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Qualitative models can be used instead of traditional numerical models in a \vide range of tasks. These 
tasks include diagnosis, generating explanations of tlie system's behaviour and designing novel devices 
from first principles. Also, qualitative models are in some cases sufficient for the synthesis of control rules 
for dynamic systems. An important task in the theory of dynamic systems is the problem of Identification 
of a model that explains given examples of system behaviour. This task can be formulated as a machine 
learning task of inducing a hypothesis that explains given examples. As the induced hypothesis (model) 
has to capture relations among the parameters of the observed system, vve have to use an inductive 
tool for learning relations, i.e., an inductive logic programming system. In this paper we describe the 
application of the inductive logic programming system mFOIL to the problem of learning a quaUtative 
model of the connected-containers dynamic system. 

Učenje kvalitativnih modelov z induktivnim logičnim programiranjem 

Kvalitativne modele lahko uporabimo za reševanje različnih nalog, npr. za diagnostiko, generiranje razlage 
obnašanja dinamičnega sistema ter načrtovanje naprav iz osnovnih načel delovanja. V nekaterih primerili 
zadošča kvalitativni model tudi za sintezo pravil vodenja dinamičnega sistema. Pomemben problem v 
teoriji dinamičnih sistemov je problem identifikacije modela, ki razloži znane primere obnašanja sistema. 
Omenjeni problem lahko formuliramo kot problem avtomatskega učenja kjer je treba generirati hipotezo, 
ki razloži podane primere. Glede na to, da sestoji model iz relacij med parametri sistema, uporabimo za 
reševanje problema sistem za avtomatsko učenje relacij oz. induktivno logično programiraiije. V članku je 
opisana uporaba sistema za induktivno logično programiranje mFOIL pri problemu učenja kvalitativnega 
modela sistema povezanih posod. 

1 Introduction 

Qualitative models can be used instead of tra­
ditional numerical models in a wide range 
of tasks [Bratko 1991]. These tasks include 
diagnosis (e.g., [Bratko et al. 1989]), generat­
ing explanations of the system's behaviour 
(e.g., [Falkenheiner and Forbus 1990]) and de­
signing novel devices from first principles (e.g., 
[Williams 1990]). Bratko [1991] conjectures that 
qualitative models are sufficient for the synthesis 

of control rules for dynamic systems, and supports 
this conjecture with an example. 
Among several established formalisms for defining 
qualitative models of dynamic systems, the most 
widely known are qualitative differential equa-
tions called confluences 
[De Kleer and Brown 1984], Qualitative Process 
Theory [Forbus 1984] and QSIM [Kuipers 1986]. 
In this paper, vve will adopt the QSIM (Qualita-
tive SIMulation) formalism, as it has been already 
used for learning qualitative models. 
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A fundamental problem in the theory of dy-
namic systems is the Identification problem, de-
fined as follows [Bratko 1991]: given examples 
of the behaviour of a dynamic system, find 
a model that explains these examples. Moti-
vated by the hypothesis that it should be eas-
ier to learn qualitative than quantitative mod-
els, [Bratko et al. 1992] have recently formulated 
the Identification problem for QSIM models as 
a machine learning problem. Formulated in 
this framework, the task of learning QSIM-
type qualitative models is as follows: given 
QSIMtheory and ExamplesOfBehaviour, find 
a QualitativeModel, such that 
QSIMtheory and QualitativeModel explain the 
ExaTnplesOfBehaviour, or formaUy, 

In the paper, we describe the application 
of the inductive logic programming system 
mFOIL [Džeroski 1991], which can use non-
ground background knowledge, to the same task 
[Džeroski and Bratko 1992]. A brief introduc-
tion to inductive logic programming is first given, 
foUowed by an outline of the main features of 
mFOIL. We proceed with an overview of the 
QSIM formalism and illustrate its use on the 
connected-containers (U-tube) system. The ex-
periments and results of learning a qualitative 
model of the U-tube system with mFOIL are 
next presented, foUowed by a discussion of related 
work. Finally, we conclude with some directions 
for further work. 

QSIMtheory A QualitativeModel \= 2 Inductive logic programming 

ExamplesOf Behaviour. 
The Identification task can be formulated as a ma­
chine learning task. Namely, the task of inductive 
machine learning is to find a hypothesis that ex-
plains a set of given examples. In some cases the 
learner can also make use of existing background 
knowledge about the given examples and the do-
main at hand. So, the learning task can be for­
mulated as follows: given background knowledge 
B and examples S, find a hypothesis H, such that 
B and 7i explain £, i.e., B A Ti f= £. We can 
see that ExamplesOf Behaviour correspond to 
E, QSIMtheory corresponds to B and the target 
QualitativeModel to "H. 

As a qualitative model consists of relations 
among the parameters of the modeUed sys-
tem, we have to use an inductive system for 
learning relations. Systems that learn rela­
tions from examples and relational background 
knowledge, represented as a logic program, have 
been recently called inductive logic program­
ming (ILP) systems [Muggleton 1992]. Bratko 
et al. [1992] describe the application of the 
inductive logic programming system GOLEM 
[Muggleton and Feng 1990] to the problem of 
learning a qualitative model of the dynamic sys-
tem of connected containers, usuaUy referred to 
as the U-tube system. There have been, how-
ever, several problems with the application of 
GOLEM, to this task, stemming from the in-
ability of GOLEM to use non-ground and non-
determinate background knowledge. 

In this section we introduce the field of machine 
learning of relations, or, as it has been recently 
caUed, inductive logic programming (ILP). We 
first mention some systems for learning relations, 
define the task of empirical inductive logic pro­
gramming and illustrate it on a simple example. 
We then briefly outhne some features of the ILP 
system mFOIL, which was used in our experi-
ments in learning qualitative models. 

Various logical formalisms have been used in in­
ductive learning systems to represent examples 
and concept descriptions. These formalisms are 
similar to the formalisms for representing knowl-
edge in general. Several widely known inductive 
learning systems, such as ID3 [Quinlan 1986] and 
AQ [Michalski 1983] use propositional languages 
to represent examples (objects) and concepts. In 
both cases objects are represented as tuples of at-
tribute values, i.e, in terms of their global fea­
tures. To represent concepts, decision trees are 
used in ID3 and if-then rules in AQ. 

Another class of learning systems induce descrip­
tions of relations (definitions of predicates). In 
these systems, objects are described structurally, 
i.e., in terms of their components and the relations 
betvveen them. Training examples are represented 
by tuples of their components, while the rela­
tions between components belong to background 
knowledge. The languages used to represent ex-
amples, background knowledge and concept de­
scriptions are typicaUy subsets of first-order logic 
(logic programs). In this čase, learning is in 
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fact logic program ^ synthesis and has recently 
been named inductive logic programming (ILP) 
[Muggleton 1991, Muggleton 1992]. 

Two different approaches can be distinguished in 
the ILP paradigm [De Raedt 1992]: the inter-
active and the empirical ILP approach. Inter­
active ILP systems include MIS [Shapiro 1983], 
MARVIN [Sammut and Banerji 1986] 
and CLINT [De Raedt 1992] as weU as CIGOL 
[Muggleton and Buntine 1988] and 
other approaches based on inverting resolution 
[Rouveirol 1991,Wirth 1989]. These systems typ-
ically learn definitions of multiple predicates from 
a small set of examples and queries to the user. 

Empirical ILP, on the other hand, is typi-
cally concerned with learning a definition of a 
single predicate from a large coUection of ex-
amples. This class of ILP systems includes 
FOIL [Quinlah 1990], mFOIL [Džeroski 1991], 
GOLEM [Muggleton and Feng 1990] and LINUS 
[Lavrač et al. 1991]. LINUS, FOIL and mFOIL 
upgrade attribute-value learners from the ID3 and 
AQ family towards a first-order logic framework. 
A different approach is used in GOLEM which is 
based on Plotkin's-notion of relative least general 
generalization (rlgg) [Plotkin 1969]. 

Empirical ILP systems are more likely to be ap-
plied in practice for two reasons. First, there 
is more experience with learning single con-
cepts from large coUections of data than with 
deriving knowledge bases from a smaU num-
ber of examples. Second, empirical ILP sys-
tems are much more efficient because of the 
use of heuristics, because there is no need to 
take into account dependencies among different 
concepts, and because no examples are gener-
ated [De Raedt and Bruynooghe 1992]. In fact, 
they are already efficient enough to be applied 
to real-life domains [Bratko 1992]. Several ap-
plications have been reported, including learn­
ing qualitative models from example behavidurs 
[Bratko et al. 1992] [Džeroski and Bratko 1992], 
inducing temporal rule? for sateUite fault 
diagnosis [Feng 1991], learning to predict pro-
tein secondary structure [Muggleton et al. 1992] 
and learning rules for finite el­
ement mesh design [Dolšak and Muggleton 1992, 
Džeroski and Dolšak 1991]. 

' For an introduction to logic programming we refer the 
reader to [Bratko 1990]. A detailed theoretical treatment 
of the subject is given in [Lloyd 1987]. 

Empirical ILP 

The task of empirical ILP, which is concerned 
with learning a single predicate, can be formu-
lated as foUows. 
Given: 

• a set of training examples €, consisting of 
true S'^ and false £~ facts of an unknown 
predicate p, 

• a description language C, specifying syntactic 
restrictions on the definition of predicate p, 

• background knowledge B, defining predicates 
qi (other than p) which may be used in the 
definition of p and which provide additional 
information about the arguments of the ex-
amples of predicate p, 

Find: 

• a definition 7i for p, expressed in C, such that 
Ti is complete, i.e.. Ve € ^+ : ^ A H |= e, and 
consistent with respect to the examples, i.e., 
\/ees- -.BAn^e. 

The true facts £'^ are caUed positive examples, the 
false facts £~ are called negative examples smd the 
hypothesis H, i.e., the definition of p, is usually 
called the definition of the target predicate. When 
learning from noisy examples, the completeness 
and consistency criteria need to be relaxed in or-
der to avoid overly specific hypotheses. 

The ILP s y s t e m mFOIL 

The ILP system mFOIL [Džeroski 1991] is largely 
based on the-FOIL [Quinlan 1990] approach. We 
thus briefly describe FOIL first and then outline 
some of the key features of mFOIL. 

FOIL extends some ideas from attribute-value 
learning algorithms to the ILP paradigm. In par-
ticular, it ušes a covering approach similar to 
AQ's [Michalski 1983] and an information based 
search heuristic similar to ID3's [Quinlan 1986]. 
The hypothesis language C in FOIL is the lan­
guage of function-free program clauses, which 
means that no constants or terms other than 
variables may appear in the induced clauses. 
Function-free ground facts (relational tuples) are 
used to represent both training examples and 
background knowledge. 
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After the pre-processing of the training set, which 
consists of generating negative examples if none 
are given, the outermost loop of the FOIL algo-
ri thm repeats the follovving two steps untill ali 
positive facts are covered: 

• find a clause that covers some positive and 
no negative facts, 

• remove the facts covered by this clause from 
the training set. 

Finding a clause consists of a number of refine-
ment steps. The search starts with the clause with 
empty body. At each step, the clause c built so 
far is refined by adding a-literal to its body. These 
literals are positive or negative atoms of the form 
Xi = Xj or qk{Yi,Y2,....,YnJ, where the X's ap-
pear in c, the Y's either appear in c or may be new 
variables and qk is a relation (predicate) from the 
background knowledge or the target predicate p 
itself. 

To stop the search for literals to be added to a 
clause, FOIL employs the encoding length restric-
tion, which limits the number of bits used to en-
code a clause to the number of bits needed to ex-
plicitly indicate the positive examples covered by 
it. The construction of a clause is stopped when 
it covers only positive examples (is consistent) or 
when no more bits are available for adding literals 
to its body. The search for clauses stops vvhen no 
new clause can be constructed under the encoding 
length restriction, or alternatively, when ali posi­
tive examples are covered. One should be aware, 
however, tha t there are several problems with the 
encoding length restriction that actuaUy degrade 
FOIL's performance on both noisy and non-noisy 
da ta as shown in [Džeroski and Lavrač 1991]. 

The most important differences betvveen mFOIL 
and FOIL are related to the noise-handling mech-
anism used. mFOIL ušes Bayesian probabil-
ity estimates, namely the Laplace and the m-
estimate [Cestnik 1990], of expected clause accu-
racy as search heuristics. These estimates have 
been successfully used in a similar way in proposi-
tional learning systems [Clark and BosweIl 1991, 
Džeroski et al. 1992]. mFOIL also ušes signifi-
cance tests, similar to 
the ones in [Clark and BosweIl 1991]. It achieved 
bet ter results than FOIL on a test domain with 
artificially added noise and on a real-life domain 
of learning rules for finite element mesh design 
[Džeroski 1991, Džeroski and Bratko 1992]. 

Another key difference is the capability of mFOIL 
to use background knovvledge which may contain 
rules and not ground facts only. This feature is 
especially important for learning qualJtative mod-
els, since the QSIMtheory consists of rules and 
not ground facts only. 

Other differences between FOIL and mFOIL are 
related to the search strategy and the space of 
possible hypotheses. As opposed to the hill-
climbing search in FOIL, where only the best 
partially built clause is kept, mFOIL ušes beam 
search and keeps several most promising clauses 
(the beam), which are refined gradually. mFOIL 
can also use Information about the background 
knowledge, such as symmetry of predicates and 
types of predicate arguments, to reduce the space 
of possible hypotheses. 

3 Qualitative modelling 

In this section, we first introduce the QSIM 
[Kuipers 1986] formahsm and then illustrate it 
on the U-tube system. We also describe how 
the QSIM theory can be formulated in logic 
[Bratko et al. 1992], so that it can be used as 
background knowledge in the process of learning 
qualitative models from examples. 

The QSIM formalism 

In the theory of dynamic systems, a physical sys-
tem is represented by a set of continuous vari­
ables, which may change over time. Sets of dif-
ferential equations, relating the system variables, 
are typicaUy used to model dynamic systems nu-
merically. Given a model (a set of differential 
equations) of the system and its initial state, the 
behaviour of the system can be predicted by ap-
plying a numerical solver to the set of differential 
equations. 

A similar approach is taken in qualitative simula-
tion [Kuipers 1986]. In QSIM, a physical system 
is described by a set of variables representing the 
physical parameters of the system (continuously 
differentiable real-valued functions) and a set of 
constraint eguations describing how those param­
eters are related to each other. In this čase, a 
(qualitative) model is a set of constraint equa-
tions. Given a quahtative model and a qualita-
tive initial s tate of the system, the QSIM simula-
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tion algorithm [Kuipers 1986] produces a directed 
graph consisting of possible future states and the 
immediate successor relation between the states. 
Paths in this graph starting from the initial state 
correspond to behaviours of the system. 

The value of a physical parameter is specified 
qucLlitatively in terms of its relationship with a 
totally ordered set of landmark values. The qual-
itative state of a parameter consists of its value 
and direction of change. The direction of change 
can be inc (increasing), std (steady) and dec (de-
creasing). Time is represented as a totally ordered 
set of symbolic distinguished time points. The 
current time is either at or between distinguished 
time-points. At a distinguished time-point, if sev-
eral physical parameters linked by a single con-
straint are equal to landmark values, they are said 
to have corresponding values. 

The constraints used in QSIM are designed to 
permit a large class of differential equations to 
be mapped straightforwardly into qualitative con-
straint equations. They include mathematical re-
lationships, such as deriv(yelocity, Acceleration) 
and mult^Mass, Acceleration, Force). In ad-
dition, constraints like M"^ (Priče, Power) and 
M~ [Current, Resistance) state that there is 
a monotonicaUy increasing/decreasing functional 
relationship between two physical parameters, 
but do not spedfy the relationship completely. 

T h e U - t u b e s y s t e m 

La 

Lb 

Fab Fba 

Figure 1: The U-tube system. 

Let us illustrate the above notions on the 
connected-containers (U-tube) e)tample, adapted 
from [Bratko et al. 1992]. The U-tube system (il-
lustrated in Figure 1) consists of two containers, 
A and B, connected with a pipe and fiHed with 
water to the corresponding levels La and Lb. Let 

the flow from A to B be denoted by Fab, the flow 
from B to A hy Fba. The variables La,Lb,Fab 
and Fba are the parameters of the system. 

The flows Fab and Fba are the time derivatives of 
the water levels Lb and La, respectively, and run 
in opposite directions. Let the difference in the 
levels of the containers A and B be Diff = La — 
Lb. The pressure Press along the pipe influences 
the flow Fab: the higher the pressure, the greater 
the flow. A similar dependence exists betvveen 
the level difference and the pressure. The above 
constraints can be formulated in QSIM as foUows: 

d 
-r-La = Fba dt 

—Lb = Fab 
dt 
Fab = -Fba 

Diff = La- Lb 

Press = M-^{Diff) 

Fab = M-^ (Press) 

If we are not explicitly interested in the pressure, 
the last two qualitative constraint equations can 
be simplified into one: 

Fab = M-^(Diff) 

For comparison, in a numerical model, the last 
two equations might have the form 

Press = c\ • Diff 

Fab = ci • Press 

or, when simplified 

Fab = c- Diff 

where c, ci and c^ are positive constants. In this 
čase, the relationship betvveen the variables Fa6, 
Press and Diff is completely, and not only qual-
itatively, specified given the values of c,ci and C2. 

The landmark values for the variables of this 
model for the U-tube, ordered left to right, are 
as follows: 

La : minf,0,laO,inf 
Lb : minf, O, /60, inf 

Fab : minf. O, fabO, inf 
Fba : minf,fbaO,0,inf 
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Time 
tO 

{tO,tl). 
ti 

itl,inf) 

La 
laO/dec 
0..laO/dec 
0..laO/std 
0..laO/std 

Lh 
IbO/inc 
lb0..inf/inc 
lb0..inf/std 
lb0..inf/std 

Fab 
fabO/dec 
0..fabO/dec 
0/std 
0/std 

Fba 
fbaO/inc 
fbaO..O/inc 
0/std 
0/std 

Table 1: Qualitative behaviour of the U-tube system. 

These values are symbolic names corresponding to 
minus infinity, zero, infinity and the initial values 
of the four variables. The left-to-right ordering 
corresponds to the less than relation between the 
corresponding numerical values. 

The QSIM simulation of the U-tube system pro-
duces the trace given in Table 1. From the 
trace we can see, for example, that in the ini­
tial state the value of the level La is equal to laO 
and is decreasing (dec). This is represented as 
La = laO/dec. In the time interval that follows, 
La is between O and laO and decreasing, which is 
written as La = 0..laO/dec. 

Formulat ing QSIM in logic 

Bratko et al. [1992] translate the QSIM approach 
to qualitative simulation into a logic program-
ming formališm (pure Prolog). A sketch in Prolog 
of the QSIMqualitative.simulation algorithm is 
given below. 

simulate{State) <— 
transition{State,NextState), 
simulate(NextState). 

transition{stdte{Vl,...), state{NewVl, ...))«— 
trans{Vl, NewVl), %Model — independent 

• ' ' } 

legalstate{NewVl,...). %Model — dependent 

The simulation starts from the initial qualita-
tive State, consisting of the qua,litative values 
and directions of change of the system parame-
tera. The simulator first finds a possible transi-
tion to a NewState and then continues the simu­
lation from the new state. The relation trans is a 
non-deterministic relation that generates possible 
transitions of the system parameters, i.e., possi­
ble new values for theiri; It is defined as part 
of the QSIM theory [Kuipers 1986]. The model 
of a particular system is defined by the predicate 
legalstate which imposes constraints on the val­

ues of the system parameters. The definition of 
this predicate is of the following form: 

legalstate{...) <— 
constraintl{...), 
constraint2(...), 

where the constrainjs are part of the QSIM the-
ory. Under continuity assumptions, the problem 
of learning the legality of states is equivalent to 
the problem of learning the dynamics of the sys-
tem. 

The foUovving Prolog predicates correspond to the 
QSIM constraints: 

add{Fl,F2,FS,Corr) 
mult{Fl,F2,F3,Corr) 
minus{Fl,F2, Corr) 
m.plus{Fl,F2,Corr) 
•m-minus{Fl,F2, Corr) 
deriv{Fl,F2) 

%F1 + F2 = F3 
%F1 * F2 = F3 
%F1 = -F2 
%F2 = M+{Fl) 
%F2 = M-{F1) 
%F2 = dFl/dt 

In the above F l , f 2 and F3 stand for system pa­
rameters and Corr stands for a list of correspond­
ing values. 

The qualitative model for the U-tube system can 
be written in Prolog notation as follovvs: 

legalstate{La, Lb, Fab, Fba) +-
add{Lb, Diff, La, [c{lbO, dO, laO)]), 
m.p.lus(Diff, Fab, [c(0,0), c{dO, fabO)]), 
minus{Fab,Fba,[c{fabO,fbaO)]), 
deriv{La,Fba), 
deriv(Lb, Fab). 

where c{x,y,z) means that x, y and z are corre­
sponding values for the constraint. For example, 
in the add constraint, c{lbO,dO,laO) means that 
lbO+dO = laO. 

If we are not interested in the Diff parameter, 
the first two constraints can be replaced by the 
constraint add{Lb, Fab, La,[c{lbO, fabO,laO)]) or 
the symmetrical constraint 
add{La, Fba, Lb, [c{laO, fbaO, /60)]). 
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4 An experiment in learning 
qualitative models 

In this section, we describe the appUcation of 
the ILP system mFOIL to the problem of learn­
ing a qualitative model of the U-tube system 
[Džeroski and Bratko 1992]. We first describe in 
detail the experimental setup and then present 
the results generated by mFOIL, foUowed by a 
comparison with the results obtained by GOLEM 
and FOIL on the same problem. 

Experimenta l se tup 

As mentioned earlier, when formulating the task 
of Identification of models as a machine learn­
ing task, ExamplesOfBehaviour become train-
ing examples and QSIMtheory constitutes the 
background knowledge. The QualitativeModel 
to be learned corresponds to the hypothesis to 
be induced by the machine learning system. In 
the following we describe in more detail the train-
ing examples and background knowledge used in 
our experiment. We also give the parameter set-
tings for the inductive logic programming system 
mFOIL used in the experiment. 

As the model of a system is defined by the pred-
icate legalstate, the learning task is to induce 
a definition of this predicate. The behaviour 
trace of the U-tube system (Table 1) provides 
three positive training examples for the predicate 
legalstate (the last two states of the behaviour 
trace are equal). In addition, a positive example 
which corresponds to the čase where there is no 
water in the containers is considered. The set of 
positive examples considered is given in Table 4. 

Negative examples (illegal states) represent 'im-
possible' states which cannot appear in any be­
haviour of the system. For instance, the state {la : 
laO/inc,lb : lbO/inc,fab : fO/dec,fba : mfO/inc) 
is a negative example, because it cannot hap-
pen that the water levels in both containers in-
crease. Negative examples can be either hand-
generated by an expert, 6r can be generated under 
the closed-world assumption, when ali positive ex-
amples are known. 

Bratko et al. [1992] used six hand-crafted neg­
ative examples, which only slightly differ from 
the positive ones. Such examples are called near 
misses. In a preliminary experiment, from the 

four positive examples in Table 4 and the six near 
misses mFOIL generated an overly general, i.e., 
underconstrained model. We thus used a larger 
set of 543 negative examples, randomly chosen 
by Žitnik [1991] from the complete set of nega­
tive examples generated under the closed-world 
assumption. 

The QSIM theory, formulated in logic, serves as 
background knowledge. To reduce the complexity 
of the learning problem, the corresponding values 
argument Corr is omitted from the constraints. 
The background knowledge thus consists of the 
predicates add{Fl,F2,F3), mult{Fl,F2,F3), 
minus{Fl,F2), m.plus{Fl,F2), 
m.minus{Fl, F2) and deriv{Fl,F2), which cor-
respond to the QSIM constraint primitives with 
empty lists of corresponding values. For com­
parison with GOLEM [Bratko et al. 1992), the 
mult relation was excluded from the back­
ground knowledge. Ali arguments of the back­
ground predicates are of the same type; they 
are compound terms of the form FuncName : 
QualV aluej DirO fChange. 
As mFOIL allows for the use of non-ground back­
ground knowledge, we used directly the Prolog 
definitions of the background predicates and did 
not tabulate them as ground facts. AU of the 
background predicates, except deriv, are symmet-
ric. For example, add{X, Y, Z) is equivalent to 
add(Y,X,Z). The same holds for the predicate 
viult. Similarly, minus{X,Y) is equivalent to 
'minus{Y,X). This reduces the space of models 
to be considered. 

AU arguments of the background knovvledge 
predicates were considered input, i.e., only re-
lations between the given system parameters 
(La, Lb, Fab, Fba) were considered. This is rea-
sonable, as the correct qualitative model can be 
formulated in terms of these parameters and with-
out introducing new variables. In some -cases, 
however, the introduction of new variables is nec-
essary. For example, if the U-tube system were 
described only in terms of La and Lb, the new 
variables Fab and Fba (or at least one of them) 
vvould be necessary for the construction of a qual-
itative model of the system. As mFOIL allows 
for the introduction of new variables, such a čase 
could be, in principle, handled if necessary. 

Finally, let us mention that the default search 
heuristic and stopping criteria were used in 
mFOIL. The Laplace estimate was used as a 
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legaistate{la : laO/dec,lb : lbO/inc,fab : fabO/dec,fba : fbaO/inc). 
legalstate{la : O.JaO/dec^lb : lb0..inf/inc,fab : 0..fabO/dec, fba : fbaO..O/inc). 

legalstate{la : 0..laO/std,lb : lb0..inf/std, fab : 0/std,fba : 0/std). 
legalstate{la : 0/std, Ib : 0/std, fab : 0/std, fba : 0/std). 

Table 2: Positive examples for learning a qualitative model of the U-tube. 

search heuristic and a significance level of 99 % 
was employed in the significance tests. The de-
fault beam width of 5 was increased to 20 in order 
to avoid getting stuck in local optima. Namely, 
if the beam width is one, beam search is actually 
hill-climbing search and is prone to getting stuck 
in local optima during the search for good models. 

Resul ts 

Given the 4 positive, the 543 negative exam-
ples and the background knowledge as described 
above, mFOIL generated 20 difFerent models, 
shown in Table 4. They are ali evaluated as 
equaUy good by mFOIL as they correctly distin-
guish betvveen the given positive and negative ex-
amples. In addition, they are of the same length, 
i.e., consist of four constraints each. However, not 
aU of them are equivalent to the correct model. 

Model # 6 is equivalent to the correct model, 
shown in Section 3, provided that corresponding 
values are ignored in the latter. The same holds 
for model # 16 [Žitnik, personal communication]. 
Out of the 194481 possible states, these models 
cover 130 states (among which 32 are physically 
possible, i.e., are positive examples). When aU 
32 positive examples and the same 543 negative 
examples were given to mFOIL, it was able to gen-
erate, among other models, the two models from 
Table 4 which are equivalent to the correct model, 
even with a beam of size lO and the mult relation 
in the background knowledge. 

An important issue arises from the above results, 
namely, the need for a criterion of quality for qual-
itative models other than the standard criteria 
used in machine learning. Considering the mod­
els from Table 4, aU of which cover aH positive 
and no negative examples, and aU of which are 
of same length, this need is obvious. This prob­
lem could be reduced by imposing additional con­
straints on the models considered in the search 
process. However, additional semantic criteria 
may stiU be needed. 

Comparison 
with other ILP sys tems 

Bratko et al. [1992] applied GOLEM to the prob­
lem of learning of qualitative models in the QSIM 
formalism. They used the four positive exam-
ples from Table 4 and six hand-crafted negative 
examples (near misses). The model induced by 
GOLEM was shown to be dynamically equivalent 
to the correct model. 

However, several modifications had to be done in 
order to apply GOLEM. As GOLEM accepts only 
ground facts as background knovvledge, the Pro­
log definitions mentioned above had to be com-
piled into tables of ground facts. To reduce the 
complexity of the learning problem, the predicates 
were tabulated with empty lists of corresponding 
values (argument Corr). The mult constraint was 
not compiled at aU. Finally, the add constraint 
had to be decomposed into several subconstraints 
in order to avoid the explosion of the number of 
ground facts generated. 

Žitnik [1991] conducted further experiments in 
learning a qualitative model of the U-tube system, 
using both GOLEM and FOIL. She used several 
sets of examples, including the set of 4 positive 
examples and the set of 543 randomly generated 
negative examples used by mFOIL. Among the 
conclusions of her work, we would like to mention 
the following: 

• The need to compile the background knowl-
edge into ground facts for FOIL and GOLEM 
causes an explosion in the complexity of the 
learning problem, which has to be handled by 
decomposing predicates into simpler primi-
tives. 

• The absence of type Information causes prob-
lems in interpreting the generalizations pro-
duced by FOIL and GOLEM. 

• Top-down systems, such as FOIL, need a 
larger number of negative examples in order 
to prevent over-generalization. 
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# Model: legalstate{La,Lb,Fab,Fba) 

9 
20 

minus(Fab,Fba), add(Lb,Fab,La), in_minus(La,Fba), deriv(Fab,Fba) 
ininus(Fab,Fba), add(Lb,Fab,La), mjninus(La,Fba), deriv(Lb,Fab) 
minus(Fab,Fba), add(Lb,Fab,La), mjiiinus(La,Fba), deriv(La,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), deriv(La,Fba), mjninus(Lb,Fab) 
minus(Fab,Fba), add(La,Fba,Lb), deriv(La,Fba), m-plus(Lb,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), deriv(Lb,Fab), deriv(La,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), deriv.(Fab,Fba), deriv(La,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), deriv(Fba,Fab), deriv(La,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), in_plus(La,Fab), deriv(Fba,Fab) 
minus(Fab,Fba), add(La,Fba,Lb), m.plus(La,Fab), deriv(Fab,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), m_plus(La,Fab), deriv(Lb,Fab) 
minus(Fab,Fba), add(La,Fba,Lb), m_plus(La,Fab), deriv(La,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Lb), deriv(Fba,Fab) 
minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Lb), deriv(Fab,Fba) 
ininus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Lb), deriv(Lb,Fab) 
in inus(Fab,Fba) , add(La ,Fba ,Lb) , m_tninus(La,Lb), der iv(La,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), mjninus(La,Fba), deriv(Fba,Fab) 
minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Fba), deriv(Fab,Fba) 
minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Fba), deriv(Lb,Fab) 
minus(Fab,Fba), add(La,Fba,Lb), m_minus(La,Fba), deriv(La,Fba) 

Table 3: QualJtative models for the U-tube generated by mFOIL. 

The following model [Žitnik 1991] was induced 
by GOLEM from the same examples as used 
by mFOIL and background knowledge as in 
[Bratko et al. 1992]. 

legalstaie{la : A/B, Ib : C/D, fab : E/B, fba : F/D) — 
deriv-siTnpHfied{D, E), 
legalstate{la : A/G,lb : C/H, fab : I/G, fba : J/H). 

The condition deriv.simplified{D, E) actually 
means deriv(Lb,Fab). This example illustrates 
the problem that a model induced by GOLEM 
can have several interpretations. This is due to 
the fact tha t GOLEM may introduce new vari-
ables, such as the ones in the term fba : J/H in 
the model below, the meaning of which may be 
difficult to grasp. 

Similar problems appear when usiijg FOIL 
[Žitnik 1991]. Some of these problems are absent 
in LINUS, as it has typed variables, and can use 
non-ground background knowledge. However, LI­
NUS cannot introduce new variables, which can 
prevent it from learning an appropriate model if 
such variables are needed. 

None of the above problems appear in mFOIL, as 
it can use non-ground background knowledge and 
the typing of variables prevents unclear general-
izations, while stiU having the possibility to intro­
duce new variables. It should be noted, however, 
tha t new variables tha t may be introduced by the 

background knowledge predicates are likely to be 
non-discriminating and thus some kind of looka-
head would be needed to treat them properly. 

5 Related work 

An early system for learning qualitative mod­
els named QuMAS, using a restricted form of 
logic, is described in [Mozetič 1987] and also in 
[Bratko et al. 1989]. The idea of QuMAS to 
transform the problem of learning in logic to 
propositional form was further developed in LI­
NUS. QuMAS was used, however, to learn about 
a static system. It used a completely different 
set of primitives (background knovvledge predi­
cates) and is thus incomparable to the work on 
learning qualitative models of dynamic systems 
[Bratko et al. 1992]. 

GENMODEL [Coiera 1989] also generates a 
QSIM model in logic, using a special kind of least 
general generalization. Similarly to mFOIL, it 
ušes a strong typing of variables, so that the value 
and direction of change always appear together 
and cannot be mixed (unlike FOIL and GOLEM 
where they can get mixed). It shares the limita-
tion of LINUS, namely no new variables may be 
introduced. However, it takes into account the 
corresponding values in the constraints. 
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The approach taken in MISQ [Kraan et al. 1991] 
is essentially identical to GENMODEL, sharing 
most of GENMODEL's limitations, including the 
inability to introduce new variables. The useful 
additions include a facility of extracting qualita-
tive behaviours out of quantitative data and gen-
eration of alternative maximaUy consistent mod-
els when incomplete Information is given about 
the example behaviours. Furthermore, dimen-
sional analysis is used to reduce the set of con-
straints generated. 

Varšek [1991] applied a genetic algorithm QME 
(Qualitative Model Evolution) to the problem of 
learning qualitative models from examples. The 
corresponding values are not taken into account. 
Models are represented as trees in the genetic al­
gorithm. The genetic operator of crossover ex-
changes subtrees between trees, while the muta-
tion genetic operator generates random subtrees 
on single trees. Using a different training set, 
QME obtajned five models equivalent to the cor-
rect one. In addition, QME was apllied to sev­
era! other small domains, including a RC-circuit 
(resistor-capacitor-circuit). Similarly to GEN­
MODEL, QME can not introduce new variables. 

PAL [Morales 1992], originally designed to learn 
chess patterns, is also based on the idea of least 
general generalization. It can also use non-ground 
background knowledge. Using only the four pos-
itive examples and the same background knowl-
edge as mFOIL, PAL induced a model equiva-
lent to the correct one. The model contains sev-
eral redundant constraints, as PAL ušes no nega­
tive examples to reduce it. [Morales 1992] also 
successfuUy induced models of the U-tube sys-
tem described with three {La, Lb, Fab) and five 
(La,Lb,Fab,Fba,Diff) parameters. Hovvever, 
adding new system parameters requires additional 
effort and has to be handled in a special way in 
PAL. The rlgg-h&sed systems PAL, GENMODEL 
and MISQ do not need negative examples. 

6 Conclusion 

pared to GOLEM and FOIL. mFOIL produced 
many models which correctIy distinguish betvveen 
the given positive and negative examples. Two 
of these proved to be equivalent to the correct 
model. At the same time, however, this reveals 
the necessity for criteria other than complete-
ness, consistency and length (complexity) to dis­
tinguish among different qualitative models. Al-
though the number of different models may be 
reduced by using dimensional analysis, this does 
not avoid the need for suitable criteria (bias). 

Another problem with learning quaJitative models 
is the problem of introducing new variables. Al-
though GOLEM, FOIL and mFOIL can introduce 
new variables, the literals that introduce these 
variables are typicaUy both non-determinate (the 
new variables can have more than one value) and 
non-discriminating (the literals do not distinguish 
between positive and negative examples). For ex-
ample, if variable X has a positive qualitative 
value and variable Y has a negative value, the 
literal add{X,Y,Z), where Z is a. new variable 
will be non-deteririinate, as Z can be either pos­
itive, zero or negative. However, if A", Y and Z 
are described numerically, then Z is uniquely de-
termined given X and Y. This suggests that a 
LINUS-like approach [Lavrač and Džeroski 1992] 
operating on real-valued variables, where new 
variables are introduced before learning, coupled 
with the approach of learning qualitative models 
from real-valued data [Kraan et al. 1991], might 
be effective. It might also be possible to generate 
qualitative models directly from numerical data, 
without extracting qualitative behaviours. 
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