured (r − s)-Lah partitions
into ordered blocks together with the last r − s distinguished elements. Finally, we can
put the remaining n − j non-distinguished elements into the ordered blocks of the first
s distinguished elements in (2s)n−j ways. It means that, for a fixed j, the number of
possibilities is

(
n
j

)
Lj,r−s(c)(2s)

n−j .

Remark 3.2. For the most important choices s = 1 and s = r, the identity becomes

Ln,r(x) =

n∑
j=0

(
n

j

)
Lj,r−1(x)(n− j + 1)!,

Ln,r(x) =

n∑
j=0

(
n

j

)
Lj(x)(2r)

n−j .

Now, we prove a general Spivey type formula for r-Lah polynomials. It is named after
M. Z. Spivey [23], who discovered his remarkable formula for Bell numbers just over a
decade ago.
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Theorem 3.3. If m,n, r, s ≥ 0 and s ≤ r, then

Lm+n,r(x) =

m∑
i=0

n∑
j=0

⌊
m

i

⌋
r

(
n

j

)
Lj,r−s(x)(m+ i+ 2s)n−jxi.

Proof. By [19, Theorem 3.2], we get

(x+ 2r)m+n =
m+n∑
k=0

⌊
m+ n

k

⌋
r

xk.

On the other hand, using again [19, Theorem 3.2] and the binomial theorem for rising
factorials, we also have

(x+ 2r)m+n = (x+ 2r)m(x+ 2r +m)n

=

m∑
i=0

⌊
m

i

⌋
r

xi(x− i+ 2r − 2s+m+ i+ 2s)n

=

m∑
i=0

⌊
m

i

⌋
r

xi
n∑
j=0

(
n

j

)
(x− i+ 2r − 2s)j(m+ i+ 2s)n−j

=

m∑
i=0

n∑
j=0

⌊
m

i

⌋
r

xi
(
n

j

)
(m+ i+ 2s)n−j

j∑
k=0

⌊
j

k

⌋
r−s

(x− i)k

=

m∑
i=0

n∑
j=0

j∑
k=0

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−j

⌊
j

k

⌋
r−s

xi+k

=

m∑
i=0

n∑
j=0

i+j∑
k=i

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−j

⌊
j

k − i

⌋
r−s

xk

=

m+n∑
k=0

min{m,k}∑
i=0

n∑
j=max{0,k−i}

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−j

⌊
j

k − i

⌋
r−s

xk.

Comparing the coefficients of xk in the above two expressions gives

⌊
m+ n

k

⌋
r

=

min{m,k}∑
i=0

n∑
j=max{0,k−i}

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−j

⌊
j

k − i

⌋
r−s

,

which identity is interesting on its own.
If we multiply both sides by xk and sum for k (k = 0, . . . ,m+ n), we obtain

Lm+n,r(x) =

m+n∑
k=0

⌊
m+ n

k

⌋
r

xk

=
m+n∑
k=0

min{m,k}∑
i=0

n∑
j=max{0,k−i}

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−j

⌊
j

k − i

⌋
r−s

xk
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=

m∑
i=0

n∑
j=0

i+j∑
k=i

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−j

⌊
j

k − i

⌋
r−s

xk

=

m∑
i=0

n∑
j=0

j∑
k=0

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−j

⌊
j

k

⌋
r−s

xi+k

=

m∑
i=0

n∑
j=0

⌊
m

i

⌋
r

(
n

j

)
(m+ i+ 2s)n−jxiLj,r−s(x).

Remark 3.4. First, we note that this formula gives back Theorem 3.1 and the definition of
r-Lah polynomials for m = 0 and n = 0, respectively.

While, in the special cases of s = 0, s = 1 and s = r, we have

Lm+n,r(x) =

m∑
i=0

n∑
j=0

⌊
m

i

⌋
r

(
n

j

)
Lj,r(x)(m+ i)n−jxi,

Lm+n,r(x) =

m∑
i=0

n∑
j=0

⌊
m

i

⌋
r

(
n

j

)
Lj,r−1(x)(m+ i+ 2)n−jxi,

Lm+n,r(x) =

m∑
i=0

n∑
j=0

⌊
m

i

⌋
r

(
n

j

)
Lj(x)(m+ i+ 2r)n−jxi.

For the last identity, we give a combinatorial proof, as well. The reason is that the
extension of Spivey’s idea works for r-Lah polynomials only if s = r. However, as we
mentioned previously, a similar argument proves the Spivey type formula listed in the table
of Section 2 for r-Bell polynomials in full generality. It would be interesting to find a
purely combinatorial proof of the general identity as stated in Theorem 3.3.

Proof. We may assume that m,n, r are not all 0, and let c be a positive integer. Then,
Lm+n,r(c) gives the number of c-coloured r-Lah partitions of an (m+ n+ r)-element set
into ordered blocks. We find an alternative way to count them:

First, we consider a c-coloured r-Lah partition of the distinguished elements and the
first m non-distinguished elements into i + r ordered blocks (i = 0, . . . ,m). We have⌊
m
i

⌋
r
ci such partitions. Denote by j the number of those non-distinguished elements

among the last n ones which do not belong to these i + r ordered blocks (j = 0, . . . , n).
They can be chosen in

(
n
j

)
ways, and there are Lj(c) possibilities to partition them into

coloured ordered blocks with c colours. As our last step, we place the remaining n − j
non-distinguished elements into the i + r original ordered blocks, which can be done in
(m+ i+ 2r)n−j ways. Summarizing, the number of possibilities is⌊

m

i

⌋
r

(
n

j

)
Lj(c)(m+ i+ 2r)n−jci

for a fixed pair of i, j.

The r-Lah polynomials satisfy the following second-order linear recurrence relation. In
the special case of sums of ordinary Lah numbers (i.e., for r = 0), it appears in [18, 20, 22]
in different contexts.



G. Nyul and G. Rácz: Sums of r-Lah numbers and r-Lah polynomials 217

Theorem 3.5. If n ≥ 1 and r ≥ 0, then

Ln+1,r(x) = (x+ 2n+ 2r)Ln,r(x)− n(n+ 2r − 1)Ln−1,r(x).

Proof. Let c be a positive integer. Then, Ln+1,r(c) counts the number of c-coloured r-Lah
partitions of an (n + r + 1)-element set into ordered blocks. The rest of the proof gives
another enumeration of them:

We have Ln,r(c) c-coloured r-Lah partitions of our set excluding the last non-disting-
uished element into ordered blocks. If this last element constitutes a singleton, then we
only need to colour its one-element ordered block with c colours. Otherwise, we can place
the excluded element before or after any other elements, i.e., to 2n + 2r places. It means
that there would be (c+ 2n+ 2r)Ln,r(c) possibilities.

But, of course, we counted twice those cases when our last element is put between
two elements. This could happen in two different ways. If the jth non-distinguished ele-
ment stands directly before the originally excluded element (j = 1, . . . , n), then there are
Ln−1,r(c) c-coloured r-Lah partitions of our set without these two elements into ordered
blocks, and this pair of elements can be put back to n+ r− 1 places (they cannot be at the
end of an ordered block). If a distinguished element stands directly before and the jth non-
distinguished element stands directly after the originally excluded element (j = 1, . . . , n),
then we have Ln−1,r(c) c-coloured r-Lah partitions of our set without the latter two el-
ements into ordered blocks, and they can be put back to r places (directly after one of
the distinguished elements). Therefore, the number of the possibilities to be subtracted is
(n(n+ r − 1) + nr)Ln−1,r(c), altogether.

We can derive a Dobiński type formula for r-Lah polynomials, named after the well-
known Dobiński formula for Bell numbers.

Theorem 3.6. If n, r ≥ 0, then

Ln,r(x) =
1

exp(x)

∞∑
j=0

(j + 2r)n

j!
xj .

Proof. I. First, we prove it for polynomials. Through this proof, let
⌊
n
i

⌋
r
= 0 if i > n.

Applying [19, Theorem 3.2], we have

(j + 2r)n =

n∑
i=0

⌊
n

i

⌋
r

ji =

∞∑
i=0

⌊
n

i

⌋
r

ji =

j∑
i=0

⌊
n

i

⌋
r

j!

(j − i)!
.

Dividing both sides by j! gives

(j + 2r)n

j!
=

j∑
i=0

⌊
n

i

⌋
r

1

(j − i)!
,

which means that
(

(j+2r)n

j!

)∞
j=0

is the convolution of the sequences
(⌊

n
j

⌋
r

)∞
j=0

and
(

1
j!

)∞
j=0

.

Therefore, its generating function is

∞∑
j=0

(j + 2r)n

j!
xj = Ln,r(x) exp(x).
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II. Now, we can give another proof for summed r-Lah numbers using probability theory.
Let λ be a positive real number and ξ a Poisson random variable with parameter λ. Then,
again by [19, Theorem 3.2], we get

E (ξ + 2r)
n
=

∞∑
j=0

(j + 2r)
n λ

j

j!
e−λ = e−λ

∞∑
j=0

λj

j!

n∑
i=0

⌊
n

i

⌋
r

ji

= e−λ
n∑
i=0

⌊
n

i

⌋
r

∞∑
j=0

ji

j!
λj = e−λ

n∑
i=0

⌊
n

i

⌋
r

∞∑
j=i

λj

(j − i)!

= e−λ
n∑
i=0

⌊
n

i

⌋
r

λi
∞∑
j=0

λj

j!
=

n∑
i=0

⌊
n

i

⌋
r

λi = Ln,r (λ) .

Especially, for λ = 1, we have

Ln,r = Ln,r (1) = E (ξ + 2r)
n
=

∞∑
j=0

(j + 2r)
n 1

j!
e−1.

The next theorem gives the exponential generating function of the sequence of r-Lah
polynomials. We note that a special case, the exponential generating function of (Ln)

∞
n=0

can be found in [7, 18, 22].

Theorem 3.7. For r ≥ 0, the exponential generating function of (Ln,r(x))
∞
n=0 is

∞∑
n=0

Ln,r(x)

n!
yn = exp

(
xy

1− y

)
1

(1− y)
2r .

Proof. I. We use [19, Theorem 3.10] to get
∞∑
n=0

Ln,r(x)

n!
yn =

∞∑
n=0

n∑
j=0

⌊
n

j

⌋
r

xj
1

n!
yn =

∞∑
j=0

xj
∞∑
n=j

⌊
n

j

⌋
r

1

n!
yn

=

∞∑
j=0

xj
1

j!

(
y

1− y

)j
1

(1− y)
2r =

1

(1− y)
2r

∞∑
j=0

1

j!

(
xy

1− y

)j
= exp

(
xy

1− y

)
1

(1− y)
2r .

II. We can prove the theorem in another way for summed r-Lah numbers. Denote by
`r(y) the exponential generating function to be find.

From the first special case of Theorem 3.1, it follows that (Ln+1)
∞
n=0 = (Ln,1)

∞
n=0 is

the binomial convolution of the sequences (Ln)
∞
n=0 and ((n+ 1)!)

∞
n=0, hence their expo-

nential generating functions give the differential equation

`′0(y) = `0(y)
1

(1− y)
2 .

For n ≥ 0, it shows that [yj ]`0(y) (j = 0, . . . , n) uniquely determine [yn+1]`0(y), whence
our differential equation with the initial condition [y0]`0(y) =

L0

0! = 1 is uniquely solvable

among formal power series, and this solution is `0(y) = exp
(

y
1−y

)
.



G. Nyul and G. Rácz: Sums of r-Lah numbers and r-Lah polynomials 219

The second special case of Theorem 3.1 says that (Ln,r)
∞
n=0 is the binomial convolution

of the sequences (Ln)
∞
n=0 and

(
(2r)n

)∞
n=0

, therefore its exponential generating function is

`r(y) = `0(y)

∞∑
n=0

(2r)n

n!
yn = exp

(
y

1− y

)
1

(1− y)
2r .

In the following theorem, we show the real-rootedness of r-Lah polynomials, where
the proof will contain a further recurrence for them.

Theorem 3.8. If n ≥ 1, then the roots of Ln(x) are simple, real, one of them is 0 and the
others are negative. If n, r ≥ 1, then the roots of Ln,r(x) are simple, real and negative.
Furthermore, for any r ≥ 0, (Ln,r(x))

∞
n=0 is an interlacing sequence of polynomials.

Proof. We perform the proof by induction on n only for r ≥ 1. We can easily check the
assertion for n = 1, 2, and assume that it holds for some n.

Using [19, Theorem 3.1] and the special values of r-Lah numbers, we get

Ln+1,r(x) =

n+1∑
k=0

⌊
n+ 1

k

⌋
r

xk =

⌊
n+ 1

0

⌋
r

+

n∑
k=1

⌊
n+ 1

k

⌋
r

xk +

⌊
n+ 1

n+ 1

⌋
r

xn+1

= (2r)n+1 +

n∑
k=1

(⌊
n

k − 1

⌋
r

+ (n+ k + 2r)

⌊
n

k

⌋
r

)
xk + xn+1

=

n−1∑
k=0

⌊
n

k

⌋
r

xk+1 + xn+1 + (n+ 2r)

n∑
k=1

⌊
n

k

⌋
r

xk + (2r)n+1 +

n∑
k=1

k

⌊
n

k

⌋
r

xk

= x

n∑
k=0

⌊
n

k

⌋
r

xk + (n+ 2r)

n∑
k=0

⌊
n

k

⌋
r

xk + x

n∑
k=1

k

⌊
n

k

⌋
r

xk−1

= xLn,r(x) + (n+ 2r)Ln,r(x) + xL′n,r(x).

Then, multiplying this equation by exxn+2r−1 gives

exxn+2r−1Ln+1,r(x) =
(
exxn+2rLn,r(x)

)′
.

The induction hypothesis tells us that Ln,r(x) has n simple real roots which are nega-
tive, hence exxn+2rLn,r(x) has exactly n + 1 zeros, one of them is 0, and the others are
negative. Moreover, limx→−∞ exxn+2rLn,r(x) = 0. Then it follows from Rolle’s mean
value theorem that

(
exxn+2rLn,r(x)

)′
= exxn+2r−1Ln+1,r(x) has at least n+1 negative

zeros, therefore Ln+1,r(x) has n+ 1 distinct negative roots.
The proof also shows the interlacing property.

This result together with a theorem of Newton (see, e.g., [24]) immediately implies the
following consequence, which was proved in [19, Theorem 3.8] by different means.

Corollary 3.9. If n ≥ 1 and r ≥ 0, then the sequence
(⌊

n
j

⌋
r

)n
j=0

is strictly log-concave

and unimodal.

The theorem also allows us to give a good approximation of the quotient of two con-
secutive summed r-Lah numbers.
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Corollary 3.10. If n ≥ 1 and r ≥ 0, then∣∣∣∣Ln+1,r

Ln,r
− (n+ r + 1)−

⌊√
n+ r2 + 1

⌋∣∣∣∣ < 1.

Proof. From the recurrence derived in the proof of Theorem 3.8, we get

L′n,r(1) = Ln+1,r − (n+ 2r + 1)Ln,r.

Then the assertion follows from Theorem 3.8, a theorem of Darroch (see, e.g., [3]) and [19,
Theorem 3.9].

Finally, we prove that the r-Stirling transform of the first kind of the sequence of s-Bell
polynomials is the sequence of r+s2 -Lah polynomials if r and s have the same parity.

Theorem 3.11. If n, r, s ≥ 0 and r + s is even, then

Ln, r+s
2
(x) =

n∑
j=0

[
n

j

]
r

Bj,s(x).

Proof. By [19, Theorem 3.11], we have

Ln, r+s
2
(x) =

n∑
k=0

⌊
n

k

⌋
r+s
2

xk =

n∑
k=0

n∑
j=k

[
n

j

]
r

{
j

k

}
s

xk

=

n∑
j=0

[
n

j

]
r

j∑
k=0

{
j

k

}
s

xk =

n∑
j=0

[
n

j

]
r

Bj,s(x).

Remark 3.12. If r = s, then the identity simply becomes

Ln,r(x) =

n∑
j=0

[
n

j

]
r

Bj,r(x).

In this case, we can provide a combinatorial proof.

Proof. We may again assume that n, r are not both 0, and let c be a positive integer. A
c-coloured r-Lah partition of an (n+r)-element set into ordered blocks can be constructed
as follows: First, we decompose the elements into j + r disjoint cycles such that the r
distinguished elements belong to distinct cycles (j = 0, . . . , n). These latter cycles will be
referred to as distinguished cycles. After that, we partition all the cycles such that distin-
guished cycles are in distinct blocks, and we colour the blocks containing no distinguished
cycle with c colours. Finally, we multiply the cycles in each block to obtain the ordered
blocks of the original (n+r)-element set. Therefore, for a fixed j, the number of c-coloured
r-Lah partitions is

[
n
j

]
r
Bj,r(c).
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Abstract

We introduce a new practical and more general definition of local symmetry-preserving
operations on polyhedra. These can be applied to arbitrary embedded graphs and result in
embedded graphs with the same or higher symmetry. With some additional properties we
can restrict the connectivity, e.g. when we only want to consider polyhedra. Using some
base structures and a list of 10 extensions, we can generate all possible local symmetry-
preserving operations isomorph-free.

Keywords: Graph theory, polyhedra, symmetry, chamber systems.
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1 Introduction
Symmetry-preserving operations on polyhedra have a long history – from Plato and Archi-
medes to Kepler [11], Goldberg [9], Caspar and Klug [4], Coxeter [6], Conway [5], and
many others. Notwithstanding their utility, until recently we had no unified way of defining
or describing these operations without resorting to ad-hoc descriptions and drawings. In
[2] the concept of local symmetry-preserving operations on polyhedra (lsp operations for
short) was introduced. These are operations that are locally defined – on the chamber level,
as explained in the next section – and therefore preserve the symmetries of the polyhedron
to which they are applied. This established a general framework in which the class of all
lsp operations can be studied, without having to consider individual operations separately.
It was shown that many of the most frequently used operations on polyhedra (e.g. dual,
ambo, truncate, . . . ) fit into this framework.

But of course we sometimes do want to examine the operations individually, e.g. to
check conjectures on as many examples as possible before we try to prove them, or to
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find operations with certain properties. We can do this for a few operations by hand, but
a computer can do this a lot faster, and in a systematic way such that no operations are
missed.

In this paper we shall slightly extend the definition of lsp operation so it can be applied
to any graph embedded on a compact closed surface1, and at the same time provide a
reformulation of these operations as decorations, which will turn out to be easier to use in
practice.

2 Decorations and lsp operations
Every embedded graph G has an associated chamber system CG [7]. This chamber system
is obtained by constructing a barycentric subdivision of G by adding one vertex in the
center of each edge and face of G, and edges from each center of a face to its vertices and
centers of edges. These vertices can be chosen invariant under the symmetries of G. In
CG, each vertex has a type that is 0, 1, or 2, indicating the dimension of its corresponding
structure in G. Each edge has the type of the opposite vertex in the adjacent triangles. In
Figure 1, the chamber system of the plane graph of a cube is given. The original graph
consists of the edges of type 2 in the chamber system.

Figure 1: The barycentric subdivision of the plane graph of a cube. Edges of type 0 are red,
edges of type 1 are green and edges of type 2 are black.

We use the drawing conventions from Figure 1 for the types of the edges in all figures.
Since the vertex types can be deduced from the edge types, we do not display them in the
figures.

Definition 2.1. A decoration D is a 2-connected plane graph with vertex set V and edge
set E, together with a labeling function t : V ∪ E → {0, 1, 2}, and an outer face which
contains vertices v0, v1, v2, such that

1. all inner faces are triangles;

2. for each edge e = (v, w), {t(e), t(v), t(w)} = {0, 1, 2};
1All graphs in this paper are embedded graphs, and a subgraph has the induced embedding.
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3. for each vertex v with t(v) = i, the types of incident edges are j and k with {i, j, k} =
{0, 1, 2}. Two consecutive edges with an inner face in between can not have the same
type;

4. for each inner vertex v

t(v) = 1 ⇒ deg(v) = 4

t(v) 6= 1 ⇒ deg(v) > 4

for each vertex v in the outer face and different from v0, v1, v2

t(v) = 1 ⇒ deg(v) = 3

t(v) 6= 1 ⇒ deg(v) > 3

and

t(v0), t(v2) 6= 1

t(v1) = 1 ⇒ deg(v1) = 2

t(v1) 6= 1 ⇒ deg(v1) > 2.

Note that condition 3 implies that all inner vertices have an even degree.
For all {i, j, k} = {0, 1, 2}, the k-side of a decoration D is the path on the border of

the outer face between vi and vj that does not pass through vk.
We can fill each triangular face of a chamber system CG with a decoration, by identi-

fying the vertex of type i with vi for i ∈ {0, 1, 2} and identifying corresponding vertices
on the boundary. This results in a new chamber system CG′ of a new graph G′, as can be
seen in Figure 2.

01

2

Figure 2: The decoration ambo applied to the cube of Figure 1. The resulting graph G′ is
the one in black.

This is very similar to the lsp operations of [2]. We are constructing graphs by sub-
dividing the chambers of the chamber system. One key difference is that we impose no
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restrictions on the connectivity. This means that we can apply decorations to arbitrary em-
bedded graphs, but when applied to a polyhedron – i.e. a 3-connected plane graph – it is
possible that the result has a lower connectivity. We will address this problem later with
additional restrictions on decorations.

For now, we will repeat Definition 5.1 of [2] without the restrictions on the connectivity.

Definition 2.2. Let T be a connected periodic tiling of the Euclidean plane with chamber
system CT , that is given by a barycentric subdivision that is invariant under the symmetries
of T . Let v0, v1, v2 be points in the Euclidean plane so that for 0 ≤ i < j ≤ 2 the line Li,j

through vi and vj is a mirror axis of the tiling.
If the angle between L0,1 and L2,1 is 90 degrees, the angle between L2,1 and L2,0 is 30

degrees and consequently the angle between L0,1 and L0,2 is 60 degrees, then the triangle
v0, v1, v2 subdivided into chambers as given by CT and the corners v0, v1, v2 labelled with
their names v0, v1, v2 is called a local symmetry-preserving operation, lsp operation for
short.

The result O(G) of applying an lsp operation O to a connected graph G is given by
subdividing each chamber C of the chamber system CG with O by identifying for 0 ≤ i ≤
2 the vertices of O labelled vi with the vertices labelled i in C.

An lsp operation is called k-connected for k ∈ {1, 2, 3} if it is derived from a k-con-
nected tiling T . So the original definition was for 3-connected lsp operations only. In order
to correctly determine the connectivity, we first need to identify which chamber systems
correspond to k-connected graphs. To decide whether a graph G is k-connected based on
its chamber system CG, we can look at the type-1 cycles in CG. A type-1 cycle is a cycle in
the subgraph of CG that consists of the type-1 edges only. A type-1 cycle is empty if there
are no vertices on the inside or on the outside of the cycle in this type-1 subgraph. Note
that in the graph CG these cycles are not necessarily empty.

Lemma 2.3. A plane graph G is

1. 2-connected if and only if CG contains no type-1 cycles of length 2;

2. 3-connected if and only if G is 2-connected and CG contains no non-empty type-1
cycles of length 4.

Proof.

1. Suppose CG contains a type-1 cycle of length 2. This cycle contains one type-0
vertex v, incident to at least one type-2 edge inside the cycle and at least one type-2
edge outside the cycle (see Figure 3a), because CG is a barycentric subdivision. It is
clear that v has to be a cut-vertex of G.

Conversely, if G has a cut-vertex v, there is a face of G for which v occurs at least
two times in its border. In CG this face corresponds with a type-2 vertex, incident
with at least two type-1 edges to v. These edges form a type-1 cycle in CG.

2. Suppose CG contains a non-empty type-1 cycle of length 4, as can be seen in Fig-
ure 3b. This cycle contains two type-0 vertices v and w, with incident type-2 edges
at both sides of the cycle. Removing v and w from G results in a disconnected graph.

If G is 2-connected but not 3-connected, there are two vertices v and w that discon-
nect G when removed. So there are two non-empty subgraphs of G that are only
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connected by v and w, as in Figure 3b. This means that there is a non-empty type-1
cycle in CG.

(a) not 2-connected (b) 2-connected but not 3-connected

Figure 3: Two graphs with type-1 cycles. The gray area contains the graph. Only the type-1
edges of the chamber system are shown. The type-0 vertices are red and the type-2 vertices
are black.

Note that this theorem only holds for plane graphs, since the proof relies on the Jordan
curve theorem. A counterexample to an equivalent theorem for embedded graphs of higher
genus is the dual of a 3-connected graph on the torus, which can have a 2-cut (see [1]).

Since we introduced a more general definition of lsp operations, we can also formulate
a more general version of Theorem 5.2 in [2].

Theorem 2.4. If G is a k-connected plane graph with k ∈ {1, 2, 3}, and O is a k-connected
lsp operation, then O(G) is a k-connected plane graph.

Proof. It is clear that O(G) is a plane graph. For k = 1, we know that T and G are
connected, and it follows easily that O(G) is connected. For k = 3, the proof is given
in [2]. For k = 2, we will prove that there is no cut-vertex in O(G).

A type-1 cycle of length 2 in CO(G) is either completely contained in one chamber of
CG

2, or it is split between two chambers of CG (see Figure 4). Both cases cannot appear,
as for any chamber (resp. any pair of adjacent chambers) there is an isomorphism between
this chamber (resp. these two chambers) and the corresponding area in T , and according to
Lemma 2.3 T has no type-1 cycles of length 2.

This implies that CO(G) contains no type-1 cycles of length 2, and thus, invoking once
again Lemma 2.3, O(G) contains no cut-vertices.

Figure 4: The different situations where type-1 cycles of length 2 can occur.

2With a chamber of CG in CO(G), we mean the area that was a chamber of CG before it was subdivided
by O.
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We can prove similar properties for decorations, but it is easier to use the correspon-
dence between lsp operations and decorations. Although the way they are defined is rather
different, in reality they are the same thing. The triangle v0, v1, v2 of an lsp operation that
is derived from a tiling has exactly the properties of a decoration, and each decoration can
be derived as an lsp operation from a tiling.

Theorem 2.5. Each decoration defines an lsp operation and vice versa.

Proof. It is straightforward that the graph defined by an lsp operation is unique and satisfies
the conditions of Definition 2.1. We still have to prove that each decoration defines an lsp
operation.

Given a decoration D, we can take the hexagonal lattice H and use D to decorate each
chamber of the chamber system CH . The result will be a chamber system CT of a tiling T .

We will first prove that the type-2 subgraph of D is connected, by induction on the
number of triangles. There is always at least one triangle in D that shares one or two edges
with the outer face. We remove these edges, and call the result D′. It is clear that D′ still
satisfies properties 1–3 of Definition 2.1, and by induction its type-2 subgraph is connected.
If one of the removed edges has type 2, it is connected to D′ by a vertex of type 0 or 1 with
degree at least 3, and therefore it is connected to the type-2 subgraph of D′.

Given vertices u and v in the type-2 subgraph of CT , there exists a sequence of cham-
bers C0, . . . , Cn of H such that two consecutive chambers Ci and Ci+1 share one side, and
u is contained in C0 and v in Cn. Since there are at least two vertices on each side of D,
and they are not both of type 2, at least one of them is in the type-2 subgraph of CT . Thus,
there is a type-2 path between u and v that passes through all chambers in the sequence
C0, . . . , Cn, and the type-2 subgraph of CT is connected. It follows immediately that T is
connected too.

We can choose the vertices of one chamber of CH in T as v0, v1 and v2. This satisfies
the properties of Definition 2.2, and it is clear that the decoration defined by the triangle
v0, v1, v2 is equal to D.

This correspondence can be further extended to 2-connected and 3-connected opera-
tions.

Definition 2.6. A 2-connected decoration is a decoration with

1. no type-1 cycles of length 2;

2. no internal type-1 edges between two vertices on a single side.

Definition 2.7. A 3-connected decoration is a 2-connected decoration with

1. no type-1 edge between sides 0 and 2;

2. no non-empty type-1 cycles of length 4.

Note that, when seen as a graph, a decoration is always at least 2-connected.

Theorem 2.8. Each 2-connected decoration D defines a 2-connected lsp operation and
vice versa.
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Proof. A 2-connected decoration is a decoration, so it follows from Theorem 2.5 that D
defines an lsp operation. We still have to prove that the corresponding tiling T is 2-con-
nected. If T is not 2-connected, there is a type-1 cycle of length 2 in CT . If this cycle is
completely contained in the triangle v0, v1, v2, there is a cycle of length 2 in D too, which
is impossible. The only other possibility is that the cycle of length 2 is cut in half by Lij ,
but then there would be an internal type-1 edge between 2 vertices on Lij , which is a side
of D.

A 2-connected lsp operation with corresponding tiling T defines a decoration D ac-
cording to Theorem 2.5. We still have to prove that the extra conditions of Definition 2.6
are satisfied. If there is a type-1 cycle of length 2 in D, this cycle occurs in CT too, and
T would not be 2-connected. If there is an internal type-1 edge between 2 vertices on the
same side, this will result in a cycle of length 2 in T because this side lies on a mirror axis
of T .

Figure 5: The different situations where non-empty type-1 cycles of length 4 can occur.

Theorem 2.9. Each 3-connected decoration D defines a 3-connected lsp operation and
vice versa.

Proof. A 3-connected decoration defines a 2-connected lsp operation. If T is not 3-con-
nected, there is a non-empty type-1 cycle of length 4. If this cycle is completely contained
in the triangle v0, v1, v2, there is a type-1 cycle of length 4 in D. If the cycle is cut in half
by Lij , there is an internal type-1 path of length 2 between 2 vertices on Lij , which is a
side of D. If the cycle is cut in four, as in Figure 5, there is a type-1 edge between sides 0
and 2.

A 3-connected lsp operation with corresponding tiling T defines a 2-connected decora-
tion D. If there is a type-1 cycle of length 4 in D, this cycle occurs in CT too, and T would
not be 3-connected. If there is an internal type-1 path of length 2 between 2 vertices on the
same side, or a type-1 edge between sides 0 and 2, this will result in a cycle of length 4
in T .

3 Predecorations

The generation of all decorations will be split into two phases. In the first phase, we will
construct the type-1 subgraph, consisting of all edges of type 1.

Let nA be the number of vertices in the type-1 subgraph of degree 1 with a neighbouring
vertex of degree 2, nB the number of remaining vertices of degree 1, and nC the number
of quadrangles with three vertices of degree 2.



230 Ars Math. Contemp. 18 (2020) 223–239

(a) nA (b) nB (c) nC

Figure 6: The subgraphs counted as nA, nB and nC .

Lemma 3.1. Let D be a decoration. The type-1 subgraph D1 of D has the following
properties:

1. all inner faces are quadrangles;

2. each inner vertex has degree at least 3;

3. nA ≤ 2 and nA + nB + nC ≤ 3.

Proof. It follows immediately from the properties of a decoration (Definition 2.1) that the
inner faces of D1 are quadrangles and the inner vertices have degree at least 3.

Each area bounded by a quadrangle in D1 contains one vertex of type 1 in D. The only
other difference between D and D1 is in the outer face of D1, where type-1 vertices of
degree 3 in D (a 3-completion), and at most one of degree 2 in D (a 2-completion), can be
present in D. If there is a type-1 vertex of degree 2, then that vertex is v1. An example can
be seen in Figure 7.

The subgraph in Figure 6c can only occur if the rightmost vertex v of degree two is v0,
v1 or v2, or if v1 is a type-1 vertex of degree 2 connected to this vertex. Each of the three
vertices of degree 2 in this subgraph of D1 corresponds to v0, v1, v2 or a vertex of degree
at least 4 in D. The inner edges of the quadrangle in D contribute exactly one to the degree
of these vertices. This implies that either there is a 2-completion here (in which case v1 is
connected to v), or there are two 3-completions which do not involve v (in which case v is
v0, v1 or v2).

The subgraph in Figure 6b can only occur if the rightmost vertex v is v0, v1 or v2. This
vertex of degree 1 in D1 corresponds to a vertex of degree at most 3 in D, which is only
possible in v0, v1 or v2.

The subgraph in Figure 6a can only occur if the rightmost vertex v is v0 or v2. There
are two neighbouring cut-vertices of D1 in this subgraph, which do not correspond to cut-
vertices in D. This is only possible if both of these vertices are the middle vertex of a
3-completion. This increases the degree of v in D to 2, which is only possible in v0 or
v2. The degree of v can be 3 if there is a 2-completion too, but then v1 is contained in this
2-completion and v still has to be v0 or v2.

We find that nA ≤ |{v0, v2}| = 2 and nA + nB + nC ≤ |{v0, v1, v2}| = 3.

Definition 3.2. A predecoration is a connected plane graph with an outer face that satisfies
the properties of Lemma 3.1.

Given a predecoration P , we can try to add edges, vertices and labels to get a decoration
with P as its type-1 subgraph. We will have to add one type-1 vertex in each inner face of
P , as in Figure 7. Then we can add type-1 vertices in the outer face, and connect them to
three consecutive vertices of P . Finally, we can add a type-1 vertex in the outer face and
connect it to two consecutive vertices of P . This vertex has to be v1.



P. Goetschalckx et al.: Generation of local symmetry-preserving operations on polyhedra 231

Figure 7: A predecoration with a possible completion. The edges of type 0 and 2 are both
shown in black.

By definition, the type-1 subgraph of a decoration D is a predecoration. Unfortunately,
not each predecoration corresponds to a type-1 subgraph of some decoration. This is e.g.
the case if there are too many cut-vertices, as in Figure 8.

Figure 8: A predecoration that cannot be completed.

4 Construction of predecorations
All predecorations can be constructed from the base decorations K2 and C4 (see Figure 9)
using the 10 extension operations shown in Figure 10. We will prove this by showing that
each predecoration, with the exception of K2 and C4, can be reduced by the inverse of one
of the extension operations. We will then use the canonical construction path method [12]
to generate all predecorations without isomorphic copies.

Figure 9: The base predecorations.

Given a predecoration P , we will choose a canonical parent of P . This is a predeco-
ration obtained by applying one of the reductions to P . We will always use the reduction
with the smallest number among all possible reductions. It is possible that there is more
than one way to apply this reduction to P , and if P has non-trivial symmetry, some of these
can result in the same parent. If we choose one special edge in the subgraph that is affected
by the reduction operation, each way to apply this reduction corresponds to an edge of
P . We can choose an orbit of edges under the symmetry group of P by constructing a
canonical labeling of the vertices – similar to [3] – and choosing the orbit of the edge with
the lowest numbered vertices. The canonical parent of P is then obtained by applying the
corresponding reduction.

During the construction, we will try each possible extension in all possible ways, and
then check if it is the inverse of the reduction used to get the canonical parent of the result-
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1. 2. 8.

3. 5. 9.

4. 6. 10.

7.

Figure 10: The extensions. In the first row, the subgraphs before the extension is applied
are given. New edges and vertices are green, and vertices that are broken apart in two new
vertices are red. The outer face is always on the outside, and shadowed parts contain at
least one vertex.

ing predecoration. If that is the case, we can continue to extend this predecoration.
It is possible to construct all predecorations with fewer extensions, but it is important

that a canonical reduction always results in a valid predecoration. The order of extensions
1–4 ensures that a canonical reduction never increases nA, and extensions 5–7 ensure that
a canonical reduction never increases nA+nB +nC . Extensions 8–10 are necessary when
none of the other reductions are possible, so that each predecoration different from the base
decorations has a possible reduction. We will prove this in Lemma 4.2 and Theorem 4.3.

Lemma 4.1. An extension applied to a predecoration results in another predecoration if it
keeps nA ≤ 2 and nA + nB + nC ≤ 3. Only extensions 1, 2 and 5 possibly violate this
condition.

Proof. It is easy to see that each extension can only create new inner faces that are quad-
rangles, and inner vertices with degree at least 3.

The only extensions that can increase nA are extensions 1 and 2. The only extension
that can increase nB is extension 2. The only extension that can increase nC is extension 5.

This makes it easier to keep count of nA, nB and nC during the construction.

Lemma 4.2. Let P be a predecoration different from the base predecorations. By applying
one of the reductions from Figure 10, P can be reduced to a graph containing fewer vertices
or a graph containing the same number of vertices but fewer edges.
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Furthermore, if we apply the reduction with the smallest number among all possible
reductions, the resulting graph is again a predecoration.

Proof. For the first part, it is clear that each reduction results in a ‘smaller’ graph, so we
only need to verify that at least one reduction can be applied. If P contains at least one
quadrangle, there is at least one quadrangle Q with an edge in the outer face. Since P is
not C4, there is at least one other vertex not contained in Q in the graph, and reduction 10
is possible. If there is no quadrangle in P , reduction 1 is possible.

For the second part, it is immediately clear that all reductions preserve the properties
that all inner faces are quadrangles and that all inner vertices have degree at least 3. It
remains to be proven that for the new graph nA ≤ 2 and nA + nB + nC ≤ 3.

Some reductions can increase nA, nB or nC , but only if another reduction with a
smaller number can also be applied. This is the reason that we need so many extension
operations in that particular order. In Table 1, all these situations are given.

Table 1: Table with possible reductions. Read this table as:
Reduction i can increase nX , but only if nY is decreased by the same amount.
Reduction i can increase nX , but only if reduction j/k can be applied too.

reduction nA nB nC

1 nA

2 1 1 nB

3, 4 1
5, 6, 7 1 1 3/4

8 2/5 5 6/7
9 2/8 8 8
10 2/9 9 9

It is impossible to increase nA with a reduction that has the smallest possible number.
Therefore, we still have nA ≤ 2 in the new graph.

Reduction 1 can increase nB , but only by removing a vertex of degree 2 neighbouring
a vertex of degree 1, i.e. by decreasing nA by the same amount. Therefore, we still have
nA + nB + nC ≤ 3 in the new graph.

Reduction 2 can increase nC , but only by decreasing nB by the same amount. There-
fore, we still have nA + nB + nC ≤ 3 in the new graph.

Theorem 4.3. The algorithm described in Algorithm 1 generates all predecorations.

Proof. This follows immediately from [12] and Lemma 4.2.

5 Construction of decorations
Now that we can construct all predecorations, we can use the homomorphism principle
[10] and complete each predecoration in all possible ways to get all k-decorations with
Algorithm 2. We first have to compute the symmetry group of the predecoration, in order
to avoid completions that result in the same decoration. After the first 4 steps, all symmetry
is broken by choosing v0, v1 and v2.
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Algorithm 1 Construction of predecorations
function EXTEND(P )

output P
for i = 1, . . . , 10 do

for O an orbit of edges in the outer face of P do
e← edge in O
P ′ ← apply extension i to edge e of P
if P canonical parent of P ′ then

EXTEND(P ′)

for G a base predecoration do
EXTEND(P )

Algorithm 2 Complete a predecoration in all possible ways
1. If nA > 0, label the corresponding vertices of degree 1 with v0 or v2 in all non-

isomorphic ways.

2. If nB + nC > 0, label the corresponding vertices with v0, v1 or v2 in all non-
isomorphic ways.

3. If v1 is not yet chosen, label an outer vertex with v1 or add a new type-1 vertex v1 of
degree 2 in the outer face in all non-isomorphic ways.

4. If v0 or v2 is not yet chosen, label two outer vertices with v0 and v2 in all non-
isomorphic ways.

5. Fill all inner quadrangles with a type-1 vertex.

6. Add type-1 vertices of degree 3 in the outer face in all possible ways, such that there
are no cut-vertices or vertices of degree 2 left.

7. Check whether the result is a k-decoration.
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We do not have to take isomorphisms into account, since two isomorphic decorations
will have isomorphic predecorations.

Note that it might not be possible to complete a predecoration in Step 6 such that there
are no cut-vertices left.

5.1 Connectivity

In Step 7, we will always obtain a decoration. The additional properties for 2-connected
decorations and 3-connected decorations have to be checked. The properties in the outer
face cannot be checked earlier in the construction process, because they depend on the cho-
sen completion. But we can prevent type-1 cycles of length 2 and cycles of length 4 during
the construction. It is clear that once a type-1 cycle is created during the construction, it
cannot be destroyed later. So we only have to avoid the creation of the first type-1 cycle of
length 2 or 4.

The only way to create a first type-1 cycle of length 2 is by applying extension 10 to
a predecoration with an outer face of size 4. This can easily be avoided. The only way to
create a non-empty type-1 cycle of length 4 is by applying extension 10 to a predecoration
with an outer face of size 6. We can avoid this too.

To check the other properties after the completion, we can loop over the outer face
of the decoration, and mark all vertices one inner edge away from side i with i. If we
encounter a vertex on side i that is marked with i, the decoration is not 2-connected. If a
vertex is marked two times with the same number, or a vertex on side 1 is marked with 0
or vice versa, the decoration is not 3-connected.

5.2 Inflation rate

As mentioned in [2], the impact of an operation on the size of a polyhedron can be measured
by the inflation rate. This is the ratio of the number of edges before and after the operation,
and is equal to the number of chambers in the decoration.

Although it is interesting to construct all possible decorations, we are more interested in
the decorations with a given inflation rate. Unfortunately, we cannot determine the inflation
rate before the predecoration is completed as decorations with different inflation rates might
have the same predecoration, but we can compute lower and upper bounds.

Given a predecoration P , for each decoration that has P as its underlying predecoration,
each quadrangle of P corresponds to 4 chambers and each cut-vertex of which the removal
leaves k ≥ 2 components requires 2(k − 1) extra chambers. So

4 · (number of quadrangles) + 2 ·
∑

cut-vertices

(occurences in outer face− 1)

is a lower bound for the inflation rate. The maximal inflation rate of a predecoration is
reached by adding as much type-1 vertices as possible in the outer face. This will result
in exactly one chamber for each edge in the outer face. In combination with the 4 cham-
bers in each quadrangle, this results in 2 chambers (one at each side) for each edge of the
predecoration. So the maximal inflation rate is

2 · (number of edges).

If the lower bound for the inflation rate of a predecoration is already higher than the
desired inflation rate, we do not have to extend it further as it can only increase. If the
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upper bound is lower than the desired inflation rate, we have to extend it, but we do not
have to try to complete it.

Table 2: The number of k-connected decorations up to inflation rate 40. The number of
predecorations that can be completed to a decoration with given inflation rate are given too.
Not all of these predecorations are constructed for 2-connected or 3-connected decorations.

k-connected decorations

inflation rate k = 1 k = 2 k = 3 predecorations

1 2 2 2 1
2 2 2 2 1
3 4 4 4 1
4 6 6 6 2
5 6 6 4 2
6 20 20 20 4
7 28 28 20 7
8 58 58 54 8
9 82 82 64 7
10 170 168 144 19
11 204 200 132 16
12 496 492 404 50
13 650 640 396 42
14 1432 1400 1112 118
15 1824 1786 1100 109
16 4114 3952 2958 298
17 5078 4900 2769 300
18 11874 11150 7972 749
19 14808 14058 7560 782
20 33978 30998 21300 1902
21 41794 38964 20076 2056
22 97096 85976 56296 4893
23 118572 107784 52380 5419
24 277208 237482 148956 12615
25 337216 298546 138384 14153
26 788342 652236 392096 32665
27 953060 820960 362499 36953
28 2239396 1786222 1027488 84853
29 2697088 2250816 945612 96491
30 6350014 4875076 2687408 220646
31 7618068 6153604 2466156 251104
32 17972390 13262574 7007118 573547
33 21487746 16773086 6409664 654663
34 50805716 35985748 18222032 1491540
35 60573248 45592594 16623268 1706755
36 143425040 97394726 47287986 3878836
37 170530518 123628298 43038260 4446426
38 404413576 262983002 122451618 10085305
39 479711448 334473144 111200316 11582891
40 1139138344 708583784 316474370 26222191
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Table 3: All decorations with inflation rate r up to 8. The green lines are edges of type 1.
The black lines are edges of type 0 and 2. For each of the given decorations, the edges of
type 0 and 2 can be chosen in two different ways. All decorations except the symmetric
ones (marked with a star) can be mirrored. So each starred decoration represents two related
lsp operations, and the unstarred ones represent four related lsp operations.

r k = 2 k = 3

1

2

3

4

5

6

7

8
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6 Results
Using Algortihms 1 and 2, we implemented a computer program [8] to generate all k-
decorations with a given inflation rate. The results of this program are given in Table 2.
The decorations for inflation rates r ≤ 8 are given in Table 3.

The two lsp operations with inflation rate 1 are obviously identity and dual. The lsp
operations with inflation rate 2 are ambo and join, and the ones with inflation rate 3 are
truncate, zip, needle and kiss. Up to here, all lsp operations were already described by
Conway [5] or others. For the left decoration with inflation rate 4, only two of the 4 related
lsp operations (chamfer and subdivide) are already named. The first decoration for which
none of the related lsp operations (including dual and mirrored ones) are already named,
is the 2-connected lsp operation with inflation rate 5. The first unnamed 3-connected lsp
operations are the three leftmost decorations with inflation rate 6.

These results are verified for inflation rate up to 23 by an independent implementation
that constructs all triangulations, filters the decorations out, applies them to a polyhedron,
checks the connectivity and filters the isomorphic ones out.
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Abstract

Relative Heffter arrays, denoted by Ht(m,n; s, k), have been introduced as a general-
ization of the classical concept of Heffter array. A Ht(m,n; s, k) is anm×n partially filled
array with elements in Zv , where v = 2nk+ t, whose rows contain s filled cells and whose
columns contain k filled cells, such that the elements in every row and column sum to zero
and, for every x ∈ Zv not belonging to the subgroup of order t, either x or −x appears
in the array. In this paper we show how relative Heffter arrays can be used to construct
biembeddings of cyclic cycle decompositions of the complete multipartite graphK 2nk+t

t ×t
into an orientable surface. In particular, we construct such biembeddings providing integer
globally simple square relative Heffter arrays for t = k = 3, 5, 7, 9 and n ≡ 3 (mod 4)
and for k = 3 with t = n, 2n, any odd n.

Keywords: Heffter array, biembedding, complete multipartite graph.

Math. Subj. Class. (2020): 05B20, 05B30, 05C10

1 Introduction
An m × n partially filled (p.f., for short) array on a set Ω is an m × n matrix whose
elements belong to Ω and where we also allow some cells to be empty. The following class
of p.f. arrays was introduced in [15], generalizing the ideas of [2]:
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Definition 1.1. Let v = 2nk + t be a positive integer and let J be the subgroup of Zv of
order t. A Ht(m,n; s, k) Heffter array over Zv relative to J is an m × n p.f. array with
elements in Zv such that:

(a) each row contains s filled cells and each column contains k filled cells;

(b) for every x ∈ Z2nk+t \ J , either x or −x appears in the array;

(c) the elements in every row and column sum to zero.

Trivial necessary conditions for the existence of a Ht(m,n; s, k) are that t divides 2nk,
nk = ms, 3 ≤ s ≤ n and 3 ≤ k ≤ m. If Ht(m,n; s, k) is a square array, it will be denoted
by Ht(n; k). A relative Heffter array is called integer if Condition (c) in Definition 1.1 is
strengthened so that the elements in every row and in every column, viewed as integers in
±
{

1, . . . ,
⌊
2nk+t

2

⌋}
, sum to zero in Z. We remark that, if t = 1, namely if J is the trivial

subgroup of Z2nk+1, we find again the classical concept of a (integer) Heffter array, see
[2, 3, 4, 9, 10, 13, 16, 17]. In particular, in [10] it was proved that Heffter arrays H1(n; k)
exist for all n ≥ k ≥ 3, while by [4, 17] integer Heffter arrays H1(n; k) exist if and only if
the additional condition nk ≡ 0, 3 (mod 4) holds. At the moment, the only known results
concerning relative Heffter arrays are described in [15, 22]. Some necessary conditions for
the existence of an integer Ht(n; k) are given by the following.

Proposition 1.2 ([15]). Suppose that there exists an integer Ht(n; k) for some n ≥ k ≥ 3
and some divisor t of 2nk.

(1) If t divides nk, then nk ≡ 0 (mod 4) or nk ≡ −t ≡ ±1 (mod 4).

(2) If t = 2nk, then k must be even.

(3) If t 6= 2nk does not divide nk, then t+ 2nk ≡ 0 (mod 8).

We point out that these conditions are not sufficient, in fact in the same paper the authors
show that there is no integer H3n(n; 3) and no integer H8(4; 3).

The support of an integer Heffter array A, denoted by supp(A), is defined to be the
set of the absolute values of the elements contained in A. It is immediate to see that
an integer H2(n; k) is nothing but an integer H1(n; k), since in both cases the support
is {1, 2, . . . , nk}.

In this paper we study the connection between relative Heffter arrays and biembed-
dings. In particular, in Section 2 we recall well known definitions and results about simple
orderings and cycle decompositions. Then, in Section 3 we explain how relative Heffter
arrays Ht(n; k) can be used to construct biembeddings of cyclic k-cycle decompositions of
the complete multipartite graph K 2nk+t

t ×t into an orientable surface. Direct constructions
of globally simple integer Ht(n; 3) with t = n, 2n for any odd n and of globally simple
integer Hk(n; k) for k = 7, 9 and n ≡ 3 (mod 4) are described in Section 4. Combining
the results of these sections we prove the following.

Theorem 1.3. There exists a cellular biembedding of a pair of cyclic k-cycle decomposi-
tions of K 2nk+t

t ×t into an orientable surface in each of the following cases:

(1) k = 3, t ∈ {n, 2n} and n is odd;

(2) k ∈ {3, 5, 7, 9}, t = k and n ≡ 3 (mod 4).

Finally, in Section 5 we introduce a further generalization, called Archdeacon array,
of the classical concept of Heffter array. We show some examples and how both cycle
decompositions and biembeddings can be obtained also using these arrays.
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2 Simple orderings and cycle decompositions
Given two integers a ≤ b, we denote by [a, b] the interval containing the integers a, a+ 1,
. . . , b. If a > b, then [a, b] is empty.

IfA is anm×n p.f. array, the rows and the columns ofAwill be denoted byR1, . . . , Rm
and byC1, . . . , Cn, respectively. We will denote by E(A) the unordered list of the elements
of the filled cells of A. Analogously, by E(Ri) and E(Cj) we mean the unordered lists of
elements of the i-th row and of the j-th column, respectively, of A. Also, we define the
skeleton of A, denoted by skel(A), to be the set of the filled positions of A.

Given a finite subset T of an abelian group G and an ordering ω = (t1, t2, . . . , tk)

of the elements in T , let si =
∑i
j=1 tj , for any i ∈ [1, k], be the i-th partial sum of

ω and set S(ω) = (s1, . . . , sk). The ordering ω is said to be simple if sb 6= sc for all
1 ≤ b < c ≤ k or, equivalently, if there is no proper subsequence of ω that sums to 0. Note
that if ω is a simple ordering so is ω−1 = (tk, tk−1, . . . , t1). We point out that there are
several interesting problems and conjectures about distinct partial sums: see, for instance,
[1, 5, 14, 19, 23]. Given anm×n p.f. arrayA, by ωRi

and ωCj
we will denote, respectively,

an ordering of E(Ri) and of E(Cj). If for any i ∈ [1,m] and for any j ∈ [1, n], the
orderings ωRi

and ωCj
are simple, we define by ωr = ωR1

◦ · · · ◦ωRm
the simple ordering

for the rows and by ωc = ωC1
◦ · · · ◦ ωCn

the simple ordering for the columns. Moreover,
by natural ordering of a row (column) of A we mean the ordering from left to right (from
top to bottom). A p.f. array A on an abelian group G is said to be

• simple if each row and each column of A admits a simple ordering;

• globally simple if the natural ordering of each row and each column of A is simple.

Clearly if k ≤ 5, then every square relative Heffter array is (globally) simple.
We recall some basic definitions about graphs and graph decompositions. Given a graph

Γ, by V (Γ) and E(Γ) we mean the vertex set and the edge set of Γ, respectively. We will
denote by Kv the complete graph of order v and by Kq×r the complete multipartite graph
with q parts each of size r. Obviously Kq×1 is nothing but the complete graph Kq . Let G
be an additive group (not necessarily abelian) and let Λ ⊆ G\{0} such that Λ = −Λ, which
means that for every λ ∈ Λ we have also−λ ∈ Λ. The Cayley graph on G with connection
set Λ, denoted by Cay[G : Λ], is the simple graph having G as vertex set and such that two
vertices x and y are adjacent if and only if x−y ∈ Λ. Note that, if Λ = G\{0}, the Cayley
graph is the complete graph whose vertex set is G and, if Λ = G \ J for some subgroup
J of G, the Cayley graph is the complete multipartite graph Kq×r where q = |G : J | and
r = |J |.

The following are well known definitions and results which can be found, for instance,
in [8]. Let Γ be a subgraph of a graph K. A Γ-decomposition of K is a set D of subgraphs
of K isomorphic to Γ whose edges partition E(K). If the vertices of K belong to a group
G, given g ∈ G, by Γ+g one means the graph whose vertex set is V (Γ)+g and whose edge
set is {{x + g, y + g} | {x, y} ∈ E(Γ)}. An automorphism group of a Γ-decomposition
D of K is a group of bijections on V (K) leaving D invariant. A Γ-decomposition of K
is said to be regular under a group G or G-regular if it admits G as an automorphism
group acting sharply transitively on V (K). Here we consider cyclic cycle decompositions,
namely decompositions which are regular under a cyclic group and with Γ a cycle. Finally,
two graph decompositions D and D′ of a simple graph K are said orthogonal if and only
if for any B of D and any B′ of D′, B intersects B′ in at most one edge.
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The relationship between simple relative Heffter arrays and cyclic cycle decompositions
of the complete multipartite graph is explained in [15]. Here we briefly recall the following
result.

Proposition 2.1 ([15, Proposition 2.9]). Let A be a Ht(m,n; s, k) simple with respect to
the orderings ωr and ωc. Then:

(1) there exists a cyclic s-cycle decomposition Dωr of K 2ms+t
t ×t;

(2) there exists a cyclic k-cycle decomposition Dωc of K 2nk+t
t ×t;

(3) the cycle decompositions Dωr and Dωc are orthogonal.

The arrays we are going to construct are square with a diagonal structure, so it is con-
venient to introduce the following notation. If A is an n× n array, for i ∈ [1, n] we define
the i-th diagonal

Di = {(i, 1), (i+ 1, 2), . . . , (i− 1, n)}.

Here all the arithmetic on the row and the column indices is performed modulo n, where
the set of reduced residues is {1, 2, . . . , n}. We say that the diagonals Di, Di+1, . . . , Di+r

are consecutive diagonals.

Definition 2.2. Let k ≥ 1 be an integer. We will say that a square p.f. array A of size
n ≥ k is

• k-diagonal if the non empty cells of A are exactly those of k diagonals;

• cyclically k-diagonal if the nonempty cells of A are exactly those of k consecutive
diagonals.

Let A be a k-diagonal array of size n > k. A set S = {Dr+1, Dr+2, . . . , Dr+`} is said
to be an empty strip of width ` if Dr+1, Dr+2, . . . , Dr+` are empty diagonals, while Dr

and Dr+`+1 are filled diagonals.

Definition 2.3. Let A be a k-diagonal array of size n > k. We will say that A is a k-
diagonal array with width ` if all the empty strips of A have width `.

An array of this kind will be given in Example 4.9.

3 Relation with biembeddings
In [2], Archdeacon introduced Heffter arrays also in view of their applications and, in par-
ticular, since they are useful for finding biembeddings of cycle decompositions, as shown,
for instance, in [11, 13, 16]. In this section, generalizing some of Archdeacon’s results we
show how starting from a relative Heffter array it is possible to obtain suitable biembed-
dings.

We recall the following definition, see [20].

Definition 3.1. An embedding of a graph Γ in a surface Σ is a continuous injective map-
ping ψ : Γ → Σ, where Γ is viewed with the usual topology as 1-dimensional simplicial
complex.

The connected components of Σ \ ψ(Γ) are called ψ-faces. If each ψ-face is homeo-
morphic to an open disc, then the embedding ψ is said to be cellular.
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Definition 3.2. A biembedding of two cycle decompositions D and D′ of a simple graph
Γ is a face 2-colorable embedding of Γ in which one color class is comprised of the cycles
in D and the other class contains the cycles in D′.

Following the notation given in [2], for every edge e of a graph Γ, let e+ and e− denote
its two possible directions and let τ be the involution swapping e+ and e− for every e. Let
D(Γ) be the set of all directed edges of Γ and, for any v ∈ V (Γ), call Dv the set of edges
directed out of v. A local rotation ρv is a cyclic permutation of Dv . If we select a local
rotation for each vertex of Γ, then all together they form a rotation of D(Γ). We recall the
following result, see [2, 18, 21].

Theorem 3.3. A rotation ρ on Γ is equivalent to a cellular embedding of Γ in an orientable
surface. The face boundaries of the embedding corresponding to ρ are the orbits of ρ ◦ τ .

Given a relative Heffter array A = Ht(m,n; s, k), the orderings ωr and ωc are said to
be compatible if ωc ◦ ωr is a cycle of length |E(A)|.

Theorem 3.4. LetA be a relative Heffter array Ht(m,n; s, k) that is simple with respect to
the compatible orderings ωr and ωc. Then there exists a cellular biembedding of the cyclic
cycle decompositions Dω−1

r
and Dωc

of K 2nk+t
t ×t into an orientable surface of genus

g = 1 +
(nk − n−m− 1)(2nk + t)

2
.

Proof. Since the orderings ωr and ωc are compatible, we have that ωc ◦ ωr is a cycle of
length |E(A)|. Let us consider the permutation ρ̄0 on ±E(A) = Z2nk+t \ 2nk+t

t Z2nk+t,
where 2nk+t

t Z2nk+t denotes the subgroup of Z2nk+t of order t, defined by:

ρ̄0(a) =

{
−ωr(a) if a ∈ E(A);

ωc(−a) if a ∈ −E(A).

Note that, if a ∈ E(A), then ρ̄20(a) = ωc ◦ ωr(a) and hence ρ̄20 acts cyclically on E(A).
Also ρ̄0 exchanges E(A) with −E(A). Thus it acts cyclically on ±E(A).

We note that the graph K 2nk+t
t ×t is nothing but Cay[Z2nk+t : Z2nk+t \ 2nk+t

t Z2nk+t]

that is Cay[Z2nk+t : ±E(A)]. Now, we define the map ρ on the set of the oriented edges of
the Cayley graph Cay[Z2nk+t : ±E(A)] so that:

ρ((x, x+ a)) = (x, x+ ρ̄0(a)).

Since ρ̄0 acts cyclically on ±E(A) the map ρ is a rotation of Cay[Z2nk+t : ±E(A)].
Hence, by Theorem 3.3, there exists a cellular embedding σ of Cay[Z2nk+t : ±E(A)]
in an orientable surface so that the face boundaries correspond to the orbits of ρ ◦ τ where
τ((x, x + a)) = (x + a, x). Let us consider the oriented edge (x, x + a) with a ∈ E(A),
and let C be the column containing a. Since a ∈ E(A), −a ∈ −E(A) and we have that:

ρ ◦ τ((x, x+ a)) = ρ((x+ a, (x+ a)− a)) = (x+ a, x+ a+ ωc(a)).

Thus (x, x+ a) belongs to the boundary of the face F1 delimited by the oriented edges:

(x, x+ a),(x+ a, x+ a+ ωc(a)),

(x+ a+ ωc(a), x+ a+ ωc(a) + ω2
c (a)), . . . ,

x+

|E(C)|−2∑
i=0

ωic(a), x

.
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We note that the cycle associated to the face F1 is:x, x+ a, x+ a+ ωc(a), . . . , x+

|E(C)|−2∑
i=0

ωic(a)

.
Let us now consider the oriented edge (x, x + a) with a 6∈ E(A). Hence −a ∈ E(A), and
we name by R the row containing the element −a. Since −a ∈ E(A) we have that:

ρ ◦ τ((x, x+ a)) = ρ((x+ a, (x+ a)− a)) = (x+ a, x+ a− ωr(−a)).

Thus (x, x+ a) belongs to the boundary of the face F2 delimited by the oriented edges:

(x, x+ a), (x− (−a), x− (−a)− ωr(−a)),

(x− (−a)− ωr(−a), x− (−a)− ωr(−a)− ω2
r(−a)), . . . ,

x− |E(R)|−2∑
i=0

ωir(−a), x

.
Since A is a Heffter array and ωr acts cyclically on E(R), for any j ∈ [1, |E(R)|] we have
that:

−
j−1∑
i=0

ωir(−a) =

|E(R)|−1∑
i=j

ωir(−a) =

|E(R)|−j∑
i=1

ω|E(R)|−i
r (−a) =

|E(R)|−j∑
i=1

ω−ir (−a).

It follows that the cycle associated to the face F2 can be written also as:x, x+

|E(R)|−1∑
i=1

ω−ir (−a), x+

|E(R)|−2∑
i=1

ω−ir (−a), . . . , x+ ω−1r (−a)

.
Therefore any nonoriented edge {x, x+ a} belongs to the boundaries of exactly two faces:
one of type F1 and one of type F2. Hence the embedding is 2-colorable.

Moreover, it is easy to see that those face boundaries are the cycles obtained from the
relative Heffter array A following the orderings ωc and ω−1r .

To calculate the genus g it suffices to recall that V −S+F = 2−2g, where V , S and F
denote the number of vertices, edges and faces determined by the embedding on the surface,
respectively. We have V = 2nk + t, S = nk(2nk + t) and F = (2nk + t)(n+m).

Looking for compatible orderings in the case of a globally simple Heffter array led us to
investigate the following problem introduced in [12]. Let A be an m×n toroidal p.f. array.
By ri we denote the orientation of the i-th row, precisely ri = 1 if it is from left to right
and ri = −1 if it is from right to left. Analogously, for the j-th column, if its orientation
cj is from top to bottom then cj = 1 otherwise cj = −1. Assume that an orientation
R = (r1, . . . , rm) and C = (c1, . . . , cn) is fixed. Given an initial filled cell (i1, j1) consider
the sequence LR,C(i1, j1) = ((i1, j1), (i2, j2), . . . , (i`, j`), (i`+1, j`+1), . . .) where j`+1 is
the column index of the filled cell (i`, j`+1) of the rowRi` next to (i`, j`) in the orientation
ri` , and where i`+1 is the row index of the filled cell of the column Cj`+1

next to (i`, j`+1)
in the orientation cj`+1

. The problem is the following:
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Crazy Knight’s Tour Problem. Given a toroidal p.f. array A, do there existR and C such
that the list LR,C covers all the filled cells of A?

By P (A) we will denote the Crazy Knight’s Tour Problem for a given array A. Also,
given a filled cell (i, j), if LR,C(i, j) covers all the filled positions of A we will say that
(R, C) is a solution of P (A). For known results about this problem see [12]. The relation-
ship between the Crazy Knight’s Tour Problem and globally simple relative Heffter arrays
is explained in the following result which is an easy consequence of Theorem 3.4.

Corollary 3.5. Let A be a globally simple relative Heffter array Ht(m,n; s, k) such that
P (A) admits a solution (R, C). Then there exists a biembedding of the cyclic cycle decom-
positions Dω−1

r
and Dωc

of K 2nk+t
t ×t into an orientable surface.

Extending [11, Theorem 1.1] to the relative case, we have the following result (see also
[12, Theorem 2.7]).

Proposition 3.6. If there exist compatible simple orderings ωr and ωc for a Ht(m,n; s, k),
then one of the following cases occurs:

(1) m,n, s, k are all odd;

(2) m is odd and n, k are even;

(3) n is odd and m, t are even.

Given a positive integer n, let 0 < `1 < `2 < · · · < `k < n be integers. We denote
by An = An(`1, `2, . . . , `k) a k-diagonal p.f. array of size n whose filled diagonals are
D`1 , D`2 , . . . , D`k . LetM = lcm(`2−`1, `3−`2, . . . , `k−`k−1, `k−`1) and setAn+M =
An+M (`1, `2, . . . , `k). We now study the Crazy Knight’s Tour Problem for such arraysAn.
As a consequence, we will obtain new biembeddings of cycle decompositions of complete
graphs on orientable surfaces.

Theorem 3.7. Suppose that the problem P (An) admits a solution (R, C) whereR = (1, 1,
. . . , 1) and C = (c1, c2, . . . , cn−`k+1, 1, 1, . . . , 1). Then P (An+M ) admits the solution
(R′, C′) whereR′ = (1, 1, . . . , 1) and C′ = (c1, c2, . . . , cn−`k+1, 1, 1, . . . , 1).

Proof. We denote by E the set of indices i such that ci = −1 and by Bn the p.f. array
of size n obtained from An by replacing each column Cj , when j 6∈ E, with an empty
column. Also, we denote by Bn+M the p.f. array of size n + M obtained from An+M in
the same way using the same set E. As E ⊆ [1, n− `k + 1], the nonempty cells of Bn are
of the form ((e − 1) + `i, e) for e ∈ E and i ∈ [1, k]. Since (e − 1) + `i ≤ n, we have
skel(Bn) = skel(Bn+M ). So we can set B = skel(Bn) = skel(Bn+M ).

For any x = (i1, j1) ∈ B, consider the sequence X = LR,C(i1, j1) defined on
skel(An) and let y be the second element of X that belongs to B if |X ∩ B| ≥ 2, y = x
otherwise. Define ϑn : B → B by setting ϑn(x) = y. Take (R′, C′) as in the statement
and define the map ϑn+M : B → B as before considering the sequence LR′,C′(x) defined
on skel(An+M ).

In order to prove that ϑn(x) = ϑn+M (x), for any h ∈ [1, k], we set:

σ(h) =


`1 − `k−1 if h = 1;

`2 − `k if h = 2;

`h − `h−2 otherwise
and δ(h) =

{
`1 − `k if h = 1;

`h − `h−1 otherwise.
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Set x = (i1, j1) ∈ B, hence x ∈ D`h for some h ∈ [1, k]. We have that

ϑn(x) = (i1 + δ(h)λ− σ(h), j1 + δ(h)λ) (mod n)

where λ is the minimum positive integer such that (j1 + δ(h)λ) (mod n) ∈ E. Similarly

ϑn+M (x) = (i1 + δ(h)λ′ − σ(h), j1 + δ(h)λ′) (mod n+M)

where λ′ is the minimum positive integer such that (j1 + δ(h)λ′) (mod n + M) ∈ E.
Write j1 + δ(h)λ = qn+ r where 1 ≤ r ≤ n, which means r ∈ E.

If q = 0, we clearly have λ′ = λ and hence ϑn+M (x) = ϑn(x). Otherwise, since the
last M elements of C′ are equal to 1, we have that λ′ = λ+ qM

δ(h) . Hence:

ϑn+M (x) =

(
i1 + δ(h)

(
λ+

qM

δ(h)

)
− σ(h), j1 + δ(h)

(
λ+

qM

δ(h)

))
(mod n+M)

= (i1 + δ(h)λ+ qM − σ(h), j1 + δ(h)λ+ qM) (mod n+M)

= ((i1 − j1) + q(n+M) + r − σ(h), q(n+M) + r) (mod n+M)

= ((i1 − j1) + r − σ(h), r) (mod n+M).

It is not hard to see that 1 ≤ (i1 − j1) + r − σ(h) ≤ n; also recall that 1 ≤ r ≤ n.
Hence

ϑn+M (x) = ((i1 − j1) + r − σ(h), r).

On the other hand, by j1 + δ(h)λ = qn+ r, we obtain:

((i1 − j1) + r − σ(h), r) = (i1 + δ(h)λ− σ(h), j1 + δ(h)λ) (mod n) = ϑn(x).

So we have proved that ϑn+M (x) = ϑn(x) for any x ∈ B.
For any (i, j) ∈ skel(An), since (R, C) is a solution of P (An), we have LR,C(i, j) ∩

B = B. Moreover, since ϑn(x) = ϑn+M (x) for any x ∈ B, it follows that for any
(i′, j′) ∈ skel(An+M ) we have LR′,C′(i′, j′) ∩ B is either B or ∅. If there exists (̄ı, ̄) ∈
skel(An+M ) such that LR′,C′ (̄ı, ̄) ∩ B = ∅ then for any λ′ ∈ N, the cell (̄ı + δ(h̄)λ′, ̄ +
δ(h̄)λ′) (mod n + M) is not in B. On the other hand there exists λ ∈ N, such that
(̄ı + δ(h̄)λ, ̄ + δ(h̄)λ) (mod n) ∈ B, since (R, C) is a solution of P (An). Also, since
δ(h̄) divides M there exists q̄ ∈ N such that (̄ı + δ(h̄)λ̄, ̄ + δ(h̄)λ̄) (mod n + M) ∈ B,
where λ̄ = λ + q̄M/δ(h̄). Hence LR′,C′ (̄ı, ̄) ∩ B 6= ∅, which is a contradiction. Thus it
follows that (R′, C′) is a solution of P (An+M ).

Corollary 3.8. Let k ≡ 3 (mod 4) and n ≡ 1 (mod 4) be such that n ≥ k and 3 ≤ k ≤
119. Let An be a k-diagonal array whose filled diagonals are D1, D2, . . . , Dk−3, Dk−1,
Dk and Dk+1. Then P (An) admits a solution.

Proof. Let k = 4h + 3 and M = lcm(2, 4h + 3), that is M = 2(4h + 3). For any
1 ≤ h ≤ 29, with the help of a computer, we have checked the existence of a solution of
P (An) for any n ∈ [4h+5, 4h+5+M ] = [4h+5, 12h+11], that satisfies the hypothesis
of Theorem 3.7. Hence the claim follows by this theorem.

Corollary 3.9. Let k ≡ 3 (mod 4) and n ≡ 1 (mod 4) such that n ≥ k and 3 ≤ k ≤ 119.
Then there exists a globally simple H1(n; k) with orderings ωr and ωc which are both
simple and compatible. As a consequence, there exists a biembedding of cyclic k-cycle
decompositions of the complete graph K2nk+1 into an orientable surface.
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Proof. The existence of a globally simple H1(n; k), whose filled diagonals areD1, D2, . . . ,
Dk−3, Dk−1, Dk, Dk+1, was proven in [9]. The result follows from Corollaries 3.5 and 3.8.

4 Direct constructions of globally simple Ht(n; k)

Many of the constructions we will present are based on filling in the cells of a set of di-
agonals. In order to describe these constructions we use the same procedure introduced in
[17]. In an n× n array A the procedure diag(r, c, s,∆1,∆2, `) installs the entries

A[r + i∆1, c+ i∆1] = s+ i∆2 for i ∈ [0, `− 1],

where by A[i, j] we mean the element of A in position (i, j). The parameters used in the
diag procedure have the following meaning:

• r denotes the starting row,

• c denotes the starting column,

• s denotes the entry A[r, c],

• ∆1 denotes the increasing value of the row and column at each step,

• ∆2 denotes how much the entry is changed at each step,

• ` is the length of the chain.

We will write [a, b](W ) to mean supp(W ) = [a, b].

Proposition 4.1. For every odd n ≥ 3 there exists an integer cyclically 3-diagonal Heffter
array Hn(n; 3).

Proof. We construct an n× n array A using the following procedures labeled A to E:

A : diag
(
1, 1,− 7n−9

2 , 1, 7, n
)
; B : diag

(
1, 2, 7n−32 , 2,−7, n+1

2

)
;

C : diag
(
2, 3,−5, 2,−7, n−12

)
; D : diag

(
2, 1, 7n−132 , 2,−7, n+1

2

)
;

E : diag
(
3, 2,−10, 2,−7, n−12

)
.

We prove that the array constructed above is an integer cyclically 3-diagonal Hn(n; 3).
To aid in the proof we give a schematic picture of where each of the diagonal procedures
fills cells (see Figure 1). Note that each row and each column contain exactly 3 elements.
We now check that the elements in every row sum to zero (in Z).

Row 1. There is the first value of the A diagonal and of the B diagonal and the last of the
D diagonal. The sum is

−7n− 9

2
+

7n− 3

2
− 3 = 0.

Row 2 to n. There are two cases depending on whether the row r is even or odd. If r is
even, then write r = 2i + 2 where i ∈

[
0, n−32

]
. Notice that from the D, A and C

diagonal cells we get the following sum:(
7n− 13

2
− 7i

)
+

(
−7n− 23

2
+ 14i

)
+ (−5− 7i) = 0.
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A B D
D A C

E A B
D A C

E A B
D A C

E A B
D A C

B E A

Figure 1: Scheme of construction with n = 9.

If r is odd, then write r = 2i+ 3 where i ∈
[
0, n−32

]
. From the E, A and B diagonal

cells we get the following sum:

(−10− 7i) +

(
−7n− 37

2
+ 14i

)
+

(
7n− 17

2
− 7i

)
= 0.

So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1. There is the first value of the A diagonal and of the D diagonal and the last of
the B diagonal. The sum is

−7n− 9

2
+

7n− 13

2
+ 2 = 0.

Column 2 to n. There are two cases depending on whether the column c is even or odd.
If c is even, then write c = 2i+ 2 where i ∈

[
0, n−32

]
. Notice that from the B, A and

E diagonal cells we get the following sum:(
7n− 3

2
− 7i

)
+

(
−7n− 23

2
+ 14i

)
+ (−10− 7i) = 0.

If c is odd, then write c = 2i+ 3 where i ∈
[
0, n−32

]
. From the C, A and D diagonal

cells we get the following sum:

(−5− 7i) +

(
−7n− 37

2
+ 14i

)
+

(
7n− 27

2
− 7i

)
= 0.

So we have shown that each column sums to zero. Also, it is not hard to see that:

supp(A) =
{

1, 8, 15, . . . , 7n−52

}
∪
{

6, 13, 20, . . . , 7n−92

}
,

supp(B) =
{

2, 9, 16, . . . , 7n−32

}
,

supp(C) =
{

5, 12, 19, . . . , 7n−112

}
,

supp(D) = {3} ∪
{

4, 11, 18, . . . , 7n−132

}
,

supp(E) =
{

10, 17, 24, . . . , 7n−12

}
,

hence supp(A) =
[
1, 7n−12

]
\
{

7, 14, 21, . . . , 7n−72

}
. This concludes the proof.
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Example 4.2. Following the proof of Proposition 4.1 we obtain the integer H9(9; 3) below.

−27 30 −3

25 −20 −5

−10 −13 23

18 −6 −12

−17 1 16

11 8 −19

−24 15 9

4 22 −26

2 −31 29

We can use this example to briefly explain how the construction has been obtained (a
similar idea will be used also in Proposition 4.3 below). First of all, we have to avoid the
multiples of 2nk

t + 1 = 7, so we work modulo 7. The diagonal D1 consists of elements,
all congruent to 1 modulo 7, arranged in arithmetic progression where, for instance, the
central cell is filled with 1. The other two filled diagonals are obtained in such a way that
the elements ofD9 are all congruent to 2 modulo 7 and the elements ofD2 are all congruent
to −3 modulo 7. This can be achieved filling the cell (9, 1) with the integer 2: it is now
easy to obtain the elements in the remaining cells, remembering that the row/column sums
are 0.

Proposition 4.3. For every odd n ≥ 3 there exists an integer cyclically 3-diagonal Heffter
array H2n(n; 3).

Proof. We construct an n× n array A using the following procedures labeled A to E:

A : diag(1, 1,−(4n− 5), 1, 8, n); B : diag
(
1, 2, 4n− 2, 2,−8, n+1

2

)
;

C : diag
(
2, 3,−6, 2,−8, n−12

)
; D : diag

(
2, 1, 4n− 7, 2,−8, n+1

2

)
;

E : diag
(
3, 2,−11, 2,−8, n−12

)
.

We prove that the array constructed above is an integer cyclically 3-diagonal H2n(n; 3).
To aid in the proof we give a schematic picture of where each of the diagonal procedures
fills cells (see Figure 1). Note that each row and each column contain exactly 3 elements.
We now check that the elements in every row sum to zero (in Z).

Row 1. There is the first value of the A diagonal and of the B diagonal and the last of the
D diagonal. The sum is

−(4n− 5) + (4n− 2)− 3 = 0.

Row 2 to n. There are two cases depending on whether the row r is even or odd. If r is
even, then write r = 2i + 2 where i ∈

[
0, n−32

]
. Notice that from the D, A and C

diagonal cells we get the following sum:

(4n− 7− 8i) + (−4n+ 13 + 16i) + (−6− 8i) = 0.

If r is odd, then write r = 2i+ 3 where i ∈
[
0, n−32

]
. From the E, A and B diagonal

cells we get the following sum:

(−11− 8i) + (−4n+ 21 + 16i) + (4n− 10− 8i) = 0.
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So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1. There is the first value of the A diagonal and of the D diagonal and the last of
the B diagonal. The sum is

−(4n− 5) + (4n− 7) + 2 = 0.

Column 2 to n. There are two cases depending on whether the column c is even or odd.
If c is even, then write c = 2i+ 2 where i ∈

[
0, n−32

]
. Notice that from the B, A and

E diagonal cells we get the following sum:

(4n− 2− 8i) + (−4n+ 13 + 16i) + (−11− 8i) = 0.

If c is odd, then write c = 2i+ 3 where i ∈
[
0, n−32

]
. From the C, A and D diagonal

cells we get the following sum:

(−6− 8i) + (−4n+ 21 + 16i) + (4n− 15− 8i) = 0.

So we have shown that each column sums to zero. Also, it is not hard to see that:

supp(A) = {1, 9, 17, . . . , 4n− 3} ∪ {7, 15, 23, . . . , 4n− 5},
supp(B) = {2, 10, 18, . . . , 4n− 2},
supp(C) = {6, 14, 22, . . . , 4n− 6},
supp(D) = {3} ∪ {5, 13, 21, . . . , 4n− 7},
supp(E) = {11, 19, 27, . . . , 4n− 1},

hence supp(A) = [1, 4n− 1] \ {4, 8, 12, . . . , 4n− 4}. This concludes the proof.

Example 4.4. Following the proof of Proposition 4.3 we obtain the integer H18(9; 3) be-
low.

−31 34 −3

29 −23 −6

−11 −15 26

21 −7 −14

−19 1 18

13 9 −22

−27 17 10

5 25 −30

2 −35 33

In the following propositions, since k > 5, in order to prove that the relative Heffter
array Hk(n; k) constructed is globally simple we have to show that the partial sums of each
row and of each column are distinct modulo 2nk + k. From now on, the sets E(Ri) and
E(Ci) are considered ordered with respect to the natural ordering. Also, by S(Ri) and
S(Ci) we will denote the sequence of the partial sums of E(Ri) and E(Ci), respectively.
In order to check that the partial sums are distinct the following remark allows to reduce
the computations.
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Remark 4.5. Let A be a Ht(n; k). By the definition of a (relative) Heffter array it easily
follows that the i-th partial sum si of a row (or a column) is different from the partial sums
si−2, si−1, si+1 and si+2 of the same row (column).

Proposition 4.6. For every n ≥ 7 with n ≡ 3 (mod 4) there exists an integer cyclically
7-diagonal globally simple H7(n; 7).

Proof. We construct an n× n array A using the following procedures labeled A to N:

A : diag
(
3, 3,−n+1

2 , 2,−1, n−12

)
; B : diag

(
4, 4, 1, 2, 1, n−32

)
;

C : diag(n− 2, n− 1,−(5n+ 3), 2,−1, n); D : diag(2, 1,−(4n+ 3), 2,−1, n);

E : diag
(
1, 3, 7n+3

4 , 4, 1, n+1
4

)
; F : diag

(
2, 4, 3n+1

2 , 4,−1, n+1
4

)
;

G : diag
(
3, 5, 11n+7

4 , 4, 1, n+1
4

)
; H : diag

(
4, 6, 5n+1

2 , 4,−1, n−34

)
;

I : diag
(
3, 1,− 9n+5

4 , 4, 1, n+1
4

)
; J : diag

(
4, 2,− 5n+3

2 , 4,−1, n+1
4

)
;

K : diag
(
5, 3,− 5n+1

4 , 4, 1, n+1
4

)
; L : diag

(
6, 4,− 3n+3

2 , 4,−1, n−34

)
;

M : diag(n− 2, 1, 6n+ 4, 2, 1, n); N : diag(2, n− 1, 3n+ 2, 2, 1, n).

We also fill the following cells in an ad hoc manner:

A[1, 1] = n, A[2, 2] = −n−12 .

We prove that the array constructed above is an integer cyclically 7-diagonal globally
simple H7(n; 7). To aid in the proof we give a schematic picture of where each of the
diagonal procedures fills cells (see Figure 2). We have placed an X in the ad hoc cells.
Note that each row and each column contains exactly 7 elements. We now list the elements
and the partial sums of each row. We leave to the reader the direct check that the partial
sums are distinct modulo 14n+ 7; for a quicker check keep in mind Remark 4.5.

X C E M N J D
D X C F M N K
I D A C G M N
N J D B C H M

N K D A C E M
N L D B C F M

N I D A C G M
N J D B C H M

M N K D A C E
F M N L D B C
C G M N I D A

Figure 2: Scheme of construction with n = 11.

Row 1. There is an ad hoc element, the (n+5
2 )th value of the C diagonal, the first one of the

E diagonal, the (n+5
2 )th value of the M diagonal, the (n+1

2 )th value of the N diagonal,
the last value of the J diagonal and the (n+1

2 )th value of the D diagonal. Namely,

E(R1) =

(
n,−11n+ 9

2
,

7n+ 3

4
,

13n+ 11

2
,

7n+ 3

2
,−11n+ 3

4
,−9n+ 5

2

)
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and

S(R1) =

(
n,−9n+ 9

2
,−11n+ 15

4
,

15n+ 7

4
,

29n+ 13

4
,

9n+ 5

2
, 0

)
.

Row 2. There is the first value of the D diagonal, an ad hoc element, the third value of the
C diagonal, the first value of the F diagonal, the third value of the M diagonal, the
first value of the N diagonal and the last value of the K diagonal. Hence

E(R2) =

(
−(4n+ 3),−n− 1

2
,−(5n+ 5),

3n+ 1

2
, 6n+ 6, 3n+ 2,−(n+ 1)

)
and

S(R2) =

(
−(4n+ 3),−9n+ 5

2
,−19n+ 15

2
,−(8n+ 7),−(2n+ 1), n+ 1, 0

)
.

Row 3 to n. There are four cases depending on the congruence class of r modulo 4. If
r ≡ 3 (mod 4), then write r = 4i+ 3 where i ∈

[
0, n−34

]
. It is not hard to see that

from the N, I, D, A, C, G and M diagonal cells we get:

E(R4i+3) =

(
7n+ 5

2
+ 2i,−9n+ 5

4
+ i,−9n+ 7

2
− 2i,−n+ 1

2
− 2i,

− 11n+ 11

2
− 2i+ ε,

11n+ 7

4
+ i,

13n+ 13

2
+ 2i− ε

)
,

where ε = 0 for i ∈
[
0, n−74

]
while ε = n for i = n−3

4 , and

S(R4i+3) =

(
7n+ 5

2
+ 2i,

5n+ 5

4
+ 3i,−13n+ 9

4
+ i,

− 15n+ 11

4
− i,−37n+ 33

4
− 3i+ ε,−13n+ 13

2
− 2i+ ε, 0

)
.

If r ≡ 0 (mod 4), then write r = 4i + 4 where i ∈
[
0, n−74

]
. It is not hard to see

that from the N, J, D, B, C, H and M diagonal cells we get:

E(R4i+4) =

(
3n+ 3 + 2i,−5n+ 3

2
− i,−(4n+ 4 + 2i),

1 + 2i,−(5n+ 6 + 2i),
5n+ 1

2
− i, 6n+ 7 + 2i

)
and

S(R4i+4) =

(
3n+ 3 + 2i,

n+ 3

2
+ i,−7n+ 5

2
− i,

− 7n+ 3

2
+ i,−17n+ 15

2
− i,−(6n+ 7 + 2i), 0

)
.
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If r ≡ 1 (mod 4), then write r = 4i + 5 where i ∈
[
0, n−74

]
. It is not hard to see

that from the N, K, D, A, C, E and M diagonal cells we get:

E(R4i+5) =

(
7n+ 7

2
+ 2i,−5n+ 1

4
+ i,−9n+ 9

2
− 2i,−n+ 3

2
− 2i,

− 11n+ 13

2
− 2i+ ε,

7n+ 7

4
+ i,

13n+ 15

2
+ 2i− ε

)
,

where ε = 0 for i ∈
[
0, n−114

]
while ε = n for i = n−7

4 , and

S(R4i+5) =

(
7n+ 7

2
+ 2i,

9n+ 13

4
+ 3i,−9n+ 5

4
+ i,

− 11n+ 11

4
− i,−33n+ 37

4
− 3i+ ε,−13n+ 15

2
− 2i+ ε, 0

)
.

If r ≡ 2 (mod 4), then write r = 4i + 6 where i ∈
[
0, n−74

]
. It is not hard to see

that from the N, L, D, B, C, F and M diagonal cells we get:

E(R4i+6) =

(
3n+ 4 + 2i,−3n+ 3

2
− i,−(4n+ 5 + 2i),

2 + 2i,−(5n+ 7 + 2i),
3n− 1

2
− i, 6n+ 8 + 2i

)
and

S(R4i+6) =

(
3n+ 4 + 2i,

3n+ 5

2
+ i,−5n+ 5

2
− i,

− 5n+ 1

2
+ i,−15n+ 15

2
− i,−(6n+ 8 + 2i), 0

)
.

Now we list the elements and the partial sums of the columns.

Column 1. There is an ad hoc element, the first value of the D diagonal and of the I
diagonal, the second value of the N diagonal, the first value of the M diagonal, the last
value of the F diagonal and the second value of the C diagonal. Namely,

E(C1) =

(
n,−(4n+ 3),−9n+ 5

4
, 3n+ 3, 6n+ 4,

5n+ 5

4
,−(5n+ 4)

)
and

S(C1) =

(
n,−(3n+ 3),−21n+ 17

4
,−9n+ 5

4
,

15n+ 11

4
, 5n+ 4, 0

)
.

Column 2. There is the (n+5
2 )th value of the C diagonal, an ad hoc element, the (n+3

2 )th

value of the D diagonal, the first value of the J diagonal, the (n+5
2 )th value of the N

diagonal and of the M diagonal and the last value of the G diagonal. Namely,

E(C2) =

(
−11n+ 9

2
,−n− 1

2
,−9n+ 7

2
,−5n+ 3

2
,

7n+ 7

2
,

13n+ 9

2
, 3n+ 1

)



256 Ars Math. Contemp. 18 (2020) 241–271

and

S(C2) =

(
− 11n+ 9

2
,−(6n+ 4),−21n+ 15

2
,

− (13n+ 9),−19n+ 11

2
,−(3n+ 1), 0

)
.

Column 3 to n. There are four cases depending on the congruence class of c modulo 4.
If c ≡ 3 (mod 4), then write c = 4i + 3 where i ∈

[
0, n−34

]
. It is not hard to see

that from the M, E, C, A, D, K and N diagonal cells we get:

E(C4i+3) =

(
6n+ 5 + 2i,

7n+ 3

4
+ i,−(5n+ 5 + 2i),

− n+ 1

2
− 2i,−(4n+ 4 + 2i),−5n+ 1

4
+ i, 3n+ 4 + 2i

)
and

S(C4i+3) =

(
6n+ 5 + 2i,

31n+ 23

4
+ 3i,

11n+ 3

4
+ i,

9n+ 1

4
− i,−7n+ 15

4
− 3i,−(3n+ 4 + 2i), 0

)
.

If c ≡ 0 (mod 4), then write c = 4i + 4 where i ∈
[
0, n−74

]
. It is not hard to see

that from the M, F, C, B, D, L and N diagonal cells we get:

E(C4i+4) =

(
13n+ 11

2
+ 2i,

3n+ 1

2
− i,−11n+ 11

2
− 2i,

1 + 2i,−9n+ 9

2
− 2i,−3n+ 3

2
− i, 7n+ 9

2
+ 2i

)
and

S(C4i+4) =

(
13n+ 11

2
+ 2i, 8n+ 6 + i,

5n+ 1

2
− i,

5n+ 3

2
+ i,−(2n+ 3 + i),−7n+ 9

2
− 2i, 0

)
.

If c ≡ 1 (mod 4), then write c = 4i + 5 where i ∈
[
0, n−74

]
. It is not hard to see

that from the M, G, C, A, D, I and N diagonal cells we get:

E(C4i+5) =

(
6n+ 6 + 2i,

11n+ 7

4
+ i,−(5n+ 6 + 2i),

− n+ 3

2
− 2i,−(4n+ 5 + 2i),−9n+ 1

4
+ i, 3n+ 5 + 2i

)
and

S(C4i+5) =

(
6n+ 6 + 2i,

35n+ 31

4
+ 3i,

15n+ 7

4
+ i,

13n+ 1

4
− i,−3n+ 19

4
− 3i,−(3n+ 5 + 2i), 0

)
.
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If c ≡ 2 (mod 4), then write c = 4i + 6 where i ∈
[
0, n−74

]
. It is not hard to see

that from the M, H, C, B, D, J and N diagonal cells we get:

E(C4i+6) =

(
13n+ 13

2
+ 2i,

5n+ 1

2
− i,−11n+ 13

2
− 2i+ ε,

2 + 2i,−9n+ 11

2
− 2i,−5n+ 5

2
− i, 7n+ 11

2
+ 2i− ε

)
,

where ε = 0 for i ∈
[
0, n−114

]
while ε = n for i = n−7

4 , and

S(C4i+6) =

(
13n+ 13

2
+ 2i, 9n+ 7 + i,

7n+ 1

2
− i+ ε,

7n+ 5

2
+ i+ ε,−(n+ 3 + i) + ε,−7n+ 11

2
− 2i+ ε, 0

)
.

Finally we consider the support of A:

supp(A) =
[
1, n−32

]
(B)
∪ {n−12 } ∪

[
n+1
2 , n− 1

]
(A)
∪ {n}

∪
[
n+ 1, 5n+1

4

]
(K)
∪
[
5n+5

4 , 3n+1
2

]
(F)
∪
[
3n+3

2 , 7n−14

]
(L)

∪
[
7n+3

4 , 2n
]
(E)
∪
[
2n+ 2, 9n+5

4

]
(I)
∪
[
9n+9

4 , 5n+1
2

]
(H)

∪
[
5n+3

2 , 11n+3
4

]
(J)
∪
[
11n+7

4 , 3n+ 1
]
(G)
∪ [3n+ 2, 4n+ 1](N)

∪ [4n+ 3, 5n+ 2](D) ∪ [5n+ 3, 6n+ 2](C) ∪ [6n+ 4, 7n+ 3](M)

= [1, 7n+ 3] \ {2n+ 1, 4n+ 2, 6n+ 3}.

This concludes the proof.

Example 4.7. Following the proof of Proposition 4.6 we obtain the integer globally simple
H7(11; 7) below.

11 −65 20 77 40 −31 −52

−47 −5 −60 17 72 35 −12

−26 −53 −6 −66 32 78 41

36 −29 −48 1 −61 28 73

42 −14 −54 −7 −67 21 79

37 −18 −49 2 −62 16 74

43 −25 −55 −8 −68 33 80

38 −30 −50 3 −63 27 75

70 44 −13 −56 −9 −58 22

15 76 39 −19 −51 4 −64

−59 34 71 45 −24 −57 −10

Proposition 4.8. For every n ≥ 11 with n ≡ 3 (mod 4) there exists an integer 9-diagonal
globally simple H9(n; 9) with width n−9

2 .
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Proof. We construct an n× n array A using the following procedures labeled A to R:

A : diag(3, 1, 5n+ 3, 1, 1, n); B : diag(4, 1,−(6n+ 4), 1,−1, n);

C : diag(3, 6,−(7n+ 4), 1,−1, n); D : diag(4, 6, 8n+ 5, 1, 1, n);

E : diag
(
1, n+3

2 ,−(2n), 1, 2, n−12

)
; F : diag

(
n+3
2 , 1, 2n+ 2, 1, 2, n−12

)
;

G : diag
(
2, 2,−(n− 2), 1, 1, n−32

)
; H : diag

(
n+3
2 , 2,−(2n+ 3), 1,−2, n−32

)
;

I : diag
(
2, n+3

2 , 2n− 1, 1,−2, n−32

)
; J : diag

(
n+3
2 , n+3

2 , n−32 , 1,−1, n−52

)
;

K : diag
(
2, 1,−(3n+ 4), 2,−1, n+1

4

)
; L : diag

(
1, 2, 5n, 2,−1, n+1

4

)
;

M : diag
(
3, 2,−(4n+ 3), 2,−1, n−34

)
; N : diag

(
2, 3, 4n+ 1, 2,−1, n−34

)
;

O : diag
(
n+1
2 , n+3

2 , 17n+9
4 , 2, 1, n−34

)
; P : diag

(
n+3
2 , n+1

2 ,− 15n+7
4 , 2, 1, n−34

)
;

Q : diag
(
n+3
2 , n+5

2 , 13n+17
4 , 2, 1, n−34

)
; R : diag

(
n+5
2 , n+3

2 ,− 19n−1
4 , 2, 1, n−34

)
.

We also fill the following cells in an ad hoc manner:

A[1, 1] = n− 1, A[1, n+1
2 ] = n+ 2, A[1, n] = −(5n+ 1),

A[n+1
2 , 1] = −(3n), A[n+1

2 , n+1
2 ] = n, A[n+1

2 , n] = n+ 1,

A[n− 1, n− 1] = −n−12 , A[n− 1, n] = 5n+ 2, A[n, 1] = 3n+ 3,

A[n, n+1
2 ] = −(3n+ 1), A[n, n− 1] = −(3n+ 2), A[n, n] = 1.

We prove that the array constructed above is an integer 9-diagonal globally simple
H9(n; 9) with width n−9

2 . To aid in the proof we give a schematic picture of where each of
the diagonal procedures fills cells (see Figure 3). We have placed an X in the ad hoc cells.
Note that each row and each column contains exactly 9 elements. Since the filled diagonals
are D1, D2, D3, D4, Dn+1

2
, Dn+3

2
, Dn−2, Dn−1 and Dn, A has two empty strips of size

n−9
2 . We now list the elements and the partial sums of every row. We leave to the reader

the direct check that the partial sums are distinct modulo 18n+ 9; for a quicker check keep
in mind Remark 4.5.

X L D C X E B A X
K G N D C I E B A
A M G L D C I E B
B A K G N D C I E

B A M G L D C I E
B A K G N D C I E

B A M G L D C I E
X B A K X O D C X
F H B A P J Q D C

F H B A R J O D C
F H B A P J Q D C

F H B A R J O D C
C F H B A P J Q D
D C F H B A R X X
X D C F X B A X X

Figure 3: Scheme of construction with n = 15.
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Row 1. There are three ad hoc values plus the elements of the L, D, C, E, B and A diago-
nals. Namely:

E(R1) = (n−1, 5n, 9n+ 2,−(8n+ 2), n+ 2,−2n,−(7n+ 1), 6n+ 1,−(5n+ 1))

and

S(R1) = (n− 1, 6n− 1, 15n+ 1, 7n− 1, 8n+ 1, 6n+ 1,−n, 5n+ 1, 0).

Row 2. It is not hard to see that from the K, G, N, D, C, I, E, B and A diagonal cells we
get:

E(R2) = (− (3n+ 4),−(n− 2), 4n+ 1, 9n+ 3,

− (8n+ 3), 2n− 1,−(2n− 2),−(7n+ 2), 6n+ 2)

and

S(R2) = (−(3n+ 4),−(4n+ 2),−1, 9n+ 2, n− 1, 3n− 2, n,−(6n+ 2), 0).

Row 3. It is not hard to see that from the A, M, G, L, D, C, I, E and B diagonal cells we
get:

E(R3) = (5n+ 3,−(4n+ 3),−(n− 3), 5n− 1,

9n+ 4,−(7n+ 4), 2n− 3,−(2n− 4),−(7n+ 3))

and

S(R3) = (5n+ 3, n, 3, 5n+ 2, 14n+ 6, 7n+ 2, 9n− 1, 7n+ 3, 0).

Row 4 to n−1
2

. We have to distinguish two cases, depending on the parity of the row r. If
r is even, then write r = 4 + 2i where i ∈

[
0, n−114

]
. It is not hard to see that from

the B, A, K, G, N, D, C, I and E diagonal cells we get:

E(R4+2i) = (− (6n+ 4 + 2i), 5n+ 4 + 2i,−(3n+ 5 + i),−(n− 4− 2i),

4n− i, 8n+ 5 + 2i,−(7n+ 5 + 2i), 2n− 5− 4i,−(2n− 6− 4i))

and

S(R4+2i) = (− (6n+ 4 + 2i),−n,−(4n+ 5 + i),

− (5n+ 1− i),−(n+ 1), 7n+ 4 + 2i,−1, 2n− 6− 4i, 0).

If r is odd, then write r = 5 + 2i, where i ∈
[
0, n−114

]
. It is not hard to see that from

the B, A, M, G, L, D, C, I and E diagonal cells we get:

E(R5+2i) = (−(6n+ 5 + 2i), 5n+ 5 + 2i,−(4n+ 4 + i),−(n− 5− 2i),

5n− 2− i, 8n+ 6 + 2i,−(7n+ 6 + 2i), 2n− 7− 4i,−(2n− 8− 4i))

and

S(R5+2i) = (− (6n+ 5 + 2i),−n,−(5n+ 4 + i),

− (6n− 1− i),−(n+ 1), 7n+ 5 + 2i,−1, 2n− 8− 4i, 0).
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Row n+1
2

. There are three ad hoc values plus the elements of the B, A, K, O, D and C
diagonals. Namely:

E
(
Rn+1

2

)
=

(
− 3n,−13n+ 1

2
,

11n+ 1

2
,

− 13n+ 13

4
, n,

17n+ 9

4
,

17n+ 3

2
,−15n+ 3

2
, n+ 1

)
and

S
(
Rn+1

2

)
=

(
− 3n,−19n+ 1

2
,−4n,−29n+ 13

4
,

− 25n+ 13

4
,−(2n+ 1),

13n+ 1

2
,−(n+ 1), 0

)
.

Row n+3
2

to n − 2. We have to distinguish two cases, depending on the parity of the row
r. If r is odd, then write r = n+3

2 + 2i where i ∈
[
0, n−74

]
. It is not hard to see that

from the F, H, B, A, P, J, Q, D and C diagonal cells we get:

E
(
Rn+3

2 +2i

)
=

(
2n+ 2 + 4i,−(2n+ 3 + 4i),−13n+ 3

2
− 2i,

11n+ 3

2
+ 2i,

− 15n+ 7

4
+ i,

n− 3

2
− 2i,

13n+ 17

4
+ i,

17n+ 5

2
+ 2i,−15n+ 5

2
− 2i

)
and

S
(
Rn+3

2 +2i

)
=

(
2n+ 2 + 4i,−1,−13n+ 5

2
− 2i,−(n+ 1),

− 19n+ 11

4
+ i,−17n+ 17

4
− i,−n, 15n+ 5

2
+ 2i, 0

)
.

If r is even, then write r = n+5
2 + 2i where i ∈

[
0, n−114

]
. It is not hard to see that

from the F, H, B, A, R, J, O, D and C diagonal cells we get:

E
(
Rn+5

2 +2i

)
=

(
2n+ 4 + 4i,−(2n+ 5 + 4i),−13n+ 5

2
− 2i,

11n+ 5

2
+ 2i,

− 19n− 1

4
+ i,

n− 5

2
− 2i,

17n+ 13

4
+ i,

17n+ 7

2
+ 2i,−15n+ 7

2
− 2i

)
and

S
(
Rn+5

2 +2i

)
=

(
2n+ 4 + 4i,−1,−13n+ 7

2
− 2i,−(n+ 1),

− 23n+ 3

4
+ i,−21n+ 13

4
− i,−n, 15n+ 7

2
+ 2i, 0

)
.
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Row n − 1. There are two ad hoc values plus the elements of the D, C, F, H, B, A and R
diagonals. Namely:

E(Rn−1) =

(
9n,−8n, 3n− 3,−(3n− 2),

− (7n− 1), 6n− 1,−9n+ 3

2
,−n− 1

2
, 5n+ 2

)
and

S(Rn−1) =

(
9n, n, 4n− 3, n− 1,−6n,−1,−9n+ 5

2
,−(5n+ 2), 0

)
.

Row n. There are four ad hoc values plus the elements of the D, C, F, B and A diagonals.
Namely:

E(Rn) = (3n+ 3, 9n+ 1,−(8n+ 1), 3n− 1,−(3n+ 1),−7n, 6n,−(3n+ 2), 1)

and

S(Rn) = (3n+ 3, 12n+ 4, 4n+ 3, 7n+ 2, 4n+ 1,−(3n− 1), 3n+ 1,−1, 0).

Now we list the elements and the partial sums of the columns.

Column 1. There are three ad hoc values plus the elements of the K, A, B, F, C and D
diagonals. Namely:

E(C1) = (n−1,−(3n+4), 5n+3,−(6n+4),−3n, 2n+2,−(8n−1), 9n, 3n+3)

and

S(C1) = (n− 1,−(2n+ 5), 3n− 2,−(3n+ 6),

− (6n+ 6),−(4n+ 4),−(12n+ 3),−(3n+ 3), 0).

Column 2. It is not hard to see that from the L, G, M, A, B, H, F, C and D diagonal cells we
get:

E(C2) = (5n,−(n−2),−(4n+3), 5n+4,−(6n+5),−(2n+3), 2n+4,−8n, 9n+1)

and

S(C2) = (5n, 4n+ 2,−1, 5n+ 3,−(n+ 2),−(3n+ 5),−(n+ 1),−(9n+ 1), 0).

Column 3. It is not hard to see that from the D, N, G, K, A, B, H, F and C diagonal cells we
get:

E(C3) = (9n+ 2, 4n+ 1,−(n− 3),−(3n+ 5),

5n+ 5,−(6n+ 6),−(2n+ 5), 2n+ 6,−(8n+ 1))

and

S(C3) = (9n+ 2, 13n+ 3, 12n+ 6, 9n+ 1, 14n+ 6, 8n, 6n− 5, 8n+ 1, 0).
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Column 4. It is not hard to see that from the C, D, L, G, M, A, B, H and F diagonal cells we
get:

E(C4) = (− (8n+ 2), 9n+ 3, 5n− 1,−(n− 4),

− (4n+ 4), 5n+ 6,−(6n+ 7),−(2n+ 7), 2n+ 8)

and

S(C4) = (−(8n+ 2), n+ 1, 6n, 5n+ 4, n, 6n+ 6,−1,−(2n+ 8), 0).

Column 5. It is not hard to see that from the C, D, N, G, K, A, B, H and F diagonal cells we
get:

E(C5) = (− (8n+ 3), 9n+ 4, 4n,−(n− 5),

− (3n+ 6), 5n+ 7,−(6n+ 8),−(2n+ 9), 2n+ 10)

and

S(C5) = (−(8n+ 3), n+ 1, 5n+ 1, 4n+ 6, n, 6n+ 7,−1,−(2n+ 10), 0).

Column 6 to n−1
2

. We have to distinguish two cases, depending on the parity of the col-
umn c. If c is even, then write c = 6 + 2i where i ∈ [0, n−154 ]. It is not hard to see
that from the C, D, L, G, M, A, B, H and F diagonal cells we get:

E(C6+2i) = (−(7n+ 4 + 2i), 8n+ 5 + 2i, 5n− 2− i,−(n− 6− 2i),

− (4n+ 5 + i), 5n+ 8 + 2i,−(6n+ 9 + 2i),−(2n+ 11 + 4i), 2n+ 12 + 4i)

and

S(C6+2i) = (− (7n+ 4 + 2i), n+ 1, 6n− 1− i,
5n+ 5 + i, n, 6n+ 8 + 2i,−1,−(2n+ 12 + 4i), 0).

If c is odd, then write c = 7 + 2i where i ∈ [0, n−154 ]. It is not hard to see that from
the C, D, N, G, K, A, B, H and F diagonal cells we get:

E(C7+2i) = (−(7n+ 5 + 2i), 8n+ 6 + 2i, 4n− 1− i,−(n− 7− 2i),

− (3n+ 7 + i), 5n+ 9 + 2i,−(6n+ 10 + 2i),−(2n+ 13 + 4i), 2n+ 14 + 4i)

and

S(C7+2i) = (− (7n+ 5 + 2i), n+ 1, 5n− i,
4n+ 7 + i, n, 6n+ 9 + 2i,−1,−(2n+ 14 + 4i), 0).

Column n+1
2

. The are three ad hoc values plus the elements of the C, D, L, P, A and B
diagonals. Namely:

E
(
C n+1

2

)
=

(
n+ 2,−15n− 3

2
,

17n− 1

2
,

19n+ 3

4
,

n,−15n+ 7

4
,

11n+ 5

2
,−13n+ 7

4
,−(3n+ 1)

)
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and

S
(
C n+1

2

)
=

(
n+ 2,−13n− 7

2
, 2n+ 3,

27n+ 15

4
,

31n+ 1

4
, 4n+ 2,

19n+ 9

2
, 3n+ 1, 0

)
.

Column n+3
2

to n − 2. We have to distinguish two cases, depending on the parity of the
column c. If c is odd, then write c = n+3

2 + 2i where i ∈ [0, n−74 ]. It is not hard to
see that from the E, I, C, D, O, J, R, A and B diagonal cells we get:

E
(
C n+3

2 +2i

)
=

(
− (2n− 4i), 2n− 1− 4i,−15n− 1

2
− 2i,

17n+ 1

2
+ 2i,

17n+ 9

4
+ i,

n− 3

2
− 2i,−19n− 1

4
+ i,

11n+ 7

2
+ 2i,−13n+ 9

2
− 2i,

)
and

S
(
C n+3

2 +2i

)
=

(
− (2n− 4i),−1,−15n+ 1

2
− 2i,

n,
21n+ 9

4
+ i,

23n+ 3

4
− i, n+ 1,

13n+ 9

2
+ 2i, 0

)
.

If c is even, then write c = n+5
2 + 2i where i ∈ [0, n−114 ]. It is not hard to see that

from the E, I, C, D, Q, J, P, A and B diagonal cells we get:

E
(
C n+5

2 +2i

)
=

(
−(2n− 2− 4i), 2n− 3− 4i,−15n+ 1

2
− 2i,

17n+ 3

2
+ 2i,

13n+ 17

4
+ i,

n− 5

2
− 2i,−15n+ 3

4
+ i,

11n+ 9

2
+ 2i,−13n+ 11

2
− 2i

)
and

S
(
C n+5

2 +2i

)
=

(
−(2n− 2− 4i),−1,−15n+ 3

2
, n,

17n+ 17

4
+ i,

19n+ 7

4
− i, n+ 1,

13n+ 11

2
+ 2i, 0

)
.

Column n − 1. There are two ad hoc values plus the elements of the A, B, E, I, C, D and
Q diagonals. Namely:

E(Cn−1) =

(
6n+ 1,−(7n+ 2),−(n+ 5), n+ 4,

− (8n− 3), 9n− 2,
7n+ 5

2
,−n− 1

2
,−(3n+ 2)

)
and

S(Cn−1) =

(
6n+ 1,−(n+ 1),−(2n+ 6),

− (n+ 2),−(9n− 1),−1,
7n+ 3

2
, 3n+ 2, 0

)
.
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Column n. There are four ad hoc values plus the elements of the A, B, E, C and D diago-
nals. Namely:

E(Cn) = (−(5n+1), 6n+2,−(7n+3),−(n+3), n+1,−(8n−2), 9n−1, 5n+2, 1)

and

S(Cn) = (− (5n+ 1), n+ 1,−(6n+ 2),−(7n+ 5),

− (6n+ 4),−(14n+ 2),−(5n+ 3),−1, 0).

Finally, we consider the support of A:

supp(A) = {1} ∪
[
2, n−32

]
(J)
∪ {n−12 } ∪

[
n+1
2 , n− 2

]
(G)

∪ {n− 1, n, n+ 1, n+ 2} ∪ [n+ 3, 2n](E∪I) ∪ [2n+ 2, 3n− 1](F∪H)

∪ {3n, 3n+ 1, 3n+ 2, 3n+ 3} ∪
[
3n+ 4, 13n+13

4

]
(K)

∪
[
13n+17

4 , 7n+5
2

]
(Q)
∪
[
7n+7

2 , 15n+7
4

]
(P)
∪
[
15n+11

4 , 4n+ 1
]
(N)

∪
[
4n+ 3, 17n+5

4

]
(M)
∪
[
17n+9

4 , 9n+1
2

]
(O)
∪
[
9n+3

2 , 19n−14

]
(R)

∪
[
19n+3

4 , 5n
]
(L)
∪ {5n+ 1, 5n+ 2} ∪ [5n+ 3, 6n+ 2](A)

∪ [6n+ 4, 7n+ 3](B) ∪ [7n+ 4, 8n+ 3](C) ∪ [8n+ 5, 9n+ 4](D)

= [1, 9n+ 4] \ {2n+ 1, 4n+ 2, 6n+ 3, 8n+ 4}.

This concludes the proof.

Example 4.9. Following the proof of Proposition 4.8 we obtain the integer globally simple
H9(15; 9) given in Figure 4.

Lemma 4.10. For any n ≡ 7 (mod 14) such that n ≥ 21, write r = n−7
2 . Let An be a 9-

diagonal array whose filled diagonals are D1, D2, . . . , D7, Dr+7 and Dr+8. Then (R, C),
whereR = (1, 1, . . . , 1) and C = (−1, . . . ,−1︸ ︷︷ ︸

8

, 1, 1, . . . , 1), is a solution of P (An).

Proof. For any i ∈ [1, 7]∪ {r+ 7, r+ 8} set Di = (di,1, di,2, di,3, . . . , di,n), where di,1 is
the position [i, 1] of An. Also, we set

Ai = di,8, di,9, di,10, . . . , di,n;

Bi = d1,i, d1,i+r, d1,i+2r, . . . , d1,i+ 2r
7 r

;

Ci = dr+7,i, dr+7,i+r, dr+7,i+2r, . . . , dr+7,i+ 2r
7 r

;

D1 = d1,1, d1,1+r, d1,1+2r, . . . , d1,1+( 2r
7 −2)r

;

D2 = d1,8, d1,8+r;

E1 = dr+7,1, dr+7,1+r, dr+7,1+2r, . . . , dr+7,1+( 2r
7 −2)r

;

E2 = dr+7,8, dr+7,8+r.
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Figure 4: An integer globally simple H9(15; 9).
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To aid in the proof, at the webpage

http://anita-pasotti.unibs.it/Publications.html,

we give a schematic picture of where each of these sequences fills cells. By a direct check,
one can verify that

LR,C(d6,8) = (A6, d4,1, d2,2, dr+8,3, d7,4, d5,5, d3,6,B7,C7, d6,7,

A4, d2,1, dr+8,2, d7,3, d5,4, d3,5,B6,C6, d6,6, d4,7,

A2, dr+8,1, d7,2, d5,3, d3,4,B5,C5, d6,5, d4,6, d2,7,

Ar+8, d7,1, d5,2, d3,3,B4,C4, d6,4, d4,5, d2,6, dr+8,7,

A7, d5,1, d3,2,B3,C3, d6,3, d4,4, d2,5, dr+8,6, d7,7,

A5, d3,1,B2,C2, d6,2, d4,3, d2,4, dr+8,5, d7,6, d5,7,

A3,D1,E2, d6,1, d4,2, d2,3, dr+8,4, d7,5, d5,6, d3,7,D2,E1).

Hence, it is easy to see that LR,C(d6,8) covers all the filled cells of An.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The result follows from Theorem 3.4, once we have proved the
existence of a relative Heffter array with compatible simple orderings ωr and ωc.

(1): For any n odd, a Hn(n; 3) and a H2n(n; 3) are constructed in Propositions 4.1
and 4.3, respectively. Clearly these are globally simple Heffter arrays. Since they are
cyclically 3-diagonal their compatibility follows from [13, Proposition 3.4].

(2): Let n ≡ 3 (mod 4). A H3(n; 3) and a H5(n; 5) are constructed in [15, Proposi-
tions 5.1 and 5.5], respectively. As before these are globally simple Heffter arrays and since
they are cyclically 3-diagonal and 5-diagonal, respectively, their compatibility follows from
[13, Proposition 3.4]. A globally simple H7(n; 7) is given in Proposition 4.6. Since this
is cyclically 7-diagonal its compatibility follows from [13, Propositions 3.4 and 3.6]. Fi-
nally, a globally simple H9(n; 9) is given in Proposition 4.8. Since this is 9-diagonal with
width n−9

2 , if gcd
(
n, n−72

)
= gcd(n, 7) = 1 its compatibility follows from [12, Proposi-

tion 4.19]. If gcd(n, 7) 6= 1 the result follows from Lemma 4.10.

5 Archdeacon arrays
In this section we introduce a further generalization of the concept of Heffter array. In
particular we will consider p.f. arrays where the number of filled cells in each row and in
each column is not fixed.

Definition 5.1. An Archdeacon arrayA over an abelian group (G,+) is anm×n p.f. array
with elements in G, such that:

(a) E(A) is a set;

(b) for every g ∈ G, g ∈ E(A) implies −g 6∈ E(A);

(c) the elements in every row and column sum to 0.

An example of this kind of arrays will be given in Figure 5. We note that, in the special
case G = Zv , ±E(A) = Zv \ J where J is a subgroup of Zv and all the rows (resp.
columns) have the same number of filled cells, we meet again the definition of a relative
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Heffter array. The purpose of this section is to show how Archdeacon arrays can be used
in order to obtain biembeddings and orthogonal cycle decompositions. First of all we need
a generalization of [7, Proposition 2.6], stated by Buratti in [6, Theorem 3.3]. All the well
known concepts about the differences method can be found in [6, 15].

Theorem 5.2. Let G be an additive group and B be a set of cycles with vertices in G. If
the list of differences of B is a set, say Λ, then B is a set of base cycles of a G-regular cycle
decomposition of Cay[G : Λ].

Generalizing Proposition 2.1, an Archdeacon array can be used to obtain regular cycle
decompositions of Cayley graphs as follows.

Proposition 5.3. Let A be an m×n Archdeacon array on an abelian group G with simple
orderings ωr = ωR1

◦ · · · ◦ ωRm
for the rows and ωc = ωC1

◦ · · · ◦ ωCn
for the columns.

Then:

(1) Bωr
= {S(ωRi

) | i ∈ [1,m]} is a set of base cycles of a G-regular cycle decompo-
sition Dωr

of Cay[G : ±E(A)];

(2) Bωc
= {S(ωCj

) | j ∈ [1, n]} is a set of base cycles of a G-regular cycle decomposi-
tion Dωc

of Cay[G : ±E(A)];

(3) the cycle decompositions Dωr
and Dωc

are orthogonal.

Proof. (1): Since the ordering ωr is simple the elements of Bωr
are cycles of lengths

|E(R1)|, . . . , |E(Rm)| and by definition of partial sums the list of differences of S(ωRi
)

is ±E(Ri), for any i ∈ [1,m]. Hence, the list of differences of Bωr
is ±E(A) and so the

thesis follows from Theorem 5.2. Obviously, (2) can be proved in the same way. Note that,
in general, the cycles of Bωr and those of Bωc have different lengths. (3) follows from the
requirement that the elements of ±E(A) are pairwise distinct.

Moreover the pair of cycles decompositions obtained from an Archdeacon array can be
biembedded under the same hypothesis of Theorem 3.4. In fact, within the same proof, we
have that:

Theorem 5.4. Let A be an Archdeacon array on an abelian group G that is simple with
respect to two compatible orderings ωr and ωc. Then there exists a biembedding of the
G-regular cycle decompositions Dω−1

r
and Dωc

of Cay[G : ±E(A)] into an orientable
surface.

We observe that if an Archdeacon array has no empty rows/columns, then a necessary
condition for the existence of compatible orderings is | skel(A)| ≡ m + n − 1 (mod 2).
This can be proved with the same proof of [11, Theorem 1.1] and of [12, Theorem 2.7].

Finally, as an easy consequence of Theorem 5.4, we obtain the relationship between the
Crazy Knight’s Tour Problem and globally simple Archdeacon arrays.

Corollary 5.5. Let A be a globally simple Archdeacon array on an abelian group G such
that P (A) admits a solution (R, C). Then there exists a biembedding of theG-regular cycle
decompositions Dω−1

r
and Dωc

of Cay[G : ±E(A)] into an orientable surface.
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Given twom×n p.f. arraysA andB defined on abelian groupsG1 andG2, respectively,
we define their direct sum A ⊕ B as the m × n p.f. array E whose skeleton is skel(A) ∪
skel(B) and whose entries in G1 ⊕G2 are so defined:

E[i, j] =


(A[i, j], B[i, j]) if (i, j) ∈ skel(A) ∩ skel(B),

(A[i, j], 0G2) if (i, j) ∈ skel(A) \ skel(B),

(0G1 , B[i, j]) if (i, j) ∈ skel(B) \ skel(A).

In the following we will denote by Ri(A) and Cj(A) the i-th row and the j-th column
of A, respectively.

Lemma 5.6. Let A and B be m × n globally simple p.f. arrays over abelian groups G1

and G2, respectively, such that:

(1) for any i ∈ [1,m] for which the i-th rows of A and B are both nonempty, we have
skel(Ri(A)) ∩ skel(Ri(B)) 6= ∅;

(2) for any j ∈ [1, n] for which the j-th columns ofA andB are both nonempty, we have
skel(Cj(A)) ∩ skel(Cj(B)) 6= ∅;

(3) the elements in every nonempty row/column of both A and B sum to zero.

Then A⊕B is a globally simple p.f. array, whose nonempty rows and columns sum to zero.

Proof. Since the elements in every nonempty row and column of both A and B sum to
zero, the same holds for A⊕B.

Let us suppose, by contradiction, that there exists a row (resp. a column) Ri of A⊕ B
that is not simple with respect to the natural ordering. Then there would be a subsequence
L of consecutive elements of Ri that sum to zero. Denoted by L1 the subsequence of the
first coordinates of L (ignoring the zeros) and by L2 the one of the second coordinates,
we have that both L1 and L2 sums to zero. Since both Ri(A) and Ri(B) are simple with
respect to the natural ordering, it follows that either L1 = ∅ (we are ignoring zeros) or
L1 = E(A). Similarly, for Ri(B). If L1 = ∅, then L2 = E(Ri(B)) and hence L is E(Ri).
Similarly, if L2 = ∅. Finally, if L1 and L2 are both nonempty, the only possibility is that
L = E(Ri) since skel(Ri(A)) ∩ skel(Ri(B)) 6= ∅.

Proposition 5.7. Let A be an Archdeacon array over an abelian group G1 and let B be a
p.f. array of the same size defined over an abelian group G2. Suppose that the hypotheses
of Lemma 5.6 are satisfied, that E(A ⊕ B) is a set and that if (0G1

, x) ∈ E(A ⊕ B), then
(0G1

,−x) 6∈ E(A⊕B). Then A⊕B is a globally simple Archdeacon array over G1⊕G2.

Proof. By Lemma 5.6, E = A⊕B is a globally simple p.f. array whose rows and columns
sum to zero. We now show that condition (b) of Definition 5.1 holds. Suppose that g =
(g1, g2) ∈ G1⊕G2 belongs to E(E). Then, either g1 ∈ E(A) or g1 = 0G1 . In the first case,
−g1 6∈ E(A) and so −g = (−g1,−g2) 6∈ E(E). If g1 = 0G1 , then (0G1 ,−g2) 6∈ E(E) by
hypothesis, proving the statement.

Now we consider the m × n p.f. array Bm,n,d(i1, i2; j1, j2) over Zd which has only
four nonempty cells: those in positions (i1, j1), (i2, j2) that we fill with +1 and those in
positions (i2, j1), (i1, j2) that we fill with −1. The following result is a consequence of
Proposition 5.7.
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Corollary 5.8. Let k < n and let us suppose there exists a globally simple cyclically k-
diagonal Ht(n; k), say A, whose filled diagonals are D1, . . . , Dk. Then considering the
array B = Bn,n,d(1, 2; 1, 2), where d > 2, we have that E = A ⊕ B is a globally simple
Archdeacon array over the group Z2nk+t ⊕ Zd.

We know that there exists a (globally simple) cyclically 3-diagonal Ht(n; 3) in each of
the following cases:

(1) t ∈ {1, 2} and n ≡ 0, 1 (mod 4), see [4, Theorems 3.4 and 3.9];

(2) t = 3 and n ≡ 0, 3 (mod 4), see [15, Propositions 5.1 and 5.3];

(3) t = n and n is odd, see Proposition 4.1;

(4) t = 2n and n is odd, see Proposition 4.3.

Therefore in these cases, we can apply Corollary 5.8: for any d ≥ 3 there exists a globally
simple Archdeacon array E of size n ≥ 4 defined over Z6n+t ⊕ Zd whose skeleton is
D1 ∪D2 ∪D3 ∪ {(1, 2)}.

Moreover, because of [12, Proposition 5.9], there exists a solution of P (E) whenever
n is also even. In those cases we have a biembedding of Cay[Z6n+t ⊕ Zd : ±E(E)] in an
orientable surface whose faces classes contain triangles and exactly one quadrangle.

As example of such construction, in Figure 5 we give a globally simple Archdeacon
array over Z51 ⊕ Zd, where d ≥ 3.

(−9, 1) (0,−1) (16, 0) (−7, 0)

(−3,−1) (−22, 1) (25, 0)

(12, 0) (1, 0) (−13, 0)

(21, 0) (2, 0) (−23, 0)

(11, 0) (8, 0) (−19, 0)

(15, 0) (5, 0) (−20, 0)

(14, 0) (−4, 0) (−10, 0)

(24, 0) (−6, 0) (−18, 0)

Figure 5: An Archdeacon array over Z51 ⊕ Zd.

We recall that the existence of a (globally simple) cyclically 4-diagonal Ht(n; 4) for any
n and t ∈ {1, 2, 4} has been proved in [17, Theorem 2.2] and [15, Proposition 4.9]. There-
fore, for any d ≥ 3, because of Corollary 5.8 there exists a globally simple Archdeacon
array E of size n ≥ 4 over Z8n+t ⊕ Zd whose skeleton is D1 ∪D2 ∪D3 ∪D4 ∪ {(1, 2)}.

Moreover, because of [12, Proposition 5.13], there exists a solution of P (E) whenever
n 6≡ 0 (mod 3). In these cases we have a biembedding of Cay[Z8n+t ⊕ Zd : ±E(E)] in
an orientable surface whose faces classes contain quadrangles and exactly one pentagon.

An example of such construction is given in Figure 6 where we provide a globally
simple Archdeacon array over Z60 ⊕ Zd, where d ≥ 3.
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(25, 1) (0,−1) (1, 0) (−8, 0) (−18, 0)

(−19,−1) (26, 1) (2, 0) (−9, 0)

(−10, 0) (−20, 0) (27, 0) (3, 0)

(4, 0) (−11, 0) (−21, 0) (28, 0)

(5, 0) (−12, 0) (−22, 0) (29, 0)

(6, 0) (−13, 0) (−16, 0) (23, 0)

(7, 0) (−14, 0) (−17, 0) (24, 0)

Figure 6: An Archdeacon array over Z60 ⊕ Zd.
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Abstract

In a graph G, a geodesic between two vertices x and y is a shortest path connecting x
to y. A subset S of the vertices of G is in general position if no vertex of S lies on any
geodesic between two other vertices of S. The size of a largest set of vertices in general
position is the general position number that we denote by gp(G). Recently, Ghorbani et
al. proved that for any k if n ≥ k3 − k2 + 2k − 2, then gp(Knn,k) =

(
n−1
k−1
)
, where

Knn,k denotes the Kneser graph. We improve on their result and show that the same
conclusion holds for n ≥ 2.5k − 0.5 and this bound is best possible. Our main tools are a
result on cross-intersecting families and a slight generalization of Bollobás’s inequality on
intersecting set pair systems.

Keywords: General position problem, Kneser graphs, intersection theorems.
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1 Introduction
A recently studied extremal problem [4, 6, 12] in graph theory is the following. In a graph
G, a geodesic between two vertices x and y is a shortest path connecting x to y. We say that
a subset S of the vertices of G is in general position if no vertex of S lies on any geodesic
between two other vertices of S. The size of a largest set of vertices in general position
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is the general position number which we denote by gp(G). Our graph of interest in this
paper is the Kneser graph Knn,k whose vertex is

(
[n]
k

)
, the set of all k-element subsets of

the set [n] = {1, 2, . . . , n} and two k-subsets S and T are joined by an edge if and only
if S ∩ T = ∅. Ghorbani et al. [10] determined gp(Knn,2) and gp(Knn,3) for all n and
showed that for any fixed k if n is large enough, then gp(Knn,k) =

(
n−1
k−1
)

holds.

Theorem 1.1 ([10]). Let n, k ≥ 2 be integers with n ≥ 3k − 1. If for all t, where
2 ≤ t ≤ k, the inequality kt

(
n−t
k−t
)
+ t ≤

(
n−1
k−1
)

holds, then gp(Knn,k) =
(
n−1
k−1
)
.

For fixed k and t = 2 the above inequality is satisfied when n ≥ k3 − k2 + 2k − 1
holds. We improve on this and the main result of this note is the following.

Theorem 1.2. If n, k ≥ 4 are integers with n ≥ 2k + 1, then gp(Knn,k) ≤
(
n−1
k−1
)

holds.
Moreover, if n ≥ 2.5k − 0.5, then we have gp(Knn,k) =

(
n−1
k−1
)
, while if 2k + 1 ≤ n <

2.5k − 0.5, then gp(Knn,k) <
(
n−1
k−1
)

holds.

The threshold n ≥ 2.5k − 0.5 comes from the fact that diam(Knn,k) ≤ 3 holds if and
only if this inequality is satisfied. The proof of Theorem 1.1 uses the following general
result of Anand et al. [2] that characterizes vertex subsets in general position.

Theorem 1.3 ([2]). If G is a connected graph, then a subset S of the vertices of G is in
general position if and only if all the components S1, S2, . . . , Sh of G[S] are cliques in G
and

• for any 1 ≤ i < j ≤ h and si, s′i ∈ Si, sj , s′j ∈ Sj we have d(si, sj) = d(s′i, s
′
j) =:

d(Si, Sj) (where d(x, y) denotes the distance of x and y in G),

• d(Si, Sj) 6= d(Si, Sl) + d(Sl, Sj) for any 1 ≤ i, j, l ≤ h.

In Kneser graphs a clique corresponds to a family F ⊆
(
[n]
k

)
of pairwise disjoint sets.

There is no edge between different components of any general position set S. It follows
that if F1,F2, . . . ,Fh correspond to the components of G[S], then for any Fi ∈ Fi and
Fj ∈ Fj with i 6= j we have Fi ∩ Fj 6= ∅. Families with this property are called cross-
intersecting. So the upper bound in Theorem 1.2 will follow from the next result unless
n = 2k + 1 in which case we will need some further reasonings.

Theorem 1.4. Let n ≥ 2k + 2, k ≥ 4 and let F1,F2, . . . ,Fh ⊆
(
[n]
k

)
such that

• Fi ∩ Fj = ∅ for all 1 ≤ i < j ≤ h,

• Fi ∩ F ′i = ∅ for all pairs of distinct sets Fi, F ′i ∈ Fi for any i = 1, 2, . . . , h,

• Fi ∩ Fj 6= ∅ for any 1 ≤ i < j ≤ j and any Fi ∈ Fi, Fj ∈ Fj

hold. Then we have
∑h
i=1 |Fi| ≤

(
n−1
k−1
)
.

Note that the first condition cannot be omitted as otherwise we could repeat some fam-
ilies that consist of a single set.

The remainder of the paper is organized as follows: Section 2 contains the proof of
Theorem 1.4 and in Section 3 we list some open problems along with some remarks.
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2 Proofs
Proof of Theorem 1.4. Let F1,F2, . . . ,Fh ⊆

(
[n]
k

)
satisfy the conditions of the theorem.

As the Fi’s are families of pairwise disjoint sets, each of them are of size at most n/k and
we may assume that |F1| ≤ |F2| ≤ · · · ≤ |Fh| =: t ≤ n/k. If t = 1, then F = ∪hi=1Fi
form an intersecting family and therefore by the celebrated theorem of Erdős, Ko and Rado
[5] we have

∑h
i=1 |Fi| = h ≤

(
n−1
k−1
)
.

Suppose next that t ≥ 2 holds. Then we claim h ≤
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1. Indeed, let

us fix one set Fi from each Fi for i = 1, 2, . . . , h− 1 and two sets Fh, F ′h ∈ Fh. Hence if

• | ∩h−1i=1 Fi| ≥ 2, then h− 1 ≤
(
n−2
k−2
)
<
(
n−1
k−1
)
−
(
n−k−1
k−1

)
,

• ∩h−1i=1 Fi consists of a single element x, then either Fh or F ′h cannot contain x and as
all Fi’s meet both Fh and F ′h we must have h− 1 ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
,

• ∩h−1i=1 Fi = ∅, then {F1, F2, . . . , Fh−1, Fh} is intersecting with no common elements,
and a result of Hilton and Milner [11] states that families with this property can have
size at most

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1, so we obtain h ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1.

Let mi denote the number of j’s such that |Fj | ≥ i holds. Then clearly we have

h∑
i=1

|Fi| = h+

t∑
j=2

mj ≤ h+
(n
k
− 1
)
m2. (2.1)

To boundm2 we apply Bollobás’s famous inequality [3] that states that if {(A1, B1)}li=1

are pairs of disjoint sets such that for any 1 ≤ i 6= j ≤ l we have Ai ∩ Bj 6= ∅, then∑l
i=1

1

(|Ai|+|Bi|
|Ai|

)
≤ 1 holds. For any 1 ≤ i ≤ m2 we can pick two sets Fi, Gi ∈ Fh−m2+i.

Then we can define 2m2 pairs {(Aj , Bj)}2m2
j=1 such that for 1 ≤ j ≤ m2 we have Aj =

Fj , Bj = Gj and A2m2−j = Gj , B2m2−j = Fj . As the Fi’s are cross-intersecting fami-
lies of disjoint sets, therefore the pairs {(Aj , Bj)}2m2

j=1 satisfy the conditions of Bollobás’s
inequality and we obtain 2m2

(2kk )
≤ 1 and thus m2 ≤ 1

2

(
2k
k

)
=
(
2k−1
k−1

)
. Putting together (2.1)

and the bounds on h and m2 we obtain

h∑
i=1

|Fi| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 +

n− k
k

(
2k − 1

k − 1

)
.

Therefore it is enough to prove
(
n−k−1
k−1

)
> n−k

k

(
2k−1
k−1

)
. Observe that(

n−k
k−1
)(

n−k−1
k−1

) =
n− k

n− 2k + 1
≥ n− k + 1

n− k
=

n−k+1
k

(
2k−1
k−1

)
n−k
k

(
2k−1
k−1

) ,

therefore if
(
n0−k−1
k−1

)
> n0−k

k

(
2k−1
k−1

)
holds for some n0, then

(
n−k−1
k−1

)
> n−k

k

(
2k−1
k−1

)
holds for n ≥ n0. Putting n0 = 3k + 2 the above inequality is equivalent to

k

k−2∏
i=0

(2k + 1− i) > (2k + 2)

k−2∏
i=0

(2k − 1− i)
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which simpifies to
k(2k + 1)2k > (2k + 2)(k + 2)(k + 1).

This holds for k ≥ 5 and a similar calculation shows that if k = 4, then the desired
inequality holds if n ≥ 17 = 4k + 1.

In all missing cases, except for k = 4, n = 16, we have n < 4k, therefore we have
mj = 0 for all j ≥ 4. So for the remaining pairs n and k, we need to strengthen our bound
on m2 + m3. We will need the following lemma, a slight generalization of Bollobás’s
result.

Lemma 2.1. Let {Ai, Bi}αi=1 and {Aj , Bj , Cj}βj=α+1 be pairs and triples of pairwise
disjoint sets such that for any 1 ≤ i < j ≤ α + β we have Xi ∩ Yj 6= ∅ where X and Y
can be any of A,B and C. Then the following inequality holds:

α+β∑
i=1

2(|Ai|+|Bi|
|Ai|

) + β∑
j=1

(
2(|Aα+j |+|Cα+j |

|Aα+j |
) + 2(|Bα+j |+|Cα+j |

|Bα+j |
)

− 2(|Aα+j |+|Bα+j |+|Cα+j |
|Aα+j |

) − 2(|Aα+j |+|Bα+j |+|Cα+j |
|Bα+j |

)) ≤ 1.

Proof. Let us define M to be
⋃α
i=1(Ai ∪ Bi) ∪

⋃β
j=1(Aα+j ∪ Bα+j ∪ Cα+j) and let

us write |M | = m. Just as before, let us introduce a family {Si, Ti}2(α+β)i=1 of disjoint
pairs as Si = Ai, Ti = Bi and S2(α+β)−j = Bj , T2(α+β)−j = Aj for all 1 ≤ i, j ≤
α + β. We count the pairs (π, j) such that π is a permutation of the elements of M and
1 ≤ j ≤ 2(α + β) with all elements of Sj preceding all elements of Tj in π that is
max{πi−1(s) : s ∈ Sj} < min{π−1(t) : t ∈ Tj}. We denote this by Sj <π Tj . For
every fixed j there exist exactly |Sj |!|Tj |!(m−|Sj |− |Tj |)!

(
m

|Sj |+|Tj |
)

permutations π with
Sj <π Tj . On the other hand for any fixed π there exists at most one j with Sj <π Tj .
Indeed, if i 6= j, 2(α + β) − j, then both Si and Ti meet both Sj and Tj , while clearly if
Sj <π Tj , then S2(α+β)−j = Tj 6<π Sj = T2(α+β)−j . These observations would yield
Bollobás’s original inequality, but we haven’t used the existence of the Cj’s. Observe that
if Aj <π Cj , Cj <π Aj , Bj <π Cj or Cj <π Bj , then again by the cross-intersecting
property (π, i) can be a pair counted only if i = j or i = 2(α + β)− j and at least one of
Ai <π Bi ∪ Ci, Bi ∪ Ci <π Ai, Ci ∪ Bi <π Ai, Ci ∪ Ai <π Bi holds. Counting j and
2(α+ β)− j cases together this yields

α+β∑
j=1

2|Aj |!|Bj |!(m− |Aj | − |Bj |)!
(

m

|Aj |+ |Bj |

)

≤ m!−
α+β∑
j=1

2

[
|Aj |!|Cj |!(m− |Aj | − |Cj |)!

(
m

|Aj |+ |Cj |

)

+ |Bj |!|Cj |!(m− |Cj | − |Bj |)!
(

m

|Cj |+ |Bj |

)]
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+

β∑
j=1

2|Aα+j |!(|Bα+j |+ |Cα+j |)!(m− |Aα+j | − |Bα+j |

− |Cα+j |)!
(

m

|Aα+j |+ |Bα+j |+ |Cα+j |

)

+

β∑
j=1

2|Bα+j |!(|Aα+j |+ |Cα+j |)!(m− |Aα+j | − |Bα+j |

− |Cα+j |)!
(

m

|Aα+j |+ |Bα+j |+ |Cα+j |

)
Dividing by m! and rearranging yields the statement of the lemma.

We apply Lemma 2.1 to the families Fh−m2+1, . . . ,Fh with β = m3 and α = m2 −
m3. As all sets in the Fi’s are of size k we obtain

2(m2 −m3)(
2k
k

) +
6m3(
2k
k

) − 6m3(
3k
k

) ≤ 1. (2.2)

As
(
3k
k

)
≥ 3

(
2k
k

)
for k ≥ 3, the left hand side of the above equation is greater than

2(m2−m3)

(2kk )
+ 4m3

(2kk )
= 2(m2+m3)

(2kk )
. Therefore we obtain m2 +m3 ≤ 1

2

(
2k
k

)
=
(
2k−1
k−1

)
. So for

n < 4k we have the bound

h∑
i=1

|Fi| ≤ h+m2 +m3 ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 +

(
2k − 1

k − 1

)
. (2.3)

Suppose first that n ≥ 3k holds. Plugging into (2.3) we obtain the upper bound
(
n−1
k−1
)
+1.

To get rid of the extra 1, we need to use the uniqueness part of the Hilton-Milner theorem
[11] that we used to get our bound on h. It states that if k ≥ 4 and an intersecting family
F ⊆

(
[n]
k

)
with ∩F∈FF = ∅ has size

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1, then there exist x ∈ [n] and

x /∈ G ⊆ [n] such that F = {G} ∪ {F : x ∈ F, F ∩ G 6= ∅}. Observe that for any
H 6= G with x /∈ H there exist lots of sets F ∈ F that are disjoint with H , so only sets
H ′ that contain x can be added to the Fj’s. But as all Fj’s consist of pairwise disjoint sets,
such an H ′ can only be added to the Fj containing G. Also, at most one such set can be
added as again this Fj consists of pairwise disjoint sets. We obtained that if t ≥ 2 and
h =

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1, then

∑h
j=1 |Fj | ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 2 <

(
n−1
k−1
)
.

Next, we assume that 2k + 2 ≤ n < 3k. Then we have t ≤ 2 and therefore the family
F ′ := ∪hi=1Fi has the property that for any F ∈ F ′ there exists at most one other G ∈ F ′
that is disjoint with F . Such families are called (≤ 1)-almost intersecting and Gerbner et
al. [8] proved that whenever 2k + 2 ≤ n holds, then any (≤ 1)-almost intersecting family
G ⊆

(
[n]
k

)
has size at most

(
n−1
k−1
)
.

Finally, if n = 16, k = 4, then we need to bound h+m2+m3+m4 ≤ h+m2+2m3 ≤
h+ 2m2 + 3m3. As

(
3k
k

)
=
(
12
4

)
> 6
(
8
4

)
=
(
2k
k

)
, (2.2) implies 2m2 + 3m3 ≤

(
8
4

)
. Using

the Hilton-Milner bound h ≤
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 and plugging in n = 16, we obtain∑h

i=1 |Fi| ≤ h + 2m2 + 3m3 ≤
(
n−1
k−1
)
−
(
11
3

)
+ 1 +

(
8
4

)
<
(
n−1
k−1
)
. This concludes the

proof.
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Proof of Theorem 1.2. Theorem 1.4 shows that Knn,k ≤
(
n−1
k−1
)

holds if n ≥ 2k + 2.
Observe that diam(Knn,k) ≤ 3 if and only if n ≥ 2.5k − 0.5 (see e.g. [16]). Also,
Theorem 1.3 yields that if the diameter of a graph G is at most 3, then any independent set
in G is in general position. The largest independent sets in Knn,k correspond to stars, i.e.
families Sx = {H ∈

(
[n]
k

)
: x ∈ H} for some x ∈ [n]. Therefore, gp(Knn,k) ≥

(
n−1
k−1
)

holds provided n ≥ 2.5k − 0.5.
If 2k+2 ≤ n < 2.5k−0.5, then the upper bound of Theorem 1.4 is based on the result

of Gerbner et al. [8] on (≤ 1)-almost intersecting families. Their result also states that the
only (≤ 1)-almost intersecting families of size

(
n−1
k−1
)

are stars. But if n < 2.5k − 0.5,
then {H ∈

(
[n]
k

)
: 1 ∈ H} is not in general position as shown by the following example:

let n = 2k +M with 1 ≤ M < 0.5k − 0.5 and F1 = [k], F2 = {1, 2, . . . , k −M − 1}
∪ {k + 1, k + 2, . . . , k +M + 1}. We claim that dKnn,k(F1, F2) ≥ 4. Indeed, as C :=
[n]\(F1∪F2) is of size k−1, we have dKnn,k(F1, F2) ≥ 3. SupposeG1, G2 are k-subsets
of [n] with F1 ∩G1 = G1 ∩G2 = ∅. Let us define ` = |G1 ∩ F2|. As G1 is disjoint with
F1, so with F1 ∩ F2, we have ` ≤ M + 1. Therefore |C ∩ G1| ≥ k −M − 1 must hold.
As G2 is disjoint with G1, we obtain |C ∩ G2| ≤ M , but as |F1 \ F2| = M + 1 and
2M + 1 < k, G2 must meet F2, so indeed dKnn,k(F1, F2) ≥ 4 holds. On the other hand,
for any x ∈ F2 \F1 and y, z ∈ F1 \F2, the sets F1, C ∪ {x}, F2 \ {x} ∪ {y}, C ∪ {z}, F2

form a path of length 4, therefore a geodesic with 1 ∈ F2 \ {x} ∪ {z}. This shows that
{H ∈

(
[n]
k

)
: 1 ∈ H} is not in general position. Therefore if 2k + 2 ≤ n < 2.5k − 0.5

holds, then we have gp(Knn,k) <
(
n−1
k−1
)
.

Finally, let us consider the case n = 2k + 1. Again, vertices corresponding to sets
of stars are not in general position and all other independent sets have size smaller than(
n−1
k−1
)
. So suppose F, F ′ are disjoint sets in a family F corresponding to vertices in

general position. Then by Theorem 1.3, for any set G 6= F, F ′ in F we must have
d(G,F ) = d(G,F ′). Observe that in Kn2k+1,k we have d(H,H ′) = min{2(k−|H∩H ′|),
2|H ∩H ′|+ 1}.

Let us first assume that k = 2l + 1 is odd. Then by the above, for any G ∈ F we
must have |G ∩ F | = |G ∩ F ′| = l and the unique element x ∈ [2k + 1] \ (F ∪ F ′) must
belong to G. Therefore, with the notation of the proof of Theorem 1.4, we have m2 = 1
and h ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 and thus |F| ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 2 <

(
n−1
k−1
)
.

Let us assume that k = 2l is even. Then by the above, for any G 6= F, F ′ in F we must
have |G ∩ F | = |G ∩ F ′| = l and thus G ⊆ F ∪ F ′. If we take one set from each disjoint
pair, we obtain a family G ⊆

(
[2k]
k

)
such that any pairwise intersection is of the same size.

By Fisher’s inequality, we obtain that the number m2 of pairs is at most 2k. Moreover,
as all sets of F are k-subsets of [2k], we must have h ≤ 1

2

(
2k
k

)
. Therefore, we need to

show 1
2

(
2k
k

)
+ 2k <

(
2k
k−1
)
=
(
2k
k

)
k
k+1 which is equivalent to 2k(2k+2)

k−1 <
(
2k
k

)
. This holds

for k ≥ 4.

3 Concluding remarks

First of all, it remains an open problem to determine gp(Knn,k) for 2k + 1 ≤ n <
2.5k − 0.5.

Let us finish this short note with two remarks. First observe that an (≤ 1)-almost in-
tersecting family F ⊆

(
[n]
k

)
corresponds to a subset U of the vertices of Knn,k such that

Knn,k[U ] does not contain a path on three vertices. There have been recent developments
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[1, 9, 15] in the general problem of finding the largest possible size of a subset U of the
vertices of Knn,k such that Knn,k[U ] does not contain some fixed forbidden graph F . Note
that independently of the host graph G, if a subset S of the vertices of G is in general posi-
tion, then G[S] cannot contain a path on three vertices as an induced subgraph. Returning
to the Kneser graph Knn,k it would be interesting to address the induced version of the
vertex Turán problems mentioned above.

There have been lots of applications and generalizations of Bollobás’s inequality. Very
recently O’Neill and Verstraëte [13] obtained Bollobás type results for k-tuples. Their con-
dition to generalize disjoint pairs is completely different from the condition of Lemma 2.1.
More importantly pairwise disjoint, cross-intersecting families were introduced by Rényi
[14] as qualitatively independent partitions if the extra condition that ∪F∈FiF = [n] holds
for all 1 ≤ i ≤ h is added, and the uniformity condition |F | = k for all F ∈ ∪hi=1Fi is
replaced by |Fi| = d for all 1 ≤ i ≤ h. Gargano, Körner and Vaccaro proved [7] that
for any fixed d ≥ 2 as n tends to infinity the maximum number of qualitatively indepen-
dent d-partitions is 2(

2
d−o(1))n. Based on their construction, for any fixed d one can obtain

2(2−o(1))k many pairwise disjoint cross-intersecting d-tuples of k-sets as k tends to infinity.
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Abstract

In this paper, we introduce two different generalizations of Schur numbers that involve
rainbow colorings. Motivated by well-known generalizations of Ramsey numbers, we first
define the rainbow Schur number RS (n) to be the minimum number of colors needed
such that every coloring of {1, 2, . . . , n}, in which all available colors are used, contains a
rainbow solution to a+ b = c. It is shown that

RS (n) = blog2(n)c+ 2, for all n ≥ 3.

Second, we consider the Gallai-Schur number GS (n), defined to be the least natural num-
ber such that every n-coloring of {1, 2, . . . ,GS (n)} that lacks rainbow solutions to the
equation a + b = c necessarily contains a monochromatic solution to this equation. By
connecting this number with the n-color Gallai-Ramsey number for triangles, it is shown
that for all n ≥ 3,

GS (n) =

{
5k if n = 2k

2 · 5k if n = 2k + 1.

Keywords: Schur numbers, anti-Ramsey numbers, rainbow triangles, Gallai colorings.

Math. Subj. Class. (2020): 05C55, 05D10, 11B75

1 Introduction
One of the earliest results that falls under the blanket of Ramsey theory is a theorem of
Issai Schur [11] from 1916. In fact, his work predates Frank Ramsey’s foundational paper
[10]. Schur proved that for any n ∈ N, there exists a minimal S(n) ∈ N such that every
n-coloring of the elements in the set {1, 2, . . . , S(n)} contains elements a, b, and c of
the same color such that a + b = c. Such a triple a, b, and c is called a monochromatic
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Schur solution and we note that it is possible that a = b. The number S(n) is called a
Schur number and it is well-known that S(1) = 2, S(2) = 5, S(3) = 14, S(4) = 45
(see Golomb and Baumert [6]). Recently, Heule [7] has shown that S(5) = 161. We note
that some authors define a Schur number to be the largest f(n) ∈ N such that some n-
coloring of {1, 2, . . . , f(n)} lacks a monochromatic Schur solution. It is easily seen that
S(n) = f(n) + 1.

A thorough overview of Schur numbers is given in Landman and Robertson’s book [9]
and in Section 3 of Soifer’s article [12]. Schur’s theorem is interesting from a combinatorial
perspective, but his motivation was a tool for proving that the congruence

xm + ym ≡ zm (mod p)

contains a nontrivial solution when p is a sufficiently large prime (specifically, p > S(n)).
This result had been originally proved by Dickson [4] in 1908 in his attempt to prove
Fermat’s Last Theorem.

In this paper, we adapt some common generalizations of Ramsey numbers that involve
rainbow colorings to Schur numbers. In Section 2, we consider the minimum number of
colors such that every coloring of {1, 2, . . . , n}, using all of the colors, contains a rainbow
Schur solution. This leads us to the definition of the rainbow Schur number RS (n), which
is a Schur number analogue of rainbow numbers (closely related to anti-Ramsey numbers).
The number RS (n) is similar in definition to the number ss(k) defined in [5], but does
not restrict the number of times each color can be used. In Section 3, we restrict ourselves
to colorings of {1, 2, . . . , k} that lack rainbow Schur solutions: a, b, and c with distinct
colors such that a+ b = c. Limiting the colorings in this way leads to the definition of the
Gallai-Schur number GS (n). We provide exact evaluations of both RS (n) and GS (n) and
offer some related open questions for future inquiry.

2 Rainbow Schur numbers
In this section, we consider Schur number analogues of rainbow numbers and anti-Ramsey
numbers (c.f., Chapter 11, Section 4 of [2]). For n ≥ 3, define the rainbow Schur number
RS (n) to be the minimum number of colors such that every coloring of {1, 2, . . . , n},
using all RS (n) colors, contains a rainbow Schur solution: a, b, and c all distinct colors
such that a+ b = c. Observe that a+ b = c is never a rainbow Schur solution when a = b.
As with the case of graphs, the rainbow Schur number is closely related to the anti-Schur
number AS(n), defined to be the maximum number of colors that can be used to color
{1, 2, . . . , n} so that no rainbow Schur solution exists. From these definitions, it follows
that

RS (n) = AS(n) + 1, for all n ≥ 3.

Since determining the values of these two numbers is equivalent, we will focus on RS (n)
for the remainder of this section, beginning with a few small values of n.

Observe that at least three colors are needed to have a rainbow triangle. Using all three
colors to color {1, 2, 3}, we find that 1 + 2 = 3 is rainbow. Thus,

RS (3) = 3.

Next, consider the following 3-coloring of

{1, 2, 3, 4}.
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It is easily checked that no rainbow Schur solutions exist, implying that RS (4) > 3. Of
course, 4-coloring {1, 2, 3, 4} produces a rainbow Schur solution, implying that

RS (4) = 4.

The following 3-coloring does not contain any rainbow Schur solutions:

{1, 2, 3, 4, 5}.

Thus, RS (5) > 3. Now consider a 4-coloring of {1, 2, 3, 4, 5}. If 5 is assigned the same
color as some i < 5, then the coloring induces a 4-coloring of {1, 2, 3, 4}, which necessar-
ily contains a rainbow Schur solution. Otherwise, the color assigned to 5 is not assigned
to any other number. In order to avoid a rainbow Schur solution, 1 and 4 receive the same
color, as do 2 and 3. Since all three remaining colors must be used, either 1 + 4 = 5 or
2 + 3 = 5 must be rainbow. Hence,

RS (5) = 4.

As a crude general bound, note that giving unique colors to the numbers in {1, 2, . . . , n}
necessarily produces a rainbow Schur solution when n ≥ 3. Thus,

RS (n) ≤ n,

proving that RS (n) exists for all n ≥ 3. Suppose that every k-coloring of {1, 2, . . . , n}
contains a rainbow Schur solution, then every (k + 1)-coloring of {1, 2, . . . , n + 1} also
contains a rainbow Schur solution. It follows that

RS (n+ 1) ≤ RS (n) + 1.

If there exists a k-coloring of {1, 2, . . . , n+ 1} that lacks a rainbow Schur solution, then it
induces such a coloring on {1, 2, . . . , n}. Hence,

RS (n) ≤ RS (n+ 1), for all n ≥ 3.

The following lemma will allow us to show that equality holds for most values of n.

Lemma 2.1. Let n ≥ 6 and suppose that RS (n − 1) = k and RS
(
bn2 c

)
≤ k − 1. Then

RS (n) = k.

Proof. Suppose that RS (n − 1) = k and RS
(
bn2 c

)
≤ k − 1 and consider a k-coloring

of {1, 2, . . . , n}. If the color assigned to n is shared with some i < n, then this coloring
induces a k-coloring of {1, 2, . . . , n − 1}, which necessarily contains a rainbow Schur
solution. So, assume that n is assigned a unique color. If n is even, and a rainbow Schur
solution is avoided, then numbers in each of the sets

{1, n− 1}, {2, n− 2}, . . . ,
{n
2
− 1,

n

2
+ 1
}
,
{n
2

}
are colored according to the set they are in. That is, 1 and n − 1 receive the same color, 2
and n− 2 receive the same color, etc. If n is odd, and a rainbow Schur solution is avoided,
then numbers in each of the sets

{1, n− 1}, {2, n− 2}, . . . ,
{
n− 1

2
,
n+ 1

2

}
are colored according to which set they are in. In both cases, we are reduced to considering
a (k − 1)-coloring of

{
1, 2, . . . , bn2 c

}
, which contains a rainbow Schur solution.
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Observe that the colorings that have given us lower bounds for RS (4) and RS (5) have
both had the odd numbers grouped into a single color class (red). This leads us to the
following lemma.

Lemma 2.2. For all k ≥ 2, RS (2k) > k + 1.

Proof. Define the map ϑ2 : N −→ N ∪ {0} by

ϑ2(a) = ` ⇐⇒ 2` | a and 2`+1 - a.

Color the elements of {1, 2, . . . , 2k} according to their images ϑ2(a) ∈ {0, 1, . . . , k}. It
can now be confirmed that this (k + 1)-coloring does not contain any rainbow Schur so-
lutions. Certainly any Schur solution a + b = c in which ϑ2(a) = ϑ2(b) is not rainbow
colored. Now, consider the case in which ϑ2(a) = ` < k = ϑ2(b). Then we can write

a+ b = 2`(e+ f), where e is odd and f is even.

So, ϑ2(a + b) = ` and we see that such a Schur solution is not rainbow colored. We have
produced a (k + 1)-coloring of {1, 2, . . . , 2k} that does not contain any rainbow Schur
solutions. It follows that RS (2k) is greater than k + 1.

Theorem 2.3. For all n ≥ 3, RS (n) = blog2(n)c+ 2.

Proof. Proving this theorem is equivalent to proving that if 2k ≤ n ≤ 2k+1 − 1, then
RS (n) = k + 2 for all n ≥ 3. We have already shown this result to be true for 3 ≤ n ≤ 5.
We proceed by strong induction on n. Suppose that the theorem is true for all n such that
3 ≤ n ≤ m, for some m ≥ 6 and consider the rainbow Schur number RS (m+ 1). There
are two cases to consider.

Case 1: If m+ 1 is not a power of 2, then we can write

2k + 1 ≤ m+ 1 ≤ 2k+1 − 1,

for some k. It follows that m ≤ 2k+1 − 2 and the inductive hypothesis implies that

RS (m) = blog2(m)c+ 2 and RS

(⌊m+ 1

2

⌋)
=
⌊
log2

(⌊m+ 1

2

⌋)⌋
+ 2

=
⌊
log2(m)

⌋
+ 1.

Hence, RS (m+ 1) = blog2(m)c+ 2 by Lemma 2.1.

Case 2: If m+ 1 = 2k for some k > 2, then RS (m) = k + 1 by the inductive hypothesis.
By Lemma 2.2, RS (m + 1) > k + 1. Consider a (k + 2)-coloring of {1, 2, . . . ,m + 1}.
Regardless of the color assigned to m+1, at least k+1 colors are assigned to {1, 2, . . . ,m},
which necessarily contains a rainbow Schur solution. Thus, RS (m + 1) = k + 2, when
m+ 1 = 2k.

3 Gallai-Schur numbers
A Gallai n-coloring of {1, 2, . . . , k} is a coloring that lacks rainbow Schur solutions. For
every n ∈ N, define the Gallai-Schur number GS (n) to be the least positive integer such
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that every Gallai n-coloring of {1, 2, . . . ,GS (n)} contains a monochromatic Schur solu-
tion. It is easily observed that GS (1) = S(1) = 2, GS (2) = S(2) = 5, and

GS (n) ≤ S(n), for all n ≥ 3.

The Gallai-Schur number GS (n) is closely related to the Gallai-Ramsey number grn(3),
defined to be the minimum number of vertices p needed to guarantee that every rainbow-
triangle-free n-coloring of the edges of the complete graph Kp contains a monochromatic
triangle. The following theorem makes this relationship explicit.

Theorem 3.1. For all n ≥ 3, GS (n) ≤ grn(3)− 1.

Proof. Let p = grn(3) and identify the vertices in Kp with {1, 2, . . . , p}. For every
pair of distinct vertices a, b ∈ {1, 2, . . . , p}, color edge ab according to the value of
|b − a| ∈ {1, 2, . . . , p − 1}. If we consider a Gallai n-coloring of Kp, it necessarily
contains a monochromatic triangle. Suppose the vertices of such a triangle are given by
a < b < c. Then setting x = b− a, y = c− b, and z = c− a, it follows that

x+ y = (b− a) + (c− b) = c− a = z

is monochromatic. Also, note that no rainbow Schur solutions exist because if x + y = z
is rainbow, then the triangle with vertices 1, x + 1, and x + y + 1 would be rainbow as
well. Thus, every Gallai n-coloring of {1, 2, . . . , p− 1} produces a monochromatic Schur
solution:

GS (n) ≤ grn(3)− 1,

completing the proof of the theorem.

In 1983, Chung and Graham (see Theorem 1 of [3]) proved a result equivalent to

grn(3) =

{
5k + 1 if n = 2k

2 · 5k + 1 if n = 2k + 1.

Hence, Theorem 3.1 gives

GS (n) ≤

{
5k if n = 2k

2 · 5k if n = 2k + 1.
(3.1)

To find a lower bound for GS (n) when n ≥ 3, we begin with some preliminary exam-
ples. It is straight-foward to check that

{1, 2, 3, 4, 5, 6, 7, 8, 9}

is a Gallai 3-coloring that lacks a monochromatic Schur solution. It follows that GS (3) >
9. Combining this inequality with Theorem 3.1, we find that

GS (3) = 10.

One can also check that

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}
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is a Gallai 4-coloring that lacks a monochromatic Schur solution, which implies GS (4) >
24. Combining this inequality with Theorem 3.1, we find that

GS (4) = 25.

The following theorem offers a general lower bound for GS (n).

Theorem 3.2. The set {1, 2, . . . , grn(3) − 2} can be Gallai n-colored without producing
a monochromatic Schur solution.

Proof. Similar to the proof of Lemma 2.2, define the map ϑ5 : N −→ N ∪ {0} by

ϑ5(a) = ` ⇐⇒ 5` | a and 5`+1 - a.

First, we consider the case in which n = 2k, where n ≥ 4. We will construct a Gallai
n-coloring of S = {1, 2, . . . , 5k − 1} that lacks a monochromatic Schur solution. We start
by partitioning S according to the images of elements under the map ϑ5. This gives us the
following k sets:

S` = {a | ϑ5(a) = `}, where ` = 0, 1, . . . , k − 1.

Each S` is then partitioned into two distinct color classes:

S+
` =

{
a
∣∣∣ ϑ5(a) = ` and

a

5`
≡ ±1 (mod 5)

}
,

S−` =
{
a
∣∣∣ ϑ5(a) = ` and

a

5`
≡ ±2 (mod 5)

}
.

We have now partitioned S into n = 2k color classes. It remains to be shown that such
a coloring lacks both rainbow and monochromatic Schur solutions. We consider several
cases for adding a, b ∈ S.

Case 1: Suppose that a and b receive different colors. Then there exist two subcases.

Subcase 1.1: Assume that ϑ5(a) = ϑ5(b) = `. Since a and b receive different colors,
without loss of generality, it follows that

a

5`
≡ ±1 (mod 5) and

b

5`
≡ ±2 (mod 5).

It follows that ϑ5(a+ b) = `, and hence, either a or b receives the same color as a+ b. So,
this subcase does not produce a rainbow or monochromatic Schur solution.

Subcase 1.2: Without loss of generality, assume that ϑ5(a) = `1 < `2 = ϑ5(b). Then
ϑ5(a+ b) = `1 and

a+ b

5`1
≡ a

5`1
+

b

5`2
· 5`2−`1 ≡ a

5`1
(mod 5).

In this subcase, a and a+b receive the same color, avoiding both a rainbow and monochro-
matic Schur solution.

Case 2: Suppose that a and b receive the same color. Then ϑ5(a) = ϑ5(b) = ` and either

a

5`
≡ ±1 (mod 5) or

b

5`
≡ ±2 (mod 5).



M. Budden: Schur numbers involving rainbow colorings 287

Once again, we consider two subcases.

Subcase 2.1: If ϑ5(a+b) > ϑ5(a) = ϑ5(b), then a+b necessarily receives a color different
than that of a and b.

Subcase 2.2: Suppose that ϑ5(a + b) = ϑ5(a) = ϑ5(b) = `. If a
5`
≡ b

5`
≡ ±1 (mod 5),

then a+b
5`
≡ ±2 (mod 5) and if a

5`
≡ b

5`
≡ ±2 (mod 5), then a+b

5`
≡ ±1 (mod 5).

In all cases, we find that a, b, and a + b never form a rainbow or monochromatic Schur
solution. The same construction also provides a Gallai n-coloring of

S′ = {1, 2, . . . , 2 · 5k − 1}

when n = 2k + 1, and we leave the details to the reader.

Putting together the results of Theorems 3.1 and 3.2, we find that

GS (n) = grn(3)− 1 =

{
5k if n = 2k

2 · 5k if n = 2k + 1.

4 Conclusion
We have shown how extremal results from graph theory can be used to prove related number
theoretic results. Although we have succeeded in providing exact evaluations of GS (n) and
RS (n), the generalizations considered here lead to analogous constructions involving weak
Schur numbers (see [8]) and generalized Schur numbers (see [1]). Such work is reserved
for future inquiry.
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Abstract

A dessin is a 2-cell embedding of a connected 2-coloured bipartite graph into an ori-
entable closed surface. A dessin is regular if its group of orientation- and colour-preserving
automorphisms acts regularly on the edges. In this paper we study regular dessins whose
underlying graph is a complete bipartite graph Km,n, called (m,n)-complete regular des-
sins. The purpose is to establish a rather surprising correspondence between (m,n)-
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of a finite groupA is a bijectionϕ : A→ A that satisfies the identityϕ(xy) = ϕ(x)ϕπ(x)(y)
for some function π : A → Z and fixes the neutral element of A. We show that every
(m,n)-complete regular dessin D determines a pair of reciprocal skew-morphisms of the
cyclic groups Zn and Zm. Conversely, D can be reconstructed from such a reciprocal pair.
As a consequence, we prove that complete regular dessins, exact bicyclic groups with a
distinguished pair of generators, and pairs of reciprocal skew-morphisms of cyclic groups
are all in a one-to-one correspondence. Finally, we apply the main result to determining
all pairs of integers m and n for which there exists, up to interchange of colours, exactly
one isomorphism class of (m,n)-complete regular dessins. We show that the latter occurs
precisely when every group expressible as a product of cyclic groups of order m and n is
abelian, which eventually comes down to the condition gcd(m,φ(n)) = gcd(φ(m), n) =
1, where φ is Euler’s totient function.

Keywords: Regular dessin, bicyclic group, skew-morphism, graph embedding.

Math. Subj. Class. (2020): 05E18, 20B25, 57M15

1 Introduction
A dessin is a cellular embedding i : Γ ↪→ C of a connected bipartite graph Γ, endowed with
a fixed proper 2-colouring of its vertices, into an orientable closed surface C such that each
component of C \ i(Γ) is homeomorphic to the open disc. An automorphism of a dessin is
a colour-preserving automorphism of the underlying graph that extends to an orientation-
preserving self-homeomorphism of the supporting surface. The action of the automorphism
group of a dessin on the edges is well known to be semi-regular; if this action is transitive,
and hence regular, the dessin itself is called regular.

Dessins – more precisely dessins d’enfants – were introduced by Grothendieck in [42]
as a combinatorial counterpart of algebraic curves. Grothendieck was inspired by a theo-
rem of Belyı̌ [3] which states that a compact Riemann surface C, regarded as a projective
algebraic curve, can be defined by an algebraic equation P (x, y) = 0 with coefficients
from the algebraic number field Q̄ if and only if there exists a non-constant meromorphic
function β : C → P1(C), branched over at most three points, which can be chosen to be
0, 1, and ∞. It follows that each such curve carries a dessin in which the black and the
white vertices are the preimages of 0 and 1, respectively, and the edges are the preimages
of the unit interval I = [0, 1]. The absolute Galois group G = Gal(Q̄/Q) has a natural
action on the curves and thus also on the dessins. As was shown by Grothendieck [42], the
action of G on dessins is faithful. More recently, González-Diez and Jaikin-Zapirain [13]
have proved that this action remains faithful even when restricted to regular dessins. It
follows that one can study the absolute Galois group through its action on such simple and
symmetrical combinatorial objects as regular dessins.

In this paper we study regular dessins whose underlying graph is a complete bipartite
graphKm,n, which we call complete regular dessins, or more specifically (m,n)-complete
regular dessins. The associated algebraic curves may be viewed as a generalisation of the
Fermat curves, defined by the equation xn + yn = 1 (see Lang [38]). These curves have
recently attracted considerable attention, see for example [7, 24, 25, 27, 28]. Classification

E-mail addresses: yqfeng@bjtu.edu.cn (Yan-Quan Feng), hukan@zjou.edu.cn (Kan Hu), nedela@savbb.sk
(Roman Nedela), skoviera@dcs.fmph.uniba.sk (Martin Škoviera), wangnaer@zjou.edu.cn (Na-Er Wang)
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of complete regular dessins is therefore a very natural problem, interesting from algebraic,
combinatorial, and geometric points of view.

Jones, Nedela, and Škoviera [23] were first to observe that there is a correspondence
between complete regular dessins and exact bicyclic groups. Recall that a finite group G is
bicyclic if it can be expressed as a product G = AB of two cyclic subgroups A and B; if
the two subgroups are disjoint, that is, if A ∩ B = {1}, the bicyclic group is called exact.
Exact bicyclic groups are, in turn, closely related to skew-morphisms of the cyclic groups.

A skew-morphism of a finite group A is a bijection ϕ : A → A fixing the identity ele-
ment of A and obeying the morphism-type rule ϕ(xy) = ϕ(x)ϕπ(x)(y) for some integer
function π : A → Z. In the case where π is the constant function π(x) = 1, a skew-
morphism is just an automorphism. Thus, skew-morphisms may be viewed as a generali-
sation of group automorphisms. The concept of skew-morphism was introduced by Jajcay
and Širáň as an algebraic tool to the investigation of (orientably) regular Cayley maps. In
the seminal paper [20] they proved that a Cayley map CM(A,X,P ) of a finite group A
is regular if and only if there is a skew-morphism of A such that the restriction of ϕ to
X is equal to P [20, Theorem 1]. Thus the classification problem of regular Cayley maps
of a finite group A is reduced to a problem of determining certain skew-morphisms of A.
The interested reader is referred to [5, 6, 29, 30, 31, 34, 35, 36, 46, 47] for progress in this
direction.

The main purpose of this paper is to establish another surprising connection between
skew-morphisms and complete regular dessins. As we have already mentioned above, ev-
ery (m,n)-complete regular dessin can be represented as an exact bicyclic group factorisa-
tion G = 〈a〉〈b〉 with two distinguished generators a and b of orders m and n, respectively
(see [23]). The factorisation gives rise to a pair of closely related skew-morphisms of cyclic
groups ϕ : Zn → Zn and ϕ∗ : Zm → Zm which satisfy two simple technical conditions
(see Definition 3.2); such a pair of skew-morphisms will be called reciprocal. We prove
that isomorphic complete regular dessins give rise to the same pair of reciprocal skew-
morphisms, which is a rather remarkable fact, because every complete regular dessin thus
receives a natural algebraic invariant.

Even more surprising is the fact that given a pair of reciprocal skew-morphisms
ϕ : Zn → Zn and ϕ∗ : Zm → Zm, one can reconstruct the original complete regular
dessin up to isomorphism. In other words, a pair of reciprocal skew-morphisms of the
cyclic groups constitutes a complete set of invariants for a regular dessin whose underlying
graph is the complete bipartite graph. One can therefore study and classify complete regu-
lar dessins by means of determining pairs of reciprocal skew-morphisms of cyclic groups.
Note that the classification of skew-morphisms of the cyclic groups is a prominent open
problem, see [1, 2, 5, 6, 32, 33] for partial results.

The relationship between complete regular dessins and exact bicyclic groups has an
important implication for the classical classification problem of bicyclic groups in group
theory (see [8, 16, 18, 21]). More precisely, suppose that we are given an exact product
G = AB of two cyclic groups A and B with distinguished generators a ∈ A and b ∈ B.
The corresponding pair of reciprocal skew-morphisms (ϕ,ϕ∗) and associated pair of power
functions (π, π∗) can be alternatively derived from the equations

bax = aϕ(x)bπ(x) and aby = bϕ
∗(y)aπ

∗(y),

and thus encodes the commuting rules within G. By our main result, determining all exact
bicyclic groups with a distinguished generator pair is equivalent to determining all pairs
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of reciprocal skew-morphisms. Thus to describe all exact bicyclic groups it is sufficient to
characterise all pairs of reciprocal skew-morphisms of the cyclic groups.

Our paper is organised as follows. In Section 2 we describe the basic correspondence
between complete regular dessins and exact bicyclic triples (G; a, b), where G is a group
which factorises as G = 〈a〉〈b〉 with 〈a〉 ∩ 〈b〉 = {1}. Given a complete regular dessin D,
its automorphism group G = Aut(D) can be factorised as a product of two disjoint cyclic
subgroups 〈a〉 and 〈b〉 where 〈a〉 is the stabiliser of one black vertex and 〈b〉 is the stabiliser
of one white vertex. The triple (G; a, b) is then an exact bicyclic triple. Conversely, each
exact bicyclic triple (G; a, b) determines a complete regular dessin where the elements of
G are the edges, the cosets of 〈a〉 are black vertices, the cosets of 〈b〉 are white vertices, and
the local rotations at black and white vertices, respectively, correspond to the multiplication
by a and b.

In Section 3 we introduce the concept of a reciprocal skew-morphism and prove the
main result, Theorem 3.5, which establishes the aforementioned correspondence between
complete regular dessins and pairs of reciprocal skew-morphisms of cyclic groups.

An important part of the classification of complete regular dessins is identifying all
pairs of integers m and n for which there exists a unique complete regular dessin up to
isomorphism and interchange of colours. This problem will be discussed in Section 4. In
view of the correspondence between complete regular dessins and pairs of reciprocal skew-
morphisms of cyclic groups, we ask for which integers m and n the only reciprocal pair
of skew-morphisms is the trivial pair formed by the two identity automorphisms. In other
words, we wish to determine all pairs of positive integersm and n that give rise to only one
exact product of cyclic groups Zm and Zm, which necessarily must be the direct product
Zm × Zn. The answer is given in Theorem 4.4 which states that all this occurs precisely
when gcd(m,φ(n)) = gcd(φ(m), n) = 1, where φ is the Euler’s totient function. This
theorem presents six equivalent conditions one of which corresponds to a recent result of
Fan and Li [12] about the existence of a unique edge-transitive orientable embedding of a
complete bipartite graph. While the proof in [12] is based on the structure of exact bicyclic
groups, our proof employs the correspondence theorems established in Section 3.

Theorem 4.4 is a direct generalisation of a result of Jones, Nedela, and Škoviera [23]
where it is assumed that the complete dessin in question admits an external symmetry
swapping the two partition sets. Theorem 4.4 also strengthens the main result of [12] by
extending it to all products of cyclic groups rather than just to those where the intersection
of factors is trivial. In particular, we prove that every group that factorises as a prod-
uct of two cyclic subgroups of orders m and n is abelian if and only if gcd(m,φ(n)) =
gcd(φ(m), n) = 1, where φ is Euler’s totient function. This generalises an old result due to
Burnside which states that every group of order n is cyclic if and only if gcd(n, φ(n)) = 1,
see [41, §10.1].

Finally, in Section 5 we deal with the symmetric case, that is, with the case where the
reciprocal skew-morphism pairs have the form (ϕ,ϕ). In this situation, the corresponding
complete regular dessins admit an additional external symmetry transposing the two parti-
tion sets, and thus are essentially the same thing as orientably regular embeddings of the
complete bipartite graphs Kn,n recently classified in a series of papers [9, 10, 11, 23, 25,
26, 40].
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2 Complete regular dessins
It is well known that every dessin, as defined in the previous section, can be regarded as a
two-generator transitive permutation group acting on a non-empty finite set [24]. Given a
dessin D on an oriented surface C, we can define two permutations ρ and λ on the edge set
of D as follows: For every black vertex v and every white vertex w let ρv and λw be the
cyclic permutations of edges incident with v or w, respectively, induced by the orientation
of C. Set ρ =

∏
v ρv and λ =

∏
w λw, where v and w run through the set of all black

and white vertices, respectively. Since the underlying graph of D is connected, the group
G = 〈ρ, λ〉 is transitive. Conversely, given a transitive permutation group G = 〈ρ, λ〉
acting on a finite set Ω, we can reconstruct a dessin D as follows: Take Ω to be the edge
set of D, the orbits of ρ to be the black vertices, and the orbits of λ to be white vertices,
with incidence being defined by containment. The vertices and edges of D clearly form a
bipartite graph Γ, the underlying graph of D. The underlying graph is connected, because
the action of G on Ω is transitive. The cycles of ρ and λ determine the local rotations
around black and white vertices, respectively, thereby giving rise to a 2-cell embedding of
Γ into an oriented surface. Summing up, we can identify a dessin with a triple (Ω; ρ, λ)
where Ω is a nonempty finite set, and ρ and λ are permutations of Ω such that the group
〈ρ, λ〉 is transitive on Ω; this group is called the monodromy group of D and is denoted by
Mon(D).

Two dessins D1 = (Ω1; ρ1, λ1) and D2 = (Ω2; ρ2, λ2) are isomorphic provided that
there is a bijection α : Ω1 → Ω2 such that αρ1 = ρ2α and αλ1 = λ2α. An isomorphism
of a dessin D to itself is an automorphism of D. It follows that the automorphism group
Aut(D) of D is the centraliser of Mon(D) = 〈ρ, λ〉 in the symmetric group Sym(Ω). As
Mon(D) is transitive, Aut(D) is semi-regular on Ω. If Aut(D) is transitive, and hence
regular on Ω, the dessin D itself is called regular.

Since every regular action of a group on a set is equivalent to its action on itself by
multiplication, every regular dessin can be identified with a triple D = (G; a, b) where G
is a finite group generated by two elements a and b. Given such a triple D = (G; a, b), we
can define the edges of D to be the elements of G, the black vertices to be the left cosets of
the cyclic subgroup 〈a〉, and the white vertices to be the left cosets of the cyclic subgroup
〈b〉. An edge g ∈ G joins the vertices s〈a〉 and t〈b〉 if and only if g ∈ s〈a〉 ∩ t〈b〉. In
particular, the underlying graph is simple if and only if 〈a〉 ∩ 〈b〉 = {1}. The local rotation
of edges around a black vertex s〈a〉 corresponds to the right translation by the generator a,
that is, sai 7→ sai+1 for any integer i. Similarly, the local rotation of edges around a white
vertex t〈b〉 corresponds to the right translation by the generator b, that is, tbi 7→ tbi+1

for any integer i. It follows that Mon(D) can be identified with the group of all right
translations of G by the elements of G while Aut(D) can be identified with the group of
all left translations of G by the elements of G. In particular, Mon(D) ∼= Aut(D) ∼= G for
every regular dessin D.

It is easy to see that two regular dessins D1 = (G1; a1, b1) and D2 = (G2; a2, b2) are
isomorphic if and only if the triples (G1; a1, b1) and (G2; a2, b2) are equivalent, that is,
whenever there is a group isomorphism G1 → G2 such that a1 7→ a2 and b1 7→ b2. Con-
sequently, for a given two-generator group G, the isomorphism classes of regular dessins
D with Aut(D) ∼= G are in a one-to-one correspondence with the orbits of the action of
Aut(G) on the generating pairs (a, b) of G.

Following Lando and Zvonkin [37], for a regular dessin D = (G; a, b) we define its
reciprocal dessin to be the regular dessin D∗ = (G; b, a). Topologically, D∗ arises from D
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simply by interchanging the vertex colours of D. Thus the reciprocal dessin has the same
underlying graph, the same supporting surface, and the same automorphism group as the
original one. Clearly, D∗ is isomorphic to D if and only if G has an automorphism swap-
ping the generators a and b. If this occurs, the regular dessinD will be called symmetric. A
symmetric dessin possesses an external symmetry which transposes the vertex-colours and
thus is essentially the same thing as an orientably regular bipartite map.

In this paper we apply the general theory to regular dessins whose underlying graph is
a complete bipartite graph. A regular dessin D will be called an (m,n)-complete regular
dessin, or simply a complete regular dessin, if its underlying graph is the complete bipartite
graph Km,n whose m-valent vertices are coloured black and n-valent vertices are coloured
white. IfD is an (m,n)-complete regular dessin, then the reciprocal dessinD∗ is an (n,m)-
complete regular dessin. Thus all complete regular dessins appear in reciprocal pairs. Note
that m = n does not necessarily imply that the dessin is symmetric.

Complete regular dessins can be easily described in group theoretical terms: their auto-
morphism group is just an exact bicyclic group. This fact was first observed by Jones et al.
in [23]. A bicyclic group G = 〈a〉〈b〉 with |a| = m and |b| = n will be called an (m,n)-
bicyclic group and (G; a, b) an (m,n)-bicyclic triple. Note that an exact (m,n)-bicyclic
group has precisely mn elements.

The following statement was proved by Jones, Nedela, and Škoviera in [23, Section 2]
under the condition that m = n. However, the same arguments can be used to prove it for
any m and n, so we state it without proof.

Theorem 2.1. A regular dessin D = (G; a, b) is complete if and only if G = 〈a〉〈b〉 is
an exact bicyclic group. Furthermore, the isomorphism classes of (m,n)-complete regular
dessins are in a one-to-one correspondence with the equivalence classes of exact (m,n)-
bicyclic triples.

Example 2.2. For each pair of positive integers m and n there is an exact bicyclic triple
(G; a, b) where

G = 〈a, b | am = bn = [a, b] = 1〉 = 〈a〉 × 〈b〉 ∼= Zm × Zn,

with [a, b] denoting the commutator a−1b−1ab. It is easy to see that this triple is uniquely
determined by the group Zm × Zn up to order of generators and equivalence, so up to
reciprocality this group gives rise to a unique complete regular dessin with underlying
graphKm,n. We call this dessin the standard (m,n)-complete dessin. Ifm = n, the group
G has an automorphism transposing a and b, which implies that in this case the dessin is
symmetric. The corresponding embedding is the standard embedding of Kn,n described in
[23, Example 1]. The associated algebraic curves coincide with the Fermat curves.

3 Reciprocal skew-morphisms
In this section we establish a correspondence between exact bicyclic triples and certain
pairs of skew-morphisms of cyclic groups.

Recall that a skew-morphism ϕ of a finite group A is a bijection A → A fixing the
identity of A for which there exists an associated power function π : A→ Z such that

ϕ(xy) = ϕ(x)ϕπ(x)(y)
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for all x, y ∈ A. It may be useful to realise that π is not uniquely determined by ϕ.
However, if ϕ has order d, then π can be regarded as a function A→ Zd, which is unique.
In the special case where π(x) = 1 for all x ∈ A, ϕ is a group automorphism. In general,
the set {x ∈ A;π(x) = 1} is a subgroup of A, called the kernel of ϕ and denoted by kerϕ.

Skew-morphisms have a number of important properties, sometimes very different from
those of group automorphisms. In our treatment we restrict ourselves to a few basic prop-
erties of skew-morphisms needed in this paper. For a more detailed account we refer the
reader to [5, 20, 32, 45, 48].

The next three properties of skew-morphisms are well known and were proved in [20,
Lemma 2], [19, Lemma 2.1], and [45, Lemma 2.6], respectively.

Lemma 3.1. Let ϕ be a skew-morphism of a finite group A with associated power func-
tion π. Let d be the order of ϕ. Then:

(i) for any two elements x, y ∈ A and an arbitrary positive integer k one has

ϕk(xy) = ϕk(x)ϕσ(x,k)(y) where σ(x, k) =

k∑
i=1

π(ϕi−1(x));

(ii) for every element x ∈ A one has Ox−1 = O−1x , where Ox denotes the orbit of ϕ
containing x;

(iii) for every x ∈ A one has σ(x, d) ≡ 0 (mod d).

LetG be a finite group which is expressible as a productAC of two subgroupsA and C
where C is cyclic and A ∩C = {1}; in this situation we say that C is a cyclic complement
of A. Choose a generator c of C. Since G = AC = CA, for every element x ∈ A we can
write the product cx in the form yck, so

cx = yck

for some y ∈ A and k ∈ Z|c|. Note that both y ∈ A and k ∈ Z|c| are uniquely determined
by x. Thus we can define functions ϕc : A→ A and πc : A→ Z|c| by setting

ϕc(x) = y and πc(x) = k. (3.1)

It is not difficult to verify that ϕc is a skew-morphism of A and πc is an associated power
function (see [4, p. 262] or [5, p. 73]). We call ϕc the skew-morphism induced by c. The
order |ϕc| of this skew-morphism equals the index |〈c〉 : 〈c〉G| where 〈c〉G = ∩g∈G〈c〉g;
see [5, Lemma 4.1]. It follows that the power function πc can be further reduced to a
function A→ Z|ϕc|, still denoted by πc.

We now focus on the particular case G = AB where both A and B are cyclic and
A∩B = {1}, which means that G is an exact bicyclic group. The subgroups A and B can
now be taken as cyclic complements of each other. Therefore a generator a of A induces
a skew-morphism of B and a generator b of B induces a skew-morphism of A. In other
words, every exact bicyclic triple (G; a, b) gives rise to a pair of skew-morphisms, one for
each of the two cyclic subgroups.

Next we show that this pair of skew-morphisms can be characterised by two simple
properties. For this purpose, we need the following definition. We switch to the additive
notation.
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Definition 3.2. A pair (ϕ,ϕ∗) of skew-morphisms ϕ : Zn → Zn and ϕ∗ : Zm → Zm with
power functions π and π∗, respectively, will be called (m,n)-reciprocal if the following
two conditions are satisfied:

(i) |ϕ| divides m and |ϕ∗| divides n,

(ii) π(x) = −ϕ∗−x(−1) and π∗(y) = −ϕ−y(−1) are power functions for ϕ and ϕ∗,
respectively.

If m = n and (ϕ,ϕ∗) is an (n, n)-reciprocal pair of skew-morphisms, it may, but need
not, happen that ϕ = ϕ∗. If it does, then the pair (ϕ,ϕ), as well as the skew-morphism ϕ
itself, will be called symmetric. Note that a skew-morphism ϕ of Zn is symmetric if and
only if |ϕ| divides n and π(x) = −ϕ−x(−1) is a power function of ϕ.

Proposition 3.3. If (G; a, b) is an exact (m,n)-bicyclic triple with 〈a〉 ∼= Zm and 〈b〉 ∼=
Zn, then the pair of induced skew-morphisms (ϕa, ϕb) is an (m,n)-reciprocal pair of skew-
morphisms. If, in addition, G has an automorphism transposing a and b, then ϕa = ϕb
and the pair is symmetric.

Proof. Let ϕ = ϕa and ϕ∗ = ϕb be the skew-morphisms of the cyclic groups Zn and Zm
determined by the identities

abx = bϕ(x)aπ(x) and bay = aϕ
∗(y)bπ

∗(y) (3.2)

where π = πa and π∗ = πb are the power functions associated with ϕ and ϕ∗, respectively,
and the elements x ∈ Zn and y ∈ Zm are arbitrary. As mentioned above, the orders of ϕ
and ϕ∗ coincide with the indices |〈a〉 :

⋂
g∈G〈a〉g| and |〈b〉 :

⋂
g∈G〈b〉g| [5, Lemma 4.1].

Hence |ϕ| divides |〈a〉| = m and |ϕ∗| divides |〈b〉| = n.
By applying induction to the equations (3.2) we get

akbx = bϕ
k(x)aσ(x,k) and blay = aϕ

∗l(y)bσ
∗(y,l),

where

σ(x, k) =
k∑
i=1

π(ϕi−1(x)) and σ∗(y, l) =

l∑
i=1

π∗(ϕ∗i−1(y)).

By inverting these identities we obtain

b−xa−k = a−σ(x,k)b−ϕ
k(x) and a−yb−l = b−σ

∗(y,l)a−ϕ
∗l(y). (3.3)

The first equation of (3.3) with x = −1 and k = −y yields bay = a−σ(−1,−y)b−ϕ
−y(−1),

which we compare with the rule bay = aϕ
∗(y)bπ

∗(y) and get

aϕ
∗(y)bπ

∗(y) = a−σ(−1,−y)b−ϕ
−y(−1).

Consequently π∗(y) = −ϕ−y(−1). Similarly, inserting y = −1 and l = −x into the
second equation of (3.3) we get abx = b−σ

∗(−1,−x)a−ϕ
∗−x(−1), and combining this with

the rule abx = bϕ(x)aπ(x) we derive π(x) = −ϕ∗−x(−1). Hence, the pair (ϕ,ϕ∗) is
(m,n)-reciprocal.

Finally, if G has an automorphism θ transposing a and b, then clearly m = n. By ap-
plying θ to the identity bax = aϕ

∗(x)bπ
∗(x) we obtain abx = θ(bax) = θ(aϕ

∗(x)bπ
∗(x)) =

bϕ
∗(x)aπ

∗(x). If we compare the last identity with the rule abx = bϕ(x)aπ(x) we obtain
ϕ∗ = ϕ, which means that ϕ is a symmetric skew-morphism of Zn, as required.
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We have just shown that every exact (m,n)-bicyclic triple determines an
(m,n)-reciprocal pair of skew-morphisms. Our next aim is to show that the converse is
also true. Let (ϕ,ϕ∗) be an (m,n)-reciprocal pair of skew-morphisms of Zn and Zm with
power functions π and π∗, respectively. For the sake of clarity we relabel the elements of
Zn and Zm by setting

Zn = {0, 1, . . . , (n− 1)} and Zm = {0′, 1′, . . . , (m− 1)′},

so that Zn ∩ Zm = ∅. Let

ρ = (0, 1, . . . , (n− 1)) and ρ∗ = (0′, 1′, . . . , (m− 1)′)

denote the cyclic shifts in Zn and Zm, respectively. We now extend the permutations ϕ, ρ,
ϕ∗, and ρ∗ to the set Zn ∪ Zm in a natural way, and define a permutation group acting on
the set Zm ∪ Zn by

G = 〈a, b〉, where a = ϕρ∗ and b = ϕ∗ρ.

If we regard Zm ∪ Zn as the vertex set of the complete bipartite graph Km,n with natural
bipartition, it becomes obvious that G ≤ Aut(Km,n). The following result shows that G
is in fact isomorphic to the automorphism group of an (m,n)-complete regular dessin.

Proposition 3.4. Given an (m,n)-reciprocal pair of skew-morphisms (ϕ,ϕ∗), the triple
(G; a, b), where a = ϕρ∗ and b = ϕ∗ρ are permutations acting on the disjoint union
Zm∪Zm, is an exact (m,n)-bicyclic triple. Furthermore, for the skew-morphisms induced
by a and b in the triple (G; a, b) we have ϕa = ϕ and ϕb = ϕ∗.

Proof. Let ϕ : Zn → Zn and ϕ∗ : Zm → Zm be an (m,n)-reciprocal pair of skew-
morphisms. The definition of reciprocality requires |ϕ| to divide m and |ϕ∗| to divide
n. Since ϕ, ρ ∈ Sym(Zn) and ϕ∗, ρ∗ ∈ Sym(Zm) where Zm ∩ Zn = ∅, we see that
[ϕ, ρ∗] = 1 and [ϕ∗, ρ] = 1. It follows that the elements a = ϕρ∗ and b = ϕ∗ρ have orders
|a| = m and |b| = n. Further, if x ∈ 〈a〉 ∩ 〈b〉, then ai = x = bj for some integers i and
j, so (ϕρ∗)i = (ϕ∗ρ)j . Thus ϕiρ∗i = ρjϕ∗j , and hence ϕi = ρj and ρ∗i = ϕ∗j . Since
ϕ(0) = 0 and ρ is a full cycle, we have n | j and m | i, and hence x = 1. Therefore
〈a〉 ∩ 〈b〉 = {1}.

Next we show that 〈a〉〈b〉 is a subgroup of G. It is sufficient to verify that 〈a〉〈b〉 =
〈b〉〈a〉. For this purpose we need to show that for all x ∈ Zn and y ∈ Zm there exist
numbers α(x), β(x), α∗(y) and β∗(y) such that the following commuting rules hold:

abx = bα(x)aβ(x) and bay = aα
∗(y)bβ

∗(y). (3.4)

Substituting ϕρ∗ and ϕ∗ρ for a and b we see that the equations in (3.4) are equivalent to
the following four equations:

ϕρx = ρα(x)ϕβ(x), ρ∗ϕ∗x = ϕ∗α(x)ρ∗β(x); (3.5)

ϕ∗ρ∗y = ρ∗α
∗(y)ϕ∗β

∗(y), ρϕy = ϕα
∗(y)ρβ

∗(y). (3.6)

Since ϕ and ϕ∗ are skew-morphisms and π and π∗ are the associated power functions, for
all i ∈ Zn and j ∈ Zm we have

ϕρx(i) = ϕ(x+ i) = ϕ(x) + ϕπ(x)(i) = ρϕ(x)ϕπ(x)(i);

ϕ∗ρ∗y(j) = ϕ∗(y + j) = ϕ∗(y) + ϕ∗π
∗(y)(j) = ρ∗ϕ

∗(y)ϕ∗π
∗(y)(j).
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These equations imply that the first equations in (3.5) and (3.6) hold if we set α(x) = ϕ(x),
β(x) = π(x), α∗(y) = ϕ∗(y) and β∗(y) = π∗(y).

Employing induction, from the first equations in (3.5) and (3.6) we derive that

ϕkρu = ρα
k(u)ϕτ(u,k) and ϕ∗lρ∗v = ρ∗α

∗l(v)τ∗τ
∗(v,l),

where

τ(u, k) =

k∑
i=1

β(αi−1(u)) and τ∗(v, l) =

l∑
i=1

β∗(α∗i−1(v)).

By inverting the identities we obtain

ρ−uϕ−k = ϕ−τ(u,k)ρ−α
k(u) and ρ∗−vϕ∗−l = ϕ∗−τ

∗(v,l)ρ∗−α
∗l(v).

In particular,

ρϕy = ϕ−τ(−1,−y)ρ−α
−y(−1) and ρ∗ϕ∗x = ϕ∗−τ

∗(−1,−x)ρ∗−α
∗−x(−1).

Recall that
β(x) = π(x) = −ϕ∗−x(−1) = −α∗−x(−1)

and
β∗(y) = π∗(y) = −ϕ−y(−1) = −α−y(−1).

Thus the second equations in (3.5) and (3.6) will hold if

α(x) = ϕ(x) ≡ −τ∗(−1,−x) (mod |ϕ∗|)

and
α∗(y) = ϕ∗(y) ≡ −τ(−1,−y) (mod |ϕ|).

Indeed, by Lemma 3.1(iii) we have τ∗(−1, |ϕ∗|) ≡ 0 (mod |ϕ∗|). Since

τ∗(−1, |ϕ∗|) =

|ϕ∗|∑
i=1

β∗(α∗i−1(−1)) =

|ϕ∗|∑
i=1

π∗(ϕ∗i−1(−1))

=

|ϕ∗|−x∑
i=1

π∗(ϕ∗i−1(−1)) +

|ϕ∗|∑
i=|ϕ∗|−x+1

π∗(ϕ∗i−1(−1))

= τ∗(−1,−x) +

x∑
i=1

π∗(ϕ∗−i(−1)) (mod |ϕ∗|),

we obtain

−σ∗(−1,−x) ≡
x∑
i=1

π∗(ϕ∗−i(−1)) (mod |ϕ∗|).

On the other hand, since ϕ is a skew-morphism of Zm, we have ϕ(z − 1) = ϕ(z) +
ϕπ(z)(−1) for all z ∈ Zn, so ϕ(z−1)−ϕ(z) = ϕπ(z)(−1). By combining these identities



Y.-Q. Feng et al.: Complete regular dessins and skew-morphisms of cyclic groups 299

we obtain

ϕ(x) = −
(
ϕ(0)− ϕ(x)

)
= −

x∑
i=1

(ϕ(i− 1)− ϕ(i)) = −
x∑
i=1

ϕπ(i)(−1)

= −
x∑
i=1

ϕ−ϕ
∗−i(−1)(−1) =

x∑
i=1

π∗(ϕ∗−i(−1)) ≡ −σ∗(−1,−x) (mod |ϕ∗|).

Thus we have shown that

ϕ(x) ≡ −σ∗(−1,−x) ≡
x∑
i=1

π∗(ϕ∗−i(−1)) (mod |ϕ∗|). (3.7)

By using similar arguments we can prove that α∗(y) = ϕ∗(y) ≡ −σ(−1,−y) (mod |ϕ|).
Thus, 〈a〉〈b〉 is a subgroup of G, as claimed.

Finally, since G = 〈a, b〉, we have G = 〈a〉〈b〉, so (G; a, b) is an exact (m,n)-bicyclic
triple. Note that abx = bα(x)aβ(x) and bay = aα

∗(y)bβ
∗(y) with α(x) = ϕ(x) and α∗(y) =

ϕ∗(y). It follows that ϕ and ϕ∗ are precisely the skew-morphisms induced by a and b in
the triple (G; a, b).

Putting together Theorem 2.1, Proposition 3.3, and Proposition 3.4 we obtain a one-
to-one correspondence between (m,n)-complete regular dessins, exact (m,n)-bicyclic
triples, and (m,n)-reciprocal pairs of skew-morphisms.

Theorem 3.5. For every pair of positive integers m and n there exists a one-to-one corre-
spondence between any two sets of the following three types of objects:

(i) isomorphism classes of (m,n)-complete regular dessins,

(ii) equivalence classes of exact (m,n)-bicyclic triples, and

(iii) (m,n)-reciprocal pairs of skew-morphisms.

Proof. The correspondence between the isomorphism classes of (m,n)-complete regu-
lar dessins and equivalence classes of exact (m,n)-bicyclic triples has been established
in Theorem 2.1. It remains to prove that there is a one-to-one correspondence between
equivalence classes of exact (m,n)-bicyclic triples and (m,n)-reciprocal pairs of skew-
morphisms.

By Proposition 3.3, every exact (m,n)-bicyclic triple (G; a, b) determines an (m,n)-
reciprocal pair (ϕ,ϕ∗) of skew-morphisms of Zn and Zm. Conversely, by Proposition 3.4,
every (m,n)-reciprocal pair (ϕ,ϕ∗) of skew-morphisms determines an exact (m,n)-bicyc-
lic triple (G; a, b), and the pair of skew-morphisms induced by the elements a and b in this
triple is identical to the original one. What remains to prove is the one-to-one correspon-
dence.

If two (m,n)-reciprocal pairs (ϕ1, ϕ
∗
1) and (ϕ2, ϕ

∗
2) are identical, then clearly so will

be the corresponding (m,n)-bicyclic triples. Conversely, let (G1; a1, b1) and (G2; a2, b2)
be two equivalent exact (m,n)-bicyclic triples, and let (ϕ1, ϕ

∗
1) and (ϕ2, ϕ

∗
2) be the cor-

responding skew-morphisms. Since (G1; a1, b1) and (G2; a2, b2) are equivalent, the as-
signment θ : a1 7→ a2, b1 7→ b2 extends to an isomorphism of G1 to G2; in particular,
|a1| = |a2| and |b1| = |b2|. Set m = |a1| and n = |b1|. Recall that the skew-morphisms
ϕ1 and ϕ2 induced by a1 and a2 are determined by the rules a1bx1 = b

ϕ1(x)
1 a

π1(x)
1 and
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a2b
y
2 = b

ϕ2(y)
2 a

π2(y)
2 where x, y ∈ Zn. If we apply the isomorphism θ to the first equation

we obtain a2bx2 = θ(a1b
x
1) = θ(b

ϕ1(x)
1 a

π1(x)
1 ) = b

ϕ1(x)
2 a

π1(x)
2 , and combining this with

the second equation we get bϕ2(x)
2 a

π2(x)
2 = b

ϕ1(x)
2 a

π1(x)
2 . Thus ϕ1 = ϕ2. Using similar

arguments we can get ϕ∗1 = ϕ∗2. Hence, (ϕ1, ϕ
∗
1) = (ϕ2, ϕ

∗
2).

In the course of the proof of Proposition 3.4 we have established the identity (3.7). The
following corollary makes it explicit.

Corollary 3.6. If (ϕ,ϕ∗) is an (m,n)-reciprocal pair of skew-morphisms, then ϕ and ϕ∗

satisfy the following identities:

ϕ(x) =

x∑
i=1

π∗(ϕ∗−i(−1)) (mod |ϕ∗|) and ϕ∗(y) =

y∑
i=1

π(ϕ−i(−1)) (mod |ϕ|).

Next we offer two examples. The first of them deals with the standard (m,n)-complete
dessins.

Example 3.7. Let us revisit the group G = 〈a, b | am = bn = [a, b] = 1〉 ∼= Zm × Zn
considered in Example 2.2 and determine all reciprocal pairs of skew-morphisms arising
fromG. Obviously,G gives rise to only one equivalence class of bicyclic triples, so we only
need to consider the pairs of skew-morphisms induced by a and b in the triple (G; a, b). By
checking the identities (3.2), we immediately see that the skew-morphisms are the identity
automorphisms. Thus the only reciprocal pair of skew-morphisms arising from the group
Zm × Zn is (idn, idm), where idn : Zn → Zn and idm : Zm → Zm denote the identity
mappings. In other words, for every pair of positive integers m and n there exists only one
complete dessin whose automorphism group is isomorphic to the direct product Zm × Zn,
the standard (m,n)-complete dessin.

In the next example, which is extracted from [14], we present a complete list of pairs
of reciprocal skew-morphisms of the cyclic groups Z9 and Z27.

Example 3.8. In order to list all reciprocal pairs (ϕ,ϕ∗) of skew-morphisms ϕ : Z9 → Z9

and ϕ∗ : Z27 → Z27 let us first observe that ϕ must be an automorphism. Indeed, the order
of ϕ divides 27, so |ϕ| = 1 or |ϕ| = 3. If |ϕ| = 1, then ϕ is an identity automorphism.
If ϕ has order 3 and is not an automorphism, then the power function of ϕ reduced to Z3

can take only two values 1 and 2, so the subgroup kerϕ must have index 2 in Z3, which is
impossible. This proves that ϕ is an automorphism.

Now, there are exactly 27 reciprocal pairs of skew-morphisms (ϕ,ϕ∗) of skew-morphi-
sms ϕ : Z9 → Z9 and ϕ∗ : Z27 → Z27, falling into one of the following two types:

(i) Both ϕ and ϕ∗ are group automorphisms: In this case ϕ(x) ≡ ex (mod 9) and
ϕ∗(y) ≡ fy (mod 27) where either e = 1 and f ∈ {1, 4, 7, 10, 13, 16, 19, 22, 25},
or e ∈ {4, 7} and f ∈ {1, 10, 19}. Thus there are 9 + 6 = 15 reciprocal pairs of
skew-morphisms of this type.

(ii) ϕ is a group automorphism but ϕ∗ is not: In this case ϕ(x) ≡ ex (mod 9) and
ϕ∗(y) ≡ y + 3t

∑y
i=1 σ(s, ei−1) (mod 27) where e ∈ {4, 7} and σ(s, ei−1) =∑ei−1

j=1 s
j−1 where (s, t) = (4, 1), (7, 2), (4, 4), (7, 5), (4, 7) or (7, 8). There are 2×

6 = 12 reciprocal pairs of this type.
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We remark that in [14, Theorem 14] all reciprocal pairs of skew-morphisms of cyclic groups
are classified provided that one of the skew-morphisms is an automorphism.

The correspondence established in Theorem 3.5 implies that the second condition re-
quired in the definition of an (m,n)-reciprocal pair of skew-morphisms (see Definition 3.2)
can be replaced with a simpler condition.

Corollary 3.9. A pair (ϕ,ϕ∗) of skew-morphisms ϕ : Zn → Zn and ϕ∗ : Zm → Zm
with power functions π and π∗, respectively, is reciprocal if and only if the following two
conditions are satisfied:

(i) |ϕ| divides m and |ϕ∗| divides n, and

(ii) π(x) = ϕ∗x(1) and π∗(y) = ϕy(1).

Proof. It is sufficient to replace the original dessin, represented by an exact (m,n)-bicyclic
triple (G; a, b), with its mirror image, for which the corresponding bicyclic triple is
(G; a−1, b−1), and use Theorem 3.5.

4 The uniqueness theorem
We have seen in Example 3.7 that for each pair of positive integersm and n there exists, up
to reciprocality and isomorphism, at least one complete regular dessin with the underlying
graph Km,n, namely, the standard (m,n)-complete dessin. In this section we determine all
the pairs (m,n) for which the standard (m,n)-complete dessin is the only regular (m,n)-
dessin.

A pair (m,n) of positive integers m and n will be called singular if

gcd(m,φ(n)) = gcd(n, φ(m)) = 1.

A positive integer n will be called singular if the pair (n, n) is singular, that is, if
gcd(n, φ(n)) = 1. We now show that for each non-singular pair (m,n) of positive in-
tegers there exists a non-abelian exact (m,n)-bicyclic group.

Example 4.1. Let m and n be positive integers. First assume that gcd(n, φ(m)) 6= 1. It
is well known that for x ∈ Zm the assignment 1 7→ x extends to an automorphism of Zm
if and only if gcd(x,m) = 1, and thus |Aut(Zm)| = φ(m). Since gcd(n, φ(m)) 6= 1,
there exists an integer r such that r 6≡ 1 (mod m) and rp ≡ 1 (mod m), where p |
gcd(n, φ(m)). Define a group G with presentation

G = 〈a, b | am = bn = 1, b−1ab = ar〉.

By Hölder’s theorem [22, Chapter 7], G is a well-defined metacyclic group of order mn.
Since r 6≡ 1 (mod m), the group G is non-abelian. If gcd(m,φ(n)) 6= 1, we proceed
similarly. Thus, whenever (m,n) is non-singular, there always exists at least one non-
abelian exact (m,n)-bicyclic group.

We remark that the argument used here is different from the one employed in the proof
of Lemma 3.1 in [12].

We now apply our theory to proving the following theorem, which extends the validity
of a result of Fan and Li [12] to all bicyclic groups, not just exact ones.
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Theorem 4.2. The following statements are equivalent for every pair of positive integers
m and n:

(i) Every product of a cyclic group of order m with a cyclic group of order n is abelian.

(ii) The pair (m,n) is singular.

Proof. If (i) holds, then by virtue of Example 4.1 the pair (m,n) must be singular. For the
converse, assume that the pair (m,n) is singular and thatG is an (m,n)-bicyclic group. We
prove the statement by using induction on the size of |G|. By a result of Huppert [15] and
Douglas [8] (see also [17, VI.10.1]), G is supersolvable, so for the largest prime factor p of
|G| the Sylow p-subgroup P of G is normal in (see [17, VI.9.1]). By the Schur-Zassenhaus
theorem, G is a semidirect product of P by Q, where Q is a subgroup of order |G/P | in G.
To proceed we distinguish two cases.

Case 1. p divides only one ofm and n. Without loss of generality we may assume that p | m
and p - n. Let us write m in the form m = pem1 where p - m1. Then the normal subgroup
P is contained in the cyclic factor A = 〈a〉 of G of order m, so P = 〈am1〉. The generator
b of the cyclic factor B = 〈b〉 of order n induces an automorphism am1 7→ (am1)r of
P by conjugation b−1am1b = (am1)r where r is an integer coprime to p. It follows that
the multiplicative order |r| of r in Zpe divides |Aut(P )| = φ(pe). On the other hand,
am1 = b−nam1bn = (am1)r

n

, so rn ≡ 1 (mod pe), and hence |r| also divides n. But
φ(pe) divides φ(m) and gcd(n, φ(m)) = 1, so r ≡ 1 (mod pe). Therefore P is contained
in the centre of G, and hence G = P × Q, where Q is an (m1, n)-bicyclic group. It is
evident that the pair (m1, n) is also singular. By induction, Q is abelian, and therefore G is
abelian.

Case 2. p divides both m and n. Since (m,n) is a singular pair, p2 - m and p2 - n. Thus
m = pm1 and n = pn1 where p - m1, p - n1 and gcd(m1, p(p−1)) = gcd(n1, p(p−1)) =
1. Since |G| = |AB| = |A||B|/|A ∩B|, the Sylow p-subgroup P of G is of order p or p2.
If p divides |A ∩ B|, then |P | = p and so P ≤ A ∩ B, which is central in G. Therefore,
G = P × Q, where Q is an (m1, n1)-bicyclic group, and the result follows by induction.
Otherwise, p - |A ∩ B|, so P ∼= Zp × Zp. We may view P as a 2-dimensional vector
space over the Galois field Fp. Let Ω be the set of 1-dimensional subspaces of P . Then
|Ω| = p + 1 and α = 〈am1〉 belongs to Ω. Consider the action of G on P by conjugation.
The kernel of this action is CG(P ), so G = G/CG(P ) ≤ GL(2, p) where CG(P ) denotes
the centraliser of P in G. Now we claim that G = 1.

Suppose to the contrary that G 6= 1. Since G = 〈a, b〉, we have G = 〈ap, bp〉, where
ap = apCG(P ) and b

p
= bpCG(P ). Hence at least one of ap and b

p
is not the identity of

G, say ap 6= 1. Clearly, |ap| divides m1, the order of ap in G.
Note that Ω is a complete block system of GL(2, p) on P and the induced action of

GL(2, p) on Ω is transitive. By the Frattini argument, |GL(2, p)| = (p + 1)|GL(2, p)α|,
and hence |GL(2, p)α| = p(p− 1)2 as |GL(2, p)| = p(p+ 1)(p− 1)2. On the other hand,
ap fixes α as a fixes the subspace 〈a〉, implying that ap ∈ GL(2, p)α. It follows that |ap|
divides p(p − 1)2. Since |ap| divides m1 and gcd(m1, p(p − 1)) = 1, we have |ap| = 1,
which is impossible because ap 6= 1. Thus G = 1, as claimed.

Since G = 1, we have G = CG(P ), and hence G = P ×Q, where Q = 〈ap〉〈bp〉 is an
(m1, n1)-bicyclic group with the pair (m1, n1) being singular. The statement now follows
by induction.

The following result follows easily from Theorem 4.2.
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Corollary 4.3. Letm and n be positive integers. Then every group factorisable as an exact
product of cyclic subgroups of orders m and n is abelian if and only if the pair (m,n) is
singular.

We summarize the results of this section in the following theorem.

Theorem 4.4. The following statements are equivalent for any pair of positive integers m
and n:

(i) The pair (m,n) is singular.

(ii) Every finite group factorisable as a product of two cyclic subgroups of orders m and
n is abelian.

(iii) Every finite group factorisable as an exact product of two cyclic groups of orders m
and n is isomorphic to Zm × Zn.

(iv) There is only one (m,n)-reciprocal pair of skew-morphisms (ϕ,ϕ∗) = (idn, idm) of
the cyclic groups Zn and Zm.

(v) Up to reciprocality, there is a unique isomorphism class of regular dessins whose
underlying graph is the complete bipartite graph Km,n.

(vi) There exists a unique isomorphism class of orientable edge-transitive embeddings
of Km,n.

The proof of the equivalence between items (i), (iii) and (vi) of Theorem 4.4 can be
found in [12, Theorem 1.1].

Remark 4.5. For a fixed positive integer x, it has been recently shown by Nedela and
Pomerance [39] that the number of singular pairs (m,n) with m,n ≤ x is asymptotic to
z(x)2 where

z(x) = eγ
x

log log log x
,

where γ is Euler’s constant.

5 The symmetric case
Recall that a complete regular dessinD = (G; a, b) is symmetric ifG has an automorphism
transposing a and b. In this case the dessin D possesses an external symmetry transposing
the colour-classes. If we ignore the vertex-colouring, the dessin can be regarded as an ori-
entably regular map with underlying graph Kn,n. As a consequence of Theorem 3.5 we
obtain the following correspondence between orientably regular embeddings of the com-
plete bipartite graphs Kn,n and symmetric skew-morphisms of Zn, partially indicated by
Kwak and Kwon already in [34, Lemma 3.5].

Corollary 5.1. The isomorphism classes of orientably regular embeddings of complete
bipartite graphs Kn,n are in a one-to-one correspondence with the symmetric skew-mor-
phisms of Zn.

A complete classification of orientably regular embeddings of complete bipartite graphs
Kn,n has already been accomplished by Jones et al. in a series of papers [9, 10, 11, 23, 25,
26, 40]. The methods used in the classification rely on the analysis of the structure of the
associated exact bicyclic groups. A different approach to the classification can be taken on
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the basis of Corollary 5.1 via determining the corresponding symmetric skew-morphisms
of Zn. In particular, we can reformulate Theorem A of [23] as follows:

Corollary 5.2. The following statements are equivalent for every positive integer n:

(i) The integer n is singular.

(ii) Every finite group factorisable as a product of two cyclic subgroups of order n is
abelian.

(iii) Every finite group factorisable as an exact product of two cyclic subgroups of order
n is isomorphic to Zn × Zn.

(iv) The cyclic group Zn has only one symmetric skew-morphism.

(v) Up to isomorphism, the complete bipartite graph Kn,n has a unique orientably reg-
ular embedding.

Although skew-morphisms are implicitly present in the structure of the automorphism
groups of the maps, how to find them explicitly is not at all clear. This leads us to formu-
lating the following problems for future investigation.

Problem 5.3. Determine the symmetric skew-morphisms of cyclic groups by means of
explicit formulae.

Problem 5.4. Classify all orientably regular embeddings of complete bipartite graphsKn,n

in terms of the corresponding symmetric skew-morphisms.

The previous problem suggests the following natural question: under what conditions
a symmetric skew-morphism is a group automorphism and what are the corresponding
orientably regular maps? The following result determines these skew-morphisms explicitly.

Theorem 5.5. Let ϕ : x 7→ rx be an automorphism of Zn of order d, where gcd(r, n) = 1.
Then ϕ is a symmetric skew-morphism of Zn if and only if d | n and r ≡ 1 (mod d).

Proof. Note that the order of ϕ is equal to the multiplicative order of r in Zn. Since
|Aut(Zn)| = φ(n), we have d | φ(n). Since ϕ is an automorphism, the associated power
function is π(x) ≡ 1 (mod d) for all x ∈ Zn.

If ϕ is symmetric, then by Definition 3.2, d | n and π(x) = −ϕ−x(−1) (mod d) for
all x ∈ Zn. In particular, 1 = π(−1) ≡ −ϕ(−1) ≡ ϕ(1) ≡ r (mod d).

Conversely, assume that d | n and r ≡ 1 (mod d). By Definition 3.2, it suffices
to show that −ϕ−x(−1) is a power function of ϕ where x ∈ Zn, that is, to show that
−ϕ−x(−1) ≡ 1 (mod d). Since r ≡ 1 (mod d), we have −ϕ−x(−1) = ϕ−x(1) =
r−x ≡ 1 (mod d), as required.

The following example shows that there exist symmetric skew-morphisms of Zn which
are not automorphisms.

Example 5.6. The cyclic group Z8 has the total of six skew-morphisms, out of which four
are automorphisms and two are proper skew-morphisms. The latter two are listed below
along with the corresponding power functions:

ϕ = (0)(2)(4)(6)(1 3 5 7), πϕ = [1][1][1][1][3 3 3 3];

ψ = (0)(2)(4)(6)(1 7 5 3), πψ = [1][1][1][1][3 3 3 3].
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Note that they are, in fact, antiautomorphisms in the sense of [43, 44]. It can be easily
verified that all the six skew-morphisms are symmetric. It follows that they correspond to
the six non-isomorphic orientably regular embeddings of K8,8 described in [25, Table 1].
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[30] I. Kovács and Y. S. Kwon, Classification of reflexible Cayley maps for dihedral groups, J.
Comb. Theory Ser. B 127 (2017), 187–204, doi:10.1016/j.jctb.2017.06.002.
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Abstract

The problems of calculating the genus of the complete graphs and of finding a minimum
triangulation for each surface were both solved using the theory of current graphs, and each
of them divided into twelve different cases, depending on the residue modulo 12 of the
number of vertices. Cases 8 and 11 were of particular difficulty for both problems, with
multiple families of current graphs developed to solve these cases. We solve these cases, in
addition to Cases 6 and 9, in a unified manner, greatly simplifying previous constructions
by Ringel, Youngs, Guy, and Jungerman. All these new constructions are index 3 current
graphs sharing nearly all of the structure of the simple solution for Case 5 of the Map Color
Theorem.

Keywords: Topological graph theory, current graphs, map coloring, triangulations.
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1 Introduction
In this paper, we only consider surfaces which are orientable. We let Sg denote the surface
of genus g, i.e., the sphere with g handles. The Heawood number of the orientable surface
Sg of genus g,

H(Sg) =
7 +
√

1 + 48g

2

gives rise to two distinct problems which share many similarities. On one hand, the Hea-
wood number is an upper bound on the chromatic number of the surface, and the celebrated
Map Color Theorem of Ringel, Youngs, and others [17] proves that this inequality is tight
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(after rounding the Heawood number to the nearest integer) for all surfaces of genus g ≥ 1
by determining the genus of the complete graphs. In the reverse direction,H(Sg) is a lower
bound on the minimum number of vertices needed to triangulate the surface with a simple
graph. For g ≥ 1, g 6= 2, this was also shown to be tight by Jungerman and Ringel [11].

Both of these problems break down into twelve cases, where “Case k” refers to the
relevant graphs on 12s + k vertices. The main tool for constructing most of the required
embeddings is the theory of current graphs [4]. At times, there is overlap—for example,
the complete graph K7 triangulates the torus, thereby demonstrating that the chromatic
number of the torus and the smallest number of vertices needed to triangulate the torus
is 7. However, many of the cases are solved separately, and furthermore, Jungerman and
Ringel’s [11] solution for the latter problem of minimum triangulations1 often required
multiple unrelated families of current graphs.

Our goal is a partial unification of both problems using index 3 current graphs, i.e.,
current graphs whose embeddings have three faces. The standard solutions for Cases 3 and
5 of the Map Color Theorem, i.e., the genus of the complete graphs on 12s+3 and 12s+5
vertices, respectively, used simple families of index 3 current graphs whose origins can
be traced back to constructions for Steiner triple systems. However, other constructions
employing index 3 current graphs, perhaps most notably Case 6 of the Map Color Theo-
rem (see §9.3 of Ringel [16]), have not realized the same level of simplicity. For each of
Cases 6, 8, 9, and 11, we present a single family of current graphs which solves both the
complete graph and minimum triangulation problems except for a few small-order graphs
or surfaces. Not only do these constructions improve upon past solutions in the literature,
but the structure of the current graphs for the general case reuses all but a fixed part of the
aforementioned current graphs used for Case 5.

2 Embeddings in surfaces and the Heawood numbers
For background in topological graph theory, see Gross and Tucker [3]. In a graph, possi-
bly with self-loops or parallel edges, every edge has two ends that are each incident with
a vertex. A rotation of a vertex is a cyclic permutation of its incident edge ends, and a
rotation system of a graph is an assignment of a rotation to every vertex of the graph. The
Heffter-Edmonds principle states that cellular embeddings of a graph are in one-to-one cor-
respondence with rotation systems: each embedding in a surface defines a rotation system
by considering the cyclic order of the edge ends emanating at each vertex, while in the
reverse direction, the faces of the embedding can be traced out from the rotation system in
a unique manner. Our convention will be that rotations define clockwise orderings, which
induce counterclockwise orientations for faces. In the case of simple graphs, one can ex-
press a rotation in terms of the vertex’s neighbors, so a rotation system can be represented
as a table of vertices, where each row corresponds to a cyclic permutation of the neighbors
of a specific vertex.

The Euler polyhedral formula states that for a cellular embedding φ : G→ Sg , we have
the expression

|V (G)| − |E(G)|+ |F (G,φ)| = 2− 2g,

where g denotes the genus of the surface and F (G,φ) is the set of faces induced by the
embedding. A standard consequence is the following inequality:

1Jungerman and Ringel [11] used the term minimal triangulations.
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Proposition 2.1. Let φ : G→ Sg be an embedding of a simple, connected graph G with at
least 3 vertices. Then

|E(G)| ≤ 3|V (G)| − 6 + 6g,

where equality is achieved when the embedding is triangular, i.e. when all its faces are
triangular.

The (minimum) genus of a graph G is the minimum genus over all cellular embeddings
of G, and is denoted γ(G). A (minimum) genus embedding of G is an embedding whose
genus achieves this minimum.

Corollary 2.2. For a simple, connected graph G with at least 3 vertices, its genus is at
least

γ(G) ≥
⌈ |E(G)| − 3|V (G)|+ 6

6

⌉
.

We say that an embedding of a simple graph is triangle-tight if its genus equals this
lower bound. If a triangle-tight embedding exists, it must necessarily be of minimum genus.
From these relationships between the edge and vertex counts and the genus, one can derive
the Heawood number

H(g) =
7 +
√

1 + 48g

2

of the surface Sg , which serves as a rough measure of “maximum possible density” in the
following two inequalities:

Proposition 2.3 (see Ringel [16, p. 63]). For g ≥ 1, the chromatic number χ(Sg) of the
surface Sg , i.e., the maximum chromatic number over all graphs embeddable in Sg , satisfies

χ(Sg) ≤ bH(Sg)c .

Let MT (Sg) be the minimum number of vertices over all simple graphs G that have a
triangular embedding in Sg .

Proposition 2.4 (Jungerman and Ringel [11]). For each surface Sg with g ≥ 1,

MT (Sg) ≥ dH(Sg)e .

Such an embedding in Proposition 2.4 is known as a minimum triangulation of Sg . We
call a triangular embedding of a graph an (n, t)-triangulation if the graph has n vertices
and

(
n
2

)
− t edges, i.e. the graph is the complete graph on n vertices with t edges deleted.

The tightness of the inequalities in Propositions 2.3 and 2.4 is proven via alternative for-
mulations that emphasize the number of vertices:

Theorem 2.5 (Ringel and Youngs [17]). The genus of the complete graph Kn is

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.

Theorem 2.6 (Jungerman and Ringel [11]). For all pairs (n, t) of nonnegative integers
n ≥ 3, t ≤ n− 6 satisfying

(n− 3)(n− 4) ≡ 2t (mod 12),

there exists an (n, t)-triangulation, except for (n, t) = (9, 3).



312 Ars Math. Contemp. 18 (2020) 309–337

Another way of stating Theorem 2.5 is that every complete graph Kn, n ≥ 3, has a
triangle-tight embedding. In both problems, the proof breaks down into several cases, de-
pending on the residue of the number of vertices n mod 12. We call the subcase concerning
graphs with n = 12s+k vertices Case k, for k = 0, 1, . . . , 11, and we often reference the
value s in our exposition. For example, if we speak of “Case 6, s = 2” of the Map Color
Theorem, we are referring to the complete graph K30. To differentiate between the two
problems, we refer to “Case k-CG” and “Case k-MT” to denote Case k of the Map Color
Theorem (“complete graph”) and minimum triangulations problem, respectively.

The fact that there are 12 Cases depending on the number of vertices for both the Map
Color Theorem and the minimum triangulations problem suggests a connection between
the solutions of the two problems. Indeed, in several Cases, the current graphs used in the
proof [17] of the Map Color Theorem for Kn have the dual purpose of also providing all
the necessary minimum triangulations on the same number of vertices n. However, not all
Cases have been combined in this manner.

In general, our constructions will proceed in the following way: using an index 3 current
graph, we generate an (n, t)-triangulation. We wish to find other embeddings of graphs on
the same number of vertices using the following operations:

• handle subtraction, which deletes edges from a triangular embedding to produce a
triangular embedding on a lower-genus surface, and

• additional adjacency, which adds edges using extra handles and other local opera-
tions.

By subtracting handles, we obtain all the necessary (n, t′)-triangulations, for t′ > t, and
over the course of the additional adjacency step for constructing a triangle-tight embedding
of Kn, we construct the remaining (n, t′′)-triangulations, for t′′ < t.

3 Outline for additional adjacencies
The main goal for our additional adjacency steps is to utilize as little information about
the embeddings as possible. For this reason, we present the additional adjacency solutions
first, before describing any current graphs. Like in previous work, our additional adjacency
solutions make use of three different operations for adding a handle, which are described
in Constructions 3.1, 3.2, and 3.8 in primal form. Most of these constructions are already
known, except Proposition 3.6 and Lemma 3.10. In prose, we describe the modifications to
the embeddings in terms of rotation systems, so their correctness can be checked by tracing
the faces and applying the Heffter-Edmonds principle. Our drawings, on the other hand,
describe an alternative topological interpretation using surgery on the embedded surfaces.
While these operations work more generally, we assume that all graphs in this section are
simple and their embeddings are triangular.

Construction 3.1. Modifying the rotation at vertex v from

v. x1 . . . xi y1 . . . yj z1 . . . zk

to
v. x1 . . . xi z1 . . . zk y1 . . . yj ,

as in Figure 1 increases the genus by 1 and induces the 9-sided face

[x1, zk, v, y1, xi, v, z1, yj , v].
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Construction 3.2. Modifying the rotation at vertex v from

v. x1 . . . xi y1 . . . yj z1 . . . zk w1 . . . w`

to
v. x1 . . . xi w1 . . . w` z1 . . . zk y1 . . . yj

as in Figure 2 increases the genus by 1 and induces the two 6-sided faces

[x1, w`, v, z1, yj , v] and [w1, zk, v, y1, xi, v].

v

xi

x1

yj
y1

zk

z1

···

···

· · ·

⇒ v

xi

x1

yj
y1

zk

z1

···

···

· · ·

(a)

x1

zk

vy1

xi

v

z1 yj

v

(b)

Figure 1: Rearranging the rotation at vertex v (a) increases the genus and creates room (b)
to add new edges.

Remark 3.3. While the drawings in Figures 1 and 2 are drawn asymmetrically, the opera-
tions are in fact invariant under cyclic shifts of the subsets x1, . . . , xi; y1, . . . , yj , etc.

Several Cases of the Map Color Theorem are solved by first finding triangular embed-
dings of Kn − K3. The first consequence of Construction 3.1 is to transform such an
embedding into a genus embedding of a complete graph.

Proposition 3.4 (Ringel [15]). If there exists a triangular embedding of Kn − K3 in the
surface Sg , then there exists a genus embedding of Kn in the surface Sg+1.

Before showing how this follows from the above constructions, we first argue that all
the embeddings of complete graphs we construct are in fact of minimum genus.

Proposition 3.5. Suppose we have a triangular embedding of a graph Kn − He, where
He is a graph on e edges, e < 6. If we add the missing e edges by using one handle, the
resulting embedding of Kn is triangle-tight.

Proof. One can verify that the difference between the genus of Kn − He, as given by
Proposition 2.1, and the genus of Kn is exactly 1.

Proof of Proposition 3.4. If the three nonadjacent vertices are a, b, c, pick any other vertex
v and apply Construction 3.1 with x1 = a, y1 = b, z1 = c. In the resulting nontriangular
face, the nonadjacent vertices can be connected like in Figure 3(a).
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v

xix1

zk z1

w`

w1

y1

yj

···

···

· · ·

··
· ⇒ v

xix1

zk z1

w`

w1

y1

yj

···

···

· · ·

··
·

(a)

x1

w`v

z1

yj v

w1

zkv

y1

xi v

(b)

Figure 2: Rearranging four groups of neighbors (a) yields two hexagonal faces (b).

For Cases 8 and 11, we will construct triangular embeddings of the graph Kn −K1,4.
These missing edges can be added in using one handle if the embedding satisfies an addi-
tional constraint:

Proposition 3.6. Let Kn − K1,4 be a complete graph with the edges (u, q1), . . . , (u, q4)
deleted. If there exists a triangular embedding φ : (Kn −K1,4)→ Sg with a vertex v with
rotation

v. . . . q1 q2 . . . q3 q4 . . . ,

then there exists a genus embedding of Kn in the surface Sg+1.

Proof. Note that vertices u and v are adjacent, so assume without loss of generality that u
appears in the rotation of v in between q4 and q1. Apply Construction 3.1 with

xi = q1, y1 = q2, yj = q3, z1 = q4, zk = u

and connect the missing edges in the 9-sided face, as in Figure 3(b).

This constraint is relatively easy to satisfy, since there are a few possible permutations
for q1, . . . , q4, in addition to the fact that v is an arbitrary vertex. In fact, when we only
need to add back three edges, this is always possible:

Corollary 3.7 (Ringel et al. [5, 19]). If there exists a triangular embedding of Kn −K1,3

in the surface Sg , then there exists a genus embedding of Kn in the surface Sg+1.

Proof. One can always find such a vertex v by choosing a vertex on one of the triangles
incident with, say, the edge (q1, q2).
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a

v
b

v

c
v

(a)

u

vq2

q1

v

q4 q3

v

(b)

Figure 3: Two possibilities for adding edges after invoking Construction 3.1: a K3 sub-
graph (a), and a K1,4 subgraph (b).

A third type of handle operation is to merge two faces with a handle without modifying
the rotations at any vertices. To do this, we excise a disk from two faces and identify the
resulting boundaries. In Figure 4, adding the handle between faces F1 and F2 causes the
embedding to become noncellular, as the resulting region is an annulus. However, once we
start adding edges between the two boundary components of the annulus, the embedding
becomes cellular again.

Construction 3.8. Let F1 = [u1, u2, . . . , ui] and F2 = [v1, v2, . . . , vj ] be two faces. In-
serting the edge (u1, v1) in the following way

u1. . . . ui u2 . . .
v1. . . . vj v2 . . .

⇒ u1. . . . ui v1 u2 . . .
v1. . . . vj u1 v2 . . .

as in Figure 4 increases the genus by 1 and induces the (i+ j + 2)-sided face

[u1, u2, . . . , ui, u1, v1, v2, . . . , vj , v1].

F1 F2

v1

···u1

··· ⇒

F1

F2
···

u1
v1

···

Figure 4: Adding a handle between two faces, then adding an edge to transform the annulus
into a cell. Note that the order of vertices of one of the faces becomes reversed as we
traverse one of the (oriented) boundaries the annulus.

The most elementary operation one can do is to simply add one edge to create a genus
embedding:
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Proposition 3.9. If there exists a triangular embedding φ : Kn − K2 → Sg , then there
exists a genus embedding of Kn in the surface Sg+1.

The forthcoming additional adjacency solutions are to be applied on triangular embed-
dings of graphs of the form Kn −K`, which is the graph formed by taking the complete
graph Kn and deleting all the pairwise adjacencies between ` vertices. We label the ver-
tices missing adjacencies with bold letters a, b, c, . . . ,h. The remaining vertices will be
assigned numbers and are represented here as unadorned letters (u, v, pi, . . . ). We apply
the traditional method of adding handles to supply all the missing edges—in Section 3.1,
we give an alternative viewpoint that aims to demystify the specific choices of added edges.

Lemma 3.10. If there exists a triangular embedding of Kn −K5 with numbered vertices
u and v whose rotations are of the form

u. . . . a p1 b p2 c p3 d p4 e . . .

and
v. . . . pσ(1) pσ(2) . . . pσ(3) pσ(4) . . . ,

where σ : {1, . . . , 4} → {1, . . . , 4} is some permutation, then there exist (n, 10)- and
(n, 4)-triangulations and a triangle-tight embedding of Kn.

Proof. The initial embedding is an (n, 10)-triangulation. First, delete the edges (u, p1),
(u, b), (u, p2) in exchange for (a, b), (a, c), (b, c) and apply edge flips on (u, p3) and (u, p4)
to obtain (c, d) and (d, e), as in Figure 5(a). If we merge the faces [a, c, b] and [u, e, d]
with a handle, we can recover the deleted edge (u, b) and add in the remaining edges
between lettered vertices following Figure 5(b). The missing edges (u, p1), . . . , (u, p4) in
this (n, 4)-triangulation can be reinserted with one handle using Proposition 3.6, setting
pσ(i) = qi, to get a triangle-tight embedding of Kn.

e

p4

d

p3
cp2

b

p1

a

u

⇒

e

p4

d

p3cp2

b

p1

a

u

I

II

(a)

I

II a

c

b

d

e

u

(b)

Figure 5: Various edge flips are applied in the neighborhood of vertex u (a) so that one
handle suffices for connecting all the lettered vertices.

Lemma 3.11 (Guy and Ringel [5]). If there exists a triangular embedding of Kn − K6

with a numbered vertex u whose rotation is of the form

u. . . . a p1 b . . . c p2 d . . . e p3 f . . . ,

then there exist (n, 15)-, (n, 9)-, and (n, 3)-triangulations and a triangle-tight embedding
of Kn.
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Proof. We first modify the embedding near vertex u using edge flips to gain the edges
(a, b), (c, d), and (e, f), as in Figure 6(a). If we apply Construction 3.1 to vertex u, we
obtain a 9-sided face incident with all six vertices a, b, . . . , f . In Figure 6(b) and (c), we
give one way to insert the twelve missing edges between these lettered vertices with the
help of a handle. The embeddings before and after adding the handle are (n, 9)- and (n, 3)-
triangulations, respectively.

u
a

p1

b

e

p3
f

d
p2

c

···

···

· · ·

⇒ u
a

p1

b

e

p3 f

d

p2 c

···

···

· · ·

(a)

I
II f

e

v
b

a

v

d c

v

(b)

I

II d

b

a

e
f

c

(c)

Figure 6: Three pairs of lettered vertices are connected with some edge flips (a), after which
a handle adds some of the missing adjacencies (b). The remaining edges between lettered
vertices are added using another handle merging faces I and II (c).

The missing edges (u, p1), (u, p2), (u, p3) can be added back using Corollary 3.7, yield-
ing a triangle-tight embedding of Kn.

Lemma 3.12. If there exists a triangular embedding of Kn −K8 with numbered vertices
u and v whose rotations are of the form

u. . . . a p1 b . . . c p2 d . . . e p3 f . . . g p4 h . . .

and
v. . . . pσ(1) pσ(2) . . . pσ(3) pσ(4) . . . ,

where σ : {1, . . . , 4} → {1, . . . , 4} is some permutation, then there exist (n, 28)-, (n, 22)-,
(n, 16)-, (n, 10)-, and (n, 4)-triangulations and a triangle-tight embedding of Kn.

Proof. The first four handles of our additional adjacency approach is the same as that of
Ringel and Youngs’ solution for Case 2-CG [19] (also see Ringel [16, §7.5]), with different
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vertex names. We perform an edge flip on each edge (u, pi) for i = 1, . . . , 4, gaining the
edges (a, b), (c, d), (e, f), and (g,h). Now, the rotation at vertex u is of the form

u. . . . a b . . . c d . . . e f . . . g h . . .

These edge flips are depicted in Figure 7. Applying Construction 3.2 to this resulting
rotation yields two nontriangular faces

[h, g, v, d, c, v] and [f , e, v, b, a, v].

u
a

p1

b

g p4 h

f

p3

e

d p2 c

······

· ···· ·

⇒ u
a

p1

b

g
p4

h

f

p3

e

d
p2

c

······

· ···· ·

Figure 7: Initial edge flips to join some of the vortex letters.

In these faces, we induce two quadrilateral faces by adding the edges (d, g), (c,h),
(b, e), and (a, f), as in Figure 8(a). Three more handles are used to add all the remaining
edges between lettered vertices a, . . . ,h as shown in Figure 8(bc). At this point, the em-
bedding is of the graph Kn −K1,4 and is still triangular, so we add back the deleted edges
(u, pi) with one handle using Proposition 3.6 to obtain a triangle-tight embedding of Kn.

The embeddings after adding the second through fourth handles are all triangular and
hence are minimum triangulations. After adding only the first handle, the two quadrilateral
faces in Figure 8(a) can be triangulated arbitrarily to form an (n, 22)-triangulation.

We note some recurring themes in these additional adjacency solutions, which one
could view as another form of unification between Cases. The “chord” edges and subse-
quent handle for connecting five vortices in Lemma 3.10 reappear in Lemma 3.11. Propo-
sition 3.6 is invoked in both Lemma 3.10 and 3.12. As mentioned earlier, most of the
construction in Lemma 3.12 was applied to Case 2-CG by Ringel and Youngs [19].

3.1 Recasting handle operations

Additional adjacency solutions are traditionally presented as a sequence of handles, which
has the benefit of constructing some of the requisite minimum triangulations. However,
when several handles are involved, it is not immediately apparent how such a construction
was derived—Ringel [16] described the solution for Case 2-CG, which is largely identical
to the one we used in Lemma 3.12, as “adventurous” and “much easier to understand than to
discover.” We can instead interpret parts of these additional adjacency solutions as surgical
operations that glue together existing embeddings, akin to the diamond sum operation of



T. Sun: Simultaneous current graph constructions . . . 319
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Figure 8: After connecting some of the lettered vertices with a handle (a), another handle
can be introduced in between the faces I and II (b). Using faces generated from this handle
(III and IV, V and VI), we can add all the remaining edges using two additional handles (c).

Bouchet [1] or the inductive constructions found in Ringel [16, §10]. In our case, we
make use of the embedding of K6 in S1 formed by deleting a vertex from the triangular
embedding of K7, and a genus embedding of K8 in S2 where the two quadrilateral faces
are incident with disjoint sets of vertices. An example of the latter embedding appears in
Ringel [16, p. 79] and is reproduced in Appendix C.

Recall that in Lemma 3.12, the second, third, and fourth handles add all the remaining
missing edges between lettered vertices, where all of the activity takes place inside of the
two quadrilateral faces formed from the first handle. Let φ : G→ Sg be the embedding of
the graph after the first handle in Lemma 3.12. Combining the next three handles into one
step is equivalent to the following procedure, which is sketched in Figure 9:

• Excise the interiors of the quadrilateral faces of φ and the aforementioned embedding
K8 → S2.

• Identify the two embedded surfaces at their boundaries so that the two disjoint sets
of four vertices become identified and the resulting surface is orientable.

Hence the three handles are equivalent to a construction of a genus embedding of K8.
We may also apply the same idea to reinterpret the constructions in Lemma 3.10 and 3.11
using the embedding of K6. If, for example, we remove the edges (b, c), (b, d), and (c, e)
from Figure 6, we have the hexagonal face [a, d, c, f , e, b]. The goal of the last handle of
the additional adjacency step in Lemma 3.11 is to add all the remaining edges between the
lettered vertices, which we may accomplish by attaching the embedding of K6 along this
hexagonal face, as shown in Figure 10.
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···

G ∗K8 → Sg+3

G→ Sg K8 → S2

Figure 9: Adding adjacencies between eight vertices with an embedding of K8. Note that
the genus increases by 3 since two boundary components are identified.

···

G ∗K6 → Sg+1

G→ Sg

K6 → S1

Figure 10: An alternative way of adding the edges between six vertices using one handle.
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4 Index 3 current graphs
We assume familiarity with current graphs, especially §9 of Ringel [16]. An index k current
graph is a triple (D,φ, α), where D is a directed graph, φ : D → S is a cellular k-face
embedding of D in an orientable surface S and α : E(D) → Γ is a labeling of each arc
of D with an element of a group Γ. These arc labels are called currents, and Γ is referred
to as the current group. In this paper, we only consider index 3 current graphs that are
labeled with elements from cyclic current groups Γ = Z3m for some integer m. Its three
face boundary walks, which we call circuits, are labeled [0], [1], and [2].

The excess of a vertex is the sum of the incoming currents minus the sum of the outgoing
currents, and we say a vertex satisfies Kirchhoff’s current law (KCL) if its excess is 0.
Vertices of degree 3 which do not satisfy KCL are called vortices, which are each labeled
with a lowercase letter. The log of a circuit records the currents encountered along the walk
in the following manner: if we traverse arc e along its orientation, we write down α(e);
otherwise, we write down −α(e); if we encounter a vortex, we record its label. If the order
2 element γ ∈ Z3m is the current of an arc incident with a vertex of degree 1, it appears
twice consecutively in the log of the incident circuit. We discard one of those instances so
that the embedded graph is simple. Our drawings of current graphs which have such arcs
follow the convention where the degree 1 vertex is omitted.

All of our index 3 current graphs with current groups Z3m satisfy the following ad-
ditional “construction principles”, which are effectively the same as those in Ringel [16,
§9.1]:

(E1) Each vertex is of degree 3 or 1.

(E2) The embedding has three circuits labeled [0], [1], [2].

(E3) The log of each circuit consists of each nonzero element of Z3m exactly once and
any number of vortex letters.

(E4) KCL is satisfied at every vertex of degree 3, except vortices, which are labeled with
letters.

(E5) Every vortex is incident with all three circuits and has an excess which generates the
subgroup of Z3m consisting of the multiples of 3.

(E6) If circuit [a] traverses arc e along its orientation and circuit [b] traverses e in the
opposite direction, then α(e) ≡ b− a (mod k).

(E7) The current on every arc incident with a vertex of degree 1 is of order 2 or 3 in Z3m.

If all the construction principles are satisfied, the current graph generates a triangular
embedding of the graph K3m + K`, where G + H is the graph join operation, G is the
edge-complement of G, and ` is the number of vortices. Each element of Z3m corresponds
to a vertex in the complete graph K3m, and each of the vortices provides an additional
vertex, which is adjacent to all elements of Z3m, but none of the other vortex vertices. It is
more common to think of the resulting graph instead as K3m+`−K`, which highlights the
total number of vertices and the number of missing edges needed to form a complete graph.
An example of an index 3 current graph is given in Figure 11. The logs of its circuits are:

[0]. 1 a 8 5 9 4 13 12 14 b 7 10 6 11 2 3
[1]. 14 2 6 4 13 9 11 5 12 7 10 3 8 b 1 a
[2]. 1 13 9 11 2 6 4 10 3 8 5 12 7 a 14 b
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Figure 11: A current graph for K17 −K2. Solid and hollow vertices correspond to clock-
wise and counterclockwise rotations, respectively.

To generate the embedding from the logs of these circuits, for each element γ ∈ Z3m

in the group, the rotation at vertex γ is found by taking the log of circuit [γ mod k] and
adding γ to each of its non-letter elements. The rotations at the numbered vertices thus
read:

0. 1 a 8 5 9 4 13 12 14 b 7 10 6 11 2 3
1. 0 3 7 5 14 10 12 6 13 8 11 4 9 b 2 a
2. 3 0 11 13 4 8 6 12 5 10 7 14 9 a 1 b
3. 4 a 11 8 12 7 1 0 2 b 10 13 9 14 5 6
4. 3 6 10 8 2 13 0 9 1 11 14 7 12 b 5 a
5. 6 3 14 1 7 11 9 0 8 13 10 2 12 a 4 b
6. 7 a 14 11 0 10 4 3 5 b 13 1 12 2 8 9
7. 6 9 13 11 5 1 3 12 4 14 2 10 0 b 8 a
8. 9 6 2 4 10 14 12 3 11 1 13 5 0 a 7 b
9. 10 a 2 14 3 13 7 6 8 b 1 4 0 5 11 12

10. 9 12 1 14 8 4 6 0 7 2 5 13 3 b 11 a
11. 12 9 5 7 13 2 0 6 14 4 1 8 3 a 10 b
12. 13 a 5 2 6 1 10 9 11 b 4 7 3 8 14 0
13. 12 0 4 2 11 7 9 3 10 5 8 1 6 b 14 a
14. 0 12 8 10 1 5 3 9 2 7 4 11 6 a 13 b

The rotation around each lettered vertex is “manufactured” so that the entire embed-
ding is triangular and orientable. To facilitate this process, we make use of the following
characterization of triangular embeddings:

Proposition 4.1 (e.g., Ringel [16, §2.3]). An embedding of a simple graph G is triangular
if and only if for all vertices i, j, k, if the rotation at vertex i is of the form

i. . . . j k . . . ,

then the rotation at vertex j is of the form

j. . . . k i . . .

From the partial rotation system we have built up so far, we can determine the rotations
at the remaining vortex vertices:

a. 0 1 2 9 10 11 3 4 5 12 13 14 6 7 8
b. 0 14 13 6 5 4 12 11 10 3 2 1 9 8 7
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The final embedding is a triangular one of K17 −K2, which is a (17, 1)-triangulation.
It can be augmented into a genus embedding of K17 using Proposition 3.9.

The group we use for most of our constructions, including all infinite families, is
Z12s+3. By combining construction principles (E6) and (E7), we find that in order to
have a degree 1 vertex using this group, it must be the case that s ≡ 2 (mod 3). Thus, we
only make use of degree 1 vertices and principle (E7) in a few constructions deferred to
Appendix B.

The increased flexibility acquired from using index 3 current graphs is crucial. Since
vortices have the same degree as other vertices, one can tweak the number of vortices while
keeping the number of total vertices and edges fixed, i.e., one cannot rule out the existence
of such current graphs using just divisibility conditions on the numbers of vertices and
edges in the current graph. Furthermore, the conditions in Lemma 3.10, i.e., having all
five vortices lined up nearly consecutively, is only possible for current graphs with index at
least 3. For indices 1 and 2, such a configuration would violate a “global” KCL condition.

A sketch of the standard proof of Case 5-CG (see Ringel [16, §9.2] or Youngs [23]) is
given first, as we reuse significant parts of its structure for our current graphs. The case
s = 1 was given earlier in Figure 11, and the higher order cases are given in Figures 12 and
13. The construction also works trivially for s = 0 as well.
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Figure 12: A current graph for K29 −K2.
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Figure 13: The family of current graphs for K12s+5 − K2, for general s. The omitted
current on a circular arc is the same as those on the horizontal arcs above and below it.
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The general shape of the family of current graphs is a long ladder whose “rungs” alter-
nate between simple vertical arcs and so-called “globular rungs,” where the two additional
vertices have a pair of parallel edges between them. As we parse from left to right, the ver-
tical arcs, except for the arc connecting the two vortices, alternate in direction and form an
arithmetic sequence consisting of the nonzero multiples of 3 in Z12s+3. The zigzag pattern
induced on the horizontal arcs is essentially the canonical graceful labeling of a path graph
on 4s+1 vertices (see, e.g., Goddyn et al. [2] for more information on this connection),
where the vertical arcs correspond to the edge labels on the path graph. The horizontal
arcs come in pairs that share the same current and are oriented in opposite directions. The
currents on these arcs exhaust all the elements of the form 3k+1 in Z12s+3.

Infinite families of current graphs typically consist of

• a fixed portion, which contains vortices and some salient currents for additional ad-
jacency solutions. The underlying directed graph stays the same, while the currents
may vary as a function of s, and

• a varying portion, which subsumes all remaining currents not present in the fixed
portion. The size of this ingredient varies as a function of s, and the currents are
arranged in a straightforward pattern.

In the construction for Case 5, we might consider the vortices and its incident edge
ends as the fixed portion, and the rest of the graph (see Figure 14) as the varying portion.
The elegant solutions for Cases 3 and 5 of the Map Color Theorem were first described in
Youngs [23], improving upon similar ideas of Ringel [15] and Gustin [4]. We consider this
varying portion, which we call the Youngs ladder, to be the best possible choice for index
3 current graphs.

The approach of Youngs et al. [5, 6, 23] first finalizes the fixed portion and then solve
auxiliary labeling problems for the varying portion. We tackle the problem in reverse,
opting to massage the fixed portion around a preset varying portion, which we choose to be
a contiguous subset of the Youngs ladder. Starting with the arc labeled 1 that runs between
the two vortices, we successively peel off rungs of the Youngs ladder until we have enough
material for our desired fixed portion.
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Figure 14: The Youngs ladder is essentially the current graphs for Case 5 with two vertices
deleted.

We expect this procedure to become more difficult as the number of vortices increases–
not only do we need appropriate currents that feed into the vortices, but there becomes an
imbalance between the currents which are not divisible by 3 and those which are. Each
vortex will use three currents of the former type, leaving a surplus of those of the latter
type. The gadget in Figure 15, which we call the double bubble, accounts for this effect.
By tracing out the partial circuits and invoking construction principle (E6), we find that
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all six currents entering the highest and lowest vertices must be divisible by 3, while the
four remaining arcs may be labeled with an element not divisible by 3 depending on which
circuits touch this gadget. The double bubble and its generalization have appeared in other
work regarding current graphs of index greater than 1, such as Korzhik and Voss [12] and
Pengelley and Jungerman [14].

In all of our current graph constructions, we use the cyclic group Z12s+3 unless we
specify otherwise. While we often simplify the labels by reversing the directions of some
arcs, e.g. replacing a label like 12s+1 with 2, the ends which connect to the Youngs ladder
are kept unchanged, i.e., as a current which is congruent to 1 (mod 3).

Figure 15: The “double bubble” motif appears in all of our general constructions.

5 Handle subtraction for minimum triangulations
The forthcoming embeddingsK12s+3+k−Kk and the embeddings en route to constructing
a genus embedding of K12s+3+k already constitute minimum triangulations, namely(

12s+ 3 + k,

(
k

2

)
− 6h

)
-triangulations,

where h is a nonnegative integer less than the number of added handles. To construct
minimum triangulations on the same number of vertices, but with more missing edges, we
turn to the main idea of Jungerman and Ringel [11]: we enforce a specific structure in the
current graph that allows us to “subtract” handles. The fragment shown in Figure 16 is what
we refer as an arithmetic 3-ladder. If the step size h in the arithmetic sequence is divisible
by 3 (more generally, divisible by the index of the current graph), then it is possible to find
triangular embeddings in smaller-genus surfaces in the following manner:
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g+t

r
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r+h

. . .

. . .

. . .

. . .

[0]

Figure 16: An arithmetic 3-ladder and a circuit passing through it.
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Lemma 5.1 (Jungerman and Ringel [11]). Let (D,φ, α) be an index 3 current graph with
current group Z3m that satisfies all construction principles. Suppose further that it has an
arithmetic 3-ladder with step size divisible by 3. If the derived embedding of the current
graph has |V | vertices and |E| edges, then for each k = 0, . . . ,m, there exists a triangular
embedding of a graph with |V | vertices and |E| − 6k edges.

Proof. Following Figure 16, the rotation at vertices 0 and h are of the form

0. . . . −t−h g−h r g −t g+h r+h . . .
h. . . . −t g r+h g+h . . .

Here we used the fact that h is divisible by 3. We may infer, by repeated application of
Proposition 4.1, the following partial rotation system, for i = 0, 1, . . . ,m:

0. . . . g −t g+h r+h . . .
g. . . . r+h h −t 0 . . .

r+h. . . . 0 g+h h g . . .

h. . . . −t g r+h g+h . . .
−t. . . . g+h 0 g h . . .
g+h. . . . h r+h 0 −t . . .

(5.1)

If we delete the middle two columns, the rotation system becomes

0. . . . g r+h . . .
g. . . . r+h 0 . . .

r+h. . . . 0 g . . .

h. . . . −t g+h . . .
−t. . . . g+h h . . .
g+h. . . . h −t . . .

This new embedding has six fewer edges, and is still triangular by Proposition 4.1, hence it
must be a triangular embedding on a surface with one fewer handle by Proposition 2.1.

More generally, we obtain other handles that can be subtracted in the same manner,
using the additivity rule. That is, we can find another subtractible handle by adding a
multiple of 3 to every element of (5.1). The six edges from each of m handles can be
deleted simultaneously, as none of the handles share any faces.

One way to visualize this operation is to interpret it as the reverse of Construction 3.8,
like in Figure 17. One can check that in all instances in this paper, the number of handles we
can subtract in a given embedding is greater than the number needed to realize the minimum
triangulation with the fewest number of edges, i.e., the (n, t)-triangulation where t ≈ n−6.

6 The current graph constructions
6.1 Comparison with existing literature

Our utilization of index 3 current graphs is rooted in Jungerman and Ringel’s [11] solution
for Case 5-MT as a straightforward modification of the current graphs used for Case 5-CG.
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Figure 17: The six deleted edges form a cycle that is, roughly speaking, surrounded by two
triangles.

We make no improvement here, but use a variation of their construction as an example of
the infinite families of current graphs we seek.

The standard approach to Case 6-CG is to use index 3 current graphs to first obtain a tri-
angular embedding ofK12s+6−K3. The general solution Ringel [16, §9.3] chose to present
works for all s ≥ 4, and for s = 2, a current graph that makes use of construction principle
(E7) is shown. Jungerman and Ringel [11] solved the remaining minimum triangulations
using two families of index 1 current graphs. For s = 1, the case of (18, 3)-triangulations
is particularly difficult—Jungerman [8] found a triangular embedding of K18 −K3 using
computer search, and we believe that such an embedding cannot be constructed with index
3 or lower current graphs (see the discussion in Section 6.3 and Appendix A). In [21], the
author starts with an (18, 9)-triangulation due to Jungerman and Ringel [10] and produces
a (18, 3)-triangulation and a genus embedding of K18. The (18, 3)-triangulation is of the
graph K18 − 3K2.

Index 1 embeddings of K12s+8 − K5 were apparently known to Ringel and Youngs
(see Ringel [16, p. 86]), though they were unable to extend these embeddings to genus
embeddings of K12s+8. Instead, Jungerman and Ringel [11] used them for most of the
minimum triangulations on 12s+ 8 vertices, i.e., the (12s+ 8, 10 + 6h)-triangulations for
nonnegative h. For the remaining (12s + 8, 4)-triangulation case, they found two families
of index 2 current graphs whose derived embeddings could be modified into an embedding
of K12s+8 − (K2 ∪ P3).

The best solution for Case 9-CG is a beautiful construction of Jungerman, but it does
not construct minimum triangulations except for the exceptional surface S2. For the gen-
eral case, a family of current graphs found by Guy and Ringel [5]2 produced minimum
triangulations for all s ≥ 5. Jungerman and Ringel [11] supplied the remaining cases via
a variety of approaches, primarily using an inductive construction where some triangular
embeddings are glued to one another.

The only previously known solution for the genus of K12s+11 for s ≥ 1 is that of
Ringel and Youngs [18] for s ≥ 2 and the asymmetric embedding of Mayer [13] for s = 1.
In the general case, Ringel and Youngs start with an embedding of K12s+11 −K5, where
the missing edges are added using a highly tailored additional adjacency step. The same
current graph yields minimum triangulations of type (12s + 11, 10 + 6h) for h ≥ 0, but
the troublesome case of (12s + 11, 4)-triangulations, like in Case 8-MT, was resolved via

2There are two errors in Figure 1 of [5]: the top left current should be “6s + 1” and the vertex between “x”
and “z” should be a vortex labeled “w.”
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two complicated families of index 2 current graphs.
It seems that nowhere in the literature, including in the original proof of the Map Color

Theorem, is there a construction of a genus embedding of Kn derived from an (n, 4)-
triangulation. Even though we outlined a natural approach in Proposition 3.6 for converting
an (n, 4)-triangulation to a genus embedding of Kn, no prior such unification was known.

Our approach gives a unified construction for both the Map Color Theorem and the
minimum triangulations problem for Cases 6, 8, 9, and 11. The infinite families of current
graphs cover all s ≥ 2 for Cases 6, 8, and 9, and s ≥ 3 for Case 11. In all these solutions,
we use families of index 3 current graphs whose varying portions are a part of the Youngs
ladder. One attractive property of using index 3 current graphs is that we are able to give
a solution that does not break into two parts depending on the parity of s, as was the case
in Jungerman and Ringel’s [11] current graphs for Case 6-, 8-, and 11-MT. For Cases 9
and 11, we supply additional constructions for smaller values of s. Of particular interest
is the case of n = 23, for which we give the first current graph construction for a genus
embedding of K23.

We present the constructions in increasing difficulty of the additional adjacency solu-
tion. In particular, Case 9, which has six vortices, is ultimately simpler than Case 8 because
of the additional constraint needed in Lemma 3.10.

6.2 Case 5

As a warmup, let us consider how to find minimum triangulations for Case 5. The original
solution in Figure 13 does not have any arithmetic 3-ladders, but we can modify it by
swapping two of the rungs in the Youngs ladder, namely the two with vertical arcs labeled
6 and 12s−3, as in Figure 18. In this drawing and all forthcoming figures, we only describe
the fixed portion of the family of current graphs—at the ellipses, we complete the picture
by attaching the corresponding segment of the Youngs ladder, as mentioned earlier. Exactly
where to truncate the Youngs ladder is determined by the currents at the ends of the fixed
portion.
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Figure 18: A slight modification to the Youngs ladder that produces minimum triangula-
tions.

The idea of pairing the rungs is crucial in Youngs’ method [23] for constructing index
3 current graphs. In their proof of minimum triangulations for Case 5, Jungerman and
Ringel [11] took this idea to the extreme and switched all pairs of rungs so that all of the
globular rungs appeared on one side of the ladder, but as seen in our example, implementing
all these exchanges is not necessary.

We note that to the left of the vortices in our drawing in Figure 18, the directions of the
arcs are inverted from that of Figure 13. Most of our infinite families (except the alternate
Case 6-CG construction in Appendix A) involve attaching a Youngs ladder with a “Möbius
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twist,” i.e., the final current graph is a long ladder-like graph whose top-left and bottom-left
ends become identified with the bottom-right and top-right ends, respectively.

6.3 Case 6

The family of current graphs in Figure 19 applies for all s ≥ 2 and has an arithmetic
3-ladder, giving a simpler and more unified construction for Case 6-CG (after applying
Proposition 3.4), in addition to providing a single family of current graphs, irrespective of
parity, for Case 6-MT. The case s = 1 is particularly pesky—in the original proof of the
Map Color Theorem, the minimum genus embedding of K18 was found using purely ad
hoc methods by Mayer [13]. An exhaustive computer search suggests that there are no
index 3 current graphs for generating triangular embeddings of K18−K3. In Appendix A,
we present another solution for Case 6-CG, s ≥ 2, that almost achieves the 18-vertex case.
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Figure 19: A current graph for K12s+6 −K3 for s ≥ 2.

6.4 Case 9

We improve on the construction of Guy and Ringel [5] with the family of index 3 current
graphs seen in Figure 20. These current graphs produce triangular embeddings ofK12s+9−
K6 for all s ≥ 2, and the vertical rungs labeled 3, 6, 9 form an arithmetic 3-ladder. The
circuits [1] and [2] have the six vortices packed as close together as possible. In particular,
the log of circuit [1] reads

[1]. . . . a 4 b . . . c 1 d . . . e 12s+1 f . . . ,

so we may apply Lemma 3.11 with, e.g., u = 1, to obtain (12s + 9, 9)- and (12s + 9, 3)-
triangulations and a genus embedding of K12s+9.

For the case s = 1, Appendix B contains an index 3 current graph with an arithmetic
3-ladder that yields a triangular embedding of K21 −K3. The remaining case s = 0 is the
lone exception to Theorem 2.6. Huneke [7] proved that no triangulation of the surface S2

has 9 vertices, so the embedding of K8 in S2 with its quadrilateral faces subdivided (see
Appendix C) is a minimum triangulation on 10 vertices. Adding an edge between these two
subdivision vertices with Construction 3.8 and subsequently contracting that edge results
in a genus embedding of K9.



330 Ars Math. Contemp. 18 (2020) 309–337

12s−2

12s−2

1

1

6

6

6s+7

6s−2

9

9

6s+1

6s+4

3

3

2

f

e

4

4

1

c

d

2

2

4

b

a

6s+1

6s+1

3

6s+4

6s+4

6

6s−2

6s−2

9

6s+7

6s+7

. . .

. . .

. . .

. . .
[0]

[0]

[1]

[2]

[1]

Figure 20: A current graph for K12s+9 −K6 for s ≥ 2. Additional fragments of circuits
besides the guidelines at the left and right ends indicate components used in the additional
adjacency solution.

6.5 Case 8

The family of current graphs in Figure 21 yields triangular embeddings of K12s+8 − K5

and has an arithmetic 3-ladder. The logs of this current graph are of the form

[0]. . . . 6s+1 12s . . . 12s−3 6s−2 . . .

[2]. . . . a 6s+2 b 12s+1 c 6s−1 d 12s−2 e . . .

These translate, by additivity, to the rotations

3. . . . 6s+4 0 . . . 12s 6s+1 . . .

2. . . . a 6s+4 b 0 c 6s+1 d 12s e . . .

By applying Lemma 3.10 with u = 2, v = 3, (p1, p2, p3, p4) = (6s + 4, 0, 6s + 1, 12s),
we can construct a (12s+ 8, 4)-triangulation and a genus embedding of K12s+8.
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Figure 21: A family of index 3 current graphs for K12s+8 −K5, s ≥ 2.

Remark 6.1. Our additional adjacency solution makes use of some of the arcs forming the
arithmetic 3-ladder. However, there is no conflict since handle subtraction and additional
adjacency operations are not applied simultaneously.
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6.6 Case 11

For s ≥ 3, we introduce the family of current graphs in Figure 22 that generate triangular
embeddings of K12s+11 − K8. On the bottom right is an arithmetic 3-ladder with labels
9, 12, 15. By examining circuit [1], we obtain the rotations

1. . . . a 6s+8 b . . . c 5 d . . . e 12s−1 f . . . g 6s+2 h . . .

12s+1. . . . 6s+8 6s+2 . . . 5 12s−1 . . .

Applying Lemma 3.12 with u = 1, v = 12s+1, (p1, p2, p3, p4) = (6s+8, 5, 12s−1, 6s+2)
yields the remaining minimum triangulations and a genus embedding of K12s+11, s ≥ 3.

[0]

[0]

12s−5

12s−5

1

7

7

5

5

6s−2

6s−5

3

3

2

7

9

9

6s+4

6s+10

6

6

12

12

15

15

6

1

1

. . .

. . .

A

B

[1]

1

1

6s+1

g

h

6s+4

6s+4

5

f

e

4

4

4

c

d

2

2

6s+7

b

a

6s+1

6s+1

3

6s−2

6s−2

9

6s+7

6s+7

12

6s−5

6s−5

15

6s+10

6s+10

A

B

. . .

. . .
[1] [1]

[2]

Figure 22: Index 3 current graphs for K12s+11 −K8, s ≥ 3.

The special cases s = 1, 2 have current graphs found in Appendix B, and a rotation
system for s = 0 is given in Appendix C.

7 Conclusion
We found index 3 constructions that produced simultaneous solutions to the genus of the
complete graphs and to minimum triangulations of surfaces, for Cases 6, 8, 9, and 11:

• Two constructions were presented for Case 6, s ≥ 2 of the Map Color Theorem.
Prior to the present paper, the only previously known current graph for s = 2 was
not generalizable to higher values of s due to its use of construction principle (E7).

• A significantly simpler solution was found for K12s+9 − K6 than that of Guy and
Ringel [5] that also works for s = 2, 3.

• We gave unified constructions for Cases 8 and 11. For the latter, they are the first
known triangular embeddings of K12s+11 − K8 for s ≥ 3, and the case s = 1
for Case 11-CG now has a solution using current graphs. The additional adjacency
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solution for Case 11 (Lemma 3.12) is more straightforward than the original con-
struction by Ringel and Youngs [18], especially in light of the interpretation given in
Section 3.1.

As mentioned earlier, index 3 current graphs allow for changing the number of vortices
without violating divisibility conditions necessary for the existence of current graphs. We
expect that for fixed k > 1 and sufficiently large s, there exist appropriate current graphs
for triangular embeddings of K12s+3+k−Kk. The results of this paper extend the applica-
bility of index 3 current graphs to roughly half of both of the Map Color Theorem and the
minimum triangulations problem, and we believe that a complete solution for a sufficiently
large number of vertices is possible by extending the results presented here.

We made use of the current group Z12s+3 in our infinite families of current graphs,
reserving the group Z12s+6 for the special cases presented in the Appendix B. We were
unable to find triangular embeddings ofK12s+9−K6 andK12s+11−K8 for small values of
s, so we resorted to a different approach for these cases. An open problem would be to find
an analogue of the Youngs ladder for the latter group—one tricky aspect is incorporating
the order 2 element 6s + 3 into such a pattern. A desirable application of such a method
would be a unified construction for all s ≥ 1 for Case 11. Our current graph for s = 1,
the first known current graph construction for finding a genus embedding of K23, is a step
towards that goal.

Some recent unifications were found by the author in the context of index 1 current
graphs. Originally, these constructions were meant to improve Case 0-CG [22] and Case 1-
CG [20], but these current graphs also have arithmetic 3-ladders and hence also constitute
unified constructions that improve upon those found in Jungerman and Ringel [11]. At
present, Case 2 is the least unified of the residues. Triangular embeddings of K12s+2 −
K2 for all s ≥ 1 were found by Jungerman [9], which by Construction 3.8 yields genus
embeddings of K12s+2. The remaining minimum triangulations were found by an entirely
different construction by Jungerman and Ringel [11]. It seems plausible that lifting to index
3 current graphs may help, as it did with K20 (see [20]) and K23.
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Appendix A An alternate family of current graphs for Case 6-CG

In Figure 23, we give another index 3 construction for triangular embeddings of K12s+6 −
K3 using as much of the Youngs ladder as possible. The corresponding segment of the
Youngs ladder has 4s − 5 rungs—if we had a family of current graphs where the varying
portion was part of a Youngs ladder with one more rung, then an index 3 current graph
would exist for s = 1 (with 0 rungs from the Youngs ladder). Thus, we argue that this
construction, combined with our experimental results showing nonexistence for s = 1,
maximizes the length of the Youngs ladder fragment used. As a side note, this family of
current graphs uses the same building blocks known to Ringel et al.
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Figure 23: Another construction for triangular embeddings of K12s+6 −K3.

Appendix B Small current graphs, Cases 9 and 11

B.1 Case 9

For s = 1 we use the special current graph in Figure 24. It is essentially one of the inductive
constructions used by Jungerman and Ringel [11], with the additional observation that the
current graph used has an arithmetic 3-ladder.

1

10

a

b

9 6

9 6

3

3

6

9

16

1

10 7

16 1

3
4

c 16

7

7

13

4

10

13

4

13

10

1

A

B

B

A

Z18

[0]

[0]

[1]

[2]

Figure 24: A current graph for K21 −K3 with an arithmetic 3-ladder.

B.2 Case 11

For s = 1, 2, we first find a current graph with group Z12s+6 that generates a triangular
embedding of K12s+11 −K5. For s = 1, consider the index 3 current graph in Figure 25.
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The rotations at vertices 1 and 12 are of the form

1. . . . a 3 b 5 c 9 d 8 e . . .

12. . . . 5 8 . . . 3 9 . . . ,

so applying Lemma 3.10 with u = 1, v = 12, (p1, p2, p3, p4) = (3, 5, 9, 8) yields (23, 10)-
and (23, 4)-triangulations, and a genus embedding of K23. For s = 2, the current graph in
Figure 26 generates a triangular embedding of K35 − K5. Similar to the s = 1 case, we
use the rotations

2. . . . a 10 b 6 c 7 d 3 e . . .

19. . . . 7 10 . . . 6 3 . . . ,

and Lemma 3.10 to find the (35, 10)- and (35, 4) triangulations, and a genus embedding of
K35. The remaining minimum triangulations can be found using the arithmetic 3-ladder.
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Figure 25: An index 3 current graph for K23 −K5.

An embedding is said to be nearly triangular if it has at most one nontriangular face.
The following result relates nearly triangular embeddings to minimum triangulations:

Proposition B.1. Suppose there exists a triangle-tight embedding of Kn in a surface Sg
with exactly one nontriangular face. If the boundary of the nontriangular face contains no
repeated vertices, then there exists a minimum triangulation of Sg on n+ 1 vertices.

Proof. The bounds derived from Heawood numbers H(g) (Propositions 2.3 and 2.4) show
that MT (g) ≥ n+ 1 (as H(g) is not an integer). Subdividing the nontriangular face of the
embedding with a new vertex and connecting it to all the vertices along the face yields the
desired triangulation.

In particular, the aforementioned nonexistence result for (9, 3)-triangulations due to
Huneke [7] was used to show that K8 does not have a nearly triangular embedding in
S2 [20]. We use the nearly triangular genus embedding of K22 given in [20] to construct
the remaining (23, 16)-triangulation.

Finally, a unification of the 11-vertex case using an asymmetric embedding is given in
Appendix C.
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Figure 26: An index 3 current graph for K35 −K5.

Appendix C Some small embeddings

We collect a few special embeddings in this section. The first such embedding, found in
Ringel [16, p. 79], is of K8 with two additional subdivision vertices:

0. 2 7 3 1 4 5 6 q0
2. 4 1 5 3 6 7 0 q0
4. 6 3 7 5 0 1 2 q0
6. 0 5 1 7 2 3 4 q0
1. 7 6 5 2 4 0 3 q1
3. 1 0 7 4 6 2 5 q1
5. 3 2 1 6 0 4 7 q1
7. 5 4 3 0 2 6 1 q1
q0. 6 4 2 0
q1. 1 3 5 7

This embedding was used in several ways: it is a minimum triangulation of S2, it
is a genus embedding of K9 after amalgamating q0 and q1, and three of the handles of
Lemma 3.12 can be thought of as gluing this embedding at two quadrilateral faces.

Known (11, 4)-triangulations and genus embeddings of K11 do not follow naturally
from current graph constructions. To lessen the load of having to verify these special
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embeddings, we give a triangular embedding of K11 − C4:

0. 1 10 8 4 2 9 7 5 3 6
1. 0 6 4 8 5 9 3 7 2 10
2. 0 4 10 1 7 6 5 8 3 9
3. 0 5 10 4 7 1 9 2 8 6
4. 0 8 1 6 9 5 7 3 10 2
5. 0 7 4 9 1 8 2 6 10 3
6. 0 3 8 10 5 2 7 9 4 1
7. 0 9 6 2 1 3 4 5
8. 0 10 6 3 2 5 1 4
9. 0 2 3 1 5 4 6 7

10. 0 1 2 4 3 5 6 8

The missing edges are (7, 8), (8, 9), (9, 10), and (10, 7), which can be added with one
handle using Construction 3.8 as in Figure 27. Note that this construction does not really
make use of any specific structure in the embedding, as we can always find a face incident
with a given edge. We thus formulate this additional adjacency approach more generally:

Proposition C.1. If there exists a triangular embedding of Kn − C4, then there exists a
triangle-tight embedding of Kn.

79

8

10

⇒10

8

6

7

9

0

Figure 27: A generic method for adding a C4 with one handle, applied to the triangular
embedding of K11 − C4.
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Abstract

The thickness of a graph G is the minimum number of planar subgraphs whose union
is G. In this paper, we present sharp lower and upper bounds for the thickness of the
Kronecker product G × H of two graphs G and H . We also give the exact thickness
numbers for the Kronecker product graphs Kn ×K2, Km,n ×K2 and Kn,n,n ×K2.
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1 Introduction
The thickness θ(G) of a graph G is the minimum number of planar subgraphs whose union
is G. It is a measurement of the planarity of a graph, the graph with θ(G) = 1 is a
planar graph; it also has important application in VLSI design [15]. Since W. T. Tutte [16]
inaugurated the thickness problem in 1963, the thickness of some classic types of graphs
have been obtained by various authors, such as [1, 3, 4, 13, 17, 19] etc. In recent years,
some authors focus on the thickness of the graphs which are obtained by operating on two
graphs, such as the Cartesian product graph [8, 20] and join graph [7]. In this paper, we are
concerned with the Kronecker product graph.
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The Kronecker product (also called as tensor product, direct product, categorical prod-
uct)G×H of graphsG andH is the graph whose vertex set is V (G×H) = V (G)×V (H)
and edge set is E(G × H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and hh′ ∈ E(H)}. Figure 1
shows the Kronecker product graph K5 ×K2 in which {u1, . . . , u5} and {v1, v2} are the
vertex sets of the complete graphs K5 and K2, respectively. Many authors did research on
various topics of the Kronecker product graph, such as for its planarity [2, 10], connectivity
[18], coloring [9, 12] and application [14] etc.

(u1, v1) (u2, v1) (u3, v1) (u4, v1) (u5, v1)

(u1, v2) (u2, v2) (u3, v2) (u4, v2) (u5, v2)

Figure 1: The Kronecker product graph K5 ×K2.

The complete graph Kn is the graph on n vertices in which any two vertices are adja-
cent. The complete bipartite graph Km,n is the graph whose vertex set can be partitioned
into two parts X and Y , |X| = m and |Y | = n, every edge has its ends in different parts
and every two vertices in different parts are adjacent. The complete tripartite graphKl,m,n

is defined analogously.
In this paper, we present lower and upper bounds for the thickness of the Kronecker

product of two graphs in Section 2, in which the lower bound comes from Euler’s formula
and the upper bound is derived from the structure of the Kronecker product graph. Then
we study the thickness of the Kronecker product of a graph with K2. There are two rea-
sons why we interested in it. One reason is that the upper bound for the thickness of the
Kronecker product of two graphs we will provide relies on that of the Kronecker product
of a graph with K2. Another reason is that the planarity of the Kronecker product of two
graphs have been characterized in [10], but a graph with K2 is one of its missing cases. It’s
a difficult case, because there exist non-planar graphs whose Kronecker product with K2

are planar graphs, see Figures 1 and 2 in [2] for example. In Sections 3 and 4, we provide
the exact thickness numbers for the Kronecker product graphs Kn ×K2, Km,n ×K2 and
Kn,n,n ×K2.

For undefined terminology, see [5].

2 Thickness of the Kronecker product graph G × H

A k-edge-coloring of a graph G is a mapping f : E(G)→ S, where S is a set of k colors.
A k-edge-coloring is proper if incident edges have different colors. A graph is k-edge-
colorable if it has a proper k-edge-coloring. The edge chromatic number χ′(G) of a graph
G is the least k such that G is k-edge-colorable.

Theorem 2.1. Let G and H be two simple graphs on at least two vertices, then⌈
2|E(G)||E(H)|

3|V (G)||V (H)| − 6

⌉
≤ θ(G×H) ≤ min{χ′(H)θ(G×K2), χ

′(G)θ(H ×K2)},

in which χ′(H) and χ′(G) are edge chromatic number of H and G respectively.
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Proof. It is easy to observe that the number of edges in G × H is |E(G × H)| =
2|E(G)||E(H)| and the number of vertices in G × H is |V (G × H)| = |V (G)||V (H)|.
From the Euler’s Formula, the planar graph with |V (G)||V (H)| vertices, has at most
3|V (G)||V (H)| − 6 edges, the lower bound follows.

The χ′(H)-edge-coloring of H can be seen as a partition {M1, . . . ,Mχ′(H)} of E(H),
in which Mi denotes the set of edges assigned color i (1 ≤ i ≤ χ′(H)). Then Mi is
a matching and E(H) = M1 ∪ · · · ∪Mχ′(H). Because G × H = ∪χ

′(H)
i=1 (G ×Mi) and

θ(G×Mi) = θ(G×K2), we have θ(G×H) ≤ χ′(H)θ(G×K2).With the same argument,
we have θ(G×H) ≤ χ′(G)θ(H ×K2). The upper bound can be derived.

In the following, we will give examples to show both the lower and upper bound in
Theorem 2.1 are sharp. Let G and H be the graphs as shown in Figure 2(a) and (b) re-
spectively. Figure 2(c) illustrates a planar embedding of the graph G × {v1v2}, in which
we denote the vertex (ui, vj) by uji , 1 ≤ i ≤ 7, 1 ≤ j ≤ 2. So the thickness of
G × {v1v2} is one which meets the lower bound in Theorem 2.1. Figure 2(d) illustrates a
planar embedding of the graph G × {v2v3} which is isomorphic to G × {v1v2}. Because
G×H = G× {v1v2} ∪ G× {v2v3}, we get a planar subgraph decomposition of G×H
with two subgraphs, which shows the thickness of G × H is not more than two. On the
other hand, the graphG×H contains a subdivision ofK5 which is exhibited in Figure 2(e),
so G ×H is not a planar graph, its thickness is greater than one. Therefore, the thickness
of G×H is two which meets the upper bound in Theorem 2.1.

u1

u2

u3u4

u5

u6u7

(a) The graph G.

v1 v2 v3

(b) The graph H .

u2
1 u1

6 u2
2 u2

3 u1
1 u2

4 u2
5

u1
7

u1
3

u1
5

u2
7

u1
4
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2
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(c) The graph G× {v1v2}.
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(d) The graph G× {v2v3}.

Figure 2: An example to show both lower and upper bounds in Theorem 2.1 are sharp.
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(e) A subgraph of G×H .

Figure 2: An example to show both lower and upper bounds in Theorem 2.1 are sharp.

The graphG×H has a triangle if and only if bothG andH have triangles. IfG×H does
not contain any triangles, from the Euler’s Formula, the planar graph with |V (G)||V (H)|
vertices, has at most 2|V (G)||V (H)| − 4 edges, a tighter lower bound can be derived.

Theorem 2.2. Let G and H be two simple graphs on at least two vertices. If G×H does
not contain any triangles, then⌈

|E(G)||E(H)|
|V (G)||V (H)| − 2

⌉
≤ θ(G×H) ≤ min{χ′(H)θ(G×K2), χ

′(G)θ(H ×K2)}.

3 The thickness of Kn × K2 and Km,n × K2

In this section, by making use of the thickness number ofKn,n and a known planar decom-
position of Kn,n as shown in Lemmas 3.1 and 3.2 respectively, we will obtain the exact
thickness numbers of Kn ×K2 and Km,n ×K2.

Let G be a simple graph with n vertices, V (G) = {v1, . . . , vn} and V (K2) = {1, 2}.
Then G × K2 is a bipartite graph, the two vertex parts are {(vi, 1) | 1 ≤ i ≤ n} and
{(vi, 2) | 1 ≤ i ≤ n}, so G ×K2 is a subgraph of Kn,n which shows that θ(G ×K2) ≤
θ(Kn,n). Although the thickness of the complete bipartite Km,n have not been solved
completely, when m = n, the following result is known.

Lemma 3.1 ([4]). The thickness of the complete bipartite graph Kn,n is

θ(Kn,n) =

⌈
n+ 2

4

⌉
.

When n = 4p (p ≥ 1), Chen and Yin [8] gave a planar subgraphs decomposition
of K4p,4p with p + 1 planar subgraphs G1, . . . , Gp+1. Denote the two vertex parts of
K4p,4p by U = {u1, . . . , u4p} and V = {v1, . . . , v4p}, Figure 3 shows their planar
subgraphs decomposition of K4p,4p, in which for each Gr (1 ≤ r ≤ p), both v4r−3
and v4r−1 join to each vertex in set

⋃p
i=1,i6=r{u4i−3, u4i−2}, both v4r−2 and v4r join

to each vertex in set
⋃p
i=1,i6=r{u4i−1, u4i}, both u4r−1 and u4r join to each vertex in

set
⋃p
i=1,i6=r{v4i−3, v4i−1}, and both u4r−3 and u4r−2 join to each vertex in set⋃p

i=1,i6=r{v4i−2, v4i}. Notice that Gp+1 is a perfect matching of K4p,4p, the edge set of it
is {uivi | 1 ≤ i ≤ 4p}.
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(a) The graph Gr (1 ≤ r ≤ p).
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u2

v2

u4p−1

v4p−1

u4p

v4p

(b) The graph Gp+1.

Figure 3: A planar decomposition of K4p,4p.

Lemma 3.2 ([8]). Suppose Kn,n is a complete bipartite graph with two vertex parts U =
{u1, . . . , un} and V = {v1, . . . , vn}. When n = 4p, there exists a planar subgraphs
decomposition of K4p,4p with p + 1 planar subgraphs G1, . . . , Gp+1 in which Gp+1 is a
perfect matching of K4p,4p with edge set {uivi | 1 ≤ i ≤ 4p}.

Theorem 3.3. The thickness of the Kronecker product of Kn and K2 is

θ(Kn ×K2) =
⌈n
4

⌉
.

Proof. Suppose that the vertex sets ofKn andK2 are {x1, . . . , xn} and {1, 2} respectively.
The graph Kn ×K2 is a bipartite graph whose two vertex parts are {(xi, 1) | 1 ≤ i ≤ n}
and {(xi, 2) | 1 ≤ i ≤ n}, and edge set is {(xi, 1)(xj , 2) | 1 ≤ i, j ≤ n, i 6= j}. For
1 ≤ i ≤ n, 1 ≤ k ≤ 2, we denote the vertex (xi, k) of Kn ×K2 by xki for simplicity.

Since |E(Kn × K2)| = n(n − 1) and |V (Kn × K2)| = 2n, from Theorem 2.2, we
have

θ(Kn ×K2) ≥
⌈
n(n− 1)

4n− 4

⌉
=
⌈n
4

⌉
. (3.1)

In the following, we will construct planar decompositions of Kn ×K2 with
⌈
n
4

⌉
sub-

graphs to complete the proof.

Case 1. When n = 4p.
Suppose that Kn,n is a complete bipartite graph with vertex partition (X1, X2) in which
X1 = {x11, . . . , x1n} and X2 = {x21, . . . , x2n}. The graph Gp+1 is a perfect matching of
K4p,4p whose edge set is {x1ix2i | 1 ≤ i ≤ n}, then Kn × K2 = Kn,n − Gp+1. From
Lemma 3.2, there exists a planar decomposition {G1, . . . , Gp} of Kn ×K2 in which Gr
(1 ≤ r ≤ p) is isomorphic to the graph in Figure 3(a). Therefore, θ(K4p ×K2) ≤ p.
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Case 2. When n = 4p+ 2.
When p ≥ 1, we draw a graph G′p+1 as shown in Figure 4, then {G1, . . . , Gp, G

′
p+1} is a

planar decomposition of K4p+2×K2 with p+1 subgraphs, so we have θ(K4p+2×K2) ≤
p+ 1. When n = 2, K2 ×K2 = 2K2 is a planar graph.

x1
4p+1 x2

4p+2

x1
4p+2 x2

4p+1

x2
1 x2

2 x2
4p−1 x2

4p x1
1 x1

2 x1
4p−1 x1

4p

Figure 4: The graph G′p+1.

Case 3. When n = 4p+ 1 and n = 4p+ 3.
Because K4p+1 × K2 is a subgraph of K4p+2 × K2, we have θ(K4p+1 × K2) ≤
θ(K4p+2 × K2) = p + 1. Similarly, when n = 4p + 3, we have θ(K4p+3 × K2) ≤
θ(K4(p+1) ×K2) = p+ 1.

Summarizing Cases 1, 2 and 3, we have

θ(Kn ×K2) ≤
⌈n
4

⌉
. (3.2)

Theorem follows from inequalities (3.1) and (3.2).

Theorem 3.4. Let G be a simple graph on n (n ≥ 2) vertices, then⌈
E(G)

2n− 2

⌉
≤ θ(G×K2) ≤

⌈n
4

⌉
.

Proof. Because G×K2 is a subgraph of Kn ×K2, we have θ(G×K2) ≤ θ(Kn ×K2).
Combining it with Theorems 2.2 and 3.3, the theorem follows.

Lemma 3.5 ([10]). The Kronecker product ofKm,n andKp,q is a disjoint unionKmp,nq ∪
Kmq,np.

Theorem 3.6. The thickness of the Kronecker product of Km,n and Kp,q is

θ(Km,n ×Kp,q) = max{θ(Kmp,nq), θ(Kmq,np)}.

Proof. From Lemma 3.5, the proof is straightforward.

Because K2 is also K1,1, the following corollaries are easy to get, from Theorem 3.6
and Lemma 3.1.

Corollary 3.7. The thickness of the Kronecker product of Km,n and K2 is

θ(Km,n ×K2) = θ(Km,n).

Corollary 3.8. The thickness of the Kronecker product of Kn,n and K2 is

θ(Kn,n ×K2) =

⌈
n+ 2

4

⌉
.
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4 The thickness of the Kronecker product graph Kn,n,n × K2

Let (X,Y, Z) be the vertex partition of the complete tripartite graphKl,m,n (l ≤ m ≤ n) in
which X = {x1, . . . , xl}, Y = {y1, . . . , ym}, Z = {z1, . . . , zn}. Let {1, 2} be the vertex
set of K2. We denote the vertex (v, k) of Kl,m,n × K2 by vk in which v ∈ V (Kl,m,n)
and k ∈ {1, 2}. For k = 1, 2, we denote Xk = {xk1 , . . . , xkl }, Y k = {yk1 , . . . , ykm} and
Zk = {zk1 , . . . , zkn}. In Figure 5, we draw a sketch of the graph Kl,m,n ×K2, in which the
edge joining two vertex set indicates that each vertex in one vertex set is adjacent to each
vertex in another vertex set. Suppose G(X1, Y 2) is the graph induced by the vertex sets
X1 and Y 2 ofKl,m,n×K2, thenG(X1, Y 2) is isomorphic toKl,m, the graphsG(Y 1, Z2),
G(Z1, X2), G(X2, Y 1), G(Y 2, Z1) and G(Z2, X1) are defined analogously. We define

G1 = G(X1, Y 2) ∪G(Y 1, Z2) ∪G(Z1, X2)

and
G2 = G(X2, Y 1) ∪G(Y 2, Z1) ∪G(Z2, X1),

then Kl,m,n ×K2 = G1 ∪G2.

X1 Y 1 Z1

X2 Y 2 Z2

Figure 5: The graph Kl,m,n ×K2.

Theorem 4.1. The thickness of the Kronecker product graph Kl,m,n ×K2 (l ≤ m ≤ n)
satisfies the inequality⌈

lm+ ln+mn

2(l +m+ n)− 2

⌉
≤ θ(Kl,m,n ×K2) ≤ 2θ(Km,n).

Proof. From Theorem 3.4, one can get the lower bound in this theorem easily. Any two
graphs of G(X1, Y 2), G(Y 1, Z2) and G(Z1, X2) are disjoint with each other and l ≤
m ≤ n, so we have

θ(G1) ≤ max{θ(G(X1, Y 2), θ(G(Y 1, Z2), θ(G(Z1, X2)} = θ(Km,n).

Similarly, we have

θ(G2) ≤ max{θ(G(X2, Y 1), θ(G(Y 2, Z1), θ(G(Z2, X1))} = θ(Km,n).

Due to the graph Kl,m,n × K2 = G1 ∪ G2, we have θ(Kl,m,n × K2) ≤ 2θ(Km,n).
Summarizing the above, the theorem is obtained.

In the following, we will construct planar decompositions of Kn,n,n ×K2 when n =
4p, 4p+ 1, 4p+ 3 in Lemmas 4.2, 4.4 and 4.5 respectively. Then combining these lemmas
with Theorem 2.2, we will get the thickness of Kn,n,n × K2 and we will see when n =
4p+2, the upper and lower bound in Theorem 4.1 are equal, so both bounds in Theorem 4.1
are sharp.
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Lemma 4.2. When n = 4p, there exists a planar decomposition of the Kronecker product
graph Kn,n,n ×K2 with 2p+ 1 subgraphs.

Proof. Because |Xk| = |Y k| = |Zk| = n (k = 1, 2), all the graphs G(X1, Y 2),
G(Y 1, Z2), G(Z1, X2), G(X2, Y 1), G(Y 2, Z1), G(Z2, X1) are isomorphic to Kn,n.

Let {G1, . . . , Gp+1} be the planar decomposition of Kn,n as shown in Figure 3. For
1 ≤ r ≤ p + 1, Gr is a bipartite graph, so we also denote it by Gr(V,U). In Gr(V,U),
we replace the vertex set V by X1, U by Y 2, i.e., for each 1 ≤ i ≤ n, replace the vertex
vi by x1i , and ui by y2i , then we get graph Gr(X1, Y 2). Analogously, we obtain graphs
Gr(Y

1, Z2), Gr(Z
1, X2), Gr(X

2, Y 1), Gr(Y
2, Z1) and Gr(Z2, X1).

For 1 ≤ r ≤ p+ 1, let

G1
r = Gr(X

1, Y 2) ∪Gr(Y 1, Z2) ∪Gr(Z1, X2)

and
G2
r = Gr(X

2, Y 1) ∪Gr(Y 2, Z1) ∪Gr(Z2, X1).

Because Gr(X1, Y 2), Gr(Y
1, Z2), Gr(Z

1, X2) are all planar graphs and they are disjoint
with each other, G1

r is a planar graph. For the same reason, we have that G2
r is also a planar

graph.
Let graph Gp+1 be the graph G1

p+1 ∪G2
p+1. We have

Gp+1 = G1
p+1 ∪G2

p+1

=
{

n
∪
i=1

(x1i y
2
i ∪ y1i z2i ∪ z1i x2i )

}
∪
{

n
∪
i=1

(x2i y
1
i ∪ y2i z1i ∪ z2i x1i )

}
=

n
∪
i=1

(x1i y
2
i z

1
i x

2
i y

1
i z

2
i x

1
i ).

It is easy to see Gp+1 consists of n disjoint cycles of length 6, hence Gp+1 is a planar
graph.

Because

G(X1, Y 2) =
p+1
∪
r=1

Gr(X
1, Y 2), G(Y 1, Z2) =

p+1
∪
r=1

Gr(Y
1, Z2),

G(Z1, X2) =
p+1
∪
r=1

Gr(Z
1, X2), G(X2, Y 1) =

p+1
∪
r=1

Gr(X
2, Y 1),

and

G(Y 2, Z1) =
p+1
∪
r=1

Gr(Y
2, Z1), G(Z2, X1) =

p+1
∪
r=1

Gr(Z
2, X1),

we have

Kn,n,n ×K2 = G1 ∪G2

=
p+1
∪
r=1

(G1
r ∪G2

r)

=
p
∪
r=1

(G1
r ∪G2

r) ∪Gp+1.

So we get a planar decomposition of K4p,4p,4p ×K2 with 2p + 1 subgraphs G1
1, . . . , G

1
p,

G2
1, . . . , G

2
p, Gp+1. The proof is completed.
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We draw the planar decomposition of K8,8,8 ×K2 as shown in Figure 6.

Lemma 4.3 ([5]). Let G be a planar graph, and let f be a face in some planar embedding
of G. Then G admits a planar embedding whose outer face has the same boundary as f .
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x26x25

x28x27
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x23

(a) The graph G1
1.
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y28 y26
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z15
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x22x21

x24x23

x25
x28 x26
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(b) The graph G1
2.

x26

x28

x25

x27

x23

x22

x21

x24

y16y15

y18y17

y11
y14 y12

y13
y26

y28

y25

y27

y23

y22

y21
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z16z15

z18z17
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(c) The graph G2
1.

Figure 6: A planar decomposition of K8,8,8 ×K2.
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(d) The graph G2
2.

x11 z21

y21 y11

z11 x21

x12 z22

y22 y12

z12 x22

x13 z23

y23 y13

z13 x23

x14 z24

y24 y14

z14 x24

x15 z25

y25 y15

z15 x25

x16 z26
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x17 z27

y27 y17

z17 x27

x18 z28

y28 y18

z18 x28

(e) The graph G3.

Figure 6: A planar decomposition of K8,8,8 ×K2.

Lemma 4.4. When n = 4p + 1, there exists a planar decomposition of the Kronecker
product graph Kn,n,n ×K2 with 2p+ 1 subgraphs.

Proof. Case 1. When p ≤ 1.
When p = 0, the Kronecker product graphK1,1,1×K2 is a cycle of length 6, soK1,1,1×K2

is a planar graph. When p = 1, as shown in Figure 7, we give a planar decomposition of
K5,5,5 ×K2 with three subgraphs A,B and C.

Case 2. When p ≥ 2.
Suppose that {G1

1, . . . , G
1
p, G

2
1, . . . , G

2
p, Gp+1} is the planar decomposition of K4p,4p,4p×

K2 as provided in the proof of Lemma 4.2. By adding vertices x14p+1, x
2
4p+1, y

1
4p+1, y

2
4p+1,

z14p+1, z
2
4p+1 to each graph in this decomposition, and some modifications of adding and

deleting edges to these graphs, a planar decomposition of K4p+1,4p+1,4p+1 × K2 will be
obtained.

For convenience, in Figure 3(a) we label some faces of Gr (1 ≤ r ≤ p) with face
1, 2 and 3. As indicated in Figure 3(a), the face 1 is bounded by v4r−1u4r−3v4r−2u4r,
the face 3 is its outer face, bounded by v4r−3u4r−2v4ru4r−1. The face 2 is bounded by
u4r−3v4r−1u4r−2vj in which vertex vj can be any vertex of

⋃p
i=1,i6=r{v4i−2, v4i}. Be-

cause u4r−3 and u4r−2 in Gr (1 ≤ r ≤ p) is joined by 2p − 2 edge-disjoint paths of
length two that we call parallel paths, we can change the order of these parallel paths
without changing the planarity of Gr. Analogously, we can change the order of par-
allel paths between u4r−1 and u4r, v4r−3 and v4r−1, v4r−2 and v4r. In addition, the
subscripts of all the vertices are taken module 4p, except that of the new added vertices
x14p+1, x

2
4p+1, y

1
4p+1, y

2
4p+1, z

1
4p+1 and z24p+1.
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Figure 7: A planar decomposition of K5,5,5 ×K2.

Step 1: Add the vertices x14p+1 and y24p+1 to graph Gr(X1, Y 2).
Place vertices x14p+1 and y24p+1 in face 1 and face 2 of Gr(X1, Y 2), respectively. Join
x14p+1 to vertices y24r−3 and y24r. Change the order of the parallel paths between y24r−2 and
y24r−3, such that x14r+2 ∈

⋃p
i=1,i6=r{x14i−2, x14i} are incident with the face 2, and join y24p+1

to both x14r−1 and x14r+2.

Step 2: Add the vertices x24p+1 and y14p+1 to graph Gr(X2, Y 1).
Similar to step 1, place x24p+1 and y14p+1 in face 1 and face 2 of Gr(X2, Y 1), respectively.
Join x24p+1 to both y14r−3 and y14r, join y14p+1 to both x24r−1 and x24r+2 ∈

⋃p
i=1,i6=r{x24i−2,

x24i}.
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Step 3: Add the vertices y14p+1 and z24p+1 to graph Gr(Y 1, Z2).
Place y14p+1 in face 3 of Gr(Y 1, Z2) and join it to vertices z24r−2 and z24r−1. Place z24p+1

in face 1 of Gr(Y 1, Z2) and join it to vertices y14r−2 and y14r−1.

Step 4: Add the vertices y24p+1 and z14p+1 to graph Gr(Y 2, Z1).
Place y24p+1 in face 3 of Gr(Y 2, Z1) and join it to vertices z14r−2 and z14r−1. Place z14p+1

in face 1 of Gr(Y 2, Z1) and join it to vertices y24r−2 and y24r−1.

Step 5: Add the vertices z14p+1 and x24p+1 to graph Gr(Z1, X2).
Place z14p+1 in face 1 of Gr(Z1, X2) and join it to vertices x24r−3 and x24r. Place x24p+1 in
face 3 of Gr(Z1, X2) and join it to vertices z14r−3 and z14r.

Step 6: Add the vertices z24p+1 and x14p+1 to graph Gr(Z2, X1).
Place z24p+1 in face 1 of Gr(Z2, X1) and join it to vertices x14r−3 and x14r. Place x14p+1 in
face 3 of Gr(Z2, X1) and join it to vertices z24r−3 and z24r.

We denote the above graphs we obtain from Steps 1–6 by Ĝr(X1, Y 2), Ĝr(X
2, Y 1),

Ĝr(Y
1, Z2), Ĝr(Y

2, Z1), Ĝr(Z
1, X2) and Ĝr(Z2, X1) respectively.

Let
Ĝ1
r = Ĝr(X

1, Y 2) ∪ Ĝr(Y 1, Z2) ∪ Ĝr(Z1, X2)

and
Ĝ2
r = Ĝr(X

2, Y 1) ∪ Ĝr(Y 2, Z1) ∪ Ĝr(Z2, X1).

Step 7: Add the edges z14rx
2
4r, y

1
4r−1z

2
4r−1, z

1
4r−2y

2
4r−2, x

1
4r−3z

2
4r−3 and z24rx

1
4r,

y24r−1z
1
4r−1, z

2
4r−2y

1
4r−2, x

2
4r−3z

1
4r−3 to graphs Ĝ1

r and Ĝ2
r respectively, 1 ≤ r ≤ p.

For graph Ĝr(Y 1, Z2) ⊂ Ĝ1
r , we delete the edge y14r−3z

2
4r and join the vertex y14r−1 to

vertex z24r−1, then we get a planar graph G̃r(Y 1, Z2). According to Lemma 4.3, the graph
G̃r(Y

1, Z2) has a planar embedding whose outer face has the same boundary as face 2,
then the vertex z24r−3 is on the boundary of this outer face.

For graph Ĝr(Z1, X2) ⊂ Ĝ1
r , delete the edge z14r−2x

2
4r−1 and join z14r to x24r, then we

get a planar graph G̃r(Z1, X2). According to Lemma 4.3, the graph G̃r(Z1, X2) has a pla-
nar embedding whose outer face has boundary as z14rx

2
4rz

1
4r−2x

2
i z

1
4r (x2i ∈

⋃p
i=1,i6=r{x24i−1,

x24i}), then the vertex z14r−2 is on the boundary of this outer face.
Since the vertices x14r−3 and y24r−2 are on the boundary of the outer face of the em-

bedding of Ĝr(X1, Y 2) ⊂ Ĝ1
r , we can join x14r−3 to z24r−3, y24r−2 to z14r−2 without edge

crossing. Then we get a planar graph G̃1
r .

With the same process, for the graph G2
r , we delete edges y24r−3z

1
4r and z24r−2x

1
4r−1,

join y24r−1 to z14r−1, join z24r to x14r, join x24r−3 to z14r−3 and join y14r−2 to z24r−2, then we
get a planar graph G̃2

r .

Table 1 shows the edges that we add to G1
r and G2

r (1 ≤ r ≤ p) in Steps 1–7.

Step 8: The remaining edges form a planar graph G̃p+1.
The edges that belong to K4p+1,4p+1,4p+1 × K2 but not to any G̃1

r, G̃
2
r (1 ≤ r ≤ p) are

shown in Table 2, in which the edges in the last two rows list the edges deleted in Step 7.
The remaining edges form a graph, denote by G̃p+1. We draw a planar embedding of G̃p+1

in Figure 8, so G̃p+1 is a planar graph.
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Table 1: The edges we add to G1
r and G2

r (1 ≤ r ≤ p).

Edges Subscript

x14p+1y
2
i , x

2
4p+1y

1
i , z14p+1x

2
i , z

2
4p+1x

1
i ,

x14p+1z
2
i , x

2
4p+1z

1
i , x1i z

2
i , x

2
i z

1
i , i = 4r − 3, 4r.

y14p+1z
2
i , y

2
4p+1z

1
i , z14p+1y

2
i , z

2
4p+1y

1
i ,

y14p+1x
2
i , y

2
4p+1x

1
i , y1i z

2
i , y

2
i z

1
i , i = 4r − 2, 4r − 1.

Table 2: The edges of G̃p+1.

Edges Subscript (1 ≤ r ≤ p)

x14p+1y
2
i , x24p+1y

1
i , z14p+1x

2
i , z24p+1x

1
i ,

x14p+1z
2
i , x24p+1z

1
i , x1i z

2
i , x

2
i z

1
i , i = 4r − 2, 4r − 1.

y14p+1z
2
i , y24p+1z

1
i , z14p+1y

2
i , z24p+1y

1
i ,

y14p+1x
2
i , y24p+1x

1
i , y1i z

2
i , y

2
i z

1
i , i = 4r − 3, 4r.

x1i y
2
i , x

2
i y

1
i , i = 4r − 3, 4r − 2, 4r − 1, 4r.

x1i y
2
i , y2i z

1
i , z1i x

2
i , x2i y

1
i , y1i z

2
i , z2i x

1
i , i = 4p+ 1.

y1i z
2
j , y2i z

1
j , i = 4r − 3, j = 4r.

z1i x
2
j , z2i x

1
j , i = 4r − 2, j = 4r − 1.

Therefore {G̃1
1, . . . , G̃

1
p, G̃

2
1, . . . , G̃

2
p, G̃p+1} is a planar decomposition of

K4p+1,4p+1,4p+1 ×K2, the Lemma follows.

Figure 9 illustrates a planar decomposition of K9,9,9 ×K2 with five subgraphs.
A graph G is said to be thickness t-minimal, if θ(G) = t and every proper subgraphs

of it have a thickness less than t.

Lemma 4.5. When n = 4p+ 3, there exists a planar decomposition of Kronecker product
graph K4p+3,4p+3,4p+3 ×K2 with 2p+ 2 subgraphs.

Proof. Case 1. When p = 0.
As shown in Figure 10, we give a planar decomposition of K3,3,3 ×K2 with 2 subgraphs.

Case 2. When p ≥ 1.
The graph K4p+3,4p+3 is a thickness (p + 2)-minimal graph. Hobbs, Grossman [11] and
Bouwer, Broere [6] proved it independently, by giving two different planar subgraphs de-
compositions {H1, . . . ,Hp+2} ofK4p+3,4p+3 in whichHp+2 contains only one edge. Sup-
pose that the two vertex parts of Kn,n is {v1, . . . , vn} and {u1, . . . , un}, the only one edge
in the Hp+2 is vaub (the edge is v1u1 in [11] and v4p+3u4p−1 in [6]). For 1 ≤ i ≤ p + 2,
Hi is a bipartite graph, so we also denote it by Hi(V,U).

BecauseKn,n,n×K2 = G1∪G2 in whichG1 = G(X1, Y 2)∪G(Y 1, Z2)∪G(Z1, X2)
and G2 = G(X2, Y 1) ∪G(Y 2, Z1) ∪G(Z2, X1), |Xi| = |Y i| = |Zi| = n (i = 1, 2), all
the graphs G(X1, Y 2), G(Y 1, Z2), G(Z1, X2), G(X2, Y 1), G(Y 2, Z1) and G(Z2, X1)
are isomorphic to Kn,n.
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Figure 9: A planar decomposition of K9,9,9 ×K2.
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For graph Hi(V,U) (1 ≤ i ≤ p + 2), we replace the vertex set V by X1, U by Y 2,
i.e., for each 1 ≤ t ≤ n, replace the vertex vt by x1t , and ut by y2t , then we get a graph
Hi(X

1, Y 2). Analogously, we can obtain graphs Hi(Y
1, Z2), Hi(Z

1, X2), Hi(X
2, Y 1),

Hi(Y
2, Z1) and Hi(Z

2, X1). For 1 ≤ i ≤ p+ 2, let

H1
i = Hi(X

1, Y 2) ∪Hi(Y
1, Z2) ∪Hi(Z

1, X2),

thenH1
i is a planar graph, becauseHi(X

1, Y 2), Hi(Y
1, Z2), Hi(Z

1, X2) are disjoint with
each other. For the same reason, the graph

H2
i = Hi(X

2, Y 1) ∪Hi(Y
2, Z1) ∪Hi(Z

2, X1)

is also a planar graph, 1 ≤ i ≤ p+ 2. And we have

K4p+3,4p+3,4p+3 ×K2 = G1 ∪G2 =
p+2
∪
i=1

(H1
i ∪H2

i ),

in which E(H1
p+2) = {x1ay2b , y1az2b , z1ax2b} and E(H2

p+2) = {x2ay1b , y2az1b , z2ax1b}.
In the following, we will add edges in E(H1

p+2) to graphs H2
1 and H2

2 , add edges in
E(H2

p+2) to graphs H1
1 and H2

1 to complete the proof. From Lemma 4.3, there exists a
planar embedding of H1(Y

1, Z2) such that vertex z2a on the boundary of its outer face,
exists a planar embedding of H1(X

1, Y 2) such that x1b on the boundary of its outer face.
Then we join z2a to x1b without edge crossing. Suppose y1b is on the boundary of inner face
F of the embedding of H1(Y

1, Z2), put the embedding of H1(Z
1, X2) in face F with

x2a on the boundary of its outer face, then we join x2a to y1b without edge crossing. After
adding both x2ay

1
b and z2ax

1
b to H1

1 without edge crossing, we get a planar graph H̃1
1 . With

the same process, we add both x1ay
2
b and z1az

2
b to H2

1 without edge crossing, then we get a
planar graph H̃2

1 . From Lemma 4.3, we can also add y2az
1
b to H1

2 , and y1az
2
b to H2

2 without
edge crossing, then we get planar graphs H̃1

2 and H̃2
2 respectively.

Then we get a planar decomposition{
H̃1

1 , H̃
1
2 , H

1
3 , . . . ,H

1
p+1, H̃

2
1 , H̃

2
2 , H

2
3 , . . . ,H

2
p+1

}
of K4p+3,4p+3,4p+3 ×K2 with 2p+ 2 subgraphs.

Summarizing Cases 1 and 2, the lemma follows.

Theorem 4.6. The thickness of the Kronecker product of Kn,n,n and K2 is

θ(Kn,n,n ×K2) =

⌈
n+ 1

2

⌉
.

Proof. Because ofE(Kn,n,n×K2) = 6n2 and V (Kn,n,n×K2) = 6n, from Theorem 2.2,
we have

θ(Kn,n,n ×K2) ≥
⌈

6n2

2(6n)− 4

⌉
=

⌈
n

2
+

n

6n− 2

⌉
=

⌈
n+ 1

2

⌉
. (4.1)

When n = 4p+2, because K4p+2,4p+2,4p+2×K2 is a subgraph of K4p+3,4p+3,4p+3×
K2, we have θ(K4p+2,4p+2,4p+2×K2) ≤ θ(K4p+3,4p+3,4p+3×K2). Combining this fact
with Lemmas 4.2, 4.4 and 4.5, we have

θ(Kn,n,n ×K2) ≤
⌈
n+ 1

2

⌉
. (4.2)

From inequalities (4.1) and (4.2), the theorem is obtained.
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Abstract

Let α(G) denote the cardinality of a maximum independent set, while µ(G) be the
size of a maximum matching in the graph G = (V,E). If α(G) + µ(G) = |V |, then
G is a König-Egerváry graph. If d1 ≤ d2 ≤ · · · ≤ dn is the degree sequence of G,
then the annihilation number a (G) of G is the largest integer k such that

∑k
i=1 di ≤

|E|. A set A ⊆ V satisfying
∑

v∈A deg(v) ≤ |E| is an annihilation set; if, in addition,
deg (x) +

∑
v∈A deg(v) > |E|, for every vertex x ∈ V (G) − A, then A is a maximal

annihilation set in G.
In 2011, Larson and Pepper conjectured that the following assertions are equivalent:

(i) α (G) = a (G);

(ii) G is a König-Egerváry graph and every maximum independent set is a maximal
annihilating set.

It turns out that the implication “(i) =⇒ (ii)” is correct.
In this paper, we show that the opposite direction is not valid, by providing a series of

generic counterexamples.
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1 Introduction
Throughout this paper G = (V,E) is a finite, undirected, loopless graph without multiple
edges, with vertex set V = V (G) of cardinality |V (G)| = n (G), and edge set E = E(G)
of size |E (G)| = m (G). If X ⊂ V (G), then G[X] is the subgraph of G induced by
X . By G − v we mean the subgraph G[V (G) − {v}], for v ∈ V (G). Kn,Km,n, Pn, Cn

denote respectively, the complete graph on n ≥ 1 vertices, the complete bipartite graph on
m,n ≥ 1 vertices, the path on n ≥ 1 vertices, and the cycle on n ≥ 3 vertices, respectively.

The disjoint union of the graphs G1, G2 is the graph G1 ∪G2 having the disjoint union
of V (G1), V (G2) as a vertex set, and the disjoint union of E(G1), E(G2) as an edge set.
In particular, nG denotes the disjoint union of n > 1 copies of the graph G.

A set S ⊆ V (G) is independent if no two vertices from S are adjacent, and by Ind(G)
we mean the family of all the independent sets of G. An independent set of maximum size
is a maximum independent set of G, and α(G) = max{|S| : S ∈ Ind(G)}. Let Ω(G)
denote the family of all maximum independent sets.

A matching in a graphG is a set of edgesM ⊆ E(G) such that no two edges ofM share
a common vertex. A matching of maximum cardinality µ(G) is a maximum matching, and
a perfect matching is one saturating all vertices of G.

It is known that bn (G) /2c + 1 ≤ α(G) + µ(G) ≤ n (G) ≤ α(G) + 2µ(G) hold for
every graph G [6]. If α(G) + µ(G) = n (G), then G is called a König-Egerváry graph
[11, 36]. For instance, each bipartite graph is a König-Egerváry graph [13, 20]. Various
properties of König-Egerváry graphs can be found in [3, 4, 5, 16, 17, 18, 21, 22, 23, 25, 26,
27, 28, 29, 30, 31, 35].

Let d1 ≤ d2 ≤ · · · ≤ dn be the degree sequence of a graph G. Pepper [33, 34] defined
the annihilation number of G, denoted a (G), to be the largest integer k such that the sum
of the first k terms of the degree sequence is at most half the sum of the degrees in the
sequence. In other words, a (G) is precisely the largest integer k such that

∑k
i=1 di ≤

m (G).
Clearly, a (G) = n (G) if and only if m (G) = 0. If m (G) = 1, then a (G) =

n (G) − 1. The converse is not true; e.g., the graph K1,p has a (K1,p) = m (K1,p) =
p = n (K1,p)− 1, while p may be greater than one.

For A ⊆ V (G), let deg(A) =
∑

v∈A deg(v). Every A ⊆ V (G) satisfying deg(A) ≤
m (G) is an annihilating set. Clearly, every independent set is annihilating. An annihilating
set A is maximal if deg(A ∪ {x}) > m (G), for every vertex x ∈ V (G) − A, and it is
maximum if |A| = a (G) [33]. For example, if G = Kp,q = (A,B,E) and p > q, then A
is a maximum annihilating set, while B is a maximal annihilating set.

Theorem 1.1 ([33]). For every graph G,

a (G) ≥ max

{⌊
n (G)

2

⌋
, α (G)

}
.

For instance,

a (C7) = α (C7) =

⌊
n (C7)

2

⌋
, a

(
P5

)
= 3 > α

(
P5

)
=

⌊
n
(
P5

)
2

⌋
,

a (K2,3) = α (K2,3) >

⌊
n (K2,3)

2

⌋
, while a

(
C6

)
=

⌊
n
(
C6

)
2

⌋
> α

(
C6

)
.
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The relation between the annihilation number and various parameters of a graph were
studied in [1, 2, 7, 8, 9, 10, 12, 14, 15, 19, 32, 33].

Theorem 1.2 ([24]). For a graph G with a (G) ≥ n(G)
2 , α (G) = a (G) if and only if G is

a König-Egerváry graph and every S ∈ Ω(G) is a maximum annihilating set.

All the maximum independent sets of the cycle C5 are maximum annihilating. More-
over, a (C5) = α (C5). Nevertheless, C5 is not a König-Egerváry graph. In other words,
the condition a (G) ≥ n(G)

2 in Theorem 1.2 is necessary.
Actually, Larson and Pepper [24] proved a stronger result that reads as follows.

Theorem 1.3. Let G be a graph with a (G) ≥ n(G)
2 . Then the following are equivalent:

(i) α (G) = a (G);

(ii) G is a König-Egerváry graph and every S ∈ Ω(G) is a maximum annihilating set;

(iii) G is a König-Egerváry graph and some S ∈ Ω(G) is a maximum annihilating set.

Along these lines, it was conjectured that the impacts of maximum and maximal anni-
hilating sets are the same.

Conjecture 1.4 ([24]). LetG be a graph with a (G) ≥ n(G)
2 . Then the following assertions

are equivalent:

(i) α (G) = a (G);

(ii) G is a König-Egerváry graph and every S ∈ Ω(G) is a maximal annihilating set.

One can easily infer that every maximum annihilating set is also a maximal annihilating
set, since the sum of the a+ 1 smallest entries from the degree sequence D = (d1 ≤ d2 ≤
· · · ≤ dn) is greater than m (G), then the same is true for every a + 1 entries of D. Thus
the “(i) =⇒ (ii)” part of Conjecture 1.4 is valid, in accordance with Theorem 1.2.w w

w w w@
@
@�

�
�

H1 w w w
w w
��

��
��@

@
@

HH
HHHH�
�
�

H2

Figure 1: Non-König-Egerváry graphs with a (H1) = 3 and a (H2) = 2.

Consider the graphs from Figure 1. The graph H1 has a (H1) > α (H1) and none of
its maximum independent sets is a maximal or a maximum annihilating set. The graph H2

has a (H2) = α (H2) and each of its maximum independent sets is both a maximal and a
maximum annihilating set. Notice that a (H1) > n(H1)

2 , while a (H2) < n(H2)
2 .

Consider the graphs from Figure 2. The graph G1 has α (G1) = n(G1)
2 < a (G1) and

each of its maximum independent sets is neither a maximal nor a maximum annihilating
set. The graph G2 has a (G2) = α (G2) = n(G2)

2 , every of its maximum independent
sets is both a maximal and a maximum annihilating set, and it has a maximal independent
set that is a maximal non-maximum annihilating set, namely {u, v}. The graph G3 has
a (G3) = α (G3) > n(G3)

2 and every of its maximum independent sets is both a maximal
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Figure 2: König-Egerváry graphs with a (G1) = a (G3) = 4, a (G2) = 3, a (G4) = 6.

and a maximum annihilating set. The graph G4 has a (G4) > α (G4) > n(G4)
2 and none of

its maximum independent sets is a maximal or a maximum annihilating set.
In this paper we invalidate the “(ii) =⇒ (i)” part of Conjecture 1.4, by providing

some generic counterexamples. Let us notice that, if G is a König-Egerváry graph, and
H = qK1 ∪ G, then H inherits this property. Moreover, the relationship between the
independence numbers and annihilation numbers of G and H remains the same, because
α (H) = α (G) + q and a (H) = a (G) + q. Therefore, it is enough to construct only
connected counterexamples. Finally, we prove that Conjecture 1.4 is true for graphs with
independence number equal to three.

2 An infinite family of counterexamples
In what follows, we present a series of counterexamples to the opposite direction of Con-
jecture 1.4. All these graphs have unique maximum independent sets.

Lemma 2.1. The graph Hk, k ≥ 0, from Figure 3 is a connected König-Egerváry graph
that has a unique maximum independent set, namely, Sk = {xk, . . . , x1, a4, a3, a2, a1},
where H0 = Hk − {xj , yj : j = 1, 2, . . . , k} and S0 = {a4, a3, a2, a1}.
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yk
k + 5

Hk

Figure 3: Hk is a König-Egerváry graph with α (Hk) = k + 4, k ≥ 0.

Proof. Notice that the graph Hk from Figure 3 can be defined as follows:

V (Hk) = V (Kk+4,k+4) = {xi, yi : i = 1, . . . , k} ∪ {a1, a2, a3, a4} ∪ {b1, b2, b3, b4} ,
E (Hk) = E (Kk+4,k+4) ∪ {ykyk−1, . . . , y2y1, y1b4, b4b3} − {a3b1, a2b2, a2b1, a1b2} .

Clearly, Sk = {xk, . . . , x1, a4, a3, a2, a1} is an independent set and

{xjyj : j = 1, 2, ..., k} ∪ {a4b4, a3b2, a3b3, a1b1}

is a perfect matching of Hk. Hence, we get

|Vk| = 2µ (Hk) = |Sk|+ µ (Hk) ≤ α (Hk) + µ (Hk) ≤ |Vk| ,
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which implies α (Hk) +µ (Hk) = |Vk|, i.e., Hk is a König-Egerváry graph, and α (Hk) =
k + 4 = |Sk|.

Let Lk = Hk [Xk ∪ Yk] , k ≥ 1, and L0 = Hk [A ∪B], where

Xk = {xj : j = 1, . . . , k} , Yk = {yj : j = 1, . . . , k} ,
A = {a1, a2, a3, a4} and B = {b1, b2, b3, b4} .

Since Lk has, on the one hand, Kk,k as a subgraph, and, on the other hand,

ykyk−1, yk−1yk−2, . . . , y2y1 ∈ E (Lk) ,

it follows that Xk is the unique maximum independent set of Lk.
The graph L0 has A as a unique independent set, because

C8 + b3b4 = (A ∪B, {a1b4, b4a2, a2b3, b3a3, a3b2, b2a4, a4b1, b1a1, b3b4})

has A as a unique maximum independent set, and L0 can be obtained from C8 + b3b4 by
adding a number of edges.

Since Hk can be obtained from the union of Lk and L0 by adding some edges, and
Sk = Xk ∪ A is independent in Hk, it follows that Hk has Sk as a unique maximum
independent set.

Corollary 2.2. The graph Gk, k ≥ 0, from Figure 4 is a connected König-Egerváry graph
that has a unique independent set, namely, Sk = {xi : i = 1, . . . , k}∪{ai : i = 1, . . . , 5},
where G0 = Gk − {xj , yj : j = 1, 2, . . . , k} and S0 = {ai : i = 1, . . . , 5}.

v v v v v v v
v v v v v v v v

((((
((((

((((
(((

((((
(((

((((
((

   
   

   
   

   
   

   
   

���
���

���
���

���
���

�

��
��

��
��

��
��

��

r r r r r r r r r r
r r r r r r r r r r

�
�
�
�
�

�
��
�
��

��
��

��
��
��

��
��

��
��

��
���

���
���

���
��

���

   
   

   
   

   
   

   
   

((((
((((

((((
(((

((((
(((

((((
((

@
@
@
@
@

HH
HHH

HHH
HH

PPPPPPPPPPPPPP

XXXXXXXXXXXXXXXXXXX

```````````````````````̀

hhhhhhhhhhhhhhhhhhhhhhhhhhhh�
�
�
�
�

�
��

�
��

��
��

��
��

��
��

��
��

��

��
���

���
���

���
��

���

   
   

   
   

   
   

   
   

@
@
@
@
@

HH
HHH

HHH
HH

PPPPPPPPPPPPPP

XXXXXXXXXXXXXXXXXXX

```````````````````````̀�
�
�
�
�

�
��

�
��

��
��

��
��

��
��

��
��

��

��
���

���
���

���
��

���@
@
@
@
@

HH
HHH

HHH
HH

PPPPPPPPPPPPPP

XXXXXXXXXXXXXXXXXXX�
�
�
�
�

�
��

�
��

��
��

��
��

��
��

��
��

��@
@
@
@
@

HH
HHH

HHH
HH

PPPPPPPPPPPPPP

@
@
@
@
@�

�
�
�
�

�
��

�
��

��
��

a1a2a3a4a5
k + 2k + 3k + 2k + 3k + 4

x1xk−1xk
k + 4k + 4k + 4

b1b2b3b4
k + 7 k + 6 k + 2 k + 2

y1yk−1
k + 7k + 7

yk
k + 6

Gk

Figure 4: Gk is a König-Egerváry graph with α (Gk) = k + 5, k ≥ 0.

Proof. Notice that the graph Gk from Figure 4 can be defined as follows:

V (Gk) = V (Kk+5,k+4)

= {xi, yi : i = 1, . . . , k} ∪ {a1, a2, a3, a4, a5} ∪ {b1, b2, b3, b4} ,
E (Gk) = E (Kk+4,k+4) ∪ {ykyk−1, . . . , y2y1, y1b4, b4b3}

− {a3b2, a3b1, a2b2, a1b2, a1b1} .

According to Lemma 2.1, Gk − a1 is a König-Egerváry graph with a unique maximum
independent set, namely, Wk = {xi : i = 1, . . . , k} ∪ {ai : i = 1, . . . , 4}. Since Sk =
Wk ∪ {a1} is an independent set and µ (Gk) = µ (Gk − a1) = k+ 4, it follows that Gk is
a König-Egerváry graph and Sk is its unique maximum independent set.
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Theorem 2.3. For every k ≥ 0, there exists a connected non-bipartite König-Egerváry
graph Hk = (Vk, Ek), of order 2k + 8, satisfying the following:

• a (Hk) > n(Hk)
2 = α (Hk),

• each S ∈ Ω (Hk) is a maximal annihilating set.

Proof. Let Hk = (Vk, Ek), k ≥ 0, be the graph from Figure 3 (in the bottom and the top
lines are written the degrees of its vertices), where H0 = Hk − {x1, . . . , xk, y1, . . . , yk}.
Clearly, every Hk is non-bipartite.

By Lemma 2.1, each Hk, k ≥ 0, is a König-Egerváry graph with a unique maximum
independent set, namely, Sk = {xk, . . . , x1, a4, a3, a2, a1}, where S0 = {a4, a3, a2, a1}.

Case 1. k = 0. Since m (H0) = 13 and the degree sequence (2, 2, 2, 3, 3, 4, 5, 5), we infer
that a (H0) = 5 > 4 = α (H0). In addition, deg (S0) = m (H0)− 1, i.e., each maximum
independent set of H0 is a maximal non-maximum annihilating set.

Case 2. k ≥ 1. Clearly, Hk has m (Gk) = k2 + 9k + 13 and its degree sequence is

k + 2, k + 2, k + 2, k + 3, k + 3, k + 4, . . . , k + 4︸ ︷︷ ︸
k+1

, k + 5, k + 5, k + 6, . . . , k + 6︸ ︷︷ ︸
k

.

Since the sum of the first k + 6 degrees of the sequence satisfies

k2 + 10k + 16 > m (Hk) ,

we infer that the annihilation number a (Hk) ≤ k + 6. The sum 12 + 4 (x− 5) + kx
of the first x ≥ 5 degrees of the sequence satisfies 12 + 4 (x− 5) + kx ≤ m (Hk) for
x ≤ k2+9k+21

k+4 . This implies

a (Hk) =

⌊
k2 + 9k + 21

k + 4

⌋
= k + 5 > k + 4 = α (Hk) ,

i.e., Hk has no maximum annihilating set belonging to Ω (Hk). Since its unique maximum
independent set Sk = {a1, a2, a3, a4, x1, x2, . . . , xk} has

deg (Sk) = k2 + 8k + 12 < m (Hk) ,

while

deg (Sk) + min{deg (v) : v ∈ Vk − S} =
(
k2 + 8k + 12

)
+ (k + 2) > m (Hk) ,

we infer that Sk is a maximal annihilating set.

Theorem 2.4. For every k ≥ 0, there exists a connected non-bipartite König-Egerváry
graph Gk = (Vk, Ek), of order 2k + 9, satisfying the following:

• a (Gk) >
⌈
n(Gk)

2

⌉
= α (Gk),

• each S ∈ Ω (Gk) is a maximal annihilating set.
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Proof. Let Gk = (Vk, Ek), k ≥ 1, be the graph from Figure 4 (in the bottom and the top
lines are written the degrees of its vertices), and G0 = Gk − {x1, . . . , xk, y1, . . . , yk}.

Corollary 2.2 claims that Gk, k ≥ 0, is a König-Egerváry graph with a unique maxi-
mum independent set, namely Sk = {x1, . . . , xk, a1, . . . , a5} , k ≥ 1, and S0 = {a1, . . . ,
a5}.

Case 1. The non-bipartite König-Egerváry graph G0 has m (G0) = 15 and the degree
sequence (2, 2, 2, 2, 3, 3, 4, 6, 6). Hence, a (G0) = 6 > 5 = α (G0). In addition, Ω (G0) =
{S0}, and deg (S0) = 14, i.e., each maximum independent set of G0 is a maximal non-
maximum annihilating set.

Case 2. k ≥ 1. Clearly, Gk has m (Gk) = k2 + 10k + 15 and its degree sequence is

k + 2, k + 2, k + 2, k + 2, k + 3, k + 3, k + 4, . . . , k + 4︸ ︷︷ ︸
k+1

, k + 6, k + 6, k + 7, . . . , k + 7︸ ︷︷ ︸
k

.

Since the sum of the first k + 7 degrees of the sequence satisfies

k2 + 11k + 18 > m (Gk) ,

we infer that the annihilation number a (Gk) ≤ k + 6. The sum 14 + 4 (x− 5) + kx
of the first x ≥ 6 degrees of the sequence satisfies 14 + 4 (x− 6) + kx ≤ m (Gk) for
x ≤ k2+10k+25

k+4 . This implies

a (Gk) =

⌊
k2 + 10k + 25

k + 4

⌋
= k + 6 > k + 5 = α (Gk) ,

i.e., Gk has no maximum annihilating set belonging to Ω (Gk). Since its unique maximum
independent set Sk has

deg (Sk) = k2 + 9k + 14 < m (Gk) ,

while

deg (Sk) + min{deg (v) : v ∈ Vk − Sk} =
(
k2 + 9k + 14

)
+ (k + 2) > m (Gk) ,

we infer that Sk is a maximal annihilating set.

3 Conclusions
If G is a König-Egerváry graph with α (G) ∈ {1, 2}, then α (G) = a (G) and each maxi-
mum independent set is maximal annihilating, since the list of such König-Egerváry graphs
reads as follows:

{K1,K2,K1 ∪K1,K1 ∪K2,K2 ∪K2, P3, P4, C4,K3 + e,K4 − e} .

Consequently, Conjecture 1.4 is correct for König-Egerváry graphs with α (G) ≤ 2.
Let G be a disconnected König-Egerváry graph with α (G) = 3.

• If α (G) = a (G), then

G ∈
{

3K1, 2K1 ∪K2,K1 ∪ 2K2, 3K2,K1 ∪ P3,K1 ∪ P4,
K1 ∪ C4,K1 ∪ (K3 + e) ,K1 ∪ (K4 − e) ,K2 ∪ P3,K2 ∪ C4

}
,

while every S ∈ Ω (G) is a maximal annihilating set.
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Figure 5: G1 = K3 + e and G2 = K4 − e.

• If α (G) < a (G), then G ∈ {K2 ∪ P4,K2 ∪ (K3 + e) ,K2 ∪ (K4 − e)}, while for
every such G, there exists a maximum independent set, which is a not a maximal
annihilating set. Moreover, for K2 ∪ (K3 + e) and K2 ∪ (K4 − e) all maximum
independent sets are not maximal annihilating.

Thus Conjecture 1.4 is true for disconnected König-Egerváry graphs with α (G) = 3.
We have already mentioned in Introduction that the “(i) =⇒ (ii)” part of Conjecture 1.4

is true.

Proposition 3.1. LetG be a graph with a (G) ≥ n(G)
2 . IfG is a connected König-Egerváry

graph with α (G) = 3, and every S ∈ Ω(G) is a maximal annihilating set, then α (G) =
a (G).

Proof. In Figure 6 we present all connected König-Egerváry graphs with α (G) = 3 having
n(G) ∈ {4, 5}. For these graphs α (G) = a (G), which means that Conjecture 1.4 is true.
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Figure 6: König-Egerváry graphs with α (G) = 3 = a (G) and n(G) ≤ 5.

Now, we may assume that n(G) = 6, since α (G) ≥ µ (G) holds for each König-
Egerváry graph.

Let d1 ≤ d2 ≤ · · · ≤ d6 be the degree sequence of G.
It is known that α (G) ≤ a (G) (Theorem 1.1). Thus we have only three cases with

3 = α (G) < a (G) to cover, namely, a (G) ∈ {4, 5, 6}.

Case 1. a (G) = 4. Then, by definition, d1 + d2 + d3 + d4 ≤ m (G) ≤ d5 + d6 and
d1 + d2 + d3 + d4 + d5 > m (G) > d6.

Let q be the number of edges in G joining the vertices v5, v6 with the vertices v1, v2,
v3, v4. At least two vertices from the set {v1, v2, v3, v4} must be joined by an edge, other-
wise, α (G) ≥ 4 > 3. Assume that v3v4 ∈ E (G). Hence, v5v6 ∈ E (G), otherwise,

d5 + d6 = q < q + 2 ≤ d1 + d2 + d3 + d4,
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in contradiction with d1 + d2 + d3 + d4 ≤ d5 + d6. Similarly, there are no more edges but
v3v4 joining vertices from the set {v1, v2, v3, v4}, otherwise

d5 + d6 = q + 2 < q + 4 ≤ d1 + d2 + d3 + d4,

in contradiction with d1 + d2 + d3 + d4 ≤ d5 + d6. Therefore, {v1, v2, v3} is a maximum
independent set of G, since α (G) = 3. On the other hand, {v1, v2, v3} is not a maximal
annihilating set, because d1 + d2 + d3 + d4 ≤ m (G).

Case 2. a (G) = 5. By definition, it follows that d1 + d2 + d3 + d4 + d5 ≤ m (G) ≤
d6. Hence, the set {v1, v2, v3, v4, v5} is independent, in contradiction with the fact that
α (G) = 3.

Case 3. a (G) = 6. This means that G has no edges, which is not possible, because
α (G) = 3.

To complete the picture, Theorems 2.3 and 2.4 present various counterexamples to the
“(ii) =⇒ (i)” part of Conjecture 1.4 for every independence number greater than three. Our
intuition tells us that the real obstacle for the “(i) =⇒ (ii)” part Conjecture 1.4 not to be
true is the size of the annihilation number. It motivates the following.

Conjecture 3.2. If G is a König-Egerváry graph with a (G) ≥ 3
4n (G), and every S ∈

Ω(G) is a maximal annihilating set, then α (G) = a (G).
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Combin. 28 (2012), 243–250, doi:10.1007/s00373-011-1037-y.

[28] V. E. Levit and E. Mandrescu, Vertices belonging to all critical sets of a graph, SIAM J. Discrete
Math. 26 (2012), 399–403, doi:10.1137/110823560.

[29] V. E. Levit and E. Mandrescu, On maximum matchings in König-Egerváry graphs, Discrete
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sets, Art Discrete Appl. Math. 2 (2019), #P1.02 (9 pages), doi:10.26493/2590-9770.1261.9a0.

[32] W. Ning, M. Lu and K. Wang, Bounding the locating-total domination number of a tree in
terms of its annihilation number, Discuss. Math. Graph Theory 39 (2019), 31–40, doi:10.7151/
dmgt.2063.

[33] R. D. Pepper, Binding Independence, Ph.D. thesis, University of Houston, 2004, https:
//www.proquest.com/docview/305196562.

[34] R. D. Pepper, On the annihilation number of a graph, in: V. Zafiris, M. Benavides, K. Gao,
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1 Introduction
LetM = (V,E, F ) be an orientable map with vertex set V , edge set E and face set F , that
is,M is a 2-cell embedding of the underlying graph Γ = (V,E) in an orientable surface.
A permutation of V ∪E∪F which preserves V,E, F , and their incidence relations is called
an automorphism ofM. All automorphisms ofM form the automorphism group AutM
under composition.

A map M = (V,E, F ) is said to be G-edge-transitive if G ≤ AutM is transitive
on E; if in addition G also preserves the orientation of the supporting surface, thenM is
called orientably edge-transitive. Similarly, orientably arc-transitive maps are defined.

It is a main aim of topological graph theory to determine and enumerate all the 2-cell
embeddings of a given class of graphs, see [2, 3, 7, 10, 11, 12] for arc-transitive maps, and
[5, 8, 9, 13] for edge-transitive maps.

Although each map has a unique underlying graph, a graph may have many non-
isomorphic 2-cell embeddings usually. For example, K3,2 has two edge transitive em-
beddings that have automorphism groups Z6 and S3, respectively. As a special case, the
complete bipartite graphs that has a unique edge-transitive embedding has been received
much attention. For instance, Jones, Nedela and Škoviera [10] proved that Kn,n has a
unique orientably arc-transitive embedding if and only if gcd(n, φ(n)) = 1, where φ(n)
is the Euler phi-function. Fan and Li [4] showed that Km,n have a unique edge-transitive
embedding if and only if gcd(m,φ(n)) = 1 = gcd(n, φ(m)). For convenience, we call
the pair (m,n) singular if gcd(m,φ(n)) = 1 = gcd(n, φ(m)) in the following.

The aim of this paper is to consider the analogous problem for the complete bipartite
graph Km,n, and we give a complete classification of Km,n which have exactly two ori-
entably edge-transitive embeddings. To state the theorem, we need some notations. For an
integer n and a prime p, let n = npnp′ such that np is a p-power and gcd(np, np′) = 1.
The main theorem of this paper is now stated as follows.

Theorem 1.1. A complete bipartite graph Km,n has exactly two orientably edge-transitive
embeddings if and only if, interchanging m and n if necessary, one of the following holds:

(i) (m,n) = (4, 2);

(ii) m = pe with p odd, n = 2n2′ , and (m,n2′) is a singular pair;

(iii) m = pe with p ≡ 3 (mod 4), n = 2fn2′ with f ≥ 2, and (m,n2′) is a singular
pair;

(iv) m = 2pe with p odd, and n = 2.

This solved the problem in [4] to determine complete bipartite graphs which have ex-
actly two non-isomorphic orientably edge-transitive embeddings.

Particularly, the following corollary about Kn,n is easily observed.

Corollary 1.2. There exists no complete bipartite graph Kn,n (n ≥ 2) that has exactly two
non-isomorphic orientably edge-transitive embeddings.

2 Complete bipartite edge-transitive maps
Let m,n be positive integers, and let Γ = (V,E) be a complete bipartite graph Km,n.
LetM be an orientable map with underlying graph Γ = Km,n. Let Aut+M consist of
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automorphisms ofM which preserves the biparts of Γ , and let AutOM be the subgroup
of AutM which preserves the orientation of the supporting surface. Let

Aut⊕M = Aut+M∩AutOM.

Then Aut⊕M contains all elements of AutM which preserve the orientation of the sup-
porting surface, and fixes the biparts of the underlying graph. It is clear that isomorphic
embeddings of Km,n have isomorphic automorphism groups.

Orientable edge-transitive embeddings of Km,n have automorphism groups being bi-
cyclic, which is defined as follows.

Definition 2.1. A group G is called bicyclic if G = 〈a〉〈b〉 for some elements a, b ∈ G. If
|a| = m and |b| = n, then G is said to be of order {m,n}. If in addition 〈a〉 ∩ 〈b〉 = 1,
then G is called an exact bicyclic group, and {a, b} is called an exact bicyclic pair of order
{m,n}.

It is known that orientable edge-transitive embeddings of Km,n precisely correspond
to exact bicyclic pairs of order {m,n}. We denote by

M(G, a, b)

the edge-transitive embedding of Km,n corresponding to a bicyclic group G associated
with a bicyclic pair {a, b}. For convenience, (a, b) is called an edge-regular pair for G.
Moreover, M(G, a, b) is called an abelian embedding if G is abelian, and non-abelian
embedding otherwise.

The following lemma is well-known and easy to prove, see [11] or [6].

Lemma 2.2. Let G be an exact bicyclic group of order {m,n}, and let a, b ∈ G be a
bicyclic pair. Then there is an edge-transitive orientable embeddingM =M(G, a, b) of
Km,n such that Aut⊕M = G is edge-regular onM, and for any bicyclic pair x, y ∈ G,
M(G, a, b) ∼=M(G, x, y) if and only if there is an automorphism σ of Aut(G) such that
(a, b)σ = (x, y).

Since there exists an abelian bicyclic group Zm × Zn for any positive integers m and
n, the graph Γ = Km,n has a unique orientable edge-regular embedding M such that
Aut⊕M ∼= Zm × Zn, see [4, Lemma 2.3]. Moreover, it is known that if {m,n} is a
singular pair of integers then each exact bicyclic group of order {m,n} is abelian, see [4,
Lemma 3.3]. This leads to the following observation.

Lemma 2.3. Letm,n be positive integers for which Km,n has exactly two non-isomorphic
edge-transitive embeddings. Then there exists a unique non-abelian exact bicyclic group
of order {m,n}.

In the next section, we work out a classification of integer pairs {m,n} for which there
is only one non-abelian exact bicyclic group.

3 Uniqueness of groups
Let (m,n) be a pair of integers such that there is a unique non-abelian exact bicyclic group
of order {m,n}. Then (m,n) is not a singular pair. So there exist divisors mp

∣∣m, and
nq

∣∣n such that (mp, nq) is not a singular pair.
The first lemma determines (mp, np) for the same prime p.



374 Ars Math. Contemp. 18 (2020) 371–379

Lemma 3.1. If a prime p
∣∣ gcd(m,n), then

(i) {mp, np} = {4, 2}, or

(ii) {mp, np} = {pe, p} with p an odd prime and e ≥ 2, or

(iii) {mp, np} = {p2, p2} with p an odd prime.

Proof. To prove the lemma, we may assume that mp ≥ np and mp = pe with e ≥ 2.
Assume first that np = p. If p = 2 and e ≥ 3, then there are 3 non-isomorphic groups

Gi = Zm:Zn = Zm2′ × Zn2′ × Pi, where i = 1, 2 or 3, and Pi = 〈x2〉〈y2〉 = Z2e :Z2 as
below:

P1 = 〈x2, y2 | xy22 = x−12 〉,

P2 = 〈x2, y2 | xy22 = x2
e−1+1

2 〉,

P3 = 〈x2, y2 | xy22 = x2
e−1−1

2 〉.

This contradiction shows that either p = 2 and e = 2, that is (mp, np) = (4, 2), or p is odd
and (mp, np) = (pe, p) with e ≥ 2.

Next, assume that np = pf with f ≥ 2. Suppose further that e ≥ 3. Then there exist at
least 2 non-isomorphic groups Gi = Zm:Zn = Zmp′ × Znp′ × Pi, where i = 1 or 2, and
Pi = 〈xp〉〈yp〉 = Zpe :Zpf as below:

P1 = 〈xp, yp | xypp = x1+p
e−1

p 〉,

P2 = 〈xp, yp | xypp = x1+p
e−2

p 〉.

This is a contradiction. Thus e = 2, and f = 2.
Suppose further that p = 2, there are two non-isomorphic groups Gi = ZmZn =

Zm2′ × Zn2′ × Pi, where i = 1 or 2, and Pi = 〈x2〉〈y2〉 = Z4Z4 is non-abelian as below:

P1 = 〈x2, y2 | x42 = y42 = 1, xy22 = x−12 〉,
P2 = 〈x2, y2 | x42 = y42 = [x22, y2] = [x2, y

2
2 ] = 1, [y2, x2] = x22y

2
2〉.

So {mp, np} = {p2, p2} with p an odd prime.

The next lemma determines the relation mp and nq for distinct primes p, q.

Lemma 3.2. Assume that mp = pe and nq = qf , where q
∣∣ (p− 1). Then either f = 1, or

q2 6
∣∣ (p− 1); equivalently, gcd(nq, φ(mp)) = q.

Proof. Suppose that f > 1 and q2 divides p − 1. Then there exist at least 2 non-abelian
groups

Gi = Zm:Zn = Zmp′ × Znq′ ×Hi,

where i = 1 or 2, and Hi = 〈xp〉:〈yq〉 = Zpe :Zqf are as below:

H1 = 〈xp, yq | xyqp = xip〉, where i 6= 1 and iq ≡ 1 (mod pe);

H2 = 〈xp, yq | xyqp = xjp〉, where jq 6≡ 1 (mod pe).

This contradiction shows that either f = 1, or q2 6
∣∣ (p− 1), as stated.
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Remark on Lemma 3.2. Interchange m and n, if p
∣∣ (q − 1), then either e = 1, or

p2 6
∣∣ (q − 1); equivalently, gcd(mp, φ(nq)) = p.

Now we are ready to state the main result of this section.

Theorem 3.3. Given a pair of integers {m,n}. Then the following two statements are
equivalent:

(a) there is a unique non-abelian exact bicyclic group (up to isomorphism) of order
{m,n},

(b) there exist exactly one prime p
∣∣m and exactly one prime q

∣∣n such that (mp, nq) is
not a singular pair, and either

(i) gcd(φ(mp), nq) = q, and gcd(mp, φ(nq)) = 1, or

(ii) gcd(mp, φ(nq)) = p, and gcd(φ(mp), nq) = 1.

If further p = q, then {mp, np} = {4, 2}, or {p2, p2} with p an odd prime, or {pe, p}
with p a prime and e ≥ 3.

Proof. First, assume (a) holds. Let G = 〈a〉〈b〉 be the unique exact nonabelian bicyclic
group of order {m,n}, where |a| = m and |b| = n. Then (m,n) is not a singular pair. So
there exist at least one prime p

∣∣m, and at least one prime q
∣∣n, such that (mp, nq) is not a

singular pair.
Suppose that p1, p2 are prime divisors of m and q1, q2 are prime divisors of n such that

gcd(nqi , φ(mpi)) 6= 1 with i = 1 or 2, and either p1 6= p2 or q1 6= q2. Then there are 2
non-isomorphic nonabelian exact bicyclic groups of the form G = 〈a〉:〈b〉 = Zm:Zn:

〈a〉:〈b〉 = 〈ap′1ap1〉:〈bq′1bq1〉 = 〈ap′1〉 × 〈bq′1〉 × (〈ap1〉:〈bq1〉),
〈a〉:〈b〉 = 〈ap′2ap2〉:〈bq′2bq2〉 = 〈ap′2〉 × 〈bq′2〉 × (〈ap2〉:〈bq2〉).

This is a contradiction.
Similarly, interchangingm and n, suppose that p1, p2 are prime divisors ofm and q1, q2

are prime divisors of n such that gcd(mpi , φ(nqi)) 6= 1 with i = 1 or 2, and either p1 6= p2
or q1 6= q2. Then there are 2 non-isomorphic nonabelian exact bicyclic groups of the form
G = 〈b〉:〈a〉 = Zn:Zm:

〈b〉:〈a〉 = 〈bp′1bp1〉:〈aq′1aq1〉 = 〈ap′1〉 × 〈bq′1〉 × (〈bq1〉:〈ap1〉),
〈b〉:〈a〉 = 〈bp′2bp2〉:〈aq′2aq2〉 = 〈ap′2〉 × 〈bq′2〉 × (〈bq2〉:〈ap2〉).

This is a contradiction.
Now, suppose that p1, p2 are prime divisors ofm and q1, q2 are prime divisors of n such

that gcd(nq1 , φ(mp1) 6= 1 and gcd(mp2 , φ(nq2)) 6= 1. Then there are 2 non-isomorphic
nonabelian exact bicyclic groups G of the form:

〈a〉:〈b〉 = 〈ap′1ap1〉:〈bq′1bq1〉 = 〈ap′1〉 × 〈bq′1〉 × (〈ap1〉:〈bq1〉),
〈b〉:〈a〉 = 〈bq′2bq2〉:〈ap′2ap2〉 = 〈bq′2〉 × 〈ap′2〉 × (〈bq2〉:〈ap2〉).

This is a contradiction.
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We thus conclude that there is exactly one prime p
∣∣m and exactly one prime q

∣∣n such
that (mp, nq) is not a singular pair.

Assume that gcd(φ(mp), nq) 6= 1 and gcd(mp, φ(nq)) 6= 1 such that p 6= q. By
Lemma 3.2, gcd(φ(mp), nq) = q and gcd(mp, φ(nq)) = p, which implies that q

∣∣ (p− 1)

and p
∣∣ (q− 1), this is not possible. Thus either part (b)(i) or part (b)(ii) holds. Moreover, if

p = q, then by Lemma 3.1, we have gcd(mp, φ(np)) = p, or gcd(φ(mp), np) = p, which
implies that {mp, np} = {4, 2}, or {p2, p2} with p an odd prime, {pe, p} with p a prime
and e ≥ 3.

Conversely, let m,n be integers satisfying condition (b). We claim that both (mp′ , n)
and (m,nq′) are singular pairs. In fact, suppose to the contrary that one of (mp′ , n) and
(m,nq′), say (mp′ , n), is not singular. Then there is a prime p1 6= p of m, and a prime q1
of n, such that the pair (mp1 , nq1) is not singular, which contradicts with the unique choice
of the prime p.

Now let G = 〈a〉〈b〉 such that 〈a〉 = Zm, 〈b〉 = Zn and 〈a〉 ∩ 〈b〉 = 1. Then G
is supersoluble by [1]. Further let G = 〈a〉〈b〉 = 〈apap′〉〈bqbq′〉 = GpGp′ , then Gp =
〈ap〉 = Zmp

and Gp′ = 〈ap′〉(〈bq〉 × 〈bq′〉) = Zmp′Zn. As 〈ap′〉 ∩ 〈b〉 = 1, we have that
Gp′ is an exact bicyclic group of order {mp′ , n}. By [4, Lemma 3.3], Gp′ is abelian. So
Gp′ = (〈ap′〉×〈bq′〉)×〈bq〉. Similarly,Gq′ = (〈ap′〉×〈bq′〉)×〈ap〉. Thus a Hall subgroup
G{p,q}′ is abelian and centralizes both Gp and Gq , and so G = G{p,q}′ × G{p,q}, where
G{p,q}′ = 〈ap′〉 × 〈bq′〉 = Zm′p × Znq′ and G{p,q} = 〈ap〉〈bq〉 = ZmpZnq is nonabelian.
Moreover, assume that (b)(i) hold, that is gcd(φ(mp), nq) = q and gcd(mp, φ(nq)) = 1,
we have abqp = aλp , where λ 6= 1 and λq ≡ 1 (mod mp). So the group G{p,q} = 〈ap〉:〈bq〉.
We claim that the group G{p,q} is unique up to isomorphism. In fact, assume that µ 6= λ
such that H = 〈x, y | xy = xµ, µ 6= 1, µq ≡ 1 (mod pe)〉. Then 〈λ〉 and 〈µ〉 are both
subgroups of order q in Z∗pe , where Z∗pe is the multiplicative group consisting of all the
unites in the ring Zpe . Since Z∗pe ∼= Zp−1 × Zpe−1 , which has a unique subgroup of order
q, we have 〈λ〉 = 〈µ〉. Thus λ = µk (mod pe) for some integer k. Let z = yk. Then
z ∈ H and xz = xu

k

= xλ. Hence H ∼= G{p,q}. Similarly, assume that (b)(ii) hold, we
have the group G{p,q} = 〈bq〉:〈ap〉, b

ap
q = bλq , where λ 6= 1 and λp ≡ 1 (mod nq), which

is unique up to isomorphism. Therefore, there is only one non-abelian exact bicyclic group
of order {m,n}.

In particular, assume that p = q. Then G = 〈a〉〈b〉 = GpGp′ , where Gp = 〈ap〉〈bp〉 ∼=
Zmp

Znp
and Gp′ = 〈ap′〉〈bp′〉 ∼= Zmp′Znp′ . By the assumption, there exists exactly one

prime p
∣∣ gcd(m,n) such that (mp, np) is not a singular pair. We conclude that (mp′ , np′),

(mp′ , n) and (m,np′) are all singular pairs. Since 〈ap′〉 ∩ 〈bp′〉 ⊆ 〈a〉 ∩ 〈b〉 = 1, by [4,
Lemma 3.3], Gp′ is abelian. Similarly, from 〈ap′〉 ∩ 〈b〉 = 1 and 〈a〉 ∩ 〈bp′〉 = 1, it follows
that 〈ap′〉〈b〉 = Gp′〈bp〉 and 〈a〉〈bp′〉 = Gp′〈ap〉 are abelian. That is to say Gp′ centralizes
both 〈ap〉 and 〈bp〉. Thus G = Gp′ ×Gp, where Gp′ = 〈ap′〉 × 〈bp′〉 and Gp = 〈ap〉:〈bp〉,
which is unique discussed as above. These prove (a) holds.

4 Proof of the main theorem
Let m,n be integers for which Km,n only has one non-abelian edge-transitive embedding.
Then there is only one non-abelian exact bicyclic group G = ZmZn. By Theorem 3.3,
interchanging m and n if necessary, there are a unique prime divisor p of m and a unique
prime divisor q of n such that G = G{p,q}′ ×G{p,q}, and G{p,q} = Zpe :Zqf is nonabelian.

We give a basic fact at first which is used repeatedly in the following.
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Lemma 4.1. Suppose H = 〈a〉:〈b〉 = Zk:Zl is a split extension such that ab = aλ, where
λ 6= 1, λl ≡ 1 (mod k) and l is odd. Then the following map of H:

σ : a 7→ ai, b 7→ b−1,

where gcd(i, k) = 1, is not an automorphism of H .

Proof. Supppose to the contrary. Then σ(a)σ(b) = (ai)b
−1

= baib−1 = σ(aλ) = aλi =
b−1aib, and so aib2 = b2ai. Since o(b2) = o(b) and o(ai) = o(a), it follows that H =
〈ai, b2〉 is abelian, which is a contradiction.

Now we determine the {pe, qf} when p = q.

Lemma 4.2. If p = q, then {pe, pf} = {4, 2}.

Proof. Since a group of order p2 is abelian, without loss of generality, we may assume that
e ≥ 2, and e ≥ f .

Suppose that p is odd. Then there exists a non-abelian metacyclic group G{p,q} =

〈xp〉:〈yp〉 such that xypp = xλp where λ 6= 1 and λq ≡ 1 (mod pe). Let

G = G{p,q}′ ×G{p,q} = 〈xp′〉 × 〈yp′〉 × (〈xp〉:〈yp〉) = 〈xp′xp〉:〈yp′yp〉 ∼= Zm:Zn.

Then the pairs (xp′xp, yp′yp) and (xp′xp, yp′y
−1
p ) are not equivalent under Aut(G) by

Lemma 4.1, and thus Km,n has at least 3 non-isomorphic orientably edge-transitive em-
beddings, which is a contradiction.

We thus conclude that p = 2, and so by Theorem 3.3, {pe, pf} = {4, 2}.

Next we determine the {pe, qf} when p 6= q.

Lemma 4.3. If p 6= q, then q = 2, and either qf = 2, or qf ≥ 4 and p ≡ 3 (mod 4).

Proof. Assume p 6= q. Since G{p,q} = Zpe :Zqf is nonabelian, q divides p − 1. Suppose
that q is odd. Let 〈x′〉 = Zmp′ and 〈y′〉 = Znq′ , and let

G = 〈x′〉 × 〈y′〉 × (〈xp〉:〈yq〉) = 〈xpx′〉:〈yqy′〉 = Zm:Zn.

Then (xpx
′, yqy

′) and (xpx
′, y−1q y′) are not equivalent under Aut(G) by Lemma 4.1, and

so Km,n has at least 3 non-isomorphic orientably edge-transitive embeddings, which is a
contradiction.

We thus have that q = 2, and gcd(n2, φ(mp)) = 2 by Lemma 3.2, that is, either qf = 2,
or qf ≥ 4 and p ≡ 3 (mod 4).

Now we are ready to produce a list of groups for G.

Lemma 4.4. The unique nonabelian exact bicyclic group G = ZmZn satisfies one of the
following, where p is a prime:

(i) G = D8;

(ii) G = D2pe × Zn2′ , where (m,n2′) is a singular pair;

(iii) G = (Zpe :Z2f )× Zn2′ , where p ≡ 3 (mod 4) and (m,n2′) is a singular pair;
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(iv) G = D4pe with p odd.

Proof. Noting that the group G = G{p,q}′ ×G{p,q}, and G{p,q} = Zpe :Zqf is nonabelian.
By Lemma 4.3, q = 2, and if m2 > 2 is even, then (m2, n2) = (4, 2) by Lemma 4.2. We
conclude that (m,n) = (4, 2), and the corresponding group G = D8, as in part (i).

Assume now that m2 = 1. It follows that m = pe and either qf = 2, or qf = 2f ≥ 4
and p ≡ 3 (mod 4) by Lemma 4.3. If n2 = 2, then G = Zn2′ × (Zpe :Z2) = Zn2′ ×D2pe

such that (m,n2′) is a singular pair, as in part (ii). If n2 ≥ 4, then G = (Zpe :Z2f )× Zn2′ ,
where p ≡ 3 (mod 4) and (m,n2′) is a singular pair, as in part (iii).

Finally assume thatm2 = 2. Thenm = 2pe with p odd, and n = 2. So the correspond-
ing group G = D4pe , as in part (iv). This completes the proof.

To complete the proof of Theorem 1.1, we need to prove that for each group G listed in
Lemma 4.4, all edge regular pairs are equivalent.

Lemma 4.5. Let G = D2m be dihedral. Then all edge-regular pairs for G on Km,2 are
equivalent.

Proof. Let (x, y) be an edge-regular pair for G acting on Km,2. Then |x| = m, |y| = 2,
and xy = x−1. Let x′, y′ be another edge-regular pair such that G = 〈x′〉〈y′〉. Then
|x′| = m, |y′| = 2, and (x′)y

′
= (x′)−1. Clearly, there is an automorphism σ ∈ Aut(G)

such that
σ : x 7→ x′, y 7→ y′,

so all regular pairs for G on Km,2 are equivalent.

We are now ready to prove the main theorem.

Proof of Theorem 1.1. The necessity is easily found from Lemma 4.4.
To prove the sufficienty, we need prove that for each group G = ZmZn listed in

Lemma 4.4, there is exactly one non-abelian orientably edge-transitive embedding of Km,n.
If G is a dihedral group, then the proof follows from Lemma 4.5. Thus we assume that G
is not a dihedral group.

Assume thatm = pe and n = 2n2′ . Then the only exact bicyclic group of order {m,n}
isG = (〈a〉:〈b2〉)×〈b2′〉, where 〈a〉:〈b2〉 = D2pe and |b2′ | = n2′ . Let (x1, y1) and (x2, y2)
be two edge-regular pairs from G. Then

x1 = ai1 , y1 = b2b
j1
2′ ,

x2 = ai2 , y2 = b2b
j2
2′ ,

where i1, i2 are coprime to p, and j1, j2 are coprime to n2′ . There is an automorphism
σ ∈ Aut(〈a〉:〈b2〉) which sends ai1 to ai2 ; there is an automorphism τ ∈ Aut(〈b2′〉) which
sends bj1 to bj2 . Then (σ, τ) is an automorphism of G which maps (x1, y1) to (x2, y2).

Assume that G = (Zpe :Z2f ) × Zn2′ , where m = pe with p ≡ 3 (mod 4), and
gcd(φ(n),m) = 1 and gcd(n, φ(m)) = 2. Then

G = (〈a〉:〈b2〉)× 〈b2′〉,
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where |a| = m = pe and n = 2fn2′ , and ab2 = a−1. Let (x, y) and (x′, y′) be edge-regular
pairs for G on Km,n such that |x| = |x′| = m and |y| = |y′| = n. Then

x = ai, y = bj2b
k
2′ , and

x′ = ai
′
, y′ = bj

′

2 b
k′

2′ ,

where p 6
∣∣ ii′, jj′ is odd and gcd(kk′, n2′) = 1. It is easily shown that there are automor-

phisms σ ∈ Aut(〈a〉:〈b2〉) and τ ∈ Aut(〈b2′〉) such that

σ : ai 7→ ai
′
, bj2 7→ bj

′

2

τ : bk2′ 7→ bk
′

2′ .

It follows that (σ, τ) is an automorphism of G which sends (x, y) to (x′, y′). Thus all
edge-regular pairs for G on Km,n are equivalent.
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Abstract

A chord diagram E is a set of chords of a circle such that no pair of chords has a
common endvertex. Let v1, v2, . . . , v2n be a sequence of vertices arranged in clockwise
order along a circumference. A chord diagram {v1vn+1, v2vn+2, . . . , vnv2n} is called an
n-crossing and a chord diagram {v1v2, v3v4, . . . , v2n−1v2n} is called an n-necklace. For a
chord diagram E having a 2-crossing S = {x1x3, x2x4}, the expansion of E with respect
to S is to replace E with E1 = (E \ S)∪ {x2x3, x4x1} or E2 = (E \ S)∪ {x1x2, x3x4}.
Beginning from a given chord diagram E as the root, by iterating chord expansions in
both ways, we have a binary tree whose all leaves are nonintersecting chord diagrams. Let
NCD(E) be the multiset of the leaves. In this paper, the multiplicity of an n-necklace in
NCD(E) is studied. Among other results, it is shown that the multiplicity of an n-necklace
generated from an n-crossing equals the Genocchi number when n is odd and the median
Genocchi number when n is even.

Keywords: Chord diagram, chord expansion, Genocchi number, Seidel triangle.

Math. Subj. Class. (2020): 05A15, 05A10

1 Introduction
A set of chords of a circle is called a chord diagram, if they have no common endvertex. If
a chord diagram consists of a set of n mutually crossing chords, it is called an n-crossing.
A 2-crossing is simply called a crossing as well. If a chord diagram contains no crossing,
it is called nonintersecting.

Let V be a set of 2n vertices on a circle, and let E be a chord diagram of order
n, where each chord has endvertices of V . In this situation, V is called a support of

∗This work was supported by JSPS KAKENHI Grant Number 19K03607.
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cb This work is licensed under https://creativecommons.org/licenses/by/4.0/
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E. We denote the family of all chord diagrams having V as a support by CD(V ). Let
x1, x2, x3, x4 ∈ V be placed on a circle in clockwise order. Let E ∈ CD(V ). For a
crossing S = {x1x3, x2x4} ⊂ E, let S1 = {x2x3, x4x1}, and S2 = {x1x2, x3x4}. The
expansion of E with respect to S is defined as a replacement of E with E1 = (E \S)∪S1

or E2 = (E \ S) ∪ S2 (see Figure 1).

S

S1

x1 x2

x3x4

S2

x1 x2

x3x4

x1 x2

x3x4

Figure 1: The expansion of a chord diagram with respect to a 2-crossing S. Other chords
except those in S are not shown.

LetE ∈ CD(V ) be a chord diagram. Form a binary tree as follows. Begin withE as the
root, arbitrarily choose a crossing of E, and expand E in both ways, adding the results as
children ofE. Choose crossings in each child if any exists, expand them each in both ways,
and repeat the procedure until all leaves are nonintersecting. This procedure terminates and
the multiset of leaves is independent of the choices made at each step ([14]). Let us denote
the multiset of nonintersecting chord diagrams generated fromE byNCD(E). For a chord
diagram E ∈ CD(V ), let us define the chord expansion number f(E) as the cardinality of
NCD(E) as a multiset.

For a chord diagram E, the circle graph, also called the interlace graph GE of E, is
a graph such that a vertex of GE corresponds to a chord of E and two vertices of GE are
joined by an edge if their corresponding chords of E are mutually crossing. We say that
two chord diagrams E1 and E2 with a common support are isomorphic if GE1 and GE2

are isomorphic as graphs. It is proved that f(E) equals t(GE ; 2,−1), where t(G;x, y) is
the Tutte polynomial of a graph G ([15]).

In the case E is an n-crossing Cn, its associated circle graph is a complete graph Kn

with n vertices. In [13], Merino proved that t(Kn; 2,−1) = Euln+1 for n ≥ 1, where
(Eul)n≥1 = (1, 1, 2, 5, 16, 61, 272, . . .) is the Euler number. Hence, we have f(Cn) =
Euln+1 for n ≥ 1. See also [12] for the evaluation of t(G; 2,−1) for a graph G.

For two nonnegative integers k and nwith k ≤ n, we defineA(n, k) as a chord diagram
of order n+1, in which there is an n-crossing E0 with an extra chord e such that e crosses
exactly k chords of E0. (See Figure 2.) Note that A(n− 1, n− 1) is simply an n-crossing,
and that A(n, 0) is a union of an n-crossing and an isolated chord.

Let us denote {1, 2, . . . , n} by [n]. A permutation σ on [n] is called an alternating
permutation if (σ(i)− σ(i− 1))(σ(i+ 1)− σ(i)) < 0 for 2 ≤ i ≤ n− 1. An alternating
permutation σ is called an up-down permutation (resp. down-up permutation) if σ(1) <
σ(2) (resp. σ(1) > σ(2)). For 0 ≤ k ≤ n, the Entringer number Entn,k is defined as the
number of down-up permutations on [n + 1] with the first term k + 1 ([11]). For n ≥ 1,
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A(n, k) Nnn - k

v
0

v
1

vk

vk+1

vk+2 
vn+1 

k

Figure 2: A(n, k) with n = 7 and k = 4 (left), and Nn with n = 8 (right).

Entn+1,1 equals Euln, the number of all down-up permutations on [n]. In [14], it is proved
that f(A(n, k)) = Entn+2,k+1.

For a chord diagram E and for a nonintersecting chord diagram F with a common
support, let us denote the multiplicity of F inNCD(E) by m(E,F ). For a nonintersecting
chord diagram E, a chord e ∈ E is called an ear, if there is no other chord of E on at
least one side of e. In [15], it is shown that for an n-crossing Cn and a nonintersecting
chord diagram F with a common support, m(Cn, F ) = 1 if and only if F has at most 3
ears. A nonintersecting chord diagramE with n chords is called an n-necklace, denoted by
Nn, if all chords of E are ears. (See Figure 2.) The main purpose of the paper is to show
that m(Cn, Nn) equals the Genocchi number when n is odd and the median Genocchi
number when n is even. The Genocchi numbers and the median Genocchi numbers will be
introduced in the following section.

Recently, Bigeni showed a relation between a weight system of sl2 of chord diagrams
and the median Genocchi numbers ([2]). In Definition 1 of [2], followed from [3], a weight
system of sl2 is defined inductively by applying an operation for chord diagrams. The
operation and the chord expansion are closely related to each other, although our main
results in the paper do not seem directly followed from the results in [2].

The rest of this paper is organized as follows. In Section 2, the Genocchi numbers
and the median Genocchi numbers are introduced. In Section 3, the main results of the
paper are proved. In Section 4, another combinatorial interpretation for the multiplicity of
n-necklaces is exhibited. Finally, in Section 5, some open problems are discussed.

2 The Genocchi numbers and the median Genocchi numbers

According to [10], but with slightly different indices, let us recursively define the entry
S(n, k) in row n ≥ 1 and column k ≥ 0 of the Seidel triangle ([17]):

S(1, 1) = 1,

S(n, k) = 0 for k = 0 or n ≤ 2(k − 1),

S(2n, k) =
∑
i≥k

S(2n− 1, i) for 1 ≤ k ≤ n, (2.1)

S(2n+ 1, k) =
∑
i≤k

S(2n, i) for 1 ≤ k ≤ n+ 1. (2.2)
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Table 1: The Seidel triangle S(n, k).

n \ k 1 2 3 4 5
1 1
2 1
3 1 1
4 2 1
5 2 3 3
6 8 6 3
7 8 14 17 17
8 56 48 34 17
9 56 104 138 155 155
10 608 552 448 310 155

(See Table 1.) By the equations (2.1) and (2.2), we have the following recurrence relations.

S(2n, k) = S(2n− 1, k) + S(2n, k + 1) for 1 ≤ k ≤ n, (2.3)
S(2n+ 1, k) = S(2n, k) + S(2n+ 1, k − 1) for 1 ≤ k ≤ n+ 1. (2.4)

The Genocchi numbers (or Genocchi numbers of the first kind) G(2n) are defined
as S(2n − 1, n), the numbers on the right edge of the Seidel triangle, and the median
Genocchi numbers (or Genocchi numbers of the second kind) H(2n + 1) are defined as
S(2n+ 2, 1), the numbers on the left edge of the Seidel triangle. Note that (G(2n))n≥1 =
(1, 1, 3, 17, 155, . . .) and (H(2n+ 1))n≥0 = (1, 2, 8, 56, 608, . . .).

Combinatorial properties of the Genocchi numbers have been extensively studied ([1,
4, 5, 6, 7, 8, 9, 10, 16, 19]). It is known that the Genocchi numberG(2n) counts the number
of permutations σ on [2n−1] such that σ(i) < σ(i+1) if σ(i) is odd, and σ(i) > σ(i+1)
if σ(i) is even ([6]). It is also known that the median Genocchi number H(2n+ 1) counts
the number of permutations σ on [2n + 1] such that σ(i) > i if i is odd and i 6= 2n + 1,
and σ(i) < i if i is even ([6]).

In the on-line encyclopedia of integer sequences [18], we can find more information
for the sequences A001469 (Genocchi numbers), A005439 (median Genocchi numbers),
A099960 (An interleaving of the Genocchi numbers of the first and second kind) and
A014781 (Seidel triangle).

3 Main results
Our aim is to show a new combinatorial interpretation for the values of the Seidel triangle
by using chord expansions.

Let v0, v1, . . . , v2n+1 be a sequence of vertices in clockwise order along a circumfer-
ence. Let V = {vi : 0 ≤ i ≤ 2n+ 1}. As one of chord diagrams E ∈ CD(V ) isomorphic
to A(n, k), introduced in the previous section, we have E = {v0vk+1} ∪ {vivn+i+1 :
1 ≤ i ≤ k} ∪ {vivn+i : k + 2 ≤ i ≤ n + 1}. (See Figure 2.) Now let us define (n + 1)-
necklaces N+

n+1,k and N−n+1,k ∈ CD(V ) such that N+
n+1,k contains an ear vkvk+1 and

N−n+1,k contains an ear vk+1vk+2. The values of m(A(n, k), N+
n+1,k) for n and k small

are shown in Table 2.
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Table 2: m(A(n, k), N+
n+1,k) for 0 ≤ k ≤ n ≤ 8.

n \ k 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 1 1 1
3 1 1 2 2
4 2 2 3 3 3
5 3 3 6 6 8 8
6 8 8 14 14 17 17 17
7 17 17 34 34 48 48 56 56
8 56 56 104 104 138 138 155 155 155

Let us define b+n,k = m(A(n, k), N+
n+1,k) and b−n,k = m(A(n, k), N−n+1,k). We also

simply denote b+n,k by bn,k. The main result of the paper is the following theorem.

Theorem 3.1. Let n ≥ 1. Then we have

b2n−1,k = S(2n, n− bk/2c) for 0 ≤ k ≤ 2n− 1, (3.1)

and

b2n,k = S(2n+ 1, bk/2c+ 1) for 0 ≤ k ≤ 2n. (3.2)

A(n, k)

A(n, k-1) A(n-1, n-k)

v0

vk

vk+1

vn+k+1

v0

vk

vk+1

vn+k+1

v0

vk

vk+1

vn+k+1

Figure 3: A chord expansion of A(n, k) with respect to {v0vk+1, vkvn+k+1} with n = 7
and k = 3.

Firstly, we show a relation between b−n,k and b+n,k.

Lemma 3.2. b−n,k = b+n,k−1 for 1 ≤ k ≤ n.
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Proof. LetE be a chord diagram isomorphic toA(n, k), as shown in Figure 3. By the chord
expansion of E with respect to {v0vk+1, vkvn+k+1}, we have two successors E1 and E2,
which are isomorphic toA(n, k−1) andA(n−1, n−k), respectively. SinceE2 contains a
chord vkvk+1, it does not generateN−n+1,k. Furthermore, sinceN−n+1,k is a necklace having
a chord vk−1vk, we have b−n,k = m(A(n, k), N−n+1,k) = m(A(n, k − 1), N+

n+1,k−1) =

b+n,k−1, as required.

In order to prove Theorem 3.1, let us show a recurrence relation for bn,k.

Lemma 3.3. We have b0,0 = 1 and for n ≥ 1, we have

bn,0 = bn,1 = bn−1,n−1,

bn,k =

{
bn,k−2 + bn−1,n−k for 2 ≤ k ≤ n and n is odd,
bn,k−2 + bn−1,n−k−1 for 2 ≤ k ≤ n− 1 and n is even,

bn,n = bn,n−2 for n is even.

Proof. When k = 0, 1 or n, equations bn,0 = bn,1 = bn−1,n−1 can be proved easily. Let
us consider the case 2 ≤ k ≤ n. As in the proof of Lemma 3.2, we use the expansion of
A(n, k) with respect to {v0vk+1, vkvn+k+1}.

If n is odd, we have

b+n,k = b−n,k−1 + b+n−1,n−k

= b+n,k−2 + b+n−1,n−k.

If n is even and k < n, we have

b+n,k = b−n,k−1 + b−n−1,n−k

= b+n,k−2 + b+n−1,n−k−1.

Finally, if n is even and k = n, since b−n−1,0 = 0, we have

b+n,n = b−n,n−1 + b−n−1,0

= b+n,n−2,

as needed.

Proof of Theorem 3.1. We proceed by induction on n and k. For (3.1) with n = 1, we have
b1,0 = 1 and b1,1 = 1. On the other hand, we have S(2, 1) = 1. For (3.2) with n = 1, we
have b2,0 = 1, b2,1 = 1 and b2,2 = 1. On the other hand, we have S(3, 1) = S(3, 2) = 1.

Let n ≥ 2. For k = 0, we have

b2n−1,0 = b2n−2,2n−2

= S(2n− 1, n)

= S(2n, n),
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and

b2n,0 = b2n−1,2n−1

= S(2n, 1)

= S(2n+ 1, 1).

For k = 1, we have

b2n−1,1 = b2n−1,0

= S(2n, n),

and

b2n,1 = b2n,0

= S(2n+ 1, 1).

For (3.1) with 2 ≤ k ≤ 2n− 1, we have

b2n−1,k = b2n−1,k−2 + b2n−2,2n−1−k

= S(2n, n− b(k − 2)/2c) + S(2n− 1, b(2n− 1− k)/2c+ 1)

= S(2n, n+ 1− bk/2c) + S(2n− 1, n− bk/2c)
= S(2n, n− bk/2c),

and for (3.2) with 2 ≤ k ≤ 2n− 1, we have

b2n,k = b2n,k−2 + b2n−1,2n−1−k

= S(2n+ 1, b(k − 2)/2c+ 1) + S(2n, n− b(2n− 1− k)/2c)
= S(2n+ 1, bk/2c) + S(2n, 1 + bk/2c)
= S(2n+ 1, 1 + bk/2c),

and for (3.2) with k = 2n, we have

b2n,2n = b2n,2n−2

= S(2n+ 1, n)

= S(2n+ 1, n+ 1).

By Theorem 3.1, we have the following corollary.

Corollary 3.4. m(C2n, N2n) = H(2n− 1) and m(C2n−1, N2n−1) = G(2n) for n ≥ 1.

Proof. By Theorem 3.1, we have m(C2n, N2n) = b2n−1,2n−1 = S(2n, 1) = H(2n − 1),
and m(C2n−1, N2n−1) = b2n−2,2n−2 = S(2n− 1, n) = G(2n).

4 Multiplicity of an N -necklace and the number of perfect matchings
of an associated graph

In this section, we will exhibit a combinatorial interpretation of m(E,Nn) for a given
chord diagram E. For a set V of vertices on the circumference, C(V ) denotes the set of all
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chords whose endvertices are in V . A Ptolemy weight w on C(V ) is defined as a function
that satisfies

w(x1x3)w(x2x4) = w(x2x3)w(x1x4) + w(x1x2)w(x3x4) (4.1)

for all vertices x1, x2, x3, x4 ∈ V placed along the circle. If w(e) is the Euclidean length
of a chord e, then (4.1) holds by the Ptolemy’s theorem in Euclidean geometry. Let w be a
Ptolemy weight on C(V ). If a chord diagram E ∈ CD(V ) has a 2-crossing S, by the chord
expansion of E with respect to S, we have two successors E1 and E2. Then by (4.1), we
have ∏

e∈E
w(e) =

∏
e∈E1

w(e) +
∏
e∈E2

w(e). (4.2)

We denote the left-hand side of (4.2) by w(E). By iterating chord expansions with (4.2),
we have

w(E) =
∑

F∈NCD(E)

w(F ). (4.3)

Let V = {v1, v2, . . . , v2n}, where v1, v2, . . . , v2n are placed along the circumfer-
ence in this order. A Ptolemy weight w on C(V ) is called rectilinear if w(vivj) =∑

i≤k<j w(vkvk+1) for all 1 ≤ i < j ≤ 2n. For example, if the vertices are placed
on a straight line and the weight w(vivj) is defined as the Euclidean distance between vi
and vj , then w is indeed a rectilinear Ptolemy weight.

In order to analyzem(E,Nn), let us consider the rectilinear Ptolemy weightw on C(V )
such that w(v2k−1v2k) = xk for 1 ≤ k ≤ n and w(v2kv2k+1) = 0 for 1 ≤ k ≤ n − 1.
In this weight, since for every chord e, w(e) corresponds to a first degree polynomial of
a multiple variables x1, x2, . . . , xn or w(e) = 0, for all chord diagrams E, w(E) is a
homogeneous polynomial of degree n or w(E) = 0. From this point until the end of this
section, we fix this weight. Let us define an n-necklace Nn = {v2k−1v2k : 1 ≤ k ≤ n}.

Lemma 4.1. In the rectilinear Ptolemy weight w as defined in the above, for a chord
diagram E, m(E,Nn) equals the coefficient of x1x2 . . . xn of the polynomial w(E).

Proof. Sincew(Nn) = x1x2 . . . xn, what we need to show is that if F ∈ NCD(E)\{Nn},
a polynomial w(F ) contains no monomial x1x2 . . . xn. Suppose to a contradiction that
F ∈ NCD(E) \ {Nn} and F has a monomial x1x2 . . . xn. Since F 6= Nn, there exists
a chord v2k−1v2` of F with 1 ≤ k < ` ≤ n such that ` − k ≥ 1 is maximal. Then the
two variables xk and x` do not appear together in the weight of any chord of F , otherwise
such a chord would either intersect v2k−1v2` or contradict `− k being maximal. It follows
that the product xkx` never appears in w(F ). This contradicts to that w(F ) contains a
monomial x1x2 . . . xn.

For a chord diagram E having n chords e1, e2, . . . , en with the rectilinear Ptolemy
weight w as defined in the above, let us define a balanced bipartite graph G(E,X) with
partite sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} as follows. For 1 ≤ i ≤ n and
1 ≤ j ≤ n, ai and bj are adjacent if and only if a polynomialw(ei) contains a monomial xj .

Theorem 4.2. For a chord diagram E with n chords and its associated balanced bipartite
graphG(E,X) as defined in the above, m(E,Nn) equals the number of perfect matchings
of G(E,X).
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Proof. We have w(E) =
∏

e∈E w(e), and for all chords e, w(e) = 0 or w(e) = xi +
xi+1 + · · · + xj for some 1 ≤ i ≤ j ≤ n. Hence, the coefficient of x1x2 . . . xn of w(E),
which is m(E,Nn) by Lemma 4.1, is the number of possible combinations to choose a
variable x ∈ X from each w(e) without repetition. This is the number of perfect matchings
of G(E,X).

x1 x2 x3 x4

e1 1 1 1 0

e2 0 1 0 0

e3 0 1 1 0

e4 0 0 1 1

E G(E, X)
v1

v2

v3

v4 v5

v6

v7

v8
x1

x2 x3

x4

Figure 4: A chord diagram E (left) and its biadjacency matrix of a corresponding bipartite
graph G(E,X) (right).

Example 4.3. Let n = 4. Let V = {vi : 1 ≤ i ≤ 2n}, where v1, v2, . . . , v2n are placed
on the circumference in this order. Let us consider a rectilinear Ptolemy weight w on C(V )
such that w(v2i−1v2i) = xi for 1 ≤ i ≤ n and w(v2iv2i+1) = 0 for 1 ≤ i ≤ n − 1. Let
E = {ei : 1 ≤ i ≤ 4} be a chord diagram, where e1 = v1v6, e2 = v2v5, e3 = v3v7, e4 =
v4v8. (See Figure 4.) Since

w(E) =
∏

1≤i≤n

w(ei) = (x1 + x2 + x3)x2(x2 + x3)(x3 + x4),

the coefficient of x1x2x3x4 of w(E) is 1, and the number of perfect matchings ofG(E,X)
is also 1. Hence, we have m(E,Nn) = 1.

By Corollary 3.4 and Theorem 4.2 for n-crossings Cn, we have the following corollary.

Corollary 4.4. The number of perfect matchings of the following bipartite graphs G and
H corresponds to Genocchi numbers G(2n) and median Genocchi numbers H(2n− 1) as
follows:

V (G) = E ∪X, where E = {e1, e2, . . . , e2n−1}, X = {x1, x2, . . . , x2n−1},
E(G) = {eixj : 1 ≤ i ≤ 2n− 1, bi/2c+ 1 ≤ j ≤ b(i− 1)/2c+ n}.
V (H) = E ∪X, where E = {e1, e2, . . . , e2n}, X = {x1, x2, . . . , x2n},
E(H) = {eixj : 1 ≤ i ≤ 2n, bi/2c+ 1 ≤ j ≤ bi/2c+ n}.

Example 4.5. As shown in Figure 5,

w(C6) = (x1 + x2 + x3)(x2 + x3 + x4)
2(x3 + x4 + x5)

2(x4 + x5 + x6).

The coefficient of x1x2x3x4x5x6 of w(C6) is 8, and the number of perfect matchings of
G(C6, X) is also 8. Hence, we have H(5) = m(C6, N6) = 8.

w(C7) = (x1 + x2 + x3 + x4)(x2 + x3 + x4)(x2 + x3 + x4 + x5)(x3 + x4 + x5)

(x3 + x4 + x5 + x6)(x4 + x5 + x6)(x4 + x5 + x6 + x7).
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x1 x2 x3 x4 x5 x6

e1 1 1 1 0 0 0

e2 0 1 1 1 0 0

e3 0 1 1 1 0 0

e4 0 0 1 1 1 0

e5 0 0 1 1 1 0

e6 0 0 0 1 1 1

x1 x2 x3 x4 x5 x6 x7

e1 1 1 1 1 0 0 0

e2 0 1 1 1 0 0 0

e3 0 1 1 1 1 0 0

e4 0 0 1 1 1 0 0

e5 0 0 1 1 1 1 0

e6 0 0 0 1 1 1 0

e7 0 0 0 1 1 1 1

G(C6, X)

G(C7, X)

C6

C7

x1

x2

x3
x4

x5

x6

x1

x2

x3

x4

x5

x6

x7

Figure 5: n-crossings (upper left, lower left) and their biadjacency matrices of correspond-
ing bipartite graphs G(Cn, X) (upper right, lower right).

The coefficient of x1x2x3x4x5x6x7 of w(C7) is 17, and the number of perfect matchings
of G(C7, X) is also 17. Hence, we have G(8) = m(C7, N7) = 17.

5 Further discussions

There are a lot of unknown things for the multiplicity inNCD(E). One ambitious problem
is to find a formula for m(E,F ) in general.

In Section 4, we represent m(E,Nn) by the number of perfect matchings of a corre-
sponding bipartite graph. It is interesting if we can find an efficient method to calculate the
number of perfect matchings in a graph of this kind.

As is shown in [15], there is a relation between the chord expansion number and the
evaluation of the Tutte polynomial at the point (2,−1). As a future research subject, it is
considered to find a relation between the multiplicity m(E,F ) in general, or m(E,Nn),
and some counting polynomials of graphs.
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SI-6000 Koper
Slovenia

By fax: +386 5 611 75 71

By e-mail: info@famnit.upr.si

xviii





Printed in Slovenia by Tisk Žnidarič d.o.o.


