Informatica27 (2003) 57-73 57

Deriving Self-Stabilizing Protocols for Services Specified in LOTOS

Monika Kapus-Kolar
Jozef Stefan Institute, POB 3000, SI-1001 Ljubljana, Slovenia
monika.kapus-kolar@ijs.si

Keywords: distributed service implementation, automated protocol derivation, LOTOS

Received:September 6, 2002

A transformation is proposed which, given a specification of the required external behaviour of a distributed
server and a partitioning of the specified service actions among the server components, derives a behaviour
of individual components implementing the service. The adopted specification language is close to Ba-
sic LOTOS. Unlike in other protocol derivation algorithms based on LOTOS-like languages, distributed
conflicts in the given service are allowed, and resolved by self-stabilization of the derived protocol.

1 Introduction col. Therefore, algorithms for automated protocol deriva-
tion are most welcome! They automate exactly that part of
In top-down distributed systems design, one of the moserver decomposition which is the most difficult for a hu-
difficult transformations is decomposition of a process intanan, requiring simultaneous reasoning about the numerous
a set of co-operating subprocesses. Such a transformatigmoperating parties.
is considered correct if it preserves, to the required degree,Even if one decides for automated protocol derivation,
those actions of the process which are considered essentigfemains possible to strongly influence the resulting pro-
Such actions are often referred to asskevicethat the pro- tocol, by introducing dummy hidden service actions. For
cess offers to its environment, i.e. the process is observedample, introducing a pair of consecutive service actions
in the role of aserver executed by two different server components introduces a
A service consists of atomic service actions, of which thprotocol message from the first to the second component.
most important arservice primitivesi.e. atomic interac- Prefixing each of a set of alternatives by a service action
tions between the server and its users, executsgivice at a particular component makes the choice local to the
access pointsin addition, one might decide to introducecomponent. In other words, instead of spending time on
somehidden service actiongo represent various impor- protocol design, one should rather concentrate on detailed
tant events within the server. service design, specifying all important dynamic decisions
When decomposing a server, the first step is to decide &§ explicit service actions [16]. By various allocations of
its internal architecture. It can be represented as a set € actions to server components, service implementations
server componeni{g.g. one component per service acces¥ith various degrees of centralization are obtained.
point), with channels for their communication. We shall A prerequisite for automated protocol derivation is that
assume that all components are on the same hierarchitia¢ service is specified in a formal language. It is desir-
level, for a multi-level architecture can always be obtainedble that the derived behaviours of individual server com-
by gradual decomposition. ponents are specified in the same language as the service,
The next step is to assign individual service actions t80 that the same algorithm can be used for further decom-
individual server components, paying attention to the locaosition.
tion and capability of components. It is desirable that a protocol derivation algorithm is to a
The final step is to specify details of the inter-compolarge extent compositional, so that it can cope with large
nent communication, i.e. to derive an efficigmbtocol Sservice specifications, provided that they are well struc-
implementing the service, where efficiency is measured itred. Moreover, a compositional algorithm reflects the ser-
terms of the communication load. While the first two stepyice structure in the derived protocol specification, increas-
require creative decisions, protocol derivation carabe ing the service designers’ confidence into the automatically
tomated Given a formal specification of the architecturegenerated implementation.
of a server, of its service and of its distribution, one can Itis difficult to construct a general protocol derivation al-
mechanically decide on the protocol exchanges necess@yrithm with high-quality results and low complexity. Typ-
to implement the specified distributed causal relations andal algorithms work on small classes of service specifica-
choices between service actions. tions.
A protocol is typically much more complex than the ser- Protocol synthesis has been subject to intensive research
vice it implements. Besides, one usually does not cagnce the middle eighties. An exhaustive survey can be
about the exact nature of an otherwise satisfactory protfound in [26], so we provide no systematic review of the

58 Informatica27 (2003) 57-73 M. Kapus-Kolar

existing methods and refer to them only where necessaryName of the construct Syntax

for comparison with the proposed solutions. Specification w := spec b where D endspec
The protocol derivation transformation proposed in our Process definition Zz ﬁ;{g blpisb

paper is an enhancement of that in [10]. As in [10], we N

. ; . Process name p ::= Procldentifier
assume that a server consists ofabitrary fixed num- Parameter name 2 w= Parldentifier
ber of componentsxchanging the necessary protocol mes- genaviour b e

sagesasynchronouslyover reliable, unbounded, initially |naction stop
empty first-in-first-out (FIFO) channels with a finite, but Successful termination | &
unknown transit delay. The adopted specification language Sequential composition | b1 > b,

is a syntactically simplified sublanguage of LOTOS [7, 2], Action prefix | a;ba
a standard process-algebraic language intended primarilyChoice N | b1[]b2
for specification of concurrent and reactive systems. Ser- Parallel composition | b1[[G]]b2

vice primitives are not allowed to carry parameters, neither Disabling | b1[>b>

do we allow specification of real-time constraints. How- H'ding | hide G in by endhide
. . . . Renaming | ren R in b; endren
ever, the principles for enhancing a basic protocol deriva- : o
. .) Process instantiation | p(v) | p
tion method to cope with data and real time are well known G = setof g
(11,12, 23]. Interaction gate gu=s|h
For a service containing distributed conflicts, a precise Data value v = termof typen*
implementation takes care that they never cause divergencendex nu=1]2
in service execution. Firstly one should try to make all con- R = setof r
flicts local to individual components, by inserting auxiliary Gat_e renaming rou= gJ’/g
hidden service actions, but that is acceptable only as longActon az=1ils|h|ho
Service primitive s = u’

as no external service choice is undesirably converted into
an internal server choice. For the remaining distributed :

. . . . o Server component ¢ ::= Compldentifier
conflicts, dlvergence_ prevention requires extensive inter- Auxiliary gate hi= st |15 | a” | by |t
component communication [9, 20., _21]. Although evensuch poio offer 0 e o | ?Uc‘ 22w
protocols can be derived compositionally [17], the commu-
nication costs they introduce are usually acceptable only if Table 1: The adopted specification language
exact service implementation is crucial or during the pe-
riods when server users compete strongly for the service.

In a typical situation, the probability of a distributed con- The paper is organized as follows. Section 2 introduces
flict is so low that divergence should rather be resolved thahe adopted specification language and its service specifi-
prevented. cation sublanguage, some building blocks for the derived

In LOTOS, there are two process composition operatoiotocol specifications, and the adopted protocol correct-
allowing specification of service actions in distributed conn€ess criterion. Section 3 describes the adopted principles
flict, the operator of choice and the operator of disabling®f Protocol derivation. The derivation is guided by various
In [10], only local choice is allowed. For disabling, theService specification attributes. In Section 4, we introduce
derived protocols are supposedstif-stabilize after diver- rules for attribute evaluation and suggest how to obtain a
gence but the proposed Solution iS not correct in the gen\Ne”'formed SerVice Specification. SeCtion 5 Comprises diS'
eral case [15]. Besides, [10] has problems with implemergussion and conclusions.
tation of parallel composition [15]. In an unpublished re-
sponse to [15], Bochmann and Higashino proposed some o]
solutions for the problems, but have not integrated the@d ~ Preliminaries
into their protocol derivation algorithm and have not been
able to specify the solution for disabling in LOTOS. 2.1 Specification language and its service

We specify self-stabilization upon disabling purely in the specification sublanguage
adopted LOTOS-like language, and also suggest how to
implement distributed choice. Further improvements overhe language employed, defined in Table 1 in a Backus-
[10] are implementation solutions for processes with sudNaur-like form, is an abstract representation of some LO-
cessful termination as a decisive event, for processes whi€®S constructs, in the exclusive setting of the protocol
might enter inaction without first declaring successful terderivation problem. Not shown in the table are parentheses
mination, for combining terminating and non-terminatingor control of parsing, the syntax for sets, and shorthands.
alternatives, for process disabling with multiple initiators, A b denotes a &haviour, i.e. a process exhibiting it, for
and for interaction hiding and renaming. The proposed sd@nstance a server as a whole, an individual server compo-
lutions can be seen also as an improvement over [3], anent, a service part or some other partial server behaviour.
other algorithm for the purpose in which we have identifiedror a particular server, I€tdenote the universe of its com-
a bug [15]. ponents.

Service-primitive type u ::= PrimlIdentifier

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 59

spec ¢ where D endspec = spec § where D endspec No. e
e|[G]lb =0b|[Glle =b a;e =a;d (1) w:=specbwhere D endspec
eE>b=b>e=0 esb="> 2) d==pisd
hide G in € endhide =¢ ren Rine¢endren =¢ (3) b::=stop
4 bu=90
Table 2: Absorption rules far (5) b:u=b1>by
(6) b:=a;bs
(7) b= b1][S])b2
stop denotes inaction of the specified process. (8) b:=b1[]b2
d denotes successful termination. (9) bu=bi[>b2
In some cases, the protocol derivation mapping defined (10)b ::= hide S in b, endhide
below introduces an specifying execution of no actions. (11)b == ren R in b, endren
is similar tod, because execution of no actions is successful (12)b::=p)
by definition. With the help of the absorption rules in Ta- (13)a =5 | i
L . . e S .= setof s
ble 2, it will be possible to make the derived specifications N
free ofe.
i denotes an anonymous internal action of the specified Table 3: Service specification sublanguage

process. Besides internal actions, processes execute inter-

actions with their environment. Such an external action is

primarily denoted by the interaction gate on which it oc-

curs. If it is a service primitive, it is specified asiaand ~ "b1[> b2" denotes a process with behavidur poten-
denotes a type: interaction between server component tially disabled upon the start of process While b, is still
and a service user. If it is an action on an auxiliary gat@ctive, the process might terminate by executing b, .

h, it might be associated with a data offerthat has t0 "pide ¢ in b, endhide" denotes a process behaving as
match with the data offer of the process environment. Thg ith its actions on the gates listed @ hidden from its

only data that our processes can handle are strings of Z&{Qironment. For the environment, the hidden actions are

or more elements 1 and/or 2. equivalent td.
A componentc can ®nd messages to another compo-
nentc’ over gates®,, while ¢’ receives them over gai€ . ren R in b; endren” denotes a process behaving as

For specific purposes! will sometimes call the gate” b1 with its visible g{;\tes (and thereby the act_ions on them)
(accept), wheren will be a partial context identifier. If renamed as specified iR, where in anr, the first and the

¢ is unable to immediately handle a message received §gecond item respectively define the new and the old name.

gater¢ , it will store it into a FIFO_luffer and subsequently Explicit processes can be defined and instantiated, possi-
claim it on an internal gaté.. Gatet will always be an ply with an input parameter. In the original LOTOS syntax,
internal gate of a server component, serving for hidden insxplicit processes are defined on formal gates, that are asso-
teraction of its parts. ciated with actual gates upon process instantiation. In our
A data offer lv" denotes exactly the data value specifiegimplified language, gate instantiation can be expressed as
by the termv. A data offer 7z : v" or "?v" denotes any renaming of the gates on which a process is originally de-
data value which has a prefix specified by When the fined applied to the particular process instance.
interaction occurs, one of the values legal for the data offer

is selected, and if variable is specified, stored into it for
future use.

"b; > by" denotes a process first behavingasand after
its successful termination &g, wheres of b, is interpreted
in"by > by" asi. "a; by" is the special case of the sequentia
composition wheré, is an individual action, so that rias
needed for transfer of control tg.

"b1[]b2" denotes a process ready to behaveasr as

A specificationw defines a behavioudrand the processes
instantiated in it, except for the processes predefined in
Section 2.2. IfD is empty, ‘where D" may be omitted. If
it is a service specification (Table 3), then 1) any specified
F\ction must be a service primitive or an2) gate renam-
ing is allowed only locally to individual server components,
and 3) all the explicitly specified processes must be without
parameters. Some rows in Table 3 are numbered, so that the
corresponding rows in some of the remaining tables can re-

ba. Sometimes we will use[]" as a prefix operator, where fer to th n all | : ificati
choice from an empty set of processes is equivalestian rertothem. n all our example service specifications, every
i and everys is furnished with a superscript denoting the

"b1|[G]|b2" denotes parallel composition of processes server component responsible for it
andb., whereG specifies the degree and form of their syn- '
chronization. An action on a gate listed @hor ad can The relation used throughout the paper for judging
only be executed as a common action of the two processegjuivalence of behaviours igbservational equivalence
while the processes execute other actions independently" [2], i.e. we are interested only into the external be-
The usual shorthand fof[]|" is "|||". Sometimes we will haviour of processes, that is in the actions which they make
use 'l||" as a prefix operator, where parallel composition ofvailable for synchronization with their environment (all
an empty set of processes specifies an actions exceptand actions transformed intdoy hiding).

60 Informatica27 (2003) 57-73 M. Kapus-Kolar

2.2 Some building blocks for protocol (Service ~ b) V ((|C] > 1) A (Service = (6>>0)))
specifications whereService = hide G in (|||cecbe)|[G]|Medium
endhide
The contribution of our paper lies in functions for generat- G = Uezer {ss, e}
ing protocol specifications in the proposed language. These
specifications will be based on some characteristic patterns, Table 5: Precise service implementation
for generation of which we define some auxiliary functions
(Table 4). not reveal any of the conflicts. When divergence in ser-
Se(C,v) = [[lere(onfepySo v vice execution occurs, the server should continue to sup-
Rc(C,v) := |||ecrieprav port only the direction of service execution with the highest
E.(C,C’,v) := (if (c € C) thenS.(C’,v) elses endif||| pre-assigned priority, while the directions competing with
if (c € C') thenR.(C, v) elses endif) it must be abandoned as quickly as possible.
P(5) := {u”|(u” €)} For a 'b;[>by", it is appropriate thaks has a higher pri-
Po(R) == {(u/u)|(w"/u) € R)} ority thanb;. We adopt this arrangement also fof [|b;".

There are, however, two exceptions. If the server compo-
nents responsible for the start bf manage to agree on
successful termination df; beforebs starts,b, must be
abandoned. In the case df;{]b2", b2 must be abandoned
already when the components manage to agree on the start
of by.

Table 4: Auxiliary specification-generating functions

S.(C,v) generates a specification of parallehsling of
protocol message from componentc to each member
of C other thanc. Likewise, R.(C,v) specifies parallel
receiving ofv atc from each member af’ other tharr.

E.(C,C’,v) specifies_gchange of message in such
a way that each component @f receives it from every L . .
component irC other than itself. 3 Principles of protocol derivation

P.(S) andP.(R) are pojection functions.P.(S) ex- . .
tracts fromS the service primitives belonging to compo-3.1 Service attributes and the concept of a
nentc, while P..(R) extracts fromR the renamings of such well-formed service specification

rimitives.
P We also assume that there are three predefined processi¥§€N mapping a service specification subexpression into

Processes "Loop” and "Loop(v)" execute an infinite serigs counterparts at individual server components, one refers
of "g" or "g?v" actions, respectively. Shorthands for inlo its various attributes. A subexpression attribute reveals

stantiation of the processes on a gatéor a prefixv are SOMe property of the subexpression itself or some property
"Loop(g)" and "Loop(g?v)", respectively. of the context in which it is embedded. Computation of

Process "FIFO(v)" is an unbounded FIFO buffer ready€rVice attributes is discussed in Section 4.1.
to store messages with prefix "v" and to terminate when- There is always a dilemma whether to conceive a very
ever empty. A shorthand for instantiaton of the procesgéneral mapping, i.e. a mapping with very few restrictions
on an input gatey; and an output gate, for a prefixu 0N the at.tr'lbutes, orasimple mapping with avery restricted
is "FIFO(g1, g2, v)". To specify that aFTFO(gy, go,v) @Pplicability. We take the following pragmatic approach.
should accept all kinds of messages, onesétsan empty ~ Above all, we try to avoid restrictions on the specifica-
string, that we denote by. Such are the buffers pairwise tion style (see [28] for a survey of the most typical styles)

connecting server components. They constitute the cori€cause, even if a service specification can be restyled au-
munication medium, defined as tomatically, the derived protocol specification will reflect

Mediumis ||| .. FIFO(s,, ¢ e) the new style, and as such be hardly comprehensible to the
designers of the original specification.

On the other hand, we rely without hesitation on restric-
tions which can be met simply by introducing some addi-
Given a service behaviodr we derive a,. for each indi- tional hidden service actions. Such insertion can always be
vidual component. The protocol must satisfy the mini- automated and causes no restructuring of the service speci-
mal correctness criterion that every protocol message sdination. Besides, there is usually more than one way to sat-
is also received. We further expect that in the absence ©ffy a restriction by action insertion. By choosing one way
distributed conflicts, the server behaves towards its useds another, it is possible to influence the derived protocol,
precisely as required (see Table 5). Note that(h>>§)" i.e. its efficiency and the role of individual server compo-
might also be sufficient, because successful termination oeénts. Hence by relying strongly on such restrictions, we
a distributed server, as an act of multiple server compaot only simplify the protocol derivation mapping, but also
nents, does not qualify as one of the regular service actiormsake space for protocol customization.

i.e. service actions assigned to individual components. A service specification satisfying all the prescribed re-

If b contains distributed conflicts, precise service exestrictions is avell-formed specificatiar\We postpone sug-
cution is expected only for those server runs which dgestions for obtaining such a specification to Section 4.2.

2.3 Protocol correctness criterion

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 61

3.2 Compositional approach to service In an environment of competing service parts, it is im-
implementation portant to have a simple characterization of all protocol
messages belonging to a particular partin a T(b, 2),
When mapping a service specification in a compositionalych a message will carry either identif@f (b) or identi-
way, we map each of its constituent process specificationfger C'1(') of a subpart’ of b. To indicate that messages
including the main service process. Mapping a specificaf the second type also belongitaCI(v') will in all cases
tion of a procesy, we map specificationsof the individ- have C1(b) as a prefix. In alerm(b, z), the addition-
ual parts of the behaviour specified by its body. ally introduced messages will carry identifiéd * (b). As
During service execution, each instantiation of sugh a (s, 2) is a part of Term(b, z), CI(b) will have CI*(b)
gives rise to a new instance of the behaviour specified ka5 a prefix. So it will be possible to specify readiness to
such ab. Each such instance is an individual service pafeceive any message belonging t@erm(b, z) simply by
and, as such, expected to be implemented in an indepen-.C'1+(b) in the receptions.
dent way. In other words, such an instance represents aThe basic building blocks of context identifiers, hence
special context, that first of all needs a dynamically uniquglso of protocol messages, arand?2, because they refer
identifier. The identifier can then be included in all prototypically to partsh; andb, of ab. That is, of course, not
col messages belonging to the particular instance, to ma only possible choice. By changiido 0, for example,
its distributed implementation communication-closed. Th@ne could obtain pure binary identifiers. In any case, itis
simplest way to produce such an identifier is to concatémportant that the number of different messages on individ-
nate (specified by operator’) z, the dynamically unique ual channels is kept low, for message encodings can then
identifier of the particular instance pfandCI(b), the dy- be short. For that reason, messages (i.e. the context iden-
namically unigue ontext dentifier ofo within the body of tifiers they contain) are re-used extensively, except where
p[14]. that could corrupt their dynamic uniqueness.
Mapping a specification of a processnto ac results in o o)
a specification of a local proceswith a formal parameter Example 1 For the example service in Table 7, itis crucial
"z". When the local process is instantiated, "z" propagatéQat the |mplementa_t|0ns of the two concurrent instances o_f
into its body the identifier of the particular process instancdrocess Proc use different protocol messages. Likewise it
so that it can be used in the associated protocol messagsmportant that protocol messages are re-used, because
The main service process is instantiated only once, so {§0C is instantiated an infinite number of times.
"z" can be assigned statically. For a dynamically created The reception buffers 'of the three components (see Sec-
process instance, "z" is the identifier of its instantiationfion 3.9) are not shown in the example, to make the spec-
Those properties are reflected in Table 6, more preciself ations more readable. The buffers are not crucial for

described below. eadlock prevention, anyhow.
(1) Te(w, 2) := spec Term.(b, z) 3.3 Termination types
where {T.(d)|(d € D)} endspec
(2) T.(d) := p(z) is Term.(b1,7) For ab representing the entire service that is being imple-
(12)T'c(b, 2) := p(z-CI(b)) mented, it is evident that its successful termination (if any)

i , o must be implemented a@qor as itss equivalent) at each of
Tgble 6: MappingT .for a service specification and map-ihe server components. In other words, edelrm., (b, 2)
ping T* for process instantiation must be terminating, i.e. eachmust be adrminating
component ofy for mappingTerm, formally TCF(b), i.e.
T, (b, z) will be the basic function for mapping a servicec must be an element GfC* (b).
partb onto a component within a contextz. Sometimes If a b is not the last part of the servicdCf(b) is
the implementation of & generated by mappinig will be not mandatory. It is sometimes better to Btrm..(b, z)
enriched with some additional protocol messages repoffinish by stop instead, i.e. =T'C:F(b) [14]. Such in-
ing its successful termation to server components not yetaction atc is later disrupted by activities of outside
knowing it. The mapping which generates such enriche@erm..(b, z). If b never successfullyetminates, formally
implementation will be calle@Cerm. (b, z). MappingT — —TM (b), =T C (b) is the only option.
of a structured combines the mappinggerm of its con- If TCF(b), one has to decide whetheshould detect or
stituent parts. declare termination df already within theT'.(b, z) part of
For ab, it might be that a has no duties in its distributed Term..(b,), i.e. whethefl'C'} (b) should implyT'C.(b),
implementation, i.e. thatis not a @rticipating omponent i.e. thatc is an element of’C(b). If TC}(b) but not
of b (formally ~PC.(b), i.e. not a member aPC(b)). In TC.(b), formally RT,(b), ¢ terminatesTerm..(b, z) upon
such a caseT.(b, z) will be € or stop, while in the case of receiving ermination reportsz-C I+ (b)" from all the end-
PC.(b), T.(b, z) will more precisely be called@ .(b, z). ing components of'(b, z) [14] (see Table 8). Where the
In the following, letTerm(b, z) denote alerm imple- danger exists of such a report being received already within
mentation ob, i.e. allTerm..(b, z) plus the protocol chan- T.(b, z), care is taken that it is different from any message
nels. Likewise,I'(b, z) denotes & implementation. referred to withinT.(b, z). Hence protocolTerm(b, z)

62 Informatica27 (2003) 57-73 M. Kapus-Kolar

w = spec ren a® /A%, b7 /BY,¢c? /C? in Proc endren ||| ren d*/A%,e7/B”, % /C? in Proc endren
where Proc is (((A%;6%)|||(B?;87)) > (C?; Proc)) endspec
Tao(w,e) = spec ren a®/A” in Proc(1) endren ||| ren d*/A® in Proc(2) endren
where Proc(z) is (A%;s3!z; rj!z; Proc(z)) endspec
Ts(w,¢) =~ spec ren ¢? /C? in Proc(1) endren ||| ren f?/C? in Proc(2) endren
where Proc(z) is (((r2!z; 8)||(r5!z; 6)) > CP; ((s2!2;6)|||(s512; 6)) >> Proc(z)) endspec
T, (w,e) ~ specren b”/B” in Proc(1) endren ||| ren €7 /B” in Proc(2) endren
where Proc(z) is (B”;s}!z; r}!z; Proc(z)) endspec

Table 7: An example of multiple process instantiation

T.(b, z) :=if
Term.(b, z) :

PC.(b) thenT’.(b, 2) elseif TC.(b) thene elsestop endif endif
= if TC} (b) thenif TC.(b) then(T.(b, 2) if EC.(b) then>>S.((TC™"(b) \ TC(b)),z-CI" (b)) endif)
else((T. (b, 2)[>)| ||R(EC(b), z-CI* (b)) endif
elseT. (b, z) endif

Table 8: Function§ andTerm

has two phases, namely protod(b,) and exchange of 3.5 Implementation of successful
termination reports. termination

A cis an eding @mponent ofb for mappingT, for- |, some cases, it is crucial to have in mind that success-

mally EC.(b), i.e. ¢ is a member offC(b), if it might | torminations is also a kind of an action. These are the
be the last component to execute an act|op W',m('b’ 2)- cases where it is in a decisive position, like an initidh
If EC.(b), c must, of course, declare termination already, "h, [|b" OF the § of by or an initial of by in a "b; [> by"

within T (b, z), i.e. EC.(b) by definition impliesI'Ce(b), (141 S0 one selects, as convenient, for edalserver com-
and thereby"C." (b). ponent responsible for its execution, its only participating

In many cases, we are free to decide whethél (b)) component. Mapping” for the component is &(Table 9).
should implyT'C.(b) or not, but it is not always directly

evident how our decision would influence the overall num- (AT c(b,2) =0
ber of the involved protocol messages. Therefore we fol- o o
low the classical solution thatC:+ (b) should always im- Table 9: Mappindl” for successful termination

ply TC.(b) (i.e. ~RT.())), except where that would lead

to an erroneous service implementation (discussed in the

operator-specific sections). If there are no such cases, m@6 |mplementation of hiding and renaming

ping Term systematically reduces to mappifigi.e. there

is a single mapping function, like in the earlier approache&he only properties of actions within a service pathat

[3, 10]. influence protocol message exchange are their position

. within b and their assignment to server components. That

I TPCC(b)’ TC.(b) will always be equal tdFCj(b_), is not changed by hiding or local renaming, so implemen-

reducingTerm,(b, z) to a merees or stop (see function

) ion of th ions is trivial (Table 10).
T in Table 8). Hence the components participating in th(taanon of those operations is trivial (Table 10)
distributed mplementa‘uon of & remain thoselllsted N {20)T.(5, 2) = hide P.(5) in Term., (b1, z) endhide
PC(b), even if we enhance the mapping function frdm (1)1 (5,) .= ren P.(R) in Term.(bs, z) endren
to Term.
For a protocolT' (b, z), we define that it successfully ter- Table 10: Mappingl” for hiding and renaming
minates when alll'.(b, z) with TC.(b) successfully ter-
minate. Likewise, successful termination Bérm(b, z)

requires successful termination of dlerm. (b, z) with 3 7 Implementation of action prefix
TCF(b).

To map an &; by" onto a participant (Table 11), one first
needsP.(a), the projection of. If ¢ is not the executor of
a, i.e. its only participant, the projection is empty.alfs a
. . . service primitive, its executor is evident from its identifier.
3.4 Implementation of inaction If it is an i, one selects its executor as convenient.
If a componentc might be the first to execute an ac-
A stop has no participating component, so the first rule ition within Term(b,, z), it is a garting @mponent of
Table 8 implies that every server component implementsiét, formally SC.(b2), i.e. ¢ is a member ofSC(bs).
as astop. Such ac is responsible for preventing a premature start of

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 63

(13)P(a) :=if PC.(a) thena elsee endif 3.9 Implementation of parallel composition
(6) T'c(b,2) := (Pc(a); Ee(PC(a), SC(b2), 2-CI1(b))
> Term, (b2, z)) For ab specified as? |[S]|b2", we assume that all actions

specified inb; or bo, including §, are actually executable
Table 11: MappindI’ for action prefix within b, i.e. that they are all relevant.

ProtocolT(b, =) (Table 14) consists basically of proto-
colsTerm(b;, z) andTerm(bs, z) running in parallel and
locally synchronized on service primitives frash

If there are ay distributed conflicts irb; and/orb,, for-
mally AD(b), Term(b, z) and/orTerm(by, z) are typ-
ically imprecise implementations @f and by, unable to
synchronize properly of. So if S is non-emptyAD(b) is
3.8 Implementation of sequential forbidden.

composition If S is empty,b; andb, are nevertheless synchronized
on their successful termination (if any). H#rmination ofb
is subject to a dtributed conflict withinb; and/orb,, for-
mally 7D (b), negotiation of more than one component is

Term(bs, z), i.e. it must not starfCerm..(by, z) until it
executesu or receives a reportz" CI(b)" on it. Hence
protocol T'(b, z) has three phases, namely executior of
exchange of reports an and protocolTerm (b, z).

For ab specified as?; > by", we require thab,, at least
sometimes, successfully terminates, because othebwise

would be irrelevant. required withinTerm (b, z) and/orTerm(bs, z). That is

Protocol T(b, z) (Table 12) has three pr,fases',,namel){macceptable,forsuch termination is a decisive termination
protocol Term(by, z), exchange of reports:" CI(b)" on (see below). S@"D(b) is forbidden.

its termination, and protocdlerm(b,, z). Where dan- £ 5 qenendent concurrent executionBérm (b,)

ger exists that a message belonging to the sgcond ph%sh%l Term(bs, z), it should be sufficient to take care that
is received already within &erm.(by, z), care is taken

AN - their protocol message spaces are disjoint [10]. Unfortu-
that it is d|fferer_1t from_ any message referr_ed to_ V‘_/'th"hately, it turns out that on a shared channel, unprompt re-
Term,(by, 2). Itis cr_umal that every with duties W'tr_"n ception in one of the protocols might hinder reception in
the second. or Fhe third pha_se termmaJMmlc(bl, 2) in the other. In the case of a non-emy that might even
all the terminating runs df, i.e. thatl’C (b,) is true.

lead to a deadlock [15].
)T (b, 2) = (Torm. (b1, 2) Kant and Higashino suggested that eacbulld solve the
>>EC(EC+(61),SC(bg),zC’I(b)) problem by prompt reception of messages into a pool, for
> Term, (b2, 2)) further consumption byTerm.(by,z) or Term,(bs, z).
So in Table 14, we introduce for each pdiérm. (b, z)
Table 12: MappindI’ for sequential composition for each channel from & to ¢ that is skared (formally

SH (b)), a FIFO buffer for incoming messages. Such
As in the case of action prefix, reports on terminatiora buffer is, unlikeTerm.(b,, z), always ready to receive
of the first phase are sent to the starting components 5bm the channel on gatef,, thereby removing the pos-
by, but now their senders are the ending components ehility of blocking. Term..(b,,, z) can subsequently claim
Term(by, z) [19]. A cis an ending component &f for the received messages from the buffer on a hiddenlgate
mappingTerm, formally ECf(by), i.e. ¢ is a member of As demonstrated in the following example, such buffers
EC(by), if it might be the last component to execute ammight be necessary evensfis empty. On the other hand,
action within Term(by, z). It is crucial that a terminat- buffers are often redundant, but that is hard to establish.
ing b; has at least one ending component, and that in ev-
ery non-terminating run of suchta, there is at least one Example 3 In the first part of Table 15, there is a parallel
ending component not terminatingTerm..(b;, z), so that composition implemented properly.
start of Term(b,, z) is prevented. In the second part, the reception buffers are omitted, and
We want the second phase (i.e. termination reportinghere is a scenariod®; s3!1; d*; s3!2" leading to a dead-
to completely isolatélerm (bs, z) from Term(by, z), SO
that protocol messages frofflerm(b,2) and termina-
tion reports may be re-used withlBerm(bs, z). That is
particularly important for implementation of iteration and
tail recursion, as in Example 2. To achieve the isolation, . o o
where Proc is (rz!11; c®;s3!11; Proc)
we take care that upon the start Bérm(b-, z), compo- endspec
nents receiving within it no longer want to receive within Ts(w, 1) ~ spec ((r2111; Proc)[|(r2112; 6)) >s°11; 6
Term(by, 2). where Proc is (¢?;s2111;r2111; Proc)
endspec
w, 1) = spec rz,!l; b”; 6 endspec

w = spec ((a®; Proc)[[(b%; 6%)) > (b7;467)
where Proc is (c?; ¢®; Proc) endspec
To(w, 1) = spec (a®;s3!11; Proc)[](b*; s5!12; 9)

Example 2 In Table 13, we implement a service consisting (
of two consecutive parts. It might happen that the first part

does not terminate, but a premature start of the second partble 13: An example combining finite and infinite alter-
is nevertheless prevented. natives

64 Informatica27 (2003) 5773 M. Kapus-Kolar

)T (5,2) = (Par..1|[P.(5)][Par.)
wherePar. ,, := hide {b./|SH. .(b)} inren {(b. /rl)|SH. .(b)} in Term.(b,, z) endren
[{be S Her O] (s, o FIFO(ES, bis, 2-CI* (b)) endhide

Table 14: MappindI’ for parallel composition

w = spec (((a%;6%)[[[(b7;67)) > (¢7;67))|[b7]|(d*; b7; 67) endspec
To(w,e) = spec (a%;s3!1;6)|||(d%;s3!2; 0) endspec
Ts(w,e) = spec hide b, in (b?; b, !1;c?;8)|[ba]|FIFO(rS, ba, 1) endhide
|[b?]|hide b, in (ba!2;b?; 8)|[ba]|FIFO(rs, ba, 2) endhide endspec
Tao(w,) = spec (a”;s3!1;0)|||(d%; s5!2; §) endspec
Ts(w,e) = spec (b%; r211;c?; 6)|[b?]|(r2!12; b?; §) endspec
w = spec (a7 6M[[(b7; 07)) > (73 7)) [[[(d"; e7; 07) endspec
Tao(w,) = spec (a®;s3!1;0)|||(d%; s5!2; §) endspec
Ts(w,e) = spec (b?;rB!1;c?; 8)|||(r212; ¢?; §) endspec

Table 15: An example of parallel composition requiring buffered reception

w = spec (6°[> (a®; b”;6%))[[a°]|(6* [|(I*; a%; 67)) 3.10 Implementation of choice
endspec
To(w,1) = spec ((6[> (a%;s5!11;r5!11;6)) For ab specified as?[]b2", we assume that there are ser-
[[a*]|(8]](i;2%;6))) vice actions (at least & in both alternatives, so that both
>s;3!1; 0 endspec are relevant. The operator introduceéstdbuted onflicts,
Ts(w, 1) = spec ((ra!11;b%;s3!11; stop)[> §) formally DC(b), if b has more than one starting compo-
|[|(ra!1; 6) endspec nent.

. ProtocolT(b, z) combines protocolferm(b;,z) and
'Term(bg,z). by is the higher-priority alternative, so
Term(by, z) upon its start always quickly disables
Term(by, z), even if Term(by, z) has already started. On
the other hand, when a component detects the start of
Term(b, z), it tries to prevent starting dlerm(bs, 2),
In the third part, we no longer require that the two con-put might be unsuccessful.
current parts are synchronized d’. We also rename the Until one of the alternatives is abandoned, protocols
secondb” into ¢, to distinguish it from the first one. The Term(by, z) and Term(b,,) run in parallel, so we re-
above scenario no longer leads to a deadlock, but its destjuire that their protocol message sets are disjoint.
nation state erroneously requires that is executed before ithin Term(by,z), any darting action must be
e. Again, reception buffers would help. promptly reported to any starting componenbf b, for-
mally SR.(b1), to inform it that execution ob, should
not start unless it already has. Analogously, we re-
For ab specified asb:|[S][b2", successful termination quijre SR.(by) for any starting component of b;. If
of T(b, z) requires successful termination ®érm (b, z) DC(b), any component might already be executing
and Term(bo, z). If such _ermination is_écisive for one whenTerm(bs, z) starts, so we requiré R, (b,) also for
or both of the component protocols, i.e. represenfSrd the non-starting participants of, to make them quickly
a decisive position withirb; or by, formally DT'(b), its apandon execution df. Note that the executor of an ac-
implementation is problematic [14, 15]. It has been sugjon is informed of the action by the action itself.
gested that such &should be put under control of a sin- |t ot earlier, a participant abandonsTerm.,(bs, z)
gle server component, its pre-assigned executor, respongjson successful termination @lerm, (by, z), if any. At
ble both for its decisive role and for its synchronization rolgnat moment, it must already be obvious tiTatrm by, 2)
[14]. If successful termination oT'(b, z) is to be a matter i never start, i.e. every starting component if
of a single component, the latter must be the only membeg st have already executed an action witBerm (by, 2),
of TC(b), and consequently the only memberBE(b), thereby refusing to be an initiator aferm(by, z). In
TC*(by), TC* (b2), EC(b1) and EC (by). other words, such a starting componehmust giard the
termination at, formally GT:c, (b1).
If not earlier, a participant abandonsTerm,(b;, z)
Example 4 An example of decisive and synchronized tefgpon successful termination @erm.(bs, z), if any. At
mination is given in Table 16. Terminationtdfias been put that moment,c must already have detected the start of
under exclusive control of componentwhile component Term(b,, z), and that is true if and only it is a partic-
[receives only a report of it. ipating component of.

Table 16: An example of decisive and synchronized term
nation

lock, because message 2 is not the first in the channel.

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 65

(8) T'c(b, 2) :=if =DC(b) then(Term, (b1, z)[| Termc (b2, 2))
elseren Up—1 ({(u/u5)] (u° € AS.(bn)} + {(x /a2)|CH (b)) in hide t in
((Const,,1|[StGtc2 + RecGt,2 + {t}]|Const.)
[[StGt.,1 + RecGt,, 1 + StGtc,2 + RecGt. 2]|Const, 3)
|[RecGtc,1 + {a2 |CH! ,(bl)}HConstcA
endhide endren
whereConst.,; := (((Taskc,1 > t;stop)[> (OneStRec. 2> (AllStRec.z|||AllRec.,1)))[>)
whereTask. 1 := ren {(uf/u)|(u® € ASc(b1))} + {(a};,/rg,)|CHj,7£(b1)} in Par. 1 endren
wherePar. ; := see Table 14
Const. 2 := (Task.2[|(t;0))
whereTask 2 i= ren { (u5/u”)|(u° € AS.(b2))} + (a2 /r&)|CHZ (b))
in Term. (b2, z) endren
Const. s := (((OneStRec.,2 > (AllStRec. :|||AllRec.,1))]]
(OneStRec.,1 > (AllStRec.,1
[> (OneRec.>>> (AllStRec. ||| AllRec.,1)))))

[>9)
Const. 4 := ((|HCH3 (b1>(Loop(/22-CTT(b1))[>Loop(a% ?2-CIT(b2))))[>0)
StGten := {us|(u® € SS.(bn))}
RecGt.,, := {al, |CH, <(bn)}
OneRec,,, := (ngRecGth(g?z~CI+(bn); 5))
OneStRecc,, := (([Jgestat, . (g;9))[[OneRece,n)
AllRec. . := (stop|||(|[|gerecct. , Loop(g?z-CT" (bn))))
AllStRec. » := ((|||gestat. . Loop(g))|||AllRec.,) endif

Table 17: MappindI’ for choice

A participant ¢ combines Term.(b;,z) and in Term.(bs,2) into u5. Besides, we internally to
Term,(be,2) as specified in Table 17. 1DC(b), T'.(b,z) split every reception gate’, into gatesa!, and
Term(by, z) is known to be the selected alternativea?, where messages f@erm.(b;,z) are, according to
as soon as it starts, so everyis allowed to execute their contents, routed to the first gate, and messages for
Term, (b, z) andTerm, (b2,) as alternatives. Term,(bs, z) to the second gate. The renamings are

If DC(b), Term.(b;,z) and Term. (b, 2) must be guided by service attributedS.(b,) (lists dl the service
combined in such a complicated way that no LOTOS opactions ofb,, atc) andCH:,Qc(bn) (true if the channel from
erator can express it directly. So we resort to the so calledto c is employed withirfCerm(b,,, z)).
constraint-oriented specification sty[@8]. This is the Applying all the above renamings t®ar.; and
style in which two or more parallel processes synchroniz&€erm. (b, z), we obtain processéBask,. ; andTask. o,
on the actions they collectively control, and each procesespectively, that have disjoint sets of service primitives
imposes its own constraints on the execution of the actionand reception gates. Every action witfiM.(b, z) is an ac-
so that they are enabled only when so allowed by all thigon of Task. ; or an action ofTask. 2, except that there
processes referring to them. is also an action on a hidden gatgerving for synchroniza-

A T'.(b,z) consists of four constraints. Const.; tion of Const,.; andConst, > upon successful termina-
and Const,. » are respectively responsible for executiortion of Task. ;.
of Term,(b,, z) and Term.(bs, z), while Const. 3 and The critical actions oflask, ; are its starting actions.
Const. 4 serve for their additional co-ordination. They must influence execution @&ask. 2, so they are sub-

In the first place, we must be aware that in the cagect to synchronization betweddonst. ; andConst, 3.
of DC(b), protocolsTerm(by, z) and Term(bo, 2) are A starting action ofTask. ; is a arting srvice action of
actually executed in parallel for some time, so every; atc, i.e. a member 0o65.(b1), or a reception. If it is
shared incoming channel in principle requires an ina member ofSS.(b;), it might also be an or ad, i.e. not
put buffer for Term.(b1,z) and an input buffer for suitable for synchronization, so we in principle require that
Term. (b2, z) (see Section 3.9). But as nod ever trans- every member o6S.(b1) is a service primitive. It is not
mits to ¢ within Term. (by, z) after it has transmitted a starting component @4, Const, 3 is redundant, hence
to ¢ within Term,. (b3, z), input buffers for prompt re- the requirement is not necessary.

ception are necessary only f@lerm.(b;,z). So we en- The critical actions ofTask. » are its starting actions.
hanceTerm.. (b, z) into Par, 1, as described in Table 14, They must in principle influence execution sk, 1, SO
though the buffers are usually redundant. they are subject to synchronization betw&sonst. ; and

Internally to T'.(b, z), we rename every service prim- Const. . A starting action ofTask.» is a member of
itive u¢ in Term,(by, z) (i.e. inPar. ;) into u§. Like- SS.(bz) or a reception. If disruption oTask. ; is nec-
wise, we internally rename every service primitiué essary, i.e. ifPC.(b;), we require that every member of

66 Informatica27 (2003) 57-73 M. Kapus-Kolar

w = spec ((a”;9)[[|(b%;8))[1((c”; 0)][|(b”; 6)) endspec
wlzspec ((@%; (NN (B3 8 NO((s (37 [[187)]1](% (57]1]67))) endspee
2 = spec (a7 (6713717175 (6% [[157) [((c”5 (6% [113°)) 167 (6%]157))) endspee
w3 = spec ((aaz(é"l\lm))ll\(bﬁ i (5“|H5B)))H(((1% 8)[[187)I11(6% ((1%:.67)[]167))) endspee

Tao(ws, €) ~ spec ren lxy/alwlrﬁ/alﬁ7 rd /a2 in hldet in
(((’ (hide b, in ((a®; ((s§!1;0)||/(s$!1;6)))|||(b4!1; 6))|[b,]|FIFO(al, b,, 1) endhide > t; stop)
[> (((a572;0)[1(2372; 6)) > (Loop(aj372)[[[Loop(a372)]|[Loop(a’ 71))))[> 9)
|[az237a37t}|(’ ((a312;8512;6)||/(a!2; 5512 6)) | [(t; 6))
I[al,a?]|((Loop(al?1)[>Loop(a2?2))[>d)
endhide endren endspec
Tps(ws,e) ~ specren b’ /b7 rf/al, ¢ /a%bﬂ/bg,rg/ai,rg/ag in hide t in
([(hide ba, by in ((ba!1;)[[[(bJ: 5511 b, 113.8))
|[ba, b,]|(FIFO(ay, ba, 1)|||FIFO(al, by, 1)) endhide > t; stop)
[> (b3 6)[)(a372; 6)) > (Loop(by)[[[Loop(a3 ?2)|[[Loop(as, ?1)||[Loop(a’ ?1))))[>)
Hbg?agﬂt]l(’ ((a312;0)[1](b5; ((sa12; 0)]1](s512; 6)) > a2 !2; 5))‘[](9)))
b7, ak, a}, by, a3]| (55 8)[](a372; 6)) > (Loop(b3)|[|Loop(a3 72)|||[Loop(as ?1) ||| Loop(a} ?1)))
(((b756)0(an?1;6) (a3 ?1;6)) >
((LOOP(bB)IHLOOP(71)|\|LOOlD(al(’1))
[[5)(3272 ; (Loop(b3)|||Loop(a3 72)||[Loop(as ?1)||[Loop(a} ?1))))))
>
|[aa, a3, a2, a3][(((Loop(as?1)[>Loop(a3 ?2))||| (Loop(a}, 71) [> Loop(a372)))[> §)
endhide endren endspec
T, (w3, €) ~ spec ren rg/ai,rg/ab,rg/ai,rg/aé in hide t in
(((((hide ba,bg in ((ba!l;6)|[|(bs!1; ((sa!1;6)[l[(s5'1;6))))
|[ba, bs]|(FIFO(al, ba, 1)|||FIFO(as, bs, 1)) endhide > t; stop)
[>(((c7;9)[(a572;6)) > (Loop(c”)|[[Loop(aj?2)[[[Loop(as 1) [[Loop(as?1))))[> §)
|[c7, %, t]1(| ((c7; ((s212;0)[[[(s312; 6)) > a!12; 6)|[|(a5!2;9)) | [|(t; 9)))
[aa, a5, ¢, ag][(((((c7; 5)[](%"2 8)) > (Loop(c™)[[[Loop(a?2)|||[Loop(as 71)|||[Loop(a;?1)))]
(((aa?1;6)[(a5?1;6)) >
((Loop(ai"l)IHLoop(a 1))
[[6))(%?2 (LOOP(C”)H|L00p(a?172)||\LOOP(ai'?l)lHLOOP(a}s?l))))))
>
|[a, a5, a2, a3]|(((Loop(as ?1)[> Loop(aZ 72)) ||| (Loop(aj?1)[> Loop(a372))) [> 6)
endhide endren endspec

Table 18: An example of distributed choice

(9) T'c(b,) :=if =DC(b) then(Term,(b1, z)[>Term, (b2, z))
elseren Un—1,5 ({(u”/us)|(u” € AS.(bu))} +{(x% /a2)|CHY (b)) in hide t in
((Const.,1|[StGt. 2 + RecGtc 2 + {t}]|Const.)
[[StGtc,2 + RecGt. 2 + {pi}]|Const,,3)

[[RecGt, 1 + {a? \CHZYC(bl)}HConstcA

endhide endren

whereConst. 3 := ((AllStRec. 2[|(p{; OneRec. 2> AllStRec. 2))[>)

the rest of definitions as in Table 17 endif

Table 19: MappindI” for disabling

SS.(b2) is a service primitive. ogous toOneStRec. , and AllStRec. ,, respectively,

except that they refer only to receptions.
The gates on which the starting service primitives and

receptions within @lask., occur are listed irStGt, Const, ; prescribes the following: 1) Basically, execute
and RecGt. ,, respectively. OneStRec. , specifies a Task.; and indicate its successful termination by.a2)
process ready to synchronize on one actiorifatk., If Task. . Starts in the meantime (that will always be be-
on gates fromStGt., and RecGt.,. AllStRec., foret), stop the basic activity, but remain ready for recep-
specifies a processes ready to synchronize on all such dion of protocol messages sentTask. ;. 3) Always be
tions. Processe®neRec., and AllRec., are anal- ready to terminate, thougBonst. > will ensure that that

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 67

w = spec ((a™;9)][|(b”;8))[> ((c*; 9)[[|(b”; 6)) endspec
w1 = spec hide p®, p” in (((a®;6%)|[|(b%;67)) > ((p*; 8%)[||(p%; 67)) > (8°(||6”)) [> ((c*; 67)|||(b”; 6*)) endhide
endspec
To(wr,€) 5 spec hide p,t inrenrj/aj,rj/aj in
(((((hide bg in (a”; ((s5!1;0)[||(bp!1;8))>p; ((s5!1;0)][|(bs!1;6)))
|[bs]|[FIFO(aj, bg, 1) endhide > t; stop)
[> (((c*;9)[1(a572; 6)) > (Loop(c®)||[Loop (a3 ?2)[[[Loop(a;?1))))[> 9)
e, a3, el (55512 0)l1(2312:9)) | (8 6)))

[[p%, ¢, a%, t}|(((Loop(ca)|||Loop(a%?2))[](pa; a?@?Q; (Loop(c“)H|Loop(a%?2))))[> 8))
|[ah, a3]|((Loop(aj?1)[>Loop(a3?2))[>J) endren endhide endspec
Ts(w1,e) =~ spec hide p?,t in ren bﬁ/b?7 r/al, bﬁ/bg, rg/ai in
(((((hide by in (b7 ((s2!1;8)[]|(ba!l;6)) > b ((s2!1;8)[[| (ba!l; 6)))
|[ba]|FIFO(al, ba, 1) endhide > t; stop)
[> (((b356)[(a272; 6)) > (Loop(bj)| [Loop(aZ, ?2)[[[Loop(ai ?1)))) [> 6)
165, a2, t]1 ((a212;)] 1035 5312:) | 1(8:9)))
IIp%, b3, a2, t]1(((Loop(b5) [|Loop(aZ 72))[|(p”; a2 72; (Loop(by) ||| Loop(az 72))))[> 6))
[[ak, a2]|((Loop(ak ?1)[>Loop(a2 ?2))[>) endren endhide endspec

Table 20: An example of distributed disabling

will happen only after successful terminationBdsk, ; or starting components of the second alternatiwg.in addi-
Task, o. tion secures that every channel employed for the first alter-

Const, » prescribes the following: ExecutBask., or native is also employed for the second one.
terminate upon &indicating thatTask. ; has successfully In each individual component specification, the first and
terminated. the second alternative are highlighted by a box. When di-

Const, 3 in addition prescribes that in the case that theergence occurs, components execute the first alternative,
first action belongs tdrask. i, Task., may start only butgradually switch to the other. We see that every protocol
upon a reception, i.e. upon detecting ttiatrm(b2, z) has message of the first alternative is a 1, and every message of
already started at a remote site. the second one is a 2. All the specified FIFO buffers are

With the described measures for prompt start reportedundant.
ing and for prevention of premature local termination,

T (b, 2) will progress towards completion dfask.; or 3 11 Implementation of disabling
Task, 2 as appropriate.

There is, however, still a problem to solVBask. , must For ab specified as 8;[> by", we assume that there are
not terminate whilec may still expect messages sent toservice actions (at leastd in both parts, so that both are
Task,. 1. So we require thalask, - (i.e. Term,.(b2,2)) relevant. The operator does not introduce distributed con-
never successfully terminates without receiving on each dlicts, formally ~DC(b), if there is ac which is the only
the channels on whictterm..(b;, 2) receives. Upon a re- participating component of; and also the only starting
ception within Term,(by,), ¢ knows that on the chan- component obs.
nel, there will be no more messages Te#rm,.(by,). For ProtocolsTerm (b, z) and Term(by, z) are combined
some channels, the requirement might be redundant. as for 'b;[Jb2", except thafTerm (bs, 2) is allowed to start

It is convenient ifc indeed promptly becomes unwilling as long as there is a starting componenft b, which has
to receive on gates iRecGt,. 1, to improve the possibility notyet detected tha is successfully terminating and con-
of re-use of protocol messages belongin@tam.(b;,z). firmed this knowledge by executing a special-purpose ser-
Therefore we introduc&Const. 4. An analogous con- Vice primitivep® in b;.

straint for protocol messages belongingTerm, (b, z) A participant ¢ combines Term.(b;,z) and
would also be desirable, but we have found its automati€erm, (b2, 2) as specified in Table 19. 1-DC(b),
specification too difficult. activation of Term(bo, z) is a local matter of the starting

component ofb,. For any otherc, Term,(b1,z) is
Example 5 An example of distributed choice is given inequivalent tostop, i.e. the component just waits for an
Table 18. The original service specificatianis gradu- eventual start oTerm. (b, 2).
ally transformed into a well-formed specification, follow- If DC(b), we require thab; consists of a regular pal
ing suggestions from Section 4.2u; secures prompt re- followed by a dummy parb, indicating its successful ter-
porting of each individual starting service actionu, in mination (if 7'M (b;), by is never activated, and as such
addition secures that no component terminates the first ahot specified), i.e. we pretend that the service we are imple-
ternative until it is selected by componeritsand v, the menting is actually b3[> b,". More precisely, we require

68 Informatica27 (2003) 57-73 M. Kapus-Kolar

bs = ((llsc.(62) (P 6°)) > (7o (4,)0%)) No. 55 No. 55
wherep primitives are supposed to be hidden on a highe2) SSc(p) = 55c(b) (4) SSc(b) = {5\PC (0)}
service level and not among the visible primitivesbgf (3) 55:(b) =0 (6) SSc(b) = S5c(a)
Note that we also prescribe the executor of each indivig{12) S5 (b) = 53e(p) (13)SSc(a) = {“|PC (@)}

: : : (7)) 55c(b) = ((SSc(b1)\S) U (SSc(b2)\S)U

ual 6. SinceDC(b) andT M (by) imply thatb in no way (5S.(b1) N 8S.(b2) N S))
synchronizes with concurrent service parts, pfiynay be (8,9) SS.(b) = (SSc(b1) U SSe(b))
regarded entirely as an internal actiorlof (b, z). () SS.(b) = ((SS.(b1) \ {6}) U {i[(§ € SS.(b:1))})

For such ab1., protocol Term (b1, z) consists of tWo (10) SS.(b) = ((SSe(b1)\ S) U {i|((SSc(b1) N S) # B)})
phases. The first phase Berm(bs, z) followed by re- (11) SS.(b) = ((SS.(b1) \ {s|3(s'/s) € R})U
porting of successful termination to all the starting com- {s'|3s € SS.(b1) : ((s'/s) € R)})
ponents ob,, i.e. exactly to the starting componentshgf ~ No. AS. No. AS.
In other words, the components are, as required, prompti{2) AS (p) = ASc(b) (4) ASc(b) = SSc(b)
informed when starting ofTferm (b, z) becomes unde- Se(b) =0 (12)Asc(b? = AS.(p
sirable. If the first phase successfully terminates befor g; ﬁg EZ; - Egész(l)”&\f‘l{g}gug} U ASe(b2))
Term(bs, z) starts,T(b, z) starts executing the usual dis- (7 9)AS. (b) _ (ASC (Zl) U AS. (bs)
tributed implementation of a well-formed;{|b.". If the (10) AS.(b) ((Aé (b)) \ S) U {i[((AS.(b1) N S) % B)})
start of Term (b, z) is sufficiently delayed, the executed (11) 5. (s) = ((AS.(b1) \ {s]3(s'/5) € R})U
alternative ish,, i.e. by is not disrupted by,. In any case, {s'|3s € AS.(by) : ((s'/s) € R)})
no participant abandori¥erm (b, z) until every starting (3—12)(SC (b) = (S5c(b) # 0))A
component of b, has executed p¢, i.e. refused to be an (PC.(b) = (AS.(b) # 1))
initiator of Term(by, z). (4) Fe: (PC(b) ={c})

Comparing T/ (b1[> by, z) With T/ (by[Jbs, 2), we (13) (Gc: (PC(a) = {c})) A ((Fu: (a = u%)) = PCc(a))
see that, instead of waiting for the starting actions of
Term, (b1, z), Const.s now waits for the onlyp® in
Term,(by, 2), if any. Consequently, instead of synchro-

Table 21: Service actions and their executors

nizing on the gates i8tGt.; andRecGt. ;, Const, ?Izc)’ g;(p) — D7) ?‘1% 115;;(5) = DT(6)

and Const. 3 have to synchronize just op{, hence B4)DT(b) = false (12) DT(b) = DT(p)

Constc,g is much easier to specify. (5,6)DT(b) = DT (b2) (7) DT(b) = (DT(b1) V DT (b))
(8) DT(b) =

(DT (b1) V DT (by) V T(b))
Example 6 An example of distributed disabling is givenin (9) DT (b) = (TM(b1) V IT(b2) V DT (b2))
Table 20. To obtain a well-formed service specification, we(3-12)TM (b) = ac (6 € AS.(b))

furnish the first part with the required hiddgmactions, (3-12)IT(b) = 3c: (J € SS.(b))

and make sure that the starting actions of the second part
are promptly reported and that both protocol channels are
used for the part.

Table 22: Successful terminations

No. AD No. AD
(2) AD(p) = AD(b) (3.4) AD(b) = false
: . . (6) AD(b) = AD(by) (5,7)AD(b) = (AD(b1) V AD(bs))
4 Computation and tuning of service ;5 AD(B) = AD(p) (10.11)AD(b) = AD(by)
attributes (8,9)AD(b) = (AD(b1) V AD(by) vV DC(b))
No. T'D No. TD
; : (2) TD(p)=TD(b) (10,11)I'D(b) =TD(b1)
4.1 Attribute evaluation rules 3.4)TD(b) :false (12) TD(): Dip)
The attributes in Table 21 provide information on service(®: G)TDEZ; = {1%(1(712))) 5/7);2% Yv (((1311\;5(19)()1))2))
actions and their executors.S. and AS. respectively list i 1 2
for ana, b or p its garting rvice actions andlldts service % ((2)) __((7[56(,122;‘ >(1) (b) A (TM(b) V IT(b2))))
actions ate. SC. and PC.. respectively indicate for an DC(b) : ; (IPC(b1) U SC(b)|> 1)

a or b thatc is its darting @mponent or its articipating
component. Table 23: Distributed conflicts
The attributes in Table 22 provide information on suc-
cessful terminationsT’M, I'T and DT respectively indi-
cate for ab or p that it might successfullyerminate, that it there are ay distributed conflicts in it and whether there are
might terminate hitially, or that the érmination might be distributed conflicts involving its successf@rmination.
decisive. The attributeS R, in Table 24 indicates for aor p that
The attributes in Table 23 provide information on disdts start must be promptlyaported tac.
tributed conflicts. DC indicates for ab that dstributed The attributeEC,. in Table 25 indicates for & or p that
conflicts are introduced by its top-level composition operae is its ending ®@mponent for mapping. EC.' is the ana-
tor. AD andT' D respectively indicate for aor p whether logue for mappingrerm.

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 69

No.SR. No. SR. No.CH, . No. CH,.
(1) SR.(b) = false (5,7,9-11)5Rc(b1) = SRc(b) (2) CH..'(p) = CH],(b) (10,11)CH, /(b) = CH_,, (b1)
(2) SR.(b) = () (5.6) SRe(b2) = false (34)CH, . (b) = false (12) CH,.(b) = CH, . (p)
(7) SRC(b2): Re(b) (12)SRe(p) = (SRe(p) V SRe(b)) (5) CH., o (b) = (CH}', (b1) V CHY, (b2)V
(8) SRe(bi) = (SRc(b) V SC.(b2)) ((c # &) A ECH(b1) A SC. (b))
(8) SRe(b2) = (SRe(b) v SCe(b1) V (DC(b) A PCc(b1))) (6) CH. o (b) = (CH!, (b2)V
(9) SRe(b2) = (SRe(b) V PCe(b1)) ((c % &) A PCe(a) A SC (b2)))
) (7-9)CH. . (b) = (CH} (b)) VCH/ ,(b2))
Table 24: Start reporting No.CT, No. C7..
() CT.(p) =CT],,(b) (10,11)CT. o (b) = CT., (b1)
No. EC. No. EC. (3) CT..r (b) = (12) COT.w(b) = CT..o (p)
@) c(p) = ECZ(b) (5,6) EC.(b) = ECS (b2) (4) CT, ./ (b) = alse
3) Ce(b) = false (10,11)EC.(b) = ECS (b1) (5) CT..r(b) = (CTL(1)V CT, (bo)V
(4) EC:(b) = PCe(b) (12) EC:(b) = ECe(p) (¢ # &) AN ECH(b1) A SCu (b2)))
(7-9) EC.(b) = (EC+(b1) VEC*(bz)) (6) CT..cr(b) = (CT,, (b2)V
(3-12)EC (b) = (EC.(b)A A’ : RT./ (b)) V RT.(b)) ((¢ # ¢) A PCe(a) A SCui (b2)))

(7) CT..r(b) = (CT/,, (b1) v OT, (b))
(8.9)CT.,. +() (CTZ, (b D) ACTZ, (b))
(3-12)CH.,(b) = (CH,./(b) V (EC.(b) A RT.: (b)))
No. 7TCF No.7CF (3- 12)066,@) (CT.cr(b) V (ECe(b) A RTr (b))

Table 25: Ending components

(1) TCIH(b) =TM() (2) TCS(b) = TC (p)
(6) TC(by) = (EC.(b1) v PCe(b2) V TCo(b)) (7-9)5He,v () = (CH, (br) A CH.,, (b2))
(5-9) TCF (bs) = (TCe(b) A PCe(b) A TM (b)) _ I
e 11)ch(bj) — (TC..(b) A PC.(b) /\TM(bj)) Table 27: Channel utilization
() — +
('\-’ll-(f) ;gc (p —_ (TCC (p) A TCC(b)) NO. GTC o NO GTC o
@=6.10117C.(b) = TC=(0) @) GT.o(p) = GT,(b) (1011)GT. . (b) = GT,,(b1)
(7) TC.(b) = (TCF (b) A (EC.(b) V ~PCe(b)V (3) GTeer(b) = tru (12) CTow() = Ol (p)
(-DT()A A : SHo (b)) (4) GT. . (b)= (ﬁTg c(b) V ((c :+C) Ce(b)))
(8,9) TC.(b) = (TC(b)A ’ (5) GT..(b) = (GTC (b)) Vv GTC’C/(b2)
(V¢ € SC(be) : GT, (br))N (PCe(b2)A
(~DC(b)V A" (ECS (01) AGT, ,(b1))))
((EC.(b) V =T M (b1))A (6) GTeer(b) = ((PCer(a) A((e =)V PCe(b2))V
A (CHY (b)) A—CT _(b2)))A GT, ./ (b2))
(<TM(b) Vv PCe(ba))) (7) GTewr(b) = (GT.,, (b1) V GT], (b2))
V=PC.(b))) (B.9GT, (b) = (GT,, (b1) A GT, (b))
(12) TC.(b) = (TCH(b) A (TCS (p) vV ~PC.(b))) B-12)GT,,, (b) = (-TCI(b) V (TC.(b) A GT. s (b))V
(3-12)RT.(b) = (T'CF (b) A ~TC.(b)) (=TC.(b)A
3 (ECC”(b) A GTC”,C’ (b))))
Table 26: Termination types
Table 28: Termination guarding
The attributes in Table 26 provide information on termi- No. CIT No. CIT
nation types.T'C. andT'C. respectively indicate for & (1,2)CTT(b) =¢ (5,6)CT"(ba) = CI(b)
or p thatc is its terminating_ omponent for mapping@ or (5,10,11)CI " (b1) = CI(b)

Term. RT, indicates for & thatc detects itsérmination (7-9)if 3e, ¢’ ;SHc,a (b) .

upon receiving a speciadport on it. %‘5# (bbl) _:glﬁ(bg)'l 7—061‘1 (:2()3;”01(11)'2
The attributes in Table 27 provide information on utiliza- No. CI (b1) = (b2) = CI(b)

tion of protocol channelsCH, s andCH:fc, respectively (3—.6 10,1001(0) = CT7 (b

indicate for ab or p that mappingT or Term introduces (7-9)if (((C’I*(b (b))) (CI* (b)) # CI(b))V
(

) #
ch

protocol messages on theasinel frome to ¢/. CT,. » and A, (b § RT, (b) A CH.. (b))
CT',, respectively indicate that thénannel is used in ev- thenCI(b) = CI*(b)
ery successfullygrminating run. For & consisting of two @CI()=CI*(b) 1 endif
competing parts$H., . indicates if the channel is ared. (12) if Ac,c’ (T ?(b) A RTr (b) A CHe, (b))
The attribute€77,. .- andGT,',, in Table 28 respectively thenC1(b) = CI7(b) _
elseC1(b) = CI* (b)-1 endif

indicate for @ orp that in mapplngT or Term, its success-
ful termination at is guarded by Table 29: Context identifiers
By the rules in Table 29, we choose fobauch identi-
fiersCI andCI™ that all protocol messages introduced by
mappingT or Term, respectively, are dynamically unique. Attribute evaluation rules for a service specification con-

70 Informatica27 (2003) 5773 M. Kapus-Kolar

stitute a system of equations which might have more than(®) 7'M (b1)

one solution for the attributes of the explicitly defined pro- (7) ((Ueec ASc(b1)) N (S + {4}))
cesses. One should always maximize their attrifue", = ((Uecec ASe(b2)) N (S + {0}))
while other attributes must be minimized. (8.9) (IPC(by)[>0) A g'PC(b?N >0)

(7) DT(b) = (|JEC(Hb)|=1)
(3-12)EC, (b) = TC.(b)
4.2 Additional restrictions and their (1) Ac: (p° € AS.(b))
satisfaction (9) DC(b)= 3bs:
((bl = (b3 E TM(bl) then
Table 30 summarizes the additional restrictions introduced > (scev2)(P569) > (et b,9°)
so far for a well-formed service specification. endif)
The first three restrictions state that no irrelevant service A Ac: (p° € ASc(bs)))
part may be specified. The restriction for parallel compo- (7) ((S # 0) = ~AD(b)) A =T'D(b)

sition is actually more rigorous than its approximation in (4} SEc(b) = PCe(b)
Table 30 (see Section 3.9). (6) SRe(b) = (PCc(a) v SCc(b2))

The next two restrictions refer to the ending components Eg)g) gg% z (i%(lz?) = (({{lj %2?@6(?))
of a b. Usually they can be satisfied simply by proper — (PC(br) = (i1, o(b2))

0))
0)

choice of executors for individual in b, but not always. Table 30: Restrictions
It might be that a §;[]b2" or a "b;[> be" is terminating,
but no ¢ qualifies for its ending component, because a No. AP NO. AP

GT:c,(bl) or PC,(by) or aCijc(bg) is not true as re- (2) AP(p) = AP(b) (3,4,6) AP(b) = true

quired. GT.", (b1) can be satisfied by securing that in the (7.9)AP(b) = false (8) AP(b) = (AP(b1) A AP(b2))
terminating runs ob;, the last (possibly dummy) action at (12) AP(b) = AP(p) (5,10,11)AP(b) = AP(b:)

c always comes after a (possibly dummy) actior’atFor
PC.(b2), it suffices to insert intd, a dummy action at.
ForCT: .(bs), it helps to introduce into every terminating
run of b, an action at prefixed by an action at.

The next two restrictions require that there are hidden
primitives at certain places in the service specification.
p primitives are already used for other purposes, any other
reserved service primitive type will do.]]]

The next restriction states thabaith distributed con- 9 Discussion and conclusions
flicts must not synchronize with a concurrent service part,
in order to avoid deadlock resulting from imprecise impleb.1 Correctness
mentation ofb. However, if the concurrent service part is
sufficiently flexible (like, for example, a skilled user of anA formal proof of the protocol derivation method is given
imprecisely implemented service), there will be no dead? [18], and briefly outlined below.
lock and the restriction may be ignored. For every service par, the only property that really

The next two restrictions secure prompt start reportnatters is correctness of itf’ and Term implementa-
ing. An ordinary actior: is always specified in a context tions for the context in which it is embedded, wher&'a
"a;by". A report recipient: must be the executor efor a implementation consists of the membersFiaf’(b), while
starting component df,, so that the message will be gen-a Term implementation might also involve some other
erated to implement the action-prefix operator. i@ a server components. However, when proving the property,
missing starting component bf, that can be solved by in- we also assume over twenty auxiliary properties of the im-
troducing intob, a dummy starting service actionatFor plementations.
reporting of &j, there is no suchs, following, so we have All the properties are proven by induction on the ser-
only the first option. vice structure. Most of them are synthesized properties.

In a general case, execution of a disruptiveight start We prove them for th&” implementations oftop andd.
by concurrent execution and reporting of several startingor every composité (i.e. for every service composition
actions. To avoid as much as possible such multiple repoperator), we prove that iferm implementations of the
ing of the start ob, it is advisable to rewrite the specifica- constituent service parts possess the propertiesI thm-
tion of b into the ation-prefix form (as required in [10] for plementation ofh possesses their analogues. In addition
by in @ "by[> by"), i.e. make sure thatlP(b) (defined in we prove that if thél” implementation of & possesses the

Table 31: Action-prefix form

vice primitive. For both cased)C(b) implies thatb runs
Iip such a context that the transformation is irrelevant.

Table 31). properties, itsTerm implementations possess their ana-
The last two restrictions state that a service action in lagues. For the few inherited properties, the proof goes in
particular position must not be @nor ad. If itis ani, the reverse direction. By proving the main property for the

change it into a service primitive and hide it on a highemain service process, we prove that the entire service is
level. Ifitis a4, prefix it with a subsequently hidden ser-properly implemented.

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 71

5.2 Message complexity and is consequently much less complex. Moreover, the al-

. . . orithm derives protocols in a compositional way, support-
The operators potentially introducing proiocol messag lg implementation of sequence, choice and iteration. For

are ff[he opergtt)?rst of Zeque?hce, ChOtI)CG a:(nd d;}sablmg:[those operators, the structure of services is quite well re-
E’ ° e? pcths_l etho reauce the n#.m t(_ar ° .sucb opers_ %fdcted in the derived protocols. Unfortunately, FSMs are
py restructuring the Service spectiication, 1.€. by MakiNgysg suited for explicit specification of more complex op-

Its mher_ent paralielism more explicit. If such rt_astyllng Oferators, particularly for such introducing concurrency. We

the service (and consequently of the protocol) is not unag- e solved the problem by switching to the more expres-
ceptable for readability reasons, it can greatly reduce tfg?\,e LOTOS

message complexity, and. can even .be automated [25]'_ One\Ne know no comparable LOTOS-based protocol deriva-
should also strive for optimal insertion of dummy S€VICqion transformation. Some hidden divergence is allowed in

actions and optimal assignment of hidden service actior[uf] but it is resolved with the help of global controllers.
to server components. '

Anyway, some of the messages introduced by our proto-]
col derivation mapping are redundant. 5.4 Handling of data

— In some cases, it would be possible to omit a messa%ged'm??]d dto ex;er;i our method r;[ohse_r(\jncel ?}CUOES associ-
based on the observation that for the service part te .V\.”t) ata[5, 11], to approach the ideal that the service
n pecification language should be the same as the protocol

to which it belongs, it sequences two service actio gpeciicatl S
@ecn‘lcatlon language. The strategy for flexible integrated

which are already sequenced for a concurrent servi
partb synchroni;/ed c?n them [13] ?:andling of messages implementing proper ordering of ac-
2 ' tions and those carrying data is simple [11]: 1) In the ser-

— It would be possible to further optimize terminationsvice, identify the points where inter-component exchange
of implementations of individual service parts, andof data would be desirable. 2) At each point, introduce a
their reporting in individual runs [14, 24]. (possibly dummy) action of the data sender followed by a

(possibly dummy) action of the data recipient, so that there

— When implementing abi []b2", one could make better will be an action-ordering message between the two com-
use of the fact that only the initial parts bf andbs ponents. 3) Let the message carry the data. In our case, data
are concurrent. could also be carried in a message reporting termination of

ab to ac with RT.(b).

Data exchange is also desirable as a powerful means for
compositional service specification. Whenever the more
specific operators (e.g. sequential composition, choice and

'g,abling) do not suffice for describing a particular kind of
mposition of a set of service parts, one can still run the
arts in parallel and let them exchange and process infor-
mation on their respective states.

— When implementing abi [> b>", one could make bet-
ter use of the fact that only the initial part 6f is
concurrent ta.

With more extensive re-use of messages, their encodin
could be shorter, but messages would no longer direct
identify the service part to which they belong, leading t
more complicated protocol specifications.

5.5 Handling of quantitative temporal

5.3 Comparison with similar methods)
constraints

The popular formal technique for specifying self-
stabilizing protocols have long been finite state machindance being able to handle service actions with data, one
(FSMs) [6, 27, 22]. With their explicit representation of¢an easily implement quantitative temporal constraints [12,
states, they are very convenient for the purpose. NameR3l- Such a constraint specifies the allowed time gap be-
when a process proceeds along a selected path in the tri#een two service actions. So the time when the first action
sition graph representing its FSM, the fact that it ignorel$ executed is just another piece of data generated by the
messages belonging to the abandoned paths can be sﬁEét action and needed for timely execution of the second
ified simply by furnishing each state on the selected pa®ne. Temporal constraints can also be employed for pre-
with loops representing reception of such messages. ygnting distributed conflicts and for further optimization of
a process-algebraic language like LOTOS, there is no eRrotocol traffic [23].
plicit notion of states, so specification of self-stabilization
is a tricky task. . - 5.6 The problem of co-ordinated

Th(_arg are two basic approaches to deriving self- self-stabilization
stabilizing protocols. In the older approach [6, 27], a pro-
tocol is first derived for the ideal case with no divergence$he most difficult challenge for future research seems to
and subsequently furnished with the reception-ignoringe implementation of self-stabilization after divergence in
loops. The derivation algorithm in [22], like ours, handlesynchronized service parts. The problem is important be-
the ideal and the non-ideal cases in an integrated manneause synchronized processes are the core of the constraint-

72 Informatica27 (2003) 57-73 M. Kapus-Kolar

oriented specification style, that is indispensable for ex-[8] ISO/IEC: Information Technology - Enhancements to
pressing more exotic forms of service composition. To LOTOS (E-LOTOS). IS 15473, 2001

solve it in a general case, one would need a protocol in-]]]
corporating negotiation of implementations of concurrent[9] Kahlouche H, Girardot JJ: A stepwise refinement

service parts, so an enhancement along the lines of [29] Dased approach for synthesizing protocol specifica-
could help. tions in an interpreted Petri net model. Proceedings

of IEEE INFOCOM'96, pp 1165-1173, 1996

5.7 Conclusions [10] Kant C, Higashino T, Bochmann Gv: Deriving pro-

Automatic implementation of self-stabilization after diver- tocol specifications from service specifications wri-

gence is an important achievement in LOTOS-based pro- tigglg LOTOS. Distributed Computing 10(1):29-47
tocol derivation, because many realistic services contain ()

distributed conflicts (e.g. a connection establishment s 11] Kapus-Kolar M: Deriving protocol specifications
vice with both parties as possible initiators). In the era ~ .o service specifications including parameters. Mi-

of service integration, the problem is even more acute, be- croprocessing and Microprogramming 32:731-738
cause one often wishes to combine services which are not (1991)

exactly compatible. Take for example feature interactions
in telecommunications, which can be nicely detected and2] Kapus-Kolar M: Deriving protocol specifications
managed based on specifications in LOTOS [4]. With the from service specifications with heterogeneous tim-
possibility of compositional derivation of self-stabilizing ing requirements. Proceedings SERTS'91. IEE, Lon-
protocols, it suffices to specify dynamic management of don 1991, pp 266—-270
such interactions on the service level.

In our future work, we will focus on protocol derivation [13] Kapus-Kolar M: On context-sensitive service-based
in E-LOTOS [8], the enhanced successor of LOTOS, be- protocol derivation. Proceedings of MELECON'96.

cause it supports specification of real-time aspects. IEEE Computer Society Press 1996, pp 955-958
[14] Kapus-Kolar M: More efficient functionality de-
References composition in LOTOS. Informatica (Ljubljana)

23(2):259-273 (1999)
[1] Bista BB, Takahashi K, Shiratori N: A compositional _ .
approach for constructing communication servicebl® Kapus-Kolar M: Comments on deriving protocol

and protocols. IEICE Transactions on Fundamentals specifications from service specifications written
E82-A(11):2546—2557 (1999) in LOTOS. Distributed Computing 12(4):175-177

(1999)
[2] Bolognesi T, Brinksma E: Introduction to the 1SO

specification language LOTOS. Computer Network$16] Kapus-Kolar M: Service-based synthesis of two-
and ISDN Systems 14(1):25-59 (1987) party protocols. Elektrotehniski vestnik 67(3):153—

. . . . 161 (2000)
[3] Brinksma E, Langerak R: Functionality decomposi-

tion by compositional correctness preserving trang17] Kapus-Kolar M: Global conflict resolution in au-
formation. South African Computer Journal 13:2-13 tomated service-based protocol synthesis. South
(1995) African Computer Journal 27:34-48 (2001)

[4] Dietrich F, Hubaux J-P: Formal methods for commur1g) Kapus-Kolar M: Deriving self-stabilizing protocols
nication services: meeting the industry expectations. " for services specified in LOTOS. Technical Report
Computer Networks 38(1):99-120 (2002) #8476, Jozef Stefan Institute, Ljubljana, 2003

[5] Gotzhein R, Bochmann Gv: Deriving protocol spec-)
ifications from service specifications including pa—[lg] Khendek F, Bochmann Gv, Kant C: New results on

: deriving protocol specifications from service speci-
rameters. ACM Transactions on Computer Systems e .)
8(4):255-283 (1990) fications. Proceedings of ACM SIGCOMM'89, pp

136-145, 1989
[6] Gouda MG, Yu YT: Synthesis of communicat- N o
ing finite-state machines with guaranteed progres&0] Langerak R: Decomposition of functionality: A

IEEE Trans. on Communications COM-32(7):779—- correctness-preserving LOTOS transformation. Pro-
788 (1984) tocol Specification, Testing and Verification X. North-

]) Holland, Amsterdam 1990, pp 203-218
[7] ISO/IEC: Information Processing Systems — Open

Systems Interconnection — LOTOS — A Formal De{21] Naik K, Cheng Z, Wei DSL: Distributed implementa-
scription Technique Based on the Temporal Ordering tion of the disabling operator in LOTOS. Information
of Observational Behaviour. IS 8807, 1989 and Software Technology 41(3):123-130 (1999)

DERIVING SELF-STABILIZING PROTOCOLS...

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

Nakamura M, Kakuda Y, Kikuno T: On constructing
communication protocols from component - based
service specifications. Computer Communications
19(14):1200-1215 (1996)

Nakata A, Higashino T, Taniguchi K: Protocol syn-
thesis from timed and structured specifications. Pro-
ceedings of ICNP’95. IEEE Computer Society Press
1995, pp 74-81

Nakata A, Higashino T, Taniguchi K: Protocol syn-
thesis from context-free processes using event struc-
tures. Proceedings RTCSA'98. IEEE Computer Soci-
ety Press 1998, pp 173-180

Pavon Gomez S, Hulstrdém M, Quemada J, de Frutos
D, Ortega Mallen Y: Inverse expansion. Formal De-
scription Techniques IV. North-Holland, Amsterdam
1992, pp 297-312

Saleh K: Synthesis of communication protocols: An
annotated bibliography. Computer Communication
Review 26(5):40-59 (1996)

Saleh K, Probert RL: An extended service-based
method for the synthesis of protocols. Proceedings
of the Sixth Bilkent Intern. Symp. on Computer and
Information Sciences. Elsevier, Amsterdam 1991, pp
547-557

Vissers CA, Scollo G, Sinderen Mv: Specification
styles in distributed systems design and verification.
Theoretical Computer Science 89:179-206 (1991)

Yasumoto K, Higashino T, Taniguchi K: A compiler
to implement LOTOS specifications in distributed
environments. Computer Networks 36(2—3):291-310
(2001)

Informatica7 (2003) 57-73

73

