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Ring signature enable a user to sign a message on behalf of the ring, without revealing the actual signer. 
Constant-size ring signature is the ring scheme that the size of the signature does not grow with the size of 
the ring(or group), so it is practical for large rings. In this paper weusethe Collision Resistant Accumulator 
from bilinearpairing to construct anidentity-basedring signature scheme with constant-size signature. Our 
scheme actually is an improvement on the modified version of the scheme proposed by Nguyen, but we 
greatly improved the efficiency in terms of computational complexity and signature size. To the best of 
our knowledge, our scheme is the most efficient secure ID-based ring signature with constant-size based 
on accumulator proposed to date. Our scheme is proven secure in the random oracle model based on a 
simplified and general Forking Lemma under the k-strong Diffie-Hellman assumption. 

Povzetek: Predstavljena je izboljšana metoda podpisa za obroč. 

1 Introduction 

Ring signature schemes, introduced by Rivest, Shamir and 
Tauman [1], allow a signer to form a group without a cen-
tral authority and sign messages on behalf of the group. 
A user might not even know that he has been included in a 
group and even a party with unlimited computing resources 
can not find out the actual signer. In order to remove the 
need of certification of the public keys, Shamir [2] pro-
posed the concept of ID-based cryptology to simplify pub-
lic key management. Zhang and Kim [3] extended the ring 
signature to the ID-based ring signature schemes, where 
the user's public keys is their identities. The accumulator 
was introduced by Benaloh and de Mare [4] in order to de-
sign distributed protocols without the presence of a trusted 
central authority. Such a cryptographic primitive is an al-
gorithm allowing the aggregation of a large set of elements 
into a single value of constant size. So the accumulator 
could be applied to construct constant size ring signature. 
Baric and Pfitzmann [5] generalized the definition of ac-
cumulators and constructed a collision-free subtype. As 
an application, they construct a fail-stop signature scheme 
based on their collision-free accumulator. Camenisch and 
Lysyanskaya [6] extended the concept of accumulators to 
dynamic accumulators which allow the addition and dele-
tion of values from the original set of elements. Dodis, 
Kiayias, Nicolosi and Shoup [7] introduced ad hoc anony-

mous identification schemes based on the notion of ac-
cumulator with one-way domain, an extension of crypto-
graphic accumulators. In 2005, Nguyen [8] proposed a dy-
namic accumulator based on bilinear pairings to design ID-
based ad-hoc anonymous identification schemes and iden-
tity escrow protocols with membership revocation. How-
ever, Tartary, Zhou, Lin, Wang and Pieprzyk [9] demon-
strated that the security model proposed by Nguyen did 
lead to a cryptographic accumulator which is not collision 
resistant. later, Nguyen had modified the security model 
[10] so that collision resistance can be provided. In 2009, 
Camenisch, Kohlweiss and Soriente proposed a new dy-
namic accumulator [24] based on bilinear maps for revoca-
tion of the authentication credentials. In their construction, 
however, in the case of accumulating an arbitrary set of 
size n, the issuer of the accumulator would need to pub-
lish a mapping from the set of identities to the elements of 
destined group. It looks like very difficult to construct ring 
signature schemes by hiring their accumulator [24]. 

Since Zhang and Kim [3] proposed the first ID-based 
ring signature scheme, there are lots of excellent Id-based 
ring signature schemes have been proposed [11, 12, 13], 
but all of them the size of ring signatures linearly depend 
on the group size, thus not practical for large groups. Ac-
tually, all the previous proposals had signature size pro-
portional to the size of the ring before the scheme [7] 
proposed by Dodis, Kiayias, Nicolosi and Shoup. They 
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provided an ad-hoc anonymous identification scheme and 
used the Fiat-Shamir heuristics [15] to convert it into the 
public key which was prime, so an extension supporting 
ID-based keys seemed to be non-trivial [14]. The first 
ID-based ring signature scheme with constant-size signa-
tures [8] was proposed by Nguyen. Similar to scheme [7], 
Nguyen also obtained the constant-size ring signature using 
the Fiat-Shamir transform [15] from anonymous identifica-
tion scheme. However, the scheme [8] was found flawed 
by Zhang and Chen [16]. After that, Nguyen proposed the 
modified version [10] of the original scheme [8] and shown 
that the ring signature in their scheme [10] is much more ef-
ficient than previous one [7]. So, is there still some room 
for the computational efficiency of the constant-size ring 
signature to improve? Is there a way to reduce the size of 
the constant-size ring signature scheme? 

We provide the affirmative answer to these questions 
and deem that the constant-size ring signature scheme [10] 
is still not efficient enough. We propose the improved 
constant-size ring signature scheme which is much more 
efficient either on computational complexity or signature 
size than the scheme [10] proposed by Nguyen. More-
over, Nguyen doesn't directly give the security reduction 
of their ring signature scheme, but we provide the secu-
rity proof in the random oracle model under the k-strong 
Diffie-Hellman assumption. To the best of our knowledge, 
our scheme is the most efficient ID-based constant-size ring 
signature based on accumulator in the literature. 

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review some notations and complexity 
assumptions that will be used throughout this paper. We 
explain the general characteristics of a ID-based constant-
size ring signature scheme, and the security properties that 
such a scheme must satisfy in Section 3. In Section 4, We 
present our new ring scheme, and provide security results 
for it in the section 5. In section 6, we compare its ef-
ficiency with previous schemes. Finally, we sum up the 
work in Section 7. 

2 Preliminaries 

In this section, we briefly introduce some preliminaries that 
will be used throughout this paper. A string means a binary 
one. If xi,x2,... are objects, then xi\\x21|... denotes an 
encoding of them as strings from which the constituent ob-
jects are easily recoverable. If S is a set, s eR S denotes 
the operation of assigning to s an element of S chosen at 
random. s — s means we let s = s .If A is a randomized 
algorithm, then A(xi,...; p) denotes its output on inputs 
xi,... and p, while y ——R A(xi,...; p) means that we 
choose p at random and let y = A(xi,...; p). 

2.1 Bilinear map groups and related 
computational problems [25] 

Let l be a security parameter and p be a l-bit prime. Let us 
consider groups Gi, G2 and GT of the same prime order p 
and let P, Q be the generators of G1 and G2 respectively. 
We say that (Gi, G2,GT) are bilinear map groups if there 
exists a bilinear map e : Gi x G2 ^ GT satisfying the 
following properties: 

- Bilinearity: V(S,T) e Gi x G2, Va,b e 
Z*p, e(aS, bT) = e(S, T)ab. 

- Non-degeneracy: VS e Gi,e(S, T) = 1 for all T e 
G2 iff S = O. 

- Computability: V(S,T) e Gi x G2,e(S,T) is effi-
ciently computable. 

- There exits an efficient, publicly computable (but not 
necessarily invertible) isomorphism ^ : G2 ^ Gi 
such that ^(Q) = P 

Such bilinear map groups are known to be instantiate with 
ordinary elliptic curves such as that suggested in [21]. In 
this case, the trace map can be used as an efficient isomor-
phic ^ as long as G2 is properly chosen [22]. With super-
singular curves, symmetric pairings(i.e.Gi = G i ) can be 
obtained and ^ is the identity. The computational assump-
tion for the security of our scheme was proposed by Boneh 
and Boyen [27] and is recalled in the following definition. 

Definition 1. Let us consider the bilinear map groups 
(Gi,G2,GT) and the generators P e Gi and Q e 
G2. The k-strong Diffie-Hellman problem in the groups 
Gi,G2 is defined as follows: given a (k+2)-tuple 
(P, Q, aQ, o?Q,..., akQ) as input, where P = ^(Q), 
output a pair (c, P) with c e Zp. 

2.2 Collision Resistant Accumulator 
Here we present the definition of accumulators and the col-
lision resistance property as set by Nguyen [10]. 

Definition 2. (Accumulator[10]) Accumulator is a tuple 
( { X i } i e N , { F i } i e N ) , where { X i } i e N is called the value 
domain of the accumulator and {Fi }ieN is a sequence of 
families of pairs of functions such that each ( f , g) e Fl is 
defined as f : Uf x Xe

f
xt ^ Uf for some Xi C Xe

f
xt, 

and g : Uf ^ Ug is a bijective function. In addition, the 
following properties are satisfied: 

- (efficient generation) There exists an efficient algo-
rithm G that takes as input a security parameter ll 

and outputs a random element ( f , g) eR Fl, possibly 
together with some auxiliary information af . 

- (quasi commutativity) For every l e N, ( f , g ) e 
Fi, u e Uf, xi,x2 e Xi, f ( f ( u , x i ) , x 2 ) = 
f (f (u, x2), x f ) . For any l e N, ( f , g) e Fl, and X = 
{xi, ...,xk } C Xl, we call g(f (...f (u,xf)...,xk)) the 
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accumulated value of the set X over u. Due to quasi 
commutativity, the value g(f (...f (u,xl)...,xk)) is in-
dependent of the order of the xi's and is denoted by 
f (u,X). 

- (efficient evaluation) For every ( f , g ) e Fl, u e Uf 
and X c Xl with size bound by a polynomial of 
l • g(f (u,X)) is computable in time polynomial in 
l, even without the knowledge of af . 

Definition 3. (Collision Resistant Accumulator [9] [10]). 
An accumulator is defined as collision resistant if for every 
PPT algorithm A, the following function Advc£l'acc(l) = 
Pr[(f,g) £R Fi; u £R Uf ;(x,w,X) i A(g o 
f,Uf,u)\(X c Xl) A (w e Ug) A (x e Xext \ X) A 
(f (g-i (w),x) = f (u,X))] is negligible as a function of l. 
We say that w is a witness for the fact that x e Xl has been 
accumulated in v e Ug whenever g(f (g-i(w), x) = v. 

To generate an instance of the accumulator [10] from 
the security parameter l, run the algorithm G with 1l to 
obtain a tuple t = (p,Gi,G2,GT,e(•, -),P,Q) and a 
uniformly chosen element s from Z*. We construct a 
tuple t = (P, Q, sQ,..., sq Q) where q is the an upper 
bound on the number of elements to be accumulated. The 
corresponding functions ( f , g) for this instance (t, t ) are 
defined as: 

IG, hl,...,hq i R H; (J, a) i R B(x, h i , . . . , HQ)] be 
the accepting probability of B. The forking algorithm FB 

associated to B is the randomized algorithm that takes in 
input x and proceeds as follows: 

Algorithm FB (x) 
Pick random coins p for B 
h i , . . . , H Q i R H 

(J, a) i B (x, h1:..., HQ; p) 
If J = 0 then return (0, ± ) 
h i , . . . , H Q i R H 

(J , a ) i B(x, hi,..., h j - i , h j , . . . , HQ; p) 
If (J = J and hJ = hJ) then return (1, a, a ) 
Else return (0, ±) . 

Let frk = Pr[b = 1 • x i R IG;(b,a,a i R FB (x)]. 
Then frk > accB (tQ - H ) . 

The exactly proof of this lemma could be found in [18]. 
Roughly says that if an algorithm B accepts with some 
non-negligible probability, then a "rewind" of B is likely 
to accept roughly with the probability squared[23]. The 
intuitions are that: (1)hi,... ,HQ can be seen as the set 
of replies to random oracle queries made by the original 
adversary and (2) the forking algorithm implements the 
rewinding. Moreover, it is important that in FB the two 
executions of B are run with the same random coins. 

f : Zp x Zp ^ Zp g : Zp ^ G 2 
(v, x) ^ (x + s)v v ^ vQ 

This construction involves that we have: 

Uf = X p = Zp Ug = G2 Xl = Zp \ { - s } 

It is clear that f is quasi-commutative. In addition, for u e 
Zp and a set X = {xi,..., xk} Q Zp \ { - s } where k < p, 
the accumulated value g(f (u, X)) = f ] k

= i ( x i + s)uQ is 
computable in time polynomial in l from the tuple t and 
without the knowledge of the auxiliary information s. The 
accumulator proposed by Nguyen [10] has been proven se-
cure by [9] under the k-strong Diffie-Hellman assumption. 

2.3 New General Forking Lemma 
The security proof of our ID-based constant-size Ring Sig-
nature scheme relies on a generalization of the Forking 
Lemma [18] proposed by Bellare and Neven instead of the 
Forking Lemma in ring scenario [20] proposed by Herranz 
and Saez. 

Lemma 1. (General Forking Lemma [18] [23]). Fix an 
integer Q > 1 and a set H of size \ H \> 2. Let B 
be a randomized algorithm that on input x,hi,... ,HQ re-
turns a pair (J, a) where J e { 0 , . . . , Q} and a is referred 
as side output. Let IG be a randomized algorithm called 
the input generator. Let accB = Pr[J > 1 • x i R 

3 The Model of ID-based 
Constant-size Ring Signature 

3.1 ID-based Constant-size Ring Signature 
Schemes 

Here we give the definition of ID-based constant-size ring 
signature schemes, which is quite the same as the definition 
in [10]. 

Definition 4. An ID-based constant-size ring signature 
scheme is as a tuple IR =(Setup, KeyGen, MakeGPK, 
MakeGSK, Sign, Verify) of PT algorithms, which are de-
scribed as follows. 

- Setup: takes as input a security parameter ll and re-
turns the public parameters params and a master key 
mk. The master key is only known to the Private Key 
Generator (PKG). 

- KeyGen: run by the PKG, takes as input params, mk 
and an arbitrary identity idi and outputs a private key 
sidi. The identity is used as the corresponding public 
key. 

- MakeGPK: takes as input params and a set ofidenti-
ties and deterministically outputs a single group pub-
lic key gpk which is used in the ID-based ring sig-
nature scheme described below. Its cost linearly de-
pends on the number of identities being aggregated. 
The algorithm is order invariant that means the order 
ofaggregating the identities does not matter. 
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MakeGSK: takes as input params, a set of iden-
tities R, a pair of an identity idi and the cor-
responding private key sidi and deterministically 
outputs a single group secret key gskidi which is 
used in the ID-based ring signature scheme de-
scribed below. It should be noted that each user 
has its own group secret key gskidi which is dif-
ferent from the others. Its cost linearly depends 
on the number of identities being aggregated. It 
can be observed that a group secret key gskidi ^ 
MakeGSK (params, S , (sidi ,idi)) corresponds to 
a group public key gpk ^ MakeGPK(params, S) 
if and only if S = S U idi. More than one group 
secret key might correspond to the same group public 
key. 

Sign: takes as input the public parameter params, 
a user private key sidi, the user's group secret key 
gskidi, group public key gpk which includes the iden-
tity corresponding to idi, and a message m, outputs a 
signature a for m. 

Verify: The deterministic polynomial time(DPT) algo-
rithm takes as input a set of identities R, group public 
key gpk, a message m and a ring signature a, and 
outputs either accept or reject. 

3.2 Security Requirements 

There are two preliminary security requirements for ID-
based ring signature schemes: Anonymity and Unforge-
ability. 

- Anonymity: the anonymity requires, informally, that 
an adversary should not be able to tell which member 
of a ring generated the particular signature. 

- Unforgeability: the intuitive notion of unforgeabil-
ity is that an adversary should be unable to output 
(m, a) such that Verify(m, a) = 1. However, there 
are lots of security definitions about unforgeability of 
ring signature [20]. We use the unforgeability defi-
nition [26] proposed by Herranz. It should be noted 
that [26]'s unforgeability definition is very similar to 
the strongest unforgeability definition(unforgeability 
w.r.t. insider corruption) proposed in [20]. 

Definition 5. (Unforgeability against chosen mes-
sages/identies attacks). A ring signature scheme 
(Setup, KeyGen, MakeGPK, MakeGSK, Sign, Verify) 
is unforgeable with chosen-subring attacks if for any 
PPT adversary A and for any polynomial n(-), the 
probability that A succeeds in the following game is 
negligible: 

- the challenger takes a security parameter k and 
runs the Setup algorithm of the scheme. He gives 
the resulting parameter to adversary. 

4 

- A is given access to a signing oracle 
OSign(-, •, •), OSign(ids,m, R) returns 
Signsid (m, R), where we require ids G R, 
where R is a set of identities. 

- A is also given access to extraction oracle 
Extraction(^), where Extraction(IDi) out-
puts corresponding secret key ski. 

- at the end of the above execution, A 
outputs (R* ,m* ,a*) and succeeds if 
VerifyR* (m* ,a*) = 1, A never queried 
(R*,m*, •) to its signing oracle, and for all 
IDi G R, the adversary has not requested an 
extraction query for IDi. 

The Proposed Constant-size Ring 
Signature Scheme 

In this section, we present our ID-based constant-size 
ring signature scheme, Our scheme is the modified ver-
sion of the scheme [10] proposed by Nguyen, we describe 
our scheme as the following algorithms: Setup, KeyGen, 
MakeGPK, MakeGSK, Sign, Verify. 

- Setup: on a security parameter l, chooses s Gr Z**, 
u Gr Z* and generates an collision resistant accu-
mulator as in section 2.2, including functions ( f , g) 
and tuples t ^ (p,G1,G2,GT,e(•, • ) a n d t ^ 
(P, Q, sQ,..., sqQ), where q is the upper bound on 
the number of identities to be aggregated. It sets 
Qpub = sQ, Ppub = ^(Qpub). L e t Ho ,Hi b e 

collision-free hash function H 0 : {0,1}* ^ Z*, H i : 
{0,1}* ^ Z*. Then, public parameter params ^ 
(l, t,t ,u,H0,Hi, f o g) and the master key is mk ^ 

- KeyGen: extracts a private key sidi ^ i 
Ho(idi)+s P 

for an identity idi. The identity is used as the cor-
responding public key. The user can verify the pri-
vate key by checking e(Ho(idf)Q + Q*ub,sidi) = 
e(Q,P). 

- MakeGPK: given a set of identities R = {idi}k;=1, 
computes the set X = {H0(idi)}k=1 and generates the 
group public key for the set gpk = V ^ g(f (u, X)). 

- MakeGSK: generates the group secret key gsk for a 
user ids G R, R = {idi}k

=1 by just computing the 
set X ^ {Ho(idi)}k

=1i=s, hids ^ Ho(ids) and the 
witness W ^ g(f (u,X')). Note that X = X ' U hids. 
The group secret key is gsk = (hids, sids, W). 

- Sign: given a message m, a set of identities R = 
{idi}k=1 which includes the signer's identity ids, the 
signer's private key sids. 

- Given a message m GR {0,1}*, choose 
r1,r2,k1,k2,k3,kA,kz GR Z*. 

s. 
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- Compute Ui ^ Sids + r1P; U2 ^ W + r2Q\ 
then compute n 1 ^ e(Q, U i ) - k 5 • e(Q, P)k2 • 
e(Qpub,P)k1; n ^ e(P,U2)-k5 • e(P,Q)k4 • 
e(Pp ub,Q)k3. 

- Get c ^ Hi(m\\Ui\\U21| n i || n 2 R 

- Then compute s i ^ ki + c r i ; s2 ^ k2 + 
crihids; S3 ^ k3 + cr2; S4 ^ kA + cr2hids; 
S5 ^ k5 + chids. 

- The signature is a = 
(Ui, U2, n P EI2 , Si, S2, S3, S4, S5). 

- Verify: Given signature a, message m, a set of iden-
tities R = [ i d i } k

= i . 

- Get c ^ H i ( m \ \ U i \ \ U 2 \ \ n i \ \ n 2 \\R). 

- C h e c k n i = e(Q,Ui)-S5 • e(Q,P)s2 • 

e(Qpub,P)S1 • e(Qpub, U i ) - c ' • e(P, Q)c'; 

n 2 = e(P,U2)-S5 • e(P,QQ)s4 • e(Ppub,Q)S3 • 

e(Ppub,U2)-C • e(P,V)C . 

If above condition holds, the verifier accept the ring sig-
nature, else reject. It's easy to see that our ring signa-
ture scheme can be converted into an ad-hoc anonymous 
identification scheme [7], where a user can form ad-hoc 
groups and anonymously prove membership in such group. 
Although we use the collision-free accumulator in our 
scheme, the dynamic accumulators are also available such 
that the addition and deletion of members from the original 
group(or ring) are allowed. 

It should be noted that Nguyen' scheme and our ring 
signature scheme actually are both non-interactive proof 
of the knowledge of (sid, hid, W) satisfying e(hidQ + 
Q pub, Sid) = e(Q,P) and e(hidP + Ppub,W) = e(P,V), 
although Nguyen' scheme is much more complex than 
ours. The exact reason why our scheme could cut down 
the computation and size of the signature will be given in 
section 6. 

5 Security Analysis 

5.1 Unforgeability 

theorem 1. Assume that an adversary F has an advan-
tage e against our scheme when running in time t, asking 
qHi queries to random oracles Hi(i = 0,1), qs signature 
queries to signature oracle. Then there is an adversary B 
to solve the k-strong Diffie-Hellman problem with probabil-
ity e' > ^ + (qHn + H + + H + q s ) — 1 within 

qHi qHi • 

atimet < 2t+qs[10texp+9tp + (n+1)qmuU]+O[(qs(n+ 
1)+qH )(1+qs +qH )], where tp denotes the require time for 
a paring evaluation, texp denotes the costs of an exponen-
tiation in Gt , tmult denotes the costs of a multiplication in 
G2 and qH denotes the maximum total number of queries 
to all random oracles. 

Proof: Here, we are ready to present the actual proof. 
On a security parameter l, Algorithm B takes as input 
(p, Gi,G2, GT, ^, P, Q, aQ, a2Q,..., akQ) and aims to 
find a pair (w*, w,\aP) where w* e Z*. We first show 
how to provide the adversary with a consistent view. In 
setup phase, it builds a generator G e Gi such that it knows 
k - q(k> q) pairs (wi, w-+aG) for w i , . . .,wk-q GR Z*. 
It should be noted that q is the an upper bound on the num-
ber of elements to be accumulated and k - q is the an upper 
bound on the number of extraction queries. To do so, 

- It picks wi,..., wk-q eR Z* and expands f (z) ^ 
ni—9 (wi + z) to obtain e0,..., ek-q GR Z** so that 

f (z) ^ E— eizi. 

- It sets generators H ^ TllS ei(aiQ) = f (a)Q G 
G2 and G ^ $(H) = f (a)P e Gi. 

Z+Wi to obtain di0, 

- For 1 < i < k — q, B expands fi(z) ^ 
&R Z*p so 

that fi(z) = YljZo^1 dijzj. Then compute 

E k X 1 dij Q) = fi(a)P = P = 
1 G. Then all pairs (wi, G 

a+Wi 
could be available. 

a+Wi ) for 1 < i < k — q 

- It sets aH 
k-q 

<r- ei(ai+1 Q), a2H 
<r-J2iZq ei (ai+2Q),...,aq H 

Yk-q ei(ai+qQ). let t = 
{p, Gi, G2, Gt , e(•, •), ^, G, H,aH,..., aq H}. 

Now, B first chooses a random u eR Z** and generates an 
collision resistant accumulator f o g as in section 2.2, then 
send (l, t,u,f o g) to adversary F. To handle the oracle 
queries, B maintains two lists LHo and LHl. For simplic-
ity, we assume that adversary F asks qHo distinct queries 
for qHo distinct identities. Simulates adversary's environ-
ment as follows: 

- H0 queries on an identity ID e {0,1}*: B selects a 
random index 7, where 1 < 7 < qHo and fixes IDY 

as target identity. B first initializes a counter index 
to 1 and answers w ^ windex G Z* and increments 
index if ID = IDY, else B returns a random wY eR 

Z*. Add the tuple (ID , windex ) to LHO . 

- Hi queries on a tuple n = 
( m \ \ U i \ \ U 2 \ \ n i \ \ n 2 \\R): If M has been de-
fined in LHl, retrieves c from LHl and returns c to F, 
else chooses a new random c eR Z * and adds (p, c) 
into LHl. 

- Key extraction queries on ID: B recovers the matching 
pair (ID, w) from L0 and returns the previously com-
puted a+w G if ID = IDy, else B sets badi = true, 
then aborts. 

- Signature queries on a pair (m,ID,R): If ID = 
IDy, B proceeds according to the sign algorithm. 
This is possible for B knows the private key of ID. 
If ID = IDy , then: 
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- Chooses Ui Gr Gi, U2 Gr G2, chooses pair-
wise different s i , . . . , s5 GR Z*. 

- Selects a random c GR Zp, then com-
putes n i ^ e(H,Ui)-s5 • e(H, G)s2 • 
e(Hpub,G)S1 • e(Hpub,Ui)-c • e(G,H )c; 
JJ2 ^ e(G, U2)-S5 • e(G, H)s4 • e(GPub, H)s3 • 
e(Gpub, U2)-c • e(G, V)c. Then add the new 
tuple (m | |U i | |U2 | | n i II EI2 \\R,Ci) in LHl(if 
(p,ci) had already been defined in LHl, set 
bad2 ^ true, aborts). 

- Returns a = (Ui, U2, f ] p ]12 , si, s2, S3, S4, s5) 
as the signature. 

We have explained how to simulate F's environment in 
chosen-messages and chosen-identities attack. So, B 
runs the algorithm FB(t) as described in section 2.3. 
In this way we get two forgeries a0 and ai together 
with a set of identities R and message m. Let c0 

be the answer from the random oracle Hi given to F 
in the first execution, i.e., hJ in FB (t), and let ci be 
the second answer hJ. The forged signature a0 = 

( U i , U 2 , n i , n 2 ' S i ' S2: s3: s4: s5 ) a n d a n o t h e r s i g n a t u r e 

i s ai = (Ui,U2, n i > n 2 , s i , s 2 , s 3 , s 4 , s 5 ) . L e t fi ^ 
for i G {1,..., 5}, then we get a tuple (f5,Ui -fiG) 

satisfying e(f5H+Hpub, Ui - fiG) = e(H, G). It implies 
that w* = f5 and —WG = (Ui - fiG). We note that 
w* = wi,..., wk-q with probability at least 1 - K-q. If 
both forgeries satisfy the verification equation, B can pro-
ceed as in [27] to extract 1 

a+w P from 1 
a+w: G: 

- Writes f (z) = Y]kJ(wi + z) = 7(z)(z + w*) + 7-1, 
where 7 - 1 G Zp and Y(Z) = £ = 1 YiZ. 

- Then f (z) 
w*+z 

Y — 1 k-q-
0 

^(H) = f (a)P G G1 , as thus 

P + £ k = 0 q - 1 7i(aiP ). 

7izi. Since G = 
J G = f ( a ) p = 

a+w* a+w: 

a+w* 

- It's easy to get 1 P 

E k-q-1 
i=0 

, _ [ 
a+w* Y—1 L 

7i(aiP)], then the tuple (w* 
w*+a 
1 

G 

+ P ) will a+w* ' 
be the answer of the k-strong Diffie-Hellman problem. 

Let Pr[bad^ denote the probability of the event that flag 
badi set to be true(fails in providing a consistent simula-
tion). We bound the accepting probability acc as follows : 

acc > E — Pr\bad{] — Pr\bad2 ] 

> E- qH0 qHi + qs 

2l 2l 

The probability that algorithm B succeeds in getting the 
answer of the k-strong Diffie-Hellman problem is given by 

> 

> 

frk 

qHi 

- qHi 

1 
2l 

The running time t is twice that of once execution in 
FB (t) plus the time needed to compute the solution of 
the k-strong Diffie-Hellman problem. The running time 
of once execution in FB ( t) is the running time t of F 
plus the time needed to answer qH random oracle queries 
and qs signature queries, where qH denotes the maximum 
total number of queries to all random oracles. We as-
sume that tp denotes the require time for a paring eval-
uation, texp and tmuit respectively denotes the costs of 
an exponentiation in GT and a multiplication in G2 , and 
all other operations take unit time. Each random oracle 
query at most cause B to perform O(1 + qH + qs) unit-
time operations. Each signature query involves at most 
10texp + 9tp + (n +1)qmult + (n +1)O(1 + qH + qs) opera-
tions, where n is the maximum number of identities of each 
signature query. Therefore, we have t < 2t + qs [10texp + 
9tp + (n +1)qmult] + O[(qs(n + 1) + qH ) (1 + qs + qH)]. 

5.2 Anonymity 

In order to give the proof for anonymity, we present 
the proofs of our scheme's perfect zero-knowledge is 
enough. The simulator randomly chooses Ui,U2 GR 

G I , c,si,s2,s3,s4,s5 GR ZP, then computes H i = 
e(Q, Ui)-s5 • e(Q, P)s2 • e(Qpub, P)si • e(Qpub, Ui)-c • 
e(P,Q)clU2 = e(P, Uc)-s5 • e(P,Q)s4 • e(Ppub,Q)s3 • 
e(Ppub, U2)-c • e(P, V)c. We can see that the distribution 
of the simulation is the same as the real transcript. This 
completes the proof. 

6 Some Remarks and Efficiency 
Comparison 

In many scenarios, as pointed in [7], the group doesn't 
change for a long time or has a short description. So an ap-
propriate measurement of ring signature-size does not need 
to include the group description. In this situation, both the 
signer and verifier need to perform a one-time computation 
proportional to the size of the ring, and get the gpk and 
gsk which allow them to produce/verify many subsequent 
signatures in constant time. It's obvious that the constant-
size ring signature scheme will be much more efficient than 
the previous schemes which signature size proportional to 
the size of the ring in such scenarios. We note that even 
in large ad-hoc groups, the size of our signature scheme is 
much smaller than that of schemes which the size of sig-
nature linearly depends on the group size. To the best of 
our knowledge, Chow et al.'s scheme [14] is the most ef-
ficient one among all the ID-based ring signature schemes 
which the size of signature linearly depends on the group 
size. For the sake of comparison and concreteness, we fix 
| Gi | = = 256 bits for a security level equivalent to 
a 128-bit symmetric key for AES(cf.[28]). We conclude 
that our scheme has smaller size than Chow et al.'s scheme 
when the number of identities of the ring over 8. 

The first constant-size ring signature scheme (DKNS04) 

w z 

1 

E 

2 acc 



IMPROVED ID-BASED RING SIGNATURE SCHEME... 

had been proposed by Dodis, Kiayias, Nicolosi and Shoup 
[7], after that, no more efficient constant-size ring signa-
ture scheme was found until the first secure ID-based ring 
signature scheme with constant-size signatures proposed 
by Nguyen [10]. Nguyen had compared his constant-size 
ID-based ring signature scheme with DKNS04 at the same 
level of security. The conclusion is that the signature size is 
very much smaller than that of constant-size ring signature 
scheme DKNS04 [7]. He also pointed out that in the future, 
when higher levels of security are required, this difference 
even grows much larger. 

We now make a specific comparison between our 
scheme and that of Nguyen's. Due to our scheme actually 
is an improvement on the modified version of the scheme 
proposed by Nguyen [10], it seems that our scheme and 
Nguyen's scheme are implemented by the same elliptic 
curve or hyperelliptic curve over a finite field is reason-
able. As shown in [10], we assume p is a 160-bit Jacobian 
of a hyperelliptic curve over a finite field with order p and 
compression techniques are used. GT is a subgroup of a 
finite field of size approximately 21 0 2 4 . A possible choice 
of these parameters is that G 1 (G 1 = G2) is derived from 
the curve E/GF(3l) defined by y2 = x3 — x + 1. 

We summarize the result in Table 1. It's obvious that 
we greatly reduce the size of the signature, although the 
computational efficiency is improved slightly. It should 
be noted that our scheme has the same keys(GSK, GPK) 
with Nguyen's, so we don't list them(i.e. computation 
of keys and size of keys) in the table 1. Here we 
give our analysis of why our scheme could cut down 
the computation and size of the signature. As we 
mentioned is section 4, our ring signature scheme and 
Nguyen's scheme actually are both non-interactive proof 
of the knowledge of (s i d , hid, W) satisfying e(hidQ + 
Qpub,Sid) = e(Q,P) and e(hidP + Ppub,W) = e(P,V). 
In our signature a = (U1,U2,Y[ 1 2 , s ^ s2, s3, s4, s5), 

a1
 d=f (U^U 1,s1,s2,s5) are used to prove the knowl-

edge (s id , hid) satisfying e(hHdQ + Qpub, Sid) = e(Q, P), 

and a2
 d=f (U2,\[2,s3,s4,s5) are used to prove the 

knowledge (sid, hid) satisfying e(hidP + Ppub, W) = 
e(P, V). It looks like that there should be some extra 
"useful" data to set up a tough relation between a1 and 
a2 to build up resistance to attack whereby the adversary 
"tricked" generate a new valid signature use several valid 
signatures. Actually, this is what Nguyen's scheme did. 
However, it's easy to see that a1 and a2 share the same 
element s5 = k5 + chid which is used to prove the re-
lationships of (sid,hid,W). In our scheme, s5 , f ] 1 and 
n 2 share the same random number k5. It implies that 
each signature has a unique random number, and it doesn't 
leave open the possibility of an attack whereby the adver-
sary "tricked" generate a new valid signature use several 
valid signatures. So, the extra "useful" data is really re-
dundancy. Our constant-size ring signature actually is the 
essence of the Nguyen's scheme, i.e. the remaining part of 
the Nguyen's scheme after cut extra "useful" data down. 
Then, there is a question: is there a possibility that cut 
something down from our signature scheme? Due to the 
way we construct the private key of user's, it looks like 
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Table 1: Efficiency comparison 
scheme signature size mul padd pmul 
Nguyen's 2,240 bits 7 15 20 
Ours 1,440 bits 5 2 2 
*mul, padd and pmul respectively indicate the num-
ber of multiplications, point additions and point scalar 
multiplications. 

paring operation is necessary. If paring operation is neces-
sary, it's really very hard to cut something down from our 
signature scheme. 

7 Conclusions 
We have proposed an improved ID-based constant-size ring sig-
nature scheme based on Nguyen's scheme, which will be useful 
for implementation in large ring scenario. Our scheme outper-
forms in size of signature the previously proposed constant-size 
ring signatures and admits proofs of secure in the random oracle 
model based on a simplified and general Forking Lemma under 
the k-strong Diffie-Hellman assumption. 
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