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A transformation is proposed which, given a specification of the required external behaviour of a distributed
server and a partitioning of the specified service actions among the server components, derives a behaviour
of individual components implementing the service. The adopted specification language is close to Ba-
sic LOTOS. Unlike in other protocol derivation algorithms based on LOTOS-like languages, distributed
conflicts in the given service are allowed, and resolved by self-stabilization of the derived protocol.

1 Introduction

In top-down distributed systems design, one of the most
difficult transformations is decomposition of a process into
a set of co-operating subprocesses. Such a transformation
is considered correct if it preserves, to the required degree,
those actions of the process which are considered essential.
Such actions are often referred to as theservicethat the pro-
cess offers to its environment, i.e. the process is observed
in the role of aserver.

A service consists of atomic service actions, of which the
most important areservice primitives, i.e. atomic interac-
tions between the server and its users, executed inservice
access points. In addition, one might decide to introduce
somehidden service actions, to represent various impor-
tant events within the server.

When decomposing a server, the first step is to decide on
its internal architecture. It can be represented as a set of
server components(e.g. one component per service access
point), with channels for their communication. We shall
assume that all components are on the same hierarchical
level, for a multi-level architecture can always be obtained
by gradual decomposition.

The next step is to assign individual service actions to
individual server components, paying attention to the loca-
tion and capability of components.

The final step is to specify details of the inter-compo-
nent communication, i.e. to derive an efficientprotocol
implementing the service, where efficiency is measured in
terms of the communication load. While the first two steps
require creative decisions, protocol derivation can beau-
tomated. Given a formal specification of the architecture
of a server, of its service and of its distribution, one can
mechanically decide on the protocol exchanges necessary
to implement the specified distributed causal relations and
choices between service actions.

A protocol is typically much more complex than the ser-
vice it implements. Besides, one usually does not care
about the exact nature of an otherwise satisfactory proto-

col. Therefore, algorithms for automated protocol deriva-
tion are most welcome! They automate exactly that part of
server decomposition which is the most difficult for a hu-
man, requiring simultaneous reasoning about the numerous
co-operating parties.

Even if one decides for automated protocol derivation,
it remains possible to strongly influence the resulting pro-
tocol, by introducing dummy hidden service actions. For
example, introducing a pair of consecutive service actions
executed by two different server components introduces a
protocol message from the first to the second component.
Prefixing each of a set of alternatives by a service action
at a particular component makes the choice local to the
component. In other words, instead of spending time on
protocol design, one should rather concentrate on detailed
service design, specifying all important dynamic decisions
as explicit service actions [16]. By various allocations of
the actions to server components, service implementations
with various degrees of centralization are obtained.

A prerequisite for automated protocol derivation is that
the service is specified in a formal language. It is desir-
able that the derived behaviours of individual server com-
ponents are specified in the same language as the service,
so that the same algorithm can be used for further decom-
position.

It is desirable that a protocol derivation algorithm is to a
large extent compositional, so that it can cope with large
service specifications, provided that they are well struc-
tured. Moreover, a compositional algorithm reflects the ser-
vice structure in the derived protocol specification, increas-
ing the service designers’ confidence into the automatically
generated implementation.

It is difficult to construct a general protocol derivation al-
gorithm with high-quality results and low complexity. Typ-
ical algorithms work on small classes of service specifica-
tions.

Protocol synthesis has been subject to intensive research
since the middle eighties. An exhaustive survey can be
found in [26], so we provide no systematic review of the
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existing methods and refer to them only where necessary
for comparison with the proposed solutions.

The protocol derivation transformation proposed in our
paper is an enhancement of that in [10]. As in [10], we
assume that a server consists of anarbitrary fixed num-
ber of componentsexchanging the necessary protocol mes-
sagesasynchronously, over reliable, unbounded, initially
empty first-in-first-out (FIFO) channels with a finite, but
unknown transit delay. The adopted specification language
is a syntactically simplified sublanguage of LOTOS [7, 2],
a standard process-algebraic language intended primarily
for specification of concurrent and reactive systems. Ser-
vice primitives are not allowed to carry parameters, neither
do we allow specification of real-time constraints. How-
ever, the principles for enhancing a basic protocol deriva-
tion method to cope with data and real time are well known
[11, 12, 23].

For a service containing distributed conflicts, a precise
implementation takes care that they never cause divergence
in service execution. Firstly one should try to make all con-
flicts local to individual components, by inserting auxiliary
hidden service actions, but that is acceptable only as long
as no external service choice is undesirably converted into
an internal server choice. For the remaining distributed
conflicts, divergence prevention requires extensive inter-
component communication [9, 20, 21]. Although even such
protocols can be derived compositionally [17], the commu-
nication costs they introduce are usually acceptable only if
exact service implementation is crucial or during the pe-
riods when server users compete strongly for the service.
In a typical situation, the probability of a distributed con-
flict is so low that divergence should rather be resolved than
prevented.

In LOTOS, there are two process composition operators
allowing specification of service actions in distributed con-
flict, the operator of choice and the operator of disabling.
In [10], only local choice is allowed. For disabling, the
derived protocols are supposed toself-stabilize after diver-
gence, but the proposed solution is not correct in the gen-
eral case [15]. Besides, [10] has problems with implemen-
tation of parallel composition [15]. In an unpublished re-
sponse to [15], Bochmann and Higashino proposed some
solutions for the problems, but have not integrated them
into their protocol derivation algorithm and have not been
able to specify the solution for disabling in LOTOS.

We specify self-stabilization upon disabling purely in the
adopted LOTOS-like language, and also suggest how to
implement distributed choice. Further improvements over
[10] are implementation solutions for processes with suc-
cessful termination as a decisive event, for processes which
might enter inaction without first declaring successful ter-
mination, for combining terminating and non-terminating
alternatives, for process disabling with multiple initiators,
and for interaction hiding and renaming. The proposed so-
lutions can be seen also as an improvement over [3], an-
other algorithm for the purpose in which we have identified
a bug [15].

Name of the construct Syntax
Specification w ::= spec b where D endspec

D ::= setof d
Process definition d ::= p(x) is b | p is b
Process name p ::= ProcIdentifier
Parameter name x ::= ParIdentifier
Behaviour b ::=
Inaction stop
Successful termination | δ
Sequential composition | b1Àb2

Action prefix | a; b2

Choice | b1[]b2

Parallel composition | b1|[G]|b2

Disabling | b1[>b2

Hiding | hide G in b1 endhide
Renaming | ren R in b1 endren
Process instantiation | p(v) | p

G ::= setof g
Interaction gate g ::= s | h
Data value v ::= termof typen∗

Index n ::= 1 | 2
R ::= setof r

Gate renaming r ::= g′/g
Action a ::= i | s | h | ho
Service primitive s ::= uc

Service-primitive type u ::= PrimIdentifier
Server component c ::= CompIdentifier
Auxiliary gate h ::= sc

c′ | rc
c′ | an

c′ | bc′ | t
Data offer o ::= !v | ?v | ?x :v

Table 1: The adopted specification language

The paper is organized as follows. Section 2 introduces
the adopted specification language and its service specifi-
cation sublanguage, some building blocks for the derived
protocol specifications, and the adopted protocol correct-
ness criterion. Section 3 describes the adopted principles
of protocol derivation. The derivation is guided by various
service specification attributes. In Section 4, we introduce
rules for attribute evaluation and suggest how to obtain a
well-formed service specification. Section 5 comprises dis-
cussion and conclusions.

2 Preliminaries

2.1 Specification language and its service
specification sublanguage

The language employed, defined in Table 1 in a Backus-
Naur-like form, is an abstract representation of some LO-
TOS constructs, in the exclusive setting of the protocol
derivation problem. Not shown in the table are parentheses
for control of parsing, the syntax for sets, and shorthands.

A b denotes a behaviour, i.e. a process exhibiting it, for
instance a server as a whole, an individual server compo-
nent, a service part or some other partial server behaviour.
For a particular server, letC denote the universe of its com-
ponents.
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spec ε where D endspec = spec δ where D endspec
ε|[G]|b = b|[G]|ε = b a; ε = a; δ
εÀb = bÀε = b ε; b = b
hide G in ε endhide = ε ren R in ε endren = ε

Table 2: Absorption rules forε

stopdenotes inaction of the specified process.
δ denotes successful termination.
In some cases, the protocol derivation mapping defined

below introduces anε specifying execution of no actions.ε
is similar toδ, because execution of no actions is successful
by definition. With the help of the absorption rules in Ta-
ble 2, it will be possible to make the derived specifications
free ofε.

i denotes an anonymous internal action of the specified
process. Besides internal actions, processes execute inter-
actions with their environment. Such an external action is
primarily denoted by the interaction gate on which it oc-
curs. If it is a service primitive, it is specified as auc and
denotes a typeu interaction between server componentc
and a service user. If it is an action on an auxiliary gate
h, it might be associated with a data offero, that has to
match with the data offer of the process environment. The
only data that our processes can handle are strings of zero
or more elements 1 and/or 2.

A componentc can send messages to another compo-
nentc′ over gatesc

c′ , while c′ receives them over gaterc′
c .

For specific purposes,c′ will sometimes call the gatean
c

(accept), wheren will be a partial context identifier. If
c′ is unable to immediately handle a message received on
gaterc′

c , it will store it into a FIFO buffer and subsequently
claim it on an internal gatebc. Gatet will always be an
internal gate of a server component, serving for hidden in-
teraction of its parts.

A data offer "!v" denotes exactly the data value specified
by the termv. A data offer "?x : v" or "?v" denotes any
data value which has a prefix specified byv. When the
interaction occurs, one of the values legal for the data offer
is selected, and if variablex is specified, stored into it for
future use.

"b1Àb2" denotes a process first behaving asb1, and after
its successful termination asb2, whereδ of b1 is interpreted
in "b1Àb2" asi. "a; b2" is the special case of the sequential
composition whereb1 is an individual action, so that noi is
needed for transfer of control tob2.

"b1[]b2" denotes a process ready to behave asb1 or as
b2. Sometimes we will use "[]" as a prefix operator, where
choice from an empty set of processes is equivalent tostop.

"b1|[G]|b2" denotes parallel composition of processesb1

andb2, whereG specifies the degree and form of their syn-
chronization. An action on a gate listed inG or a δ can
only be executed as a common action of the two processes,
while the processes execute other actions independently.
The usual shorthand for "|[]|" is "|||". Sometimes we will
use "|||" as a prefix operator, where parallel composition of
an empty set of processes specifies anε.

No. e

(1) w::= spec b where D endspec
(2) d ::= p is b
(3) b ::= stop
(4) b ::= δ
(5) b ::= b1Àb2

(6) b ::= a; b2

(7) b ::= b1|[S]|b2

(8) b ::= b1[]b2

(9) b ::= b1[>b2

(10) b ::= hide S in b1 endhide
(11) b ::= ren R in b1 endren
(12) b ::= p
(13)a ::= s | i

S ::= setof s
r ::= uc

2/uc
1

Table 3: Service specification sublanguage

"b1[> b2" denotes a process with behaviourb1 poten-
tially disabled upon the start of processb2. While b1 is still
active, the process might terminate by executingδ in b1.

"hide G in b1 endhide" denotes a process behaving as
b1 with its actions on the gates listed inG hidden from its
environment. For the environment, the hidden actions are
equivalent toi.

"ren R in b1 endren" denotes a process behaving as
b1 with its visible gates (and thereby the actions on them)
renamed as specified inR, where in anr, the first and the
second item respectively define the new and the old name.

Explicit processes can be defined and instantiated, possi-
bly with an input parameter. In the original LOTOS syntax,
explicit processes are defined on formal gates, that are asso-
ciated with actual gates upon process instantiation. In our
simplified language, gate instantiation can be expressed as
renaming of the gates on which a process is originally de-
fined applied to the particular process instance.

A specificationw defines a behaviourb and the processes
instantiated in it, except for the processes predefined in
Section 2.2. IfD is empty, "where D" may be omitted. If
it is a service specification (Table 3), then 1) any specified
action must be a service primitive or ani, 2) gate renam-
ing is allowed only locally to individual server components,
and 3) all the explicitly specified processes must be without
parameters. Some rows in Table 3 are numbered, so that the
corresponding rows in some of the remaining tables can re-
fer to them. In all our example service specifications, every
i and everyδ is furnished with a superscript denoting the
server component responsible for it.

The relation used throughout the paper for judging
equivalence of behaviours isobservational equivalence
"≈" [2], i.e. we are interested only into the external be-
haviour of processes, that is in the actions which they make
available for synchronization with their environment (all
actions excepti and actions transformed intoi by hiding).
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2.2 Some building blocks for protocol
specifications

The contribution of our paper lies in functions for generat-
ing protocol specifications in the proposed language. These
specifications will be based on some characteristic patterns,
for generation of which we define some auxiliary functions
(Table 4).

Sc(C, v) := |||c′∈(C\{c})s
c
c′ !v

Rc(C, v) := |||c′∈(C\{c})r
c
c′ !v

Ec(C, C ′, v) := (if (c ∈ C) thenSc(C
′, v) elseε endif |||

if (c ∈ C′) thenRc(C, v) elseε endif)
Pc(S) := {uc|(uc ∈ S)}
Pc(R) := {(u′c/uc)|((u′c/uc) ∈ R)}

Table 4: Auxiliary specification-generating functions

Sc(C, v) generates a specification of parallel sending of
protocol messagev from componentc to each member
of C other thanc. Likewise, Rc(C, v) specifies parallel
receiving ofv at c from each member ofC other thanc.

Ec(C, C ′, v) specifies exchange of messagev in such
a way that each component inC ′ receives it from every
component inC other than itself.

Pc(S) andPc(R) are projection functions.Pc(S) ex-
tracts fromS the service primitives belonging to compo-
nentc, whilePc(R) extracts fromR the renamings of such
primitives.

We also assume that there are three predefined processes.
Processes "Loop" and "Loop(v)" execute an infinite series
of "g" or "g?v" actions, respectively. Shorthands for in-
stantiation of the processes on a gateg for a prefixv are
"Loop(g)" and "Loop(g?v)", respectively.

Process "FIFO(v)" is an unbounded FIFO buffer ready
to store messages with prefix "v" and to terminate when-
ever empty. A shorthand for instantiaton of the process
on an input gateg1 and an output gateg2 for a prefix v
is "FIFO(g1, g2, v)". To specify that aFIFO(g1, g2, v)
should accept all kinds of messages, one setsv to an empty
string, that we denote byε. Such are the buffers pairwise
connecting server components. They constitute the com-
munication medium, defined as

Medium is |||c 6=c′FIFO(sc
c′ , r

c′
c , ε)

2.3 Protocol correctness criterion

Given a service behaviourb, we derive abc for each indi-
vidual componentc. The protocol must satisfy the mini-
mal correctness criterion that every protocol message sent
is also received. We further expect that in the absence of
distributed conflicts, the server behaves towards its users
precisely as required (see Table 5). Note that "≈ (bÀ δ)"
might also be sufficient, because successful termination of
a distributed server, as an act of multiple server compo-
nents, does not qualify as one of the regular service actions,
i.e. service actions assigned to individual components.

If b contains distributed conflicts, precise service exe-
cution is expected only for those server runs which do

(Service ≈ b) ∨ ((|C| > 1) ∧ (Service ≈ (bÀδ)))
whereService = hide G in (|||c∈Cbc)|[G]|Medium

endhide

G = ∪c6=c′{sc
c′ , r

c′
c }

Table 5: Precise service implementation

not reveal any of the conflicts. When divergence in ser-
vice execution occurs, the server should continue to sup-
port only the direction of service execution with the highest
pre-assigned priority, while the directions competing with
it must be abandoned as quickly as possible.

For a "b1[>b2", it is appropriate thatb2 has a higher pri-
ority thanb1. We adopt this arrangement also for "b1[]b2".
There are, however, two exceptions. If the server compo-
nents responsible for the start ofb2 manage to agree on
successful termination ofb1 beforeb2 starts,b2 must be
abandoned. In the case of "b1[]b2", b2 must be abandoned
already when the components manage to agree on the start
of b1.

3 Principles of protocol derivation

3.1 Service attributes and the concept of a
well-formed service specification

When mapping a service specification subexpression into
its counterparts at individual server components, one refers
to its various attributes. A subexpression attribute reveals
some property of the subexpression itself or some property
of the context in which it is embedded. Computation of
service attributes is discussed in Section 4.1.

There is always a dilemma whether to conceive a very
general mapping, i.e. a mapping with very few restrictions
on the attributes, or a simple mapping with a very restricted
applicability. We take the following pragmatic approach.

Above all, we try to avoid restrictions on the specifica-
tion style (see [28] for a survey of the most typical styles)
because, even if a service specification can be restyled au-
tomatically, the derived protocol specification will reflect
the new style, and as such be hardly comprehensible to the
designers of the original specification.

On the other hand, we rely without hesitation on restric-
tions which can be met simply by introducing some addi-
tional hidden service actions. Such insertion can always be
automated and causes no restructuring of the service speci-
fication. Besides, there is usually more than one way to sat-
isfy a restriction by action insertion. By choosing one way
or another, it is possible to influence the derived protocol,
i.e. its efficiency and the role of individual server compo-
nents. Hence by relying strongly on such restrictions, we
not only simplify the protocol derivation mapping, but also
make space for protocol customization.

A service specification satisfying all the prescribed re-
strictions is awell-formed specification. We postpone sug-
gestions for obtaining such a specification to Section 4.2.
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3.2 Compositional approach to service
implementation

When mapping a service specification in a compositional
way, we map each of its constituent process specifications,
including the main service process. Mapping a specifica-
tion of a processp, we map specificationsb of the individ-
ual parts of the behaviour specified by its body.

During service execution, each instantiation of such ap
gives rise to a new instance of the behaviour specified by
such ab. Each such instance is an individual service part
and, as such, expected to be implemented in an indepen-
dent way. In other words, such an instance represents a
special context, that first of all needs a dynamically unique
identifier. The identifier can then be included in all proto-
col messages belonging to the particular instance, to make
its distributed implementation communication-closed. The
simplest way to produce such an identifier is to concate-
nate (specified by operator "·") z, the dynamically unique
identifier of the particular instance ofp, andCI(b), the dy-
namically unique context identifier ofb within the body of
p [14].

Mapping a specification of a processp onto ac results in
a specification of a local processp with a formal parameter
"z". When the local process is instantiated, "z" propagates
into its body the identifier of the particular process instance,
so that it can be used in the associated protocol messages.
The main service process is instantiated only once, so its
"z" can be assigned statically. For a dynamically created
process instance, "z" is the identifier of its instantiation.
Those properties are reflected in Table 6, more precisely
described below.

(1) Tc(w, z) := spec Termc(b, z)
where {Tc(d)|(d ∈ D)} endspec

(2) Tc(d) := p(z) is Termc(b1, z)
(12)T′c(b, z) := p(z ·CI(b))

Table 6: MappingT for a service specification and map-
pingT′ for process instantiation

Tc(b, z) will be the basic function for mapping a service
part b onto a componentc within a contextz. Sometimes
the implementation of ab generated by mappingT will be
enriched with some additional protocol messages report-
ing its successful termination to server components not yet
knowing it. The mapping which generates such enriched
implementation will be calledTermc(b, z). MappingT
of a structuredb combines the mappingsTerm of its con-
stituent parts.

For ab, it might be that ac has no duties in its distributed
implementation, i.e. thatc is not a participating component
of b (formally ¬PCc(b), i.e. not a member ofPC(b)). In
such a case,Tc(b, z) will be ε or stop, while in the case of
PCc(b), Tc(b, z) will more precisely be calledT′c(b, z).

In the following, letTerm(b, z) denote aTerm imple-
mentation ofb, i.e. allTermc(b, z) plus the protocol chan-
nels. Likewise,T(b, z) denotes aT implementation.

In an environment of competing service parts, it is im-
portant to have a simple characterization of all protocol
messages belonging to a particular partb. In a T(b, z),
such a message will carry either identifierCI(b) or identi-
fier CI(b′) of a subpartb′ of b. To indicate that messages
of the second type also belong tob, CI(b′) will in all cases
haveCI(b) as a prefix. In aTerm(b, z), the addition-
ally introduced messages will carry identifierCI+(b). As
T(b, z) is a part ofTerm(b, z), CI(b) will have CI+(b)
as a prefix. So it will be possible to specify readiness to
receive any message belonging to aTerm(b, z) simply by
?z ·CI+(b) in the receptions.

The basic building blocks of context identifiers, hence
also of protocol messages, are1 and2, because they refer
typically to partsb1 andb2 of a b. That is, of course, not
the only possible choice. By changing2 to 0, for example,
one could obtain pure binary identifiers. In any case, it is
important that the number of different messages on individ-
ual channels is kept low, for message encodings can then
be short. For that reason, messages (i.e. the context iden-
tifiers they contain) are re-used extensively, except where
that could corrupt their dynamic uniqueness.

Example 1 For the example service in Table 7, it is crucial
that the implementations of the two concurrent instances of
process Proc use different protocol messages. Likewise it
is important that protocol messages are re-used, because
Proc is instantiated an infinite number of times.

The reception buffers of the three components (see Sec-
tion 3.9) are not shown in the example, to make the spec-
ifications more readable. The buffers are not crucial for
deadlock prevention, anyhow.

3.3 Termination types

For ab representing the entire service that is being imple-
mented, it is evident that its successful termination (if any)
must be implemented asδ (or as itsε equivalent) at each of
the server components. In other words, eachTermc(b, z)
must be terminating, i.e. eachc must be a terminating
component ofb for mappingTerm, formally TC+

c (b), i.e.
c must be an element ofTC+(b).

If a b is not the last part of the service,TC+
c (b) is

not mandatory. It is sometimes better to letTermc(b, z)
finish by stop instead, i.e. ¬TC+

c (b) [14]. Such in-
action at c is later disrupted by activities ofc outside
Termc(b, z). If b never successfully terminates, formally
¬TM(b), ¬TC+

c (b) is the only option.
If TC+

c (b), one has to decide whetherc should detect or
declare termination ofb already within theTc(b, z) part of
Termc(b, z), i.e. whetherTC+

c (b) should implyTCc(b),
i.e. thatc is an element ofTC(b). If TC+

c (b) but not
TCc(b), formally RTc(b), c terminatesTermc(b, z) upon
receiving termination reports "z·CI+(b)" from all the end-
ing components ofT(b, z) [14] (see Table 8). Where the
danger exists of such a report being received already within
Tc(b, z), care is taken that it is different from any message
referred to withinTc(b, z). Hence protocolTerm(b, z)
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w = spec ren aα/Aα, bγ/Bγ , cβ/Cβ in Proc endren ||| ren dα/Aα, eγ/Bγ , fβ/Cβ in Proc endren

where Proc is (((Aα; δα)|||(Bγ ; δγ))À(Cβ ; Proc)) endspec
Tα(w, ε) ≈ spec ren aα/Aα in Proc(1) endren ||| ren dα/Aα in Proc(2) endren

where Proc(z) is (Aα; sα
β !z; rα

β !z; Proc(z)) endspec

Tβ(w, ε) ≈ spec ren cβ/Cβ in Proc(1) endren ||| ren fβ/Cβ in Proc(2) endren

where Proc(z) is (((rβ
α!z; δ)|||(rβ

γ !z; δ))ÀCβ ; ((sβ
α!z; δ)|||(sβ

γ !z; δ))ÀProc(z)) endspec
Tγ(w, ε) ≈ spec ren bγ/Bγ in Proc(1) endren ||| ren eγ/Bγ in Proc(2) endren

where Proc(z) is (Bγ ; sγ
β !z; rγ

β !z; Proc(z)) endspec

Table 7: An example of multiple process instantiation

Tc(b, z) := if PCc(b) thenT′c(b, z) elseif TCc(b) thenε elsestopendif endif
Termc(b, z) := if TC+

c (b) thenif TCc(b) then(Tc(b, z) if ECc(b) thenÀSc((TC+(b) \ TC(b)), z ·CI+(b)) endif)
else((Tc(b, z)[>δ)|||Rc(EC(b), z ·CI+(b))) endif

elseTc(b, z) endif

Table 8: FunctionsT andTerm

has two phases, namely protocolT(b, z) and exchange of
termination reports.

A c is an ending component ofb for mappingT, for-
mally ECc(b), i.e. c is a member ofEC(b), if it might
be the last component to execute an action withinT(b, z).
If ECc(b), c must, of course, declare termination already
within Tc(b, z), i.e. ECc(b) by definition impliesTCc(b),
and therebyTC+

c (b).

In many cases, we are free to decide whetherTC+
c (b)

should implyTCc(b) or not, but it is not always directly
evident how our decision would influence the overall num-
ber of the involved protocol messages. Therefore we fol-
low the classical solution thatTC+

c (b) should always im-
ply TCc(b) (i.e. ¬RTc(b)), except where that would lead
to an erroneous service implementation (discussed in the
operator-specific sections). If there are no such cases, map-
ping Term systematically reduces to mappingT, i.e. there
is a single mapping function, like in the earlier approaches
[3, 10].

If ¬PCc(b), TCc(b) will always be equal toTC+
c (b),

reducingTermc(b, z) to a mereε or stop (see function
T in Table 8). Hence the components participating in the
distributed implementation of ab remain those listed in
PC(b), even if we enhance the mapping function fromT
to Term.

For a protocolT(b, z), we define that it successfully ter-
minates when allTc(b, z) with TCc(b) successfully ter-
minate. Likewise, successful termination ofTerm(b, z)
requires successful termination of allTermc(b, z) with
TC+

c (b).

3.4 Implementation of inaction

A stop has no participating component, so the first rule in
Table 8 implies that every server component implements it
as astop.

3.5 Implementation of successful
termination

In some cases, it is crucial to have in mind that success-
ful terminationδ is also a kind of an action. These are the
cases where it is in a decisive position, like an initialδ in
a "b1[]b2" or theδ of b1 or an initialδ of b2 in a "b1[> b2"
[14]. So one selects, as convenient, for eachδ a server com-
ponent responsible for its execution, its only participating
component. MappingT′ for the component is aδ (Table 9).

(4)T′c(b, z) := δ

Table 9: MappingT′ for successful termination

3.6 Implementation of hiding and renaming

The only properties of actions within a service partb that
influence protocol message exchange are their position
within b and their assignment to server components. That
is not changed by hiding or local renaming, so implemen-
tation of those operations is trivial (Table 10).

(10)T′c(b, z) := hide Pc(S) in Termc(b1, z) endhide
(11)T′c(b, z) := ren Pc(R) in Termc(b1, z) endren

Table 10: MappingT′ for hiding and renaming

3.7 Implementation of action prefix

To map an "a; b2" onto a participantc (Table 11), one first
needsPc(a), the projection ofa. If c is not the executor of
a, i.e. its only participant, the projection is empty. Ifa is a
service primitive, its executor is evident from its identifier.
If it is an i, one selects its executor as convenient.

If a componentc might be the first to execute an ac-
tion within Term(b2, z), it is a starting component of
b2, formally SCc(b2), i.e. c is a member ofSC(b2).
Such ac is responsible for preventing a premature start of
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(13)Pc(a) := if PCc(a) thena elseε endif
(6) T′c(b, z) := (Pc(a);Ec(PC(a), SC(b2), z ·CI(b))

ÀTermc(b2, z))

Table 11: MappingT′ for action prefix

Term(b2, z), i.e. it must not startTermc(b2, z) until it
executesa or receives a report "z ·CI(b)" on it. Hence
protocolT(b, z) has three phases, namely execution ofa,
exchange of reports ona, and protocolTerm(b2, z).

3.8 Implementation of sequential
composition

For ab specified as "b1 À b2", we require thatb1, at least
sometimes, successfully terminates, because otherwiseb2

would be irrelevant.
ProtocolT(b, z) (Table 12) has three phases, namely

protocolTerm(b1, z), exchange of reports "z ·CI(b)" on
its termination, and protocolTerm(b2, z). Where dan-
ger exists that a message belonging to the second phase
is received already within aTermc(b1, z), care is taken
that it is different from any message referred to within
Termc(b1, z). It is crucial that everyc with duties within
the second or the third phase terminatesTermc(b1, z) in
all the terminating runs ofb1, i.e. thatTC+

c (b1) is true.

(5)T′c(b, z) := (Termc(b1, z)
ÀEc(EC+(b1), SC(b2), z ·CI(b))
ÀTermc(b2, z))

Table 12: MappingT′ for sequential composition

As in the case of action prefix, reports on termination
of the first phase are sent to the starting components of
b2, but now their senders are the ending components of
Term(b1, z) [19]. A c is an ending component ofb1 for
mappingTerm, formally EC+

c (b1), i.e. c is a member of
EC+(b1), if it might be the last component to execute an
action withinTerm(b1, z). It is crucial that a terminat-
ing b1 has at least one ending component, and that in ev-
ery non-terminating run of such ab1, there is at least one
ending componentc not terminatingTermc(b1, z), so that
start ofTerm(b2, z) is prevented.

We want the second phase (i.e. termination reporting)
to completely isolateTerm(b2, z) from Term(b1, z), so
that protocol messages fromTerm(b1, z) and termina-
tion reports may be re-used withinTerm(b2, z). That is
particularly important for implementation of iteration and
tail recursion, as in Example 2. To achieve the isolation,
we take care that upon the start ofTerm(b2, z), compo-
nents receiving within it no longer want to receive within
Term(b1, z).

Example 2 In Table 13, we implement a service consisting
of two consecutive parts. It might happen that the first part
does not terminate, but a premature start of the second part
is nevertheless prevented.

3.9 Implementation of parallel composition

For ab specified as "b1|[S]|b2", we assume that all actions
specified inb1 or b2, including δ, are actually executable
within b, i.e. that they are all relevant.

ProtocolT(b, z) (Table 14) consists basically of proto-
colsTerm(b1, z) andTerm(b2, z) running in parallel and
locally synchronized on service primitives fromS.

If there are any distributed conflicts inb1 and/orb2, for-
mally AD(b), Term(b1, z) and/orTerm(b2, z) are typ-
ically imprecise implementations ofb1 and b2, unable to
synchronize properly onS. So ifS is non-empty,AD(b) is
forbidden.

If S is empty,b1 andb2 are nevertheless synchronized
on their successful termination (if any). If termination ofb
is subject to a distributed conflict withinb1 and/orb2, for-
mally TD(b), negotiation of more than one component is
required withinTerm(b1, z) and/orTerm(b2, z). That is
unacceptable, for such termination is a decisive termination
(see below). SoTD(b) is forbidden.

For independent concurrent execution ofTerm(b1, z)
andTerm(b2, z), it should be sufficient to take care that
their protocol message spaces are disjoint [10]. Unfortu-
nately, it turns out that on a shared channel, unprompt re-
ception in one of the protocols might hinder reception in
the other. In the case of a non-emptyS, that might even
lead to a deadlock [15].

Kant and Higashino suggested that eachc could solve the
problem by prompt reception of messages into a pool, for
further consumption byTermc(b1, z) or Termc(b2, z).
So in Table 14, we introduce for each partTermc(bn, z)
for each channel from ac′ to c that is shared (formally
SHc′,c(b)), a FIFO buffer for incoming messages. Such
a buffer is, unlikeTermc(bn, z), always ready to receive
from the channel on gaterc

c′ , thereby removing the pos-
sibility of blocking.Termc(bn, z) can subsequently claim
the received messages from the buffer on a hidden gatebc′ .
As demonstrated in the following example, such buffers
might be necessary even ifS is empty. On the other hand,
buffers are often redundant, but that is hard to establish.

Example 3 In the first part of Table 15, there is a parallel
composition implemented properly.

In the second part, the reception buffers are omitted, and
there is a scenario "aα; sα

β !1; dα; sα
β !2" leading to a dead-

w = spec ((aα; Proc)[](bα; δβ))À(bγ ; δγ)

where Proc is (cβ ; cα; Proc) endspec
Tα(w, 1) ≈ spec (aα; sα

β !11; Proc)[](bα; sα
β !12; δ)

where Proc is (rα
β !11; cα; sα

β !11; Proc)
endspec

Tβ(w, 1) ≈ spec ((rβ
α!11; Proc)[](rβ

α!12; δ))Àsβ
γ !1; δ

where Proc is (cβ ; sβ
α!11; rβ

α!11; Proc)
endspec

Tγ(w, 1) ≈ spec rγ
β !1; bγ ; δ endspec

Table 13: An example combining finite and infinite alter-
natives
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(7) T′c(b, z) := (Parc,1|[Pc(S)]|Parc,2)
whereParc,n := hide {bc′ |SHc′,c(b)} in ren {(bc′/r

c
c′)|SHc′,c(b)} in Termc(bn, z) endren

|[{bc′ |SHc′,c(b)}]| |||SHc′,c(b)FIFO(rc
c′ ,bc′ , z ·CI+(bn)) endhide

Table 14: MappingT′ for parallel composition

w = spec (((aα; δα)|||(bβ ; δβ))À(cβ ; δβ))|[bβ ]|(dα; bβ ; δβ) endspec
Tα(w, ε) ≈ spec (aα; sα

β !1; δ)|||(dα; sα
β !2; δ) endspec

Tβ(w, ε) ≈ spec hide bα in (bβ ;bα!1; cβ ; δ)|[bα]|FIFO(rβ
α,bα, 1) endhide

|[bβ ]|hide bα in (bα!2; bβ ; δ)|[bα]|FIFO(rβ
α,bα, 2) endhide endspec

Tα(w, ε) ≈ spec (aα; sα
β !1; δ)|||(dα; sα

β !2; δ) endspec

Tβ(w, ε) ≈ spec (bβ ; rβ
α!1; cβ ; δ)|[bβ ]|(rβ

α!2; bβ ; δ) endspec

w = spec (((aα; δα)|||(bβ ; δβ))À(cβ ; δβ))|||(dα; eβ ; δβ) endspec
Tα(w, ε) ≈ spec (aα; sα

β !1; δ)|||(dα; sα
β !2; δ) endspec

Tβ(w, ε) ≈ spec (bβ ; rβ
α!1; cβ ; δ)|||(rβ

α!2; eβ ; δ) endspec

Table 15: An example of parallel composition requiring buffered reception

w = spec (δα[>(aα; bβ ; δα))|[aα]|(δα[](iα; aα; δα))
endspec

Tα(w, 1) ≈ spec ((δ[>(aα; sα
β !11; rα

β !11; δ))
|[aα]|(δ[](i; aα; δ)))
Àsα

β !1; δ endspec

Tβ(w, 1) ≈ spec ((rβ
α!11; bβ ; sβ

α!11; stop)[>δ)

|||(rβ
α!1; δ) endspec

Table 16: An example of decisive and synchronized termi-
nation

lock, because message 2 is not the first in the channel.

In the third part, we no longer require that the two con-
current parts are synchronized onbβ . We also rename the
secondbβ into eβ , to distinguish it from the first one. The
above scenario no longer leads to a deadlock, but its desti-
nation state erroneously requires thatbβ is executed before
eβ . Again, reception buffers would help.

For a b specified as "b1|[S]|b2", successful termination
of T(b, z) requires successful termination ofTerm(b1, z)
andTerm(b2, z). If such termination is decisive for one
or both of the component protocols, i.e. represents aδ in
a decisive position withinb1 or b2, formally DT (b), its
implementation is problematic [14, 15]. It has been sug-
gested that such aδ should be put under control of a sin-
gle server component, its pre-assigned executor, responsi-
ble both for its decisive role and for its synchronization role
[14]. If successful termination ofT(b, z) is to be a matter
of a single component, the latter must be the only member
of TC(b), and consequently the only member ofEC(b),
TC+(b1), TC+(b2), EC(b1) andEC(b2).

Example 4 An example of decisive and synchronized ter-
mination is given in Table 16. Termination ofb has been put
under exclusive control of componentα, while component
β receives only a report of it.

3.10 Implementation of choice

For ab specified as "b1[]b2", we assume that there are ser-
vice actions (at least aδ) in both alternatives, so that both
are relevant. The operator introduces distributed conflicts,
formally DC(b), if b has more than one starting compo-
nent.

ProtocolT(b, z) combines protocolsTerm(b1, z) and
Term(b2, z). b2 is the higher-priority alternative, so
Term(b2, z) upon its start always quickly disables
Term(b1, z), even ifTerm(b1, z) has already started. On
the other hand, when a component detects the start of
Term(b1, z), it tries to prevent starting ofTerm(b2, z),
but might be unsuccessful.

Until one of the alternatives is abandoned, protocols
Term(b1, z) andTerm(b2, z) run in parallel, so we re-
quire that their protocol message sets are disjoint.

Within Term(b1, z), any starting action must be
promptly reported to any starting componentc of b2, for-
mally SRc(b1), to inform it that execution ofb2 should
not start unless it already has. Analogously, we re-
quire SRc(b2) for any starting componentc of b1. If
DC(b), any component might already be executingb1

whenTerm(b2, z) starts, so we requireSRc(b2) also for
the non-starting participants ofb1, to make them quickly
abandon execution ofb1. Note that the executor of an ac-
tion is informed of the action by the action itself.

If not earlier, a participantc abandonsTermc(b2, z)
upon successful termination ofTermc(b1, z), if any. At
that moment, it must already be obvious thatTerm(b2, z)
will never start, i.e. every starting component ofb2

must have already executed an action withinTerm(b1, z),
thereby refusing to be an initiator ofTerm(b2, z). In
other words, such a starting componentc′ must guard the
termination atc, formally GT+

c,c′(b1).
If not earlier, a participantc abandonsTermc(b1, z)

upon successful termination ofTermc(b2, z), if any. At
that moment,c must already have detected the start of
Term(b2, z), and that is true if and only ifc is a partic-
ipating component ofb2.
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(8) T′c(b, z) := if ¬DC(b) then(Termc(b1, z)[]Termc(b2, z))
elseren ∪n=1,2 ({(uc/uc

n)|(uc ∈ ASc(bn))}+ {(rc
c′/a

n
c′)|CH+

c′,c(bn)}) in hide t in

((Constc,1|[StGtc,2 + RecGtc,2 + {t}]|Constc,2)
|[StGtc,1 + RecGtc,1 + StGtc,2 + RecGtc,2]|Constc,3)
|[RecGtc,1 + {a2

c′ |CH+
c′,c(b1)}]|Constc,4

endhide endren
whereConstc,1 := (((Taskc,1Àt; stop)[>(OneStRecc,2À(AllStRecc,2|||AllRecc,1)))[>δ)

whereTaskc,1 := ren {(uc
1/uc)|(uc ∈ ASc(b1))}+ {(a1

c′/r
c
c′)|CH+

c′,c(b1)} in Parc,1 endren

whereParc,1 := see Table 14
Constc,2 := (Taskc,2[](t; δ))
whereTaskc,2 := ren {(uc

2/uc)|(uc ∈ ASc(b2))}+ {(a2
c′/r

c
c′)|CH+

c′,c(b2)}
in Termc(b2, z) endren

Constc,3 := (((OneStRecc,2À(AllStRecc,2|||AllRecc,1))[]
(OneStRecc,1À(AllStRecc,1

[>(OneRecc,2À(AllStRecc,2|||AllRecc,1)))))
[>δ)

Constc,4 := ((|||
CH+

c′,c(b1)
(Loop(a1

c′?z ·CI+(b1))[>Loop(a2
c′?z ·CI+(b2))))[>δ)

StGtc,n := {uc
n|(uc ∈ SSc(bn))}

RecGtc,n := {an
c′ |CH+

c′,c(bn)}
OneRecc,n := ([]g∈RecGtc,n(g?z ·CI+(bn); δ))
OneStRecc,n := (([]g∈StGtc,n(g; δ))[]OneRecc,n)
AllRecc,n := (stop|||(|||g∈RecGtc,nLoop(g?z ·CI+(bn))))
AllStRecc,n := ((|||g∈StGtc,nLoop(g))|||AllRecc,n) endif

Table 17: MappingT′ for choice

A participant c combines Termc(b1, z) and
Termc(b2, z) as specified in Table 17. If¬DC(b),
Term(b1, z) is known to be the selected alternative
as soon as it starts, so everyc is allowed to execute
Termc(b1, z) andTermc(b2, z) as alternatives.

If DC(b), Termc(b1, z) and Termc(b2, z) must be
combined in such a complicated way that no LOTOS op-
erator can express it directly. So we resort to the so called
constraint-oriented specification style[28]. This is the
style in which two or more parallel processes synchronize
on the actions they collectively control, and each process
imposes its own constraints on the execution of the actions,
so that they are enabled only when so allowed by all the
processes referring to them.

A T′c(b, z) consists of four constraints.Constc,1

and Constc,2 are respectively responsible for execution
of Termc(b1, z) andTermc(b2, z), while Constc,3 and
Constc,4 serve for their additional co-ordination.

In the first place, we must be aware that in the case
of DC(b), protocolsTerm(b1, z) and Term(b2, z) are
actually executed in parallel for some time, so every
shared incoming channel in principle requires an in-
put buffer for Termc(b1, z) and an input buffer for
Termc(b2, z) (see Section 3.9). But as noc′ ever trans-
mits to c within Termc′(b1, z) after it has transmitted
to c within Termc′(b2, z), input buffers for prompt re-
ception are necessary only forTermc(b1, z). So we en-
hanceTermc(b1, z) into Parc,1, as described in Table 14,
though the buffers are usually redundant.

Internally toT′c(b, z), we rename every service prim-
itive uc in Termc(b1, z) (i.e. in Parc,1) into uc

1. Like-
wise, we internally rename every service primitiveuc

in Termc(b2, z) into uc
2. Besides, we internally to

T′c(b, z) split every reception gaterc
c′ into gatesa1

c′ and
a2

c′ , where messages forTermc(b1, z) are, according to
their contents, routed to the first gate, and messages for
Termc(b2, z) to the second gate. The renamings are
guided by service attributesASc(bn) (lists all the service
actions ofbn atc) andCH+

c′,c(bn) (true if the channel from
c′ to c is employed withinTerm(bn, z)).

Applying all the above renamings toParc,1 and
Termc(b2, z), we obtain processesTaskc,1 andTaskc,2,
respectively, that have disjoint sets of service primitives
and reception gates. Every action withinT′c(b, z) is an ac-
tion of Taskc,1 or an action ofTaskc,2, except that there
is also an action on a hidden gatet serving for synchroniza-
tion of Constc,1 andConstc,2 upon successful termina-
tion of Taskc,1.

The critical actions ofTaskc,1 are its starting actions.
They must influence execution ofTaskc,2, so they are sub-
ject to synchronization betweenConstc,1 andConstc,3.
A starting action ofTaskc,1 is a starting service action of
b1 at c, i.e. a member ofSSc(b1), or a reception. If it is
a member ofSSc(b1), it might also be ani or aδ, i.e. not
suitable for synchronization, so we in principle require that
every member ofSSc(b1) is a service primitive. Ifc is not
a starting component ofb2, Constc,3 is redundant, hence
the requirement is not necessary.

The critical actions ofTaskc,2 are its starting actions.
They must in principle influence execution ofTaskc,1, so
they are subject to synchronization betweenConstc,1 and
Constc,2. A starting action ofTaskc,2 is a member of
SSc(b2) or a reception. If disruption ofTaskc,1 is nec-
essary, i.e. ifPCc(b1), we require that every member of
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w = spec ((aα; δ)|||(bβ ; δ))[]((cγ ; δ)|||(bβ ; δ)) endspec

w1 = spec ((aα; (δβ |||δγ))|||(bβ ; δγ))[]((cγ ; (δα|||δβ))|||(bβ ; (δα|||δγ))) endspec

w2 = spec ((aα; (δβ |||δγ))|||(bβ ; iγ ; (δα|||δβ)))[]((cγ ; (δα|||δβ))|||(bβ ; (δα|||δγ))) endspec

w3 = spec ((aα; (δβ |||δγ))|||(bβ ; iγ ; (δα|||δβ)))[]((cγ ; ((iα; δγ)|||δβ))|||(bβ ; ((iα; δβ)|||δγ))) endspec
Tα(w3, ε) ≈ spec ren rα

γ /a1
γ , rα

β/a2
β , rα

γ /a2
γ in hide t in

((( (hide bγ in ((aα; ((sα
β !1; δ)|||(sα

γ !1; δ)))|||(bγ !1; δ))|[bγ ]|FIFO(a1
γ ,bγ , 1) endhideÀt; stop)

[>(((a2
β?2; δ)[](a2

γ?2; δ))À(Loop(a2
β?2)|||Loop(a2

γ?2)|||Loop(a1
γ?1))))[>δ)

|[a2
β ,a2

γ , t]|( ((a2
γ !2; sα

γ !2; δ)|||(a2
β !2; sα

β !2; δ)) [](t; δ))

|[a1
γ ,a2

γ ]|((Loop(a1
γ?1)[>Loop(a2

γ?2))[>δ)
endhide endren endspec

Tβ(w3, ε) ≈ spec ren bβ/bβ
1 , rβ

α/a1
α, rβ

γ/a1
γ , bβ/bβ

2 , rβ
α/a2

α, rβ
γ/a2

γ in hide t in

(((( (hide bα,bγ in ((bα!1; δ)|||(bβ
1 ; sβ

γ !1;bγ !1; δ))
|[bα,bγ ]|(FIFO(a1

α,bα, 1)|||FIFO(a1
γ ,bγ , 1)) endhideÀt; stop)

[>(((bβ
2 ; δ)[](a2

γ?2; δ))À(Loop(bβ
2 )|||Loop(a2

γ?2)|||Loop(a1
α?1)|||Loop(a1

γ?1))))[> δ)

|[bβ
2 ,a2

γ , t]|( ((a2
γ !2; δ)|||(bβ

2 ; ((sβ
α!2; δ)|||(sβ

γ !2; δ))Àa2
α!2; δ)) [](t; δ)))

|[bβ
1 ,a1

α,a1
γ , bβ

2 ,a2
γ ]|(((((bβ

2 ; δ)[](a2
γ?2; δ))À(Loop(bβ

2 )|||Loop(a2
γ?2)|||Loop(a1

α?1)|||Loop(a1
γ?1)))[]

(((bβ
1 ; δ)[](a1

α?1; δ)[](a1
γ?1; δ))À

((Loop(bβ
1 )|||Loop(a1

α?1)|||Loop(a1
γ?1))

[>(a2
γ?2; (Loop(bβ

2 )|||Loop(a2
γ?2)|||Loop(a1

α?1)|||Loop(a1
γ?1))))))

[> δ))
|[a1

α,a1
γ ,a2

α,a2
γ ]|(((Loop(a1

α?1)[>Loop(a2
α?2))|||(Loop(a1

γ?1)[>Loop(a2
γ?2)))[>δ)

endhide endren endspec
Tγ(w3, ε) ≈ spec ren rγ

α/a1
α, rγ

β/a1
β , rγ

α/a2
α, rγ

β/a2
β in hide t in

(((( (hide bα,bβ in ((bα!1; δ)|||(bβ !1; ((sγ
α!1; δ)|||(sγ

β !1; δ))))

|[bα,bβ ]|(FIFO(a1
α,bα, 1)|||FIFO(a1

β ,bβ , 1)) endhideÀt; stop)

[>(((cγ ; δ)[](a2
β?2; δ))À(Loop(cγ)|||Loop(a2

β?2)|||Loop(a1
α?1)|||Loop(a1

β?1))))[>δ)

|[cγ ,a2
β , t]|( ((cγ ; ((sγ

α!2; δ)|||(sγ
β !2; δ))Àa2

α!2; δ)|||(a2
β !2; δ)) [](t; δ)))

|[a1
α,a1

β , cγ ,a2
β ]|(((((cγ ; δ)[](a2

β?2; δ))À(Loop(cγ)|||Loop(a2
β?2)|||Loop(a1

α?1)|||Loop(a1
β?1)))[]

(((a1
α?1; δ)[](a1

β?1; δ))À
((Loop(a1

α?1)|||Loop(a1
β?1))

[>(a2
β?2; (Loop(cγ)|||Loop(a2

β?2)|||Loop(a1
α?1)|||Loop(a1

β?1))))))
[>δ))

|[a1
α,a1

β ,a2
α,a2

β ]|(((Loop(a1
α?1)[>Loop(a2

α?2))|||(Loop(a1
β?1)[>Loop(a2

β?2)))[>δ)
endhide endren endspec

Table 18: An example of distributed choice

(9) T′c(b, z) := if ¬DC(b) then(Termc(b1, z)[>Termc(b2, z))
elseren ∪n=1,2 ({(uc/uc

n)|(uc ∈ ASc(bn))}+ {(rc
c′/a

n
c′)|CH+

c′,c(bn)}) in hide t in

((Constc,1|[StGtc,2 + RecGtc,2 + {t}]|Constc,2)
|[StGtc,2 + RecGtc,2 + {pc

1}]|Constc,3)
|[RecGtc,1 + {a2

c′ |CH+
c′,c(b1)}]|Constc,4

endhide endren
whereConstc,3 := ((AllStRecc,2[](p

c
1;OneRecc,2ÀAllStRecc,2))[>δ)

the rest of definitions as in Table 17 endif

Table 19: MappingT′ for disabling

SSc(b2) is a service primitive.

The gates on which the starting service primitives and
receptions within aTaskc,n occur are listed inStGtc,n

and RecGtc,n, respectively. OneStRecc,n specifies a
process ready to synchronize on one action ofTaskc,n

on gates fromStGtc,n and RecGtc,n. AllStRecc,n

specifies a processes ready to synchronize on all such ac-
tions. ProcessesOneRecc,n and AllRecc,n are anal-

ogous toOneStRecc,n andAllStRecc,n, respectively,
except that they refer only to receptions.

Constc,1 prescribes the following: 1) Basically, execute
Taskc,1 and indicate its successful termination by at. 2)
If Taskc,2 starts in the meantime (that will always be be-
fore t), stop the basic activity, but remain ready for recep-
tion of protocol messages sent toTaskc,1. 3) Always be
ready to terminate, thoughConstc,2 will ensure that that
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w = spec ((aα; δ)|||(bβ ; δ))[>((cα; δ)|||(bβ ; δ)) endspec

w1 = spec hide pα,pβ in (((aα; δα)|||(bβ ; δβ))À((pα; δα)|||(pβ ; δβ))À(δα|||δβ))[>((cα; δβ)|||(bβ ; δα)) endhide
endspec

Tα(w1, ε) ≈ spec hide pα, t in ren rα
β/a1

β , rα
β/a2

β in

(((( (hide bβ in (aα; ((sα
β !1; δ)|||(bβ !1; δ))Àpα; ((sα

β !1; δ)|||(bβ !1; δ)))
|[bβ ]|FIFO(a1

β ,bβ , 1) endhideÀt; stop)

[>(((cα; δ)[](a2
β?2; δ))À(Loop(cα)|||Loop(a2

β?2)|||Loop(a1
β?1))))[>δ)

|[cα,a2
β , t]|( ((cα; sα

β !2; δ)|||(a2
β !2; δ)) [](t; δ)))

|[pα, cα,a2
β , t]|(((Loop(cα)|||Loop(a2

β?2))[](pα;a2
β?2; (Loop(cα)|||Loop(a2

β?2))))[>δ))
|[a1

β ,a2
β ]|((Loop(a1

β?1)[>Loop(a2
β?2))[>δ) endren endhide endspec

Tβ(w1, ε) ≈ spec hide pβ , t in ren bβ/bβ
1 , rβ

α/a1
α, bβ/bβ

2 , rβ
β/a2

α in

(((( (hide bα in (bβ
1 ; ((sβ

α!1; δ)|||(bα!1; δ))Àpβ ; ((sβ
α!1; δ)|||(bα!1; δ)))

|[bα]|FIFO(a1
α,bα, 1) endhideÀt; stop)

[>(((bβ
2 ; δ)[](a2

α?2; δ))À(Loop(bβ
2 )|||Loop(a2

α?2)|||Loop(a1
α?1))))[>δ)

|[bβ
2 ,a2

α, t]|( ((a2
α!2; δ)|||(bβ

2 ; sβ
α!2; δ)) [](t; δ)))

|[pβ , bβ
2 ,a2

α, t]|(((Loop(bβ
2 )|||Loop(a2

α?2))[](pβ ;a2
α?2; (Loop(bβ

2 )|||Loop(a2
α?2))))[>δ))

|[a1
α,a2

α]|((Loop(a1
α?1)[>Loop(a2

α?2))[>δ) endren endhide endspec

Table 20: An example of distributed disabling

will happen only after successful termination ofTaskc,1 or
Taskc,2.

Constc,2 prescribes the following: ExecuteTaskc,2 or
terminate upon at indicating thatTaskc,1 has successfully
terminated.

Constc,3 in addition prescribes that in the case that the
first action belongs toTaskc,1, Taskc,2 may start only
upon a reception, i.e. upon detecting thatTerm(b2, z) has
already started at a remote site.

With the described measures for prompt start report-
ing and for prevention of premature local termination,
T′c(b, z) will progress towards completion ofTaskc,1 or
Taskc,2 as appropriate.

There is, however, still a problem to solve.Taskc,2 must
not terminate whilec may still expect messages sent to
Taskc,1. So we require thatTaskc,2 (i.e. Termc(b2, z))
never successfully terminates without receiving on each of
the channels on whichTermc(b1, z) receives. Upon a re-
ception withinTermc(b2, z), c knows that on the chan-
nel, there will be no more messages forTermc(b1, z). For
some channels, the requirement might be redundant.

It is convenient ifc indeed promptly becomes unwilling
to receive on gates inRecGtc,1, to improve the possibility
of re-use of protocol messages belonging toTermc(b1, z).
Therefore we introduceConstc,4. An analogous con-
straint for protocol messages belonging toTermc(b2, z)
would also be desirable, but we have found its automatic
specification too difficult.

Example 5 An example of distributed choice is given in
Table 18. The original service specificationw is gradu-
ally transformed into a well-formed specification, follow-
ing suggestions from Section 4.2.w1 secures prompt re-
porting of each individual starting service action.w2 in
addition secures that no component terminates the first al-
ternative until it is selected by componentsβ and γ, the

starting components of the second alternative.w3 in addi-
tion secures that every channel employed for the first alter-
native is also employed for the second one.

In each individual component specification, the first and
the second alternative are highlighted by a box. When di-
vergence occurs, components execute the first alternative,
but gradually switch to the other. We see that every protocol
message of the first alternative is a 1, and every message of
the second one is a 2. All the specified FIFO buffers are
redundant.

3.11 Implementation of disabling

For a b specified as "b1[> b2", we assume that there are
service actions (at least aδ) in both parts, so that both are
relevant. The operator does not introduce distributed con-
flicts, formally ¬DC(b), if there is ac which is the only
participating component ofb1 and also the only starting
component ofb2.

ProtocolsTerm(b1, z) andTerm(b2, z) are combined
as for "b1[]b2", except thatTerm(b2, z) is allowed to start
as long as there is a starting componentc of b2 which has
not yet detected thatb1 is successfully terminating and con-
firmed this knowledge by executing a special-purpose ser-
vice primitivepc in b1.

A participant c combines Termc(b1, z) and
Termc(b2, z) as specified in Table 19. If¬DC(b),
activation ofTerm(b2, z) is a local matter of the starting
component ofb2. For any otherc, Termc(b1, z) is
equivalent tostop, i.e. the component just waits for an
eventual start ofTermc(b2, z).

If DC(b), we require thatb1 consists of a regular partb3

followed by a dummy partb4 indicating its successful ter-
mination (if ¬TM(b1), b4 is never activated, and as such
not specified), i.e. we pretend that the service we are imple-
menting is actually "b3[>b2". More precisely, we require
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b4 = ((|||SCc(b2)(p
c; δc))À(|||TC+

c (b1)
δc))

wherep primitives are supposed to be hidden on a higher
service level and not among the visible primitives ofb3.
Note that we also prescribe the executor of each individ-
ual δ. SinceDC(b) andTM(b1) imply that b in no way
synchronizes with concurrent service parts, anypc may be
regarded entirely as an internal action ofT′c(b, z).

For such ab1, protocol Term(b1, z) consists of two
phases. The first phase isTerm(b3, z) followed by re-
porting of successful termination to all the starting com-
ponents ofb4, i.e. exactly to the starting components ofb2.
In other words, the components are, as required, promptly
informed when starting ofTerm(b2, z) becomes unde-
sirable. If the first phase successfully terminates before
Term(b2, z) starts,T(b, z) starts executing the usual dis-
tributed implementation of a well-formed "b4[]b2". If the
start ofTerm(b2, z) is sufficiently delayed, the executed
alternative isb4, i.e. b1 is not disrupted byb2. In any case,
no participant abandonsTerm(b2, z) until every starting
componentc of b2 has executed apc, i.e. refused to be an
initiator of Term(b2, z).

Comparing T′c(b1[> b2, z) with T′c(b1[]b2, z), we
see that, instead of waiting for the starting actions of
Termc(b1, z), Constc,3 now waits for the onlypc in
Termc(b1, z), if any. Consequently, instead of synchro-
nizing on the gates inStGtc,1 andRecGtc,1, Constc,1

and Constc,3 have to synchronize just onpc
1, hence

Constc,3 is much easier to specify.

Example 6 An example of distributed disabling is given in
Table 20. To obtain a well-formed service specification, we
furnish the first part with the required hiddenp actions,
and make sure that the starting actions of the second part
are promptly reported and that both protocol channels are
used for the part.

4 Computation and tuning of service
attributes

4.1 Attribute evaluation rules

The attributes in Table 21 provide information on service
actions and their executors.SSc andASc respectively list
for ana, b or p its starting service actions and all its service
actions atc. SCc and PCc respectively indicate for an
a or b that c is its starting component or its participating
component.

The attributes in Table 22 provide information on suc-
cessful terminations.TM , IT andDT respectively indi-
cate for ab or p that it might successfully terminate, that it
might terminate initially, or that the termination might be
decisive.

The attributes in Table 23 provide information on dis-
tributed conflicts. DC indicates for ab that distributed
conflicts are introduced by its top-level composition opera-
tor. AD andTD respectively indicate for ab or p whether

No. SSc No. SSc

(2) SSc(p) = SSc(b) (4) SSc(b) = {δ|PCc(b)}
(3) SSc(b) = ∅ (6) SSc(b) = SSc(a)
(12) SSc(b) = SSc(p) (13)SSc(a) = {a|PCc(a)}
(7) SSc(b) = ((SSc(b1)\S) ∪ (SSc(b2)\S)∪

(SSc(b1) ∩ SSc(b2) ∩ S))
(8,9) SSc(b) = (SSc(b1) ∪ SSc(b2))
(5) SSc(b) = ((SSc(b1) \ {δ}) ∪ {i|(δ ∈ SSc(b1))})
(10) SSc(b) = ((SSc(b1) \ S) ∪ {i|((SSc(b1) ∩ S) 6= ∅)})
(11) SSc(b) = ((SSc(b1) \ {s|∃(s′/s) ∈ R})∪

{s′|∃s ∈ SSc(b1) : ((s′/s) ∈ R)})
No. ASc No. ASc

(2) ASc(p) = ASc(b) (4) ASc(b) = SSc(b)
(3) ASc(b) = ∅ (12)ASc(b) = ASc(p)
(5) ASc(b) = ((ASc(b1)\{δ})∪{i} ∪ASc(b2))
(6) ASc(b) = (SSc(a) ∪ASc(b2))
(7–9)ASc(b) = (ASc(b1) ∪ASc(b2))
(10) ASc(b) = ((ASc(b1) \ S) ∪ {i|((ASc(b1) ∩ S) 6= ∅)})
(11) ASc(b) = ((ASc(b1) \ {s|∃(s′/s) ∈ R})∪

{s′|∃s ∈ ASc(b1) : ((s′/s) ∈ R)})
(3–12)(SCc(b) = (SSc(b) 6= ∅))∧

(PCc(b) = (ASc(b) 6= ∅))
(4) ∃c : (PC(b) = {c})
(13) (∃c : (PC(a) = {c})) ∧ ((∃u : (a = uc)) ⇒ PCc(a))

Table 21: Service actions and their executors

No. DT No. DT

(2) DT (p) = DT (b) (10,11)DT (b) = DT (b1)
(3,4)DT (b) = false (12) DT (b) = DT (p)
(5,6)DT (b) = DT (b2) (7) DT (b) = (DT (b1) ∨DT (b2))
(8) DT (b) = (DT (b1) ∨DT (b2) ∨ IT (b))
(9) DT (b) = (TM(b1) ∨ IT (b2) ∨DT (b2))

(3–12)TM(b) = ∃c : (δ ∈ ASc(b))
(3–12)IT (b) = ∃c : (δ ∈ SSc(b))

Table 22: Successful terminations

No. AD No. AD

(2) AD(p) = AD(b) (3,4) AD(b) = false
(6) AD(b) = AD(b2) (5,7)AD(b) = (AD(b1) ∨AD(b2))
(12) AD(b) = AD(p) (10,11)AD(b) = AD(b1)
(8,9)AD(b) = (AD(b1) ∨AD(b2) ∨DC(b))

No. TD No. TD

(2) TD(p) = TD(b) (10,11)TD(b) = TD(b1)
(3,4)TD(b) = false (12) TD(b) = TD(p)
(5,6)TD(b) = TD(b2) (7) TD(b) = (TD(b1) ∨ TD(b2))
(8) TD(b) = (TD(b1) ∨ TD(b2) ∨ (DC(b) ∧ IT (b)))
(9) TD(b) = (TD(b2) ∨ (DC(b) ∧ (TM(b1) ∨ IT (b2))))

(8) DC(b) := (|SC(b)|>1)
(9) DC(b) := (|PC(b1) ∪ SC(b2)|>1)

Table 23: Distributed conflicts

there are any distributed conflicts in it and whether there are
distributed conflicts involving its successful termination.

The attributeSRc in Table 24 indicates for ab or p that
its start must be promptly reported toc.

The attributeECc in Table 25 indicates for ab or p that
c is its ending component for mappingT. EC+

c is the ana-
logue for mappingTerm.
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No.SRc No. SRc

(1) SRc(b) = false (5,7,9–11)SRc(b1) = SRc(b)
(2) SRc(b) = SRc(p) (5,6) SRc(b2) = false
(7) SRc(b2) = SRc(b) (12)SRc(p) = (SRc(p) ∨ SRc(b))
(8) SRc(b1) = (SRc(b) ∨ SCc(b2))
(8) SRc(b2) = (SRc(b) ∨ SCc(b1) ∨ (DC(b) ∧ PCc(b1)))
(9) SRc(b2) = (SRc(b) ∨ PCc(b1))

Table 24: Start reporting

No. ECc No. ECc

(2) ECc(p) = EC+
c (b) (5,6) ECc(b) = EC+

c (b2)
(3) ECc(b) = false (10,11)ECc(b) = EC+

c (b1)
(4) ECc(b) = PCc(b) (12) ECc(b) = ECc(p)
(7–9) ECc(b) = (EC+

c (b1) ∨ EC+
c (b2))

(3–12)EC+
c (b) = ((ECc(b)∧ 6 ∃c′ : RTc′(b)) ∨RTc(b))

Table 25: Ending components

No. TC+
c No.TC+

c

(1) TC+
c (b) = TM(b) (2) TC+

c (b) = TC+
c (p)

(5) TC+
c (b1) = (ECc(b1) ∨ PCc(b2) ∨ TCc(b))

(5–9) TC+
c (b2) = (TCc(b) ∧ PCc(b) ∧ TM(b2))

(7–11)TC+
c (b1) = (TCc(b) ∧ PCc(b) ∧ TM(b1))

(12) TC+
c (p) = (TC+

c (p) ∧ TCc(b))

No. TCc

(3–6,10,11)TCc(b) = TC+
c (b)

(7) TCc(b) = (TC+
c (b) ∧ (ECc(b) ∨ ¬PCc(b)∨

(¬DT (b)∧ 6 ∃c′ : SHc′,c(b))))
(8,9) TCc(b) = (TC+

c (b)∧
(((∀c′ ∈ SC(b2) : GT+

c,c′(b1))∧
(¬DC(b)∨
((ECc(b) ∨ ¬TM(b1))∧
6 ∃c′ : (CH+

c′,c(b1) ∧ ¬CT+
c′,c(b2))))∧

(¬TM(b2) ∨ PCc(b2)))
∨¬PCc(b)))

(12) TCc(b) = (TC+
c (b) ∧ (TC+

c (p) ∨ ¬PCc(b)))

(3–12)RTc(b) = (TC+
c (b) ∧ ¬TCc(b))

Table 26: Termination types

The attributes in Table 26 provide information on termi-
nation types.TCc andTC+

c respectively indicate for ab
or p that c is its terminating component for mappingT or
Term. RTc indicates for ab that c detects its termination
upon receiving a special report on it.

The attributes in Table 27 provide information on utiliza-
tion of protocol channels.CHc,c′ andCH+

c,c′ respectively
indicate for ab or p that mappingT or Term introduces
protocol messages on the channel fromc to c′. CTc,c′ and
CT+

c,c′ respectively indicate that the channel is used in ev-
ery successfully terminating run. For ab consisting of two
competing parts,SHc,c′ indicates if the channel is shared.

The attributesGTc,c′ andGT+
c,c′ in Table 28 respectively

indicate for ab or p that in mappingT or Term, its success-
ful termination atc is guarded byc′.

By the rules in Table 29, we choose for ab such identi-
fiersCI andCI+ that all protocol messages introduced by
mappingT or Term, respectively, are dynamically unique.

No.CHc,c′ No. CHc,c′

(2) CHc,c′(p) = CH+
c,c′(b) (10,11)CHc,c′(b) = CH+

c,c′(b1)

(3,4)CHc,c′(b) = false (12) CHc,c′(b) = CHc,c′(p)
(5) CHc,c′(b) = (CH+

c,c′(b1) ∨ CH+
c,c′(b2)∨

((c 6= c′) ∧ EC+
c (b1) ∧ SCc′(b2)))

(6) CHc,c′(b) = (CH+
c,c′(b2)∨

((c 6= c′) ∧ PCc(a) ∧ SCc′(b2)))
(7–9)CHc,c′(b) = (CH+

c,c′(b1) ∨ CH+
c,c′(b2))

No.CTc,c′ No. CTc,c′

(2) CTc,c′(p) = CT+
c,c′(b) (10,11)CTc,c′(b) = CT+

c,c′(b1)

(3) CTc,c′(b) = true (12) CTc,c′(b) = CTc,c′(p)
(4) CTc,c′(b) = false
(5) CTc,c′(b) = (CT+

c,c′(b1) ∨ CT+
c,c′(b2)∨

((c 6= c′) ∧ EC+
c (b1) ∧ SCc′(b2)))

(6) CTc,c′(b) = (CT+
c,c′(b2)∨

((c 6= c′) ∧ PCc(a) ∧ SCc′(b2)))
(7) CTc,c′(b) = (CT+

c,c′(b1) ∨ CT+
c,c′(b2))

(8,9)CTc,c′(b) = (CT+
c,c′(b1) ∧ CT+

c,c′(b2))

(3–12)CH+
c,c′(b) = (CHc,c′(b) ∨ (ECc(b) ∧RTc′(b)))

(3–12)CT+
c,c′(b) = (CTc,c′(b) ∨ (ECc(b) ∧RTc′(b)))

(7–9)SHc,c′(b) = (CH+
c,c′(b1) ∧ CH+

c,c′(b2))

Table 27: Channel utilization

No. GTc,c′ No. GTc,c′

(2) GTc,c′(p) = GT+
c,c′(b) (10,11)GTc,c′(b) = GT+

c,c′(b1)

(3) GTc,c′(b) = true (12) GTc,c′(b) = GTc,c′(p)
(4) GTc,c′(b) = (¬TCc(b) ∨ ((c = c′) ∧ PCc(b)))
(5) GTc,c′(b) = (GT+

c,c′(b1) ∨GT+
c,c′(b2)∨

(PCc(b2)∧
∃c′′: (EC+

c′′(b1) ∧GT+
c′′,c′(b1))))

(6) GTc,c′(b) = ((PCc′(a) ∧ ((c = c′) ∨ PCc(b2)))∨
GT+

c,c′(b2))

(7) GTc,c′(b) = (GT+
c,c′(b1) ∨GT+

c,c′(b2))

(8,9)GTc,c′(b) = (GT+
c,c′(b1) ∧GT+

c,c′(b2))

(3–12)GT+
c,c′(b) = (¬TC+

c (b) ∨ (TCc(b) ∧GTc,c′(b))∨
(¬TCc(b)∧
∃c′′ : (ECc′′(b) ∧GTc′′,c′(b))))

Table 28: Termination guarding

No. CI+ No. CI+

(1,2) CI+(b) = ε (5,6)CI+(b2) = CI(b)
(5,10,11)CI+(b1) = CI(b)
(7–9)if ∃c, c′ : SHc,c′(b)

thenCI+(b1) = CI(b)·1 , CI+(b2) = CI(b)·2
elseCI+(b1) = CI+(b2) = CI(b) endif

No. CI

(3–6,10,11)CI(b) = CI+(b)
(7–9)if (((CI+(b1) 6= CI(b)) ∧ (CI+(b2) 6= CI(b)))∨

6 ∃c, c′ : (TC+
c (b) ∧RTc′(b) ∧ CHc,c′(b)))

thenCI(b) = CI+(b)
elseCI(b) = CI+(b)·1 endif

(12) if 6 ∃c, c′ : (TC+
c (b) ∧RTc′(b) ∧ CHc,c′(b))

thenCI(b) = CI+(b)
elseCI(b) = CI+(b)·1 endif

Table 29: Context identifiers

Attribute evaluation rules for a service specification con-
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stitute a system of equations which might have more than
one solution for the attributes of the explicitly defined pro-
cesses. One should always maximize their attributeTC+,
while other attributes must be minimized.

4.2 Additional restrictions and their
satisfaction

Table 30 summarizes the additional restrictions introduced
so far for a well-formed service specification.

The first three restrictions state that no irrelevant service
part may be specified. The restriction for parallel compo-
sition is actually more rigorous than its approximation in
Table 30 (see Section 3.9).

The next two restrictions refer to the ending components
of a b. Usually they can be satisfied simply by proper
choice of executors for individualδ in b, but not always.
It might be that a "b1[]b2" or a "b1[> b2" is terminating,
but no c qualifies for its ending component, because a
GT+

c,c′(b1) or PCc(b2) or a CT+
c′,c(b2) is not true as re-

quired. GT+
c,c′(b1) can be satisfied by securing that in the

terminating runs ofb1, the last (possibly dummy) action at
c always comes after a (possibly dummy) action atc′. For
PCc(b2), it suffices to insert intob2 a dummy action atc.
ForCT+

c′,c(b2), it helps to introduce into every terminating
run of b2 an action atc prefixed by an action atc′.

The next two restrictions require that there are hiddenp
primitives at certain places in the service specification. If
p primitives are already used for other purposes, any other
reserved service primitive type will do.

The next restriction states that ab with distributed con-
flicts must not synchronize with a concurrent service part,
in order to avoid deadlock resulting from imprecise imple-
mentation ofb. However, if the concurrent service part is
sufficiently flexible (like, for example, a skilled user of an
imprecisely implemented service), there will be no dead-
lock and the restriction may be ignored.

The next two restrictions secure prompt start report-
ing. An ordinary actiona is always specified in a context
"a; b2". A report recipientc must be the executor ofa or a
starting component ofb2, so that the message will be gen-
erated to implement the action-prefix operator. If ac is a
missing starting component ofb2, that can be solved by in-
troducing intob2 a dummy starting service action atc. For
reporting of aδ, there is no suchb2 following, so we have
only the first option.

In a general case, execution of a disruptiveb might start
by concurrent execution and reporting of several starting
actions. To avoid as much as possible such multiple report-
ing of the start ofb, it is advisable to rewrite the specifica-
tion of b into the action-prefix form (as required in [10] for
b2 in a "b1[> b2"), i.e. make sure thatAP (b) (defined in
Table 31).

The last two restrictions state that a service action in a
particular position must not be ani or a δ. If it is an i,
change it into a service primitive and hide it on a higher
level. If it is a δ, prefix it with a subsequently hidden ser-

(5) TM(b1)
(7) ((∪c∈CASc(b1)) ∩ (S + {δ}))

= ((∪c∈CASc(b2)) ∩ (S + {δ}))
(8,9) (|PC(b1)|> 0) ∧ (|PC(b2)|> 0)

(7) DT (b) ⇒ (|EC(b)| = 1)
(3–12)ECc(b) ⇒ TCc(b)

(1) 6 ∃c : (pc ∈ ASc(b))
(9) DC(b) ⇒ ∃b3 :

((b1 = (b3 if TM(b1) then
À(|||SCc(b2)(p

c; δc))À(|||
TC+

c (b1)
δc)

endif)
∧ 6 ∃c : (pc ∈ ASc(b3)))

(7) ((S 6= ∅) ⇒ ¬AD(b)) ∧ ¬TD(b)

(4) SRc(b) ⇒ PCc(b)
(6) SRc(b) ⇒ (PCc(a) ∨ SCc(b2))

(8) DC(b) ⇒ (SCc(b2) ⇒ (({i, δ} ∩ SSc(b1)) = ∅))
(8,9) DC(b) ⇒ (PCc(b1) ⇒ (({i, δ} ∩ SSc(b2)) = ∅))

Table 30: Restrictions

No. AP No. AP

(2) AP (p) = AP (b) (3,4,6) AP (b) = true
(7,9)AP (b) = false (8) AP (b) = (AP (b1) ∧AP (b2))
(12) AP (b) = AP (p) (5,10,11)AP (b) = AP (b1)

Table 31: Action-prefix form

vice primitive. For both cases,DC(b) implies thatb runs
in such a context that the transformation is irrelevant.

5 Discussion and conclusions

5.1 Correctness

A formal proof of the protocol derivation method is given
in [18], and briefly outlined below.

For every service partb, the only property that really
matters is correctness of itsT′ and Term implementa-
tions for the context in which it is embedded, where aT′

implementation consists of the members ofPC(b), while
a Term implementation might also involve some other
server components. However, when proving the property,
we also assume over twenty auxiliary properties of the im-
plementations.

All the properties are proven by induction on the ser-
vice structure. Most of them are synthesized properties.
We prove them for theT′ implementations ofstop andδ.
For every compositeb (i.e. for every service composition
operator), we prove that ifTerm implementations of the
constituent service parts possess the properties, theT′ im-
plementation ofb possesses their analogues. In addition
we prove that if theT′ implementation of ab possesses the
properties, itsTerm implementations possess their ana-
logues. For the few inherited properties, the proof goes in
the reverse direction. By proving the main property for the
main service process, we prove that the entire service is
properly implemented.
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5.2 Message complexity

The operators potentially introducing protocol messages
are the operators of sequence, choice and disabling. It
is often possible to reduce the number of such operators
by restructuring the service specification, i.e. by making
its inherent parallelism more explicit. If such restyling of
the service (and consequently of the protocol) is not unac-
ceptable for readability reasons, it can greatly reduce the
message complexity, and can even be automated [25]. One
should also strive for optimal insertion of dummy service
actions and optimal assignment of hidden service actions
to server components.

Anyway, some of the messages introduced by our proto-
col derivation mapping are redundant.

– In some cases, it would be possible to omit a message
based on the observation that for the service partb1

to which it belongs, it sequences two service actions
which are already sequenced for a concurrent service
partb2 synchronized on them [13].

– It would be possible to further optimize terminations
of implementations of individual service parts, and
their reporting in individual runs [14, 24].

– When implementing a "b1[]b2", one could make better
use of the fact that only the initial parts ofb1 andb2

are concurrent.

– When implementing a "b1[>b2", one could make bet-
ter use of the fact that only the initial part ofb2 is
concurrent tob1.

With more extensive re-use of messages, their encodings
could be shorter, but messages would no longer directly
identify the service part to which they belong, leading to
more complicated protocol specifications.

5.3 Comparison with similar methods

The popular formal technique for specifying self-
stabilizing protocols have long been finite state machines
(FSMs) [6, 27, 22]. With their explicit representation of
states, they are very convenient for the purpose. Namely,
when a process proceeds along a selected path in the tran-
sition graph representing its FSM, the fact that it ignores
messages belonging to the abandoned paths can be spec-
ified simply by furnishing each state on the selected path
with loops representing reception of such messages. In
a process-algebraic language like LOTOS, there is no ex-
plicit notion of states, so specification of self-stabilization
is a tricky task.

There are two basic approaches to deriving self-
stabilizing protocols. In the older approach [6, 27], a pro-
tocol is first derived for the ideal case with no divergences
and subsequently furnished with the reception-ignoring
loops. The derivation algorithm in [22], like ours, handles
the ideal and the non-ideal cases in an integrated manner,

and is consequently much less complex. Moreover, the al-
gorithm derives protocols in a compositional way, support-
ing implementation of sequence, choice and iteration. For
those operators, the structure of services is quite well re-
flected in the derived protocols. Unfortunately, FSMs are
less suited for explicit specification of more complex op-
erators, particularly for such introducing concurrency. We
have solved the problem by switching to the more expres-
sive LOTOS.

We know no comparable LOTOS-based protocol deriva-
tion transformation. Some hidden divergence is allowed in
[1], but it is resolved with the help of global controllers.

5.4 Handling of data

We intend to extend our method to service actions associ-
ated with data [5, 11], to approach the ideal that the service
specification language should be the same as the protocol
specification language. The strategy for flexible integrated
handling of messages implementing proper ordering of ac-
tions and those carrying data is simple [11]: 1) In the ser-
vice, identify the points where inter-component exchange
of data would be desirable. 2) At each point, introduce a
(possibly dummy) action of the data sender followed by a
(possibly dummy) action of the data recipient, so that there
will be an action-ordering message between the two com-
ponents. 3) Let the message carry the data. In our case, data
could also be carried in a message reporting termination of
a b to ac with RTc(b).

Data exchange is also desirable as a powerful means for
compositional service specification. Whenever the more
specific operators (e.g. sequential composition, choice and
disabling) do not suffice for describing a particular kind of
composition of a set of service parts, one can still run the
parts in parallel and let them exchange and process infor-
mation on their respective states.

5.5 Handling of quantitative temporal
constraints

Once being able to handle service actions with data, one
can easily implement quantitative temporal constraints [12,
23]. Such a constraint specifies the allowed time gap be-
tween two service actions. So the time when the first action
is executed is just another piece of data generated by the
first action and needed for timely execution of the second
one. Temporal constraints can also be employed for pre-
venting distributed conflicts and for further optimization of
protocol traffic [23].

5.6 The problem of co-ordinated
self-stabilization

The most difficult challenge for future research seems to
be implementation of self-stabilization after divergence in
synchronized service parts. The problem is important be-
cause synchronized processes are the core of the constraint-
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oriented specification style, that is indispensable for ex-
pressing more exotic forms of service composition. To
solve it in a general case, one would need a protocol in-
corporating negotiation of implementations of concurrent
service parts, so an enhancement along the lines of [29]
could help.

5.7 Conclusions

Automatic implementation of self-stabilization after diver-
gence is an important achievement in LOTOS-based pro-
tocol derivation, because many realistic services contain
distributed conflicts (e.g. a connection establishment ser-
vice with both parties as possible initiators). In the era
of service integration, the problem is even more acute, be-
cause one often wishes to combine services which are not
exactly compatible. Take for example feature interactions
in telecommunications, which can be nicely detected and
managed based on specifications in LOTOS [4]. With the
possibility of compositional derivation of self-stabilizing
protocols, it suffices to specify dynamic management of
such interactions on the service level.

In our future work, we will focus on protocol derivation
in E-LOTOS [8], the enhanced successor of LOTOS, be-
cause it supports specification of real-time aspects.
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