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Abstract. We review some recent trends in the inflationary model building, the super-
symmetry (SUSY) breaking, the gravitino Dark Matter (DM) and the Primordial Black
Holes (PBHs) production in supergravity. The Starobinsky inflation can be embedded
into supergravity when the inflaton belongs to the massive vector multiplet associated
with a (spontaneously broken) U(1) gauge symmetry. The SUSY and R-symmetry can be
also spontaneously broken after inflation by the (standard) Polonyi mechanism. Polonyi
particles and gravitinos are super heavy and can be copiously produced during inflation
via the Schwinger mechanism sourced by the Universe expansion. The overproduction and
instability problems can be avoided, and the positive cosmological constant (dark energy)
can also be introduced. The observed abundance of the Cold Dark Matter (CDM) composed
of gravitinos can be achieved in our supergravity model too, thus providing the unifying
framework for inflation, supersymmetry breaking, dark energy and dark matter genesis.
Our supergravity approach may also lead to a formation of primordial non-linear structures
like stellar-mass-type black holes, and may include the SUSY GUTs inspired by heterotic
string compactifications, unifying particle physics with quantum gravity.

Povzetek. Avtorja obravnavata nekaj novejših modelov inflacije, zlomitve supersimetrije,
temne snovi, ki jo sestavljajo gravitini in nastajanja prvotnih črnih lukenj v supergravitaciji.
Inflacija Starobinskega se pojavi v supergravitaciji , če je inflaton del masivnega vektorskga
multipleta, ki spontano zlomi umeritveno simetrijo U(1). Supersimetrijo in simetrijo R
lahko po inflaciji spontano zlomi tudi mehanizem Polonyija. Izredno masivni delci Polony-
ija in gravitini, lahko nastanejov dovolj velikih koločinah med inflacijo z mehanizmom
Schwingerja. S tem se avtorja izogneta problemu prevelike produkcije težkih delcev in
nestabilnosti ter pojasnita tudi pozitivno kozmološko konstanto (temno energijo). Njun
model s supergravitacijo razloži opaženo pogostost hladne temne snovi (CDM), če jo ses-
tavljajo gravitini in ponudi razlago za nastanek in potek inflacije, zlomitev supersimetrije,
temno energijo in temno snov. Njun model lahko pojasni tudi nastanek prvotnih nelin-
eranih struktur, kot so črne luknje, ki imajo maso enake masi običajnih zvezd, in morda
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vključuje supersimetrične teorije velikega poenotenja (GUT), izvirajoče iz kompaktifikacije
heterotskih strun, kar bi poenotilo fiziko delcev in kvantno gravitacijo.

Keywords: inflation, modified gravity, supergravity, cold dark matter,
dark energy, supersymmetry breaking, primordial black holes

7.1 Introduction

The Cosmic Microwave Background (CMB) data collected by the Planck collab-
oration [1–3] favours the slow-roll single-field inflationary scenarios, with an
approximately flat scalar potential. The celebrated Starobinsky model [4] does
provide such scenario, and relates its inflaton (called scalaron in this context) to the
particular extension of Einstein-Hilbert gravity with the extra higher derivative
term given by the scalar curvature squared, R2. However, a theoretical explanation
of fundamental origin of the Starobinsky model is still missing. The viable infla-
tionary dynamics is driven by the R2 term dominating over the (Einstein-Hilbert) R
term. This is related to a missing UV completion of the non-renormalizable (R+R2)
gravity. The interesting and ambitious project for string phenomenology would be
to provide a derivation of the Starobinsky model from the first principles. A first
step towards this is an embedding of the Starobinsky model into four-dimensional
N = 1 supergravity. In the supergravity framework, the inflaton (scalaron) can mix
with other scalars, and this mixing may ruin any initially successful inflationary
mechanism.

The inflationary model building based on supergravity in the literature usu-
ally assumes that inflaton belongs to a chiral (scalar) supermultiplet [5–7]. How-
ever, there is the alternative to this assumption: inflaton can also belong to a
massive N = 1 vector multiplet. The vector multiplet-based approach avoids
stabilization problems related to the inflaton (scalar) superpartner, as the way-out
of the standard η-problem. The scalar potential of a vector multiplet is given by
the D-term instead of the F-term. The minimal supergravity models, with inflaton
belonging to a massive vector multiplet, were proposed in Refs. [8,9]. Then any
desired values of the CMB observables (the scalar perturbations tilt ns and the
tensor-to-scalar perturbations ratio r) can be recast from the single-field (inflaton)
scalar potential proportional to the derivative squared of arbitrary real function J.
However, in these models, the vacuum energy is vanishing after inflation, thus
restoring supersymmetry, and only a Minkowski vacuum is allowed. The way-out
of this problem was proposed in [10,11] by adding a Polonyi (chiral) superfield
with a linear superpotential [12], leading to a spontaneous SUSY breaking and
allowing a de-Sitter vacuum after inflation.

A successful model of inflation in supergravity should also be consistent with
the Cold Dark Matter (CDM) constraints and the Big Bang Nucleosynthesis (BBN).
For example, many supergravity scenarios are plagued by the so-called gravitino
problem. Gravitinos can decay, injecting hadrons and photons during the BBN
epoch, which may jeopardize the good Standard Model prediction of nuclei ratios
[13–16]. In very much the same way, the Polonyi (overproduction) problem and
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its relation to the BBN results were extensively discussed in the literature [17–22].
In addressing these issues, the mass spectrum and the soft SUSY parameters are
important. The leading (WIMP-like) dark matter production mechanisms and
decay channels are selected from the mass pattern, and have either thermal or
non-thermal origin.

In this paper, we review a class of the minimalistic Polonyi-Starobinsky (PS)
N = 1 supergravity models for inflation, with the inflaton belonging to a (massive)
vector multiplet. These models can avoid the overproduction and BBN problems,
while accounting for the right amount of CDM composed of gravitinos. In our
analysis, we assume that the Polonyi field, inducing a spontaneous SUSY breaking
at a high energy scale, and the gravitino, as the Dark Matter (DM) particle, are both
super-heavy. The main mechanism producing DM is given by the Schwinger-type
production sourced by inflationary expansion. After inflation, Polonyi particles
rapidly decay into gravitinos. We find that gravitinos produced directly from
Schwinger’s production and from Polonyi particles decays, can account for the
correct abundance of Cold Dark Matter.

Another aspect is an inclusion of the (mini) Primordial Black Holes (PBHs)
that may have been copiously produced in the early Universe, and later may have
evaporated into gravitinos and other Standard Model particles [23–27]. A large
amount of mini PBHs cannot be produced in our model when the other scalar
and pseudo-scalar partners of inflaton are not participating in the inflationary
dynamics. The Starobinsky inflaton entails a scalar potential shape that cannot lead
to a large number of PBHs, because it does not allow for amplifying instabilities
and has no exit out of inflation with a first order phase transition. It is still possible
that dynamics of other scalar fields changes this picture. In this case, the extra
moduli can exit from inflation via ending in false minima. The tunneling process
from a false minimum to the true one sources the production of bubbles related to
the first order phase transition.

As regards the (solar mass type) PBHs, their production in the early Uni-
verse is possible in our supergravity approach after a certain deformation of the
Starobinsky scalar potential. We envisage a unification of the inflaton in a vector
multiplet and the Supersymmetric Grand Unified Theories (SUSY GUTs), whose
gauge group has at least one abelian factor, such as the flipped SU(5)×U(1) model
arising from the compactified heterotic superstrings or the intersecting D-branes.

7.2 Starobinsky model of (R+ R2) gravity

Starobinsky model of inflation is defined by the action [4]

SStar. =
M2

Pl

2

∫
d4x
√
−g

(
R+

1

6m2
R2
)
, (7.1)

where we have introduced the reduced Planck mass MPl = 1/
√
8πGN ≈ 2.4 ×

1018 GeV, and the scalaron (inflaton) mass m as the only parameter. We use
the spacetime signature (−,+,+,+, ). The (R + R2) gravity model (7.1) can be
considered as the simplest extension of the standard Einstein-Hilbert action in the



i
i

“proc18” — 2018/12/10 — 11:44 — page 151 — #167 i
i

i
i

i
i

7 Extending Starobinsky Inflationary Model in Gravity and Supergravity 151

context of (modified) F(R) gravity theories with an action

SF =
M2

Pl

2

∫
d4x
√
−g F(R) , (7.2)

in terms of the function F(R) of the scalar curvature R.
The F(R) gravity action (7.2) is classically equivalent to

S[gµν, χ] =
M2

Pl

2

∫
d4x
√
−g [F ′(χ)(R− χ) + F(χ)] (7.3)

with the real scalar field χ, provided that F ′′ 6= 0 that we always assume. Here the
primes denote the derivatives with respect to the argument. The equivalence is
easy to verify because the χ-field equation implies χ = R. In turn, the factor F ′ in
front of the R in (7.3) can be (generically) eliminated by a Weyl transformation
of metric gµν, that transforms the action (7.3) into the action of the scalar field χ
minimally coupled to Einstein gravity and having the scalar potential

V =

(
M2

Pl

2

)
χF ′(χ) − F(χ)

F ′(χ)2
. (7.4)

Differentiating this scalar potential yields

dV

dχ
=

(
M2

Pl

2

)
F ′′(χ) [2F(χ) − χF ′(χ)]

(F ′(χ))3
. (7.5)

The kinetic term of χ becomes canonically normalized after the field redefini-
tion χ(ϕ) as

F ′(χ) = exp

(√
2

3
ϕ/MPl

)
, ϕ =

√
3MPl√
2

ln F ′(χ) , (7.6)

in terms of the canonical inflaton field ϕ, with the total acton

Squintessence[gµν, ϕ] =
M2

Pl

2

∫
d4x
√
−gR−

∫
d4x
√
−g

[
1

2
gµν∂µϕ∂νϕ+ V(ϕ)

]
.

(7.7)
The classical and quantum stability conditions of F(R) gravity theory are

given by [5]
F ′(R) > 0 and F ′′(R) > 0 , (7.8)

and they are obviously satisfied for Starobinsky model (7.1) for R > 0.
Differentiating the scalar potential V in Eq. (7.4) with respect to ϕ yields

dV

dϕ
=
dV

dχ

dχ

dϕ
=
M2

Pl

2

[
χF ′′ + F ′ − F ′

F ′2
− 2

χF ′ − F

F ′3
F ′′
]
dχ

dϕ
, (7.9)

where we have

dχ

dϕ
=
dχ

dF ′
dF ′

dϕ
=
dF ′

dϕ

/
dF ′

dχ
=

√
2√

3MPl

F ′

F ′′
. (7.10)
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This implies
dV

dϕ
=MPl

2F− χF ′√
6F ′2

. (7.11)

Combining Eqs. (7.4) and (7.11) yields R and F in terms of the scalar potential V ,

R =

[ √
6

MPl

dV

dϕ
+
4V

M2
Pl

]
exp

(√
2

3
ϕ/MPl

)
, (7.12)

F =

[ √
6

MPl

dV

dϕ
+
2V

M2
Pl

]
exp

(
2

√
2

3
ϕ/MPl

)
. (7.13)

These equations define the function F(R) in the parametric form, in terms of a
scalar potential V(ϕ), i.e. the inverse transformation to (7.4). This is known [28] as
the classical equivalence (duality) between the F(R) gravity theories (7.2) and the
scalar-tensor (quintessence) theories of gravity (7.7).

In the case of Starobinsky model (7.1), one gets the famous potential

V(ϕ) =
3

4
M2

Plm
2

[
1− exp

(
−

√
2

3
ϕ/MPl

)]2
. (7.14)

This scalar potential is bounded from below (non-negative and stable), and it
has the absolute minimum at ϕ = 0 corresponding to a Minkowski vacuum. The
scalar potential (7.14) also has a plateau of positive height (related to inflationary
energy density), that gives rise to slow roll of inflaton in the inflationary era. The
Starobinsky model (7.1) is the particular case of the so-called α-attractor inflation-
ary models [29], and is also a member of the close family of viable inflationary
models of F(R) gravity, originating from higher dimensions [30].

A duration of inflation is measured in the slow roll approximation by the
e-foldings number

Ne ≈
1

M2
Pl

∫ϕ∗
ϕend

V

V ′
dϕ , (7.15)

where ϕ∗ is the inflaton value at the reference scale (horizon crossing), and ϕend is
the inflaton value at the end of inflation when one of the slow roll parameters

εV(ϕ) =
M2

Pl

2

(
V ′

V

)2
and ηV(ϕ) =M

2
Pl

(
V ′′

V

)
, (7.16)

is no longer small (close to 1).
The amplitude of scalar perturbations at horizon crossing is given by [31]

A =
V3∗

12π2M6
Pl(V∗

′)2
=

3m2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)
. (7.17)

The Starobinsky model (7.1) is the excellent model of cosmological inflation,
in very good agreement with the Planck data [1–3]. The Planck satellite mission
measurements of the Cosmic Microwave Background (CMB) radiation [1–3] give
the scalar perturbations tilt as ns ≈ 1 + 2ηV − 6εV ≈ 0.968 ± 0.006 and restrict
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the tensor-to-scalar ratio as r ≈ 16εV < 0.08. The Starobinsky inflation yields
r ≈ 12/N2e ≈ 0.004 and ns ≈ 1 − 2/Ne, where Ne is the e-foldings number
between 50 and 60, with the best fit at Ne ≈ 55 [32,33].

The Starobinsky model (7.1) is geometrical (based on gravity only), while its
(mass) parameterm is fixed by the observed CMB amplitude (COBE, WMAP) as

m ≈ 3 · 1013 GeV or
m

MPl
≈ 1.3 · 10−5 . (7.18)

A numerical analysis of (7.15) with the potential (7.14) yields [31]√
2

3
ϕ∗/MPl ≈ ln

(
4

3
Ne

)
≈ 5.5 ,

√
2

3
ϕend/MPl ≈ ln

[
2

11
(4+ 3

√
3)

]
≈ 0.5 ,

(7.19)
where Ne ≈ 55 has been used.

7.3 Starobinsky inflation in supergravity

Let us introduce a set of two chiral superfields (Φ,H) and a real vector superfield
V coupled to the supergravity sector, with the following Lagrangian: 1

L =

∫
d2θ2E

{
3

8
(DD − 8R)e− 13 (K+2J) + 1

4
WαWα +W(Φ)

}
+ h.c. , (7.20)

whereR is the chiral scalar curvature superfield, E is the chiral density superfield,
(Dα,D

.
α) are the superspace covariant spinor derivatives, K = K(Φ,Φ) is the

Kähler potential, W(Φ) is the superpotential, Wα ≡ −1
4
(DD − 8R)DαV is the

abelian (chiral) superfield strength, and J = J(He2gVH) is a real function with the
coupling constant g.

The Lagrangian (7.20) is invariant under the supersymmetric U(1) gauge
transformations

H→ H ′ = e−igZH , H→ H ′ = eigZH , (7.21)

V → V ′ = V +
i

2
(Z− Z) , (7.22)

the gauge parameter of which, Z, is itself a chiral superfield. The chiral superfield
H can be gauged away via the gauge fixing of these transformations by imposing
the gauge condition H = 1. Then the Lagrangian (7.20) gets simplified to

L =

∫
d2θ2E

{
3

8
(DD − 8R)e− 13 (K+2J) + 1

4
WαWα +W

}
+ h.c. (7.23)

After eliminating the auxiliary fields and moving from the initial (Jordan)
frame to the Einstein frame, the bosonic part of the Lagrangian (7.23) reads [10] 2

e−1L = −
1

2
R−KAĀ∂mA∂

mĀ−
1

4
FmnF

mn−
1

2
J ′′∂mC∂

mC−
1

2
J ′′BmB

m−V , (7.24)

1 We use the standard notation [34] for supergravity in superspace.
2 The primes and capital latin subscripts denote the derivatives with respect to the corre-

sponding fields.
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with the scalar potential

V =
g2

2
J ′
2
+ eK+2J

{
K−1
AĀ

(WA + KAW)(WĀ + KĀW) −

(
3− 2

J ′
2

J ′′

)
WW

}
(7.25)

in terms of the physical fields (A, C, Bm), the auxiliary fields (F, X, D) and the
vector field strength Fmn = DmBn −DnBm.

As is clear from Eq. (7.24), the absence of ghosts requires J ′′(C) > 0, where the
primes denote the differentiations with respect to the given argument. We restrict
ourselves to the Kähler potential and the superpotential of the Polonyi model [12]:

K = ΦΦ , W = µ(Φ+ β) , (7.26)

with the parameters µ and β. Our model includes the single-field (C) inflationary
model, whose D-type scalar potential is given by

V(C) =
g2

2
(J ′)2 (7.27)

in terms of arbitrary function J(C), with the real inflaton field C belonging to a
massive vector supermultiplet. The Minkowski vacuum conditions (after inflation)
can be easily satisfied when J ′ = 0, which implies [12]

〈A〉 =
√
3− 1 and β = 2−

√
3 . (7.28)

This solution describes a stable Minkowski vacuum with spontaneous SUSY break-
ing at arbitrary scale 〈F〉 = µ. The related gravitino mass is given by

m3/2 = µe
2−
√
3+〈J〉 . (7.29)

There is also a complex (Polonyi) scalar of mass

MA = 2µe2−
√
3 ≥ 2m3/2 (7.30)

and a massless fermion in the physical spectrum. The inequality in Eq. (7.30) is
saturated in the original Polonyi model [12] but it is not the case in our model
when 〈J〉 < 0.

As regards the early Universe phenomenology, our model has the following
theoretically appealing features:

• there is no need to ”stabilize” the single-field inflationary trajectory against
scalar superpartners of inflaton, because our inflaton is the only real scalar in
a massive vector multiplet,

• any values of CMB observables ns and r are possible by choosing the J-
function,

• a spontaneous SUSY breaking after inflation occurs at arbitrary scale µ,
• there are only a few parameters relevant for inflation and SUSY breaking: the

coupling constant g defining the inflaton mass, g ∼ minf., the coupling constant
µ defining the scale of SUSY breaking, µ ∼ m3/2, and the parameter β in the
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constant term of the superpotential. Actually, the inflaton mass is constrained
by CMB observations as minf . ∼ O(10−6), while β is fixed by the vacuum
solution, so that we have only one free parameter µ defining the scale of SUSY
breaking in our model (before studying reheating and phenomenology).

The D-type scalar potential associated with the Starobinsky inflationary model
of (R+ R2) gravity arises when [9]

J(C) =
3

2
(C− lnC) (7.31)

that implies

J ′(C) =
3

2

(
1− C−1

)
and J ′′(C) =

3

2

(
C−2

)
> 0 . (7.32)

According to (7.24), a canonical inflaton field φ (with the canonical kinetic term) is
related to the field C by the field redefinition

C = exp
(√

2/3φ
)
. (7.33)

Therefore, we arrive at the (Starobinsky) scalar potential

VStar.(φ) =
9g2

8

(
1− e−

√
2/3φ

)2
with m2inf . = 9g

2/2 . (7.34)

The full action (7.20) of this PS supergravity in curved superspace can be
transformed into a supergravity extension of the (R+ R2) gravity action by using
the (inverse) duality procedure described in Ref. [9]. However, the dual super-
gravity model is described by a complicated higher-derivative field theory that is
inconvenient for studying particle production.

Another nice feature of our model is that it can be rewritten as a supersym-
metric (abelian and non-minimal) gauge theory coupled to supergravity in the
presence of a Higgs superfield H, resulting in the super-Higgs effect with simul-
taneous spontaneous breaking of the gauge symmetry and SUSY. Indeed, the
U(1) gauge symmetry of the original Lagrangian (7.20) allows us to choose a
different (Wess-Zumino) supersymmetric gauge by ”gauging away” the chiral and
anti-chiral parts of the general superfield V via the appropriate choice of the su-
perfield parameters Z and Z. Then the bosonic part of the Lagrangian in terms of
the superfield components in the Einstein frame, after elimination of the auxiliary
fields and Weyl rescaling, reads [11]

e−1L = −
1

2
R− KAA∗∂

mA∂mĀ−
1

4
FmnF

mn − 2Jhh̄∂mh∂
mh̄−

1

2
JV2BmB

m

+ iBm(JVh∂
mh− JVh̄∂

mh̄) − V , (7.35)

where h, h̄ are the Higgs field and its conjugate.
The standard U(1) Higgs mechanism arises with the canonical function J =

1
2
he2V h̄, where we have chosen g = 1 for simplicity. As regards the Higgs sector,

it leads to

e−1LHiggs = −∂mh∂
mh̄+ iBm(h̄∂mh− h∂mh̄) − hh̄BmB

m − V . (7.36)
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After changing the variables h and h̄ as

h =
1√
2
(ρ+ ν)eiζ, h̄ =

1√
2
(ρ+ ν)e−iζ , (7.37)

where ρ is the (real) Higgs boson, ν ≡ 〈h〉 = 〈h̄〉 is the Higgs VEV, and ζ is the
Goldstone boson, the unitary gauge fixing of h → h ′ = e−iζh and Bm → B ′m =

Bm + ∂mζ, leads to the standard result

e−1LHiggs = −
1

2
∂mρ∂

mρ−
1

2
(ρ+ ν)2BmB

m − V . (7.38)

The Minkowski vacuum after inflation can be easily lifted to a de Sitter vacuum
(Dark Energy) in our model by the simple modification of the Polonyi sector and
its parameters as [11]

〈A〉 = (
√
3−1)+

3− 2
√
3

3(
√
3− 1)

δ+O(δ2) , β = (2−
√
3)+

√
3− 3

6(
√
3− 1)

δ+O(δ2) , (7.39)

where δ is a very small deformation parameter, 0 < δ � 1. It leads to a positive
cosmological constant

V0 = µ
2eα

2

δ = m23/2δ (7.40)

and the superpotential VEV

〈W〉 = µ(〈A〉+ β) = µ(a+ b−
1

2
δ) , (7.41)

where a ≡ (
√
3−1) and b ≡ (2−

√
3) provide the SUSY breaking vacuum solution

to the Polonyi parameters in the absence of a cosmological constant.
The full scalar potential (7.25) is a sum of the D- and F-type terms, while there

is a mix of the inflaton - and Polonyi-dependent terms in the F-type contribution.
This mixing leads to instability of the (Starobinsky) inflationary trajectory that is
supposed to be driven by the D-term only. This issue was resolved in Ref. [35]
where a modification of the original PS supergravity action (7.20) was proposed
via adding the generalized Fayet-Iliopoulos term and modifying the J-function
(7.31).

7.4 Super heavy gravitino dark matter

The complete set of equations of motion in our supergravity model (Sec. 3) is very
complicated. In this section, we consider only the leading order with respect to the
inverse Planck mass. In addition, we neglect the coupling of Polonyi and gravitino
particles to the inflaton, and introduce the effective action of the Polonyi field
in the Friedmann-Lemaitre-Robertson-Walker (FLRW) background (in comoving
coordinates) as

I[A] =

∫
dt

∫
d3x

a3

2

(
Ȧ2 −

1

a2
(∇A)2 −M2

AA
2 − ζRA2

)
, (7.42)
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where the non-minimal coupling constant of the Polonyi field to gravity is equal
to ζ = 1, A is the Polonyi field,MA stands for its mass, R is the Ricci scalar, and a
is the FLRW scale factor.

The mode decomposition of the Polonyi field reads

A(x) =
∫
d3k(2π)−3/2a−1(η)

[
bkhk(η)e

ik·x + b†kh
∗
k(η)e

−ik·x
]
, (7.43)

where the conformal time coordinate η is introduced, b, b† are the (standard)
creation/annihilation operators, and the coefficient functions h, h+ are normalized
as follows:

hkh
′∗
k − h ′kh

∗
k = i . (7.44)

Because of Eqs. (7.42) and (7.43), the equation of motion of the modes is

h ′′k (η) +ω
2
k(η)hk(η) = 0 , where ω2k = 5

a ′′

a
+ k2 +M2

Aa
2 , (7.45)

and h ′′ = d2h/dη2. Equation (7.45) can be conveniently rescaled by using some
reference scales a(η∗) ≡ a∗ and H(η∗) = H∗ as follows:

h ′′
k̃
(η̃) + (k̃2 + b2ã2)hk̃(η̃) = 0 , (7.46)

in terms of the rescaled quantities

η̃ = ηa∗H∗ , ã = a/a∗ , k̃ = k/(H∗a∗) .

The leading order of the gravitino action coincides with the massive Rarita-
Schwinger action,

I[ψ] =

∫
d4x e ψ̄σRσ{ψ} , (7.47)

where the gravitino kinetic operator has been introduced as

Rσ{ψ} = m3/2γσνψν + iγσνρDνψρ , (7.48)

and the supercovariant derivative is

Dµψν = −Γρµνψρ + ∂µψν +
1

4
ωµabγ

abψν , (7.49)

in the γ-notation γµ1...µn = γ[µ1 ....γµn].
Since the supergravity torsion is of the second order with respect to the

inverse Planck mass, we ignore it in the leading order approximation. The Γρµν can
be represented by the standard symmetric Christoffel symbols that are actually
cancelled from the Rarita-Schwinger action (7.47). The Rarita-Schwinger action
leads to the gravitino equation of motion,

(i /D−m3/2)ψµ −
(
iDµ +

m3/2

2
γµ

)
γ ·ψ = 0 . (7.50)

In the flat FLRW background, Eq. (7.50) reduces to

iγmn∂mψn = −

(
m3/2 + i

a ′

a
γ0
)
γm∂mψ , (7.51)
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where

ωµab = 2ȧa−1eµ[ae
0
b] , eaµ = a(η)δaµ , m3/2 = m3/2(η) . (7.52)

A solution to Eq. (7.51) is

ψµ(x) =

∫
d3p(2π)−3(2p0)−1

∑
λ

{eik·xbµ(η, λ)akλ(η) + e
−ik·xbCµ (η, λ)a

†
kλ(η)} .

(7.53)
We find that the equations of motion for the 3/2-helicity gravitino modes

have the same form as that of Eq. (7.45), namely,

b ′′µ(η, λ) + Ĉ(k, a)b
′
µ(η, λ) +ω

2(k, a)bµ(η, λ) = 0 , (7.54)

where we have introduced the notation

Ĉ(k, a)b ′µ(η, λ) = −2iγνikiγνη∂
ηbµ − 2γν(m3/2 + i

a ′

a
γ0)iγνη∂ηbµ , (7.55)

ω2(k, a)/2 = k2 +m23/2 + 2i
a ′

a
γ0m3/2 −

(
a ′

a

)2
. (7.56)

Following a procedure similar to the standard one in the case of Dirac and Klein-
Gordon equations, we can reformulate the mode equations of motion in our case
as

PνP
νbµ(η, λ) = 0 , (7.57)

where we have introduced the projector operator

Pν = iγνη∂η − γ
νiki −

(
m3/2 + i

a ′

a
γ0
)
γν = 0 . (7.58)

The dynamics of the gravitino and Polonyi fields during inflation necessary
lead to their quantum production. The number density of produced particles can
be calculated by using a Bogoliubov transformation,

hη1k (η) = αkh
η0
k (η) + βkh

∗η0
k (η) . (7.59)

This transformation is performed from the vacuum solution selected by the bound-
ary conditions at η = ηin, corresponding to the initial time of inflation, to the final
time η = ηf, when the particles creations process from inflation stops. In the in-
flationary epoch, the dynamical regime is a ′/a2 �MPl andMPl ba/k� 1. This
implies that we can consider the extremes as ηin = −∞ and ηf = +∞, performing
a WKB semiclassical approximation. By assuming these boundary conditions, the
energy density of the Polonyi particles produced during inflation reads

ρA(η) =MAnA(η) =MAH
3
inf

(
1

ã(η)

)3
PA , (7.60)

where
PA =

1

2π2

∫∞
0

dk̃k̃2|βk̃|
2 . (7.61)
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The inflaton mass sets the characteristic energy scale for the Hubble constant,
calculated at fixed cosmological time t ≡ tf:

H2(tf) ' m2φ, ρ(tf) ' m2φM2
Pl .

We propose the following formula for Polonyi particles (energy-density and
Polonyi mass) produced during inflation [36]:

(ΩAh
2/ΩRh

2) ' 8π
3

(
MA

MPl

)(
Treh

T0

)
nA(tf)

MPlH2(tf)
, (7.62)

whereMA is the Polonyi mass,ΩRh2 ' 4.31×10−5 is the radiation energy density
at today’s temperature T0, ΩAh2 is the energy density of the produced Polonyi
fields, all in the units of the critical energy density. There is about 8th-orders-of-
magnitude suppression of the energy density. The normalized power spectrum
PA cannot provide such suppression with our values forMA and Hinf. However,
it comes from the dilution factor (ã)−3 = (af/ai)

−3 in Eq. (7.60).
To get the gravitino and Polonyi masses, we have to add a few cosmologi-

cal assumptions about the relevant parameters of the reheating process and, in
particular, about the reheating temperature Treh. The cosmological parameters
can be fixed by specifying the e-foldings number Ne in the range between 50
and 60. For a more precise estimate of the CDM abundance, we choose Ne = 55,
as in Sec. 2. This implies ns = 0.964, r = 0.004, minf = 3.2 · 1013GeV and
Hinf = πMP

√
Pg/2 = 1.4 · 1014GeV. In our scenario, well below the inflaton

mass scale the low-energy effective field theory is given by the Standard Model
(SM) that has the effective number of d.o.f. as g∗ = 106.75. It is reasonable to
assume that all the SM particles originated from perturbative inflaton decay via
the (Starobinsky) universal reheating mechanism, whose reheating temperature is
known [37,38]:

Treh =

(
90

π2g∗

)1/4√
ΓtotMP = 3 · 109GeV . (7.63)

On the other hand, the reheating temperature for heavy gravitino is given by
[39]

Treh = 1.5 · 108 GeV
(
80

g∗

)1/4 ( m3/2

1012GeV

)3/2
. (7.64)

Combining Eqs. (7.63) and (7.64) we get the gravitino and Polonyi masses as
follows:

m3/2 = (7.7± 0.8) · 1012GeV and MA = 2e−〈J〉m3/2 > 2m3/2 . (7.65)

7.5 Primordial Black Holes in supergravity

PBHs may be formed in the early Universe by collapse of primordial density per-
turbations resulting from inflation, when these perturbations re-enter the horizon
and are large enough, i.e. when gravity forces are larger than pressure, in general.
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Apart from being considered as another (non-particle) source for DM, some PBHs
(of stellar mass type) are also considered as the candidates for the gravitational
wave effects caused by the binary black hole mergers observed by LIGO/Virgo
collaboration [40,41].

The PBH mass MPBH is related to the perturbations scale k by Carr’s formula
[42]

MPBH = γρ
4πH−3

3
≈M�

( γ
0.2

)( g∗
3.36

)− 1
6

(
k/(2π)

3 · 10−9Hz

)−2

, (7.66)

whose coefficient γ = 3−3/2 ≈ 0.2, the (normalized) energy density is almost equal
to the (normalized) entropy density g∗ ≈ 3.36, andM� stands for the Solar mass,
M� ≈ 2× 1033 g.

The PBHs abundance f = ΩPBH/Ωc is proportional to the amplitude of the
scalar perturbations Pζ, while for the LIGO events one finds k/(2π) ∼ 10−9 Hz,
Pζ ∼ 10

−2 and f ∼ 10−2, as the regards the orders of their magnitudes [40,41]. The
value of 10−9 Hz corresponds to 106 Mpc−1.

In a single-field inflation, relevant perturbations are controlled by inflaton
scalar potential, so that large fluctuations PR ≈ κ2

2ε

(
H
2π

)2
are produced when

the slow roll parameter ε = r/16 goes to zero, i.e. when the potential has a near-
inflection point where

V ′ ≈ V ′′ ≈ 0 . (7.67)

Since we want a copious PBH production along with observationally con-
sistent CMB observables, we should ”decouple” these events, and demand the
existence of another (”short”) plateau in the scalar potential after the inflation-
ary plateau towards the end of inflation. This is not the case for the Starobinsky
inflation with the scalar potential (7.14), however, it can be easily achieved in a
more general framework. Our supergravity framework in Sect. 3 is an example of
such framework, because it leads to a single-field inflation governed by arbitrary
function J, so that the associated inflaton scalar potential is given by V = g2

2
(J ′)2.

As an example, let us consider the inflaton scalar potential

V

V0
=
(
1+ ξ− e−αφ − ξe−βφ

2
)2

, (7.68)

which is a deformation of the Starobinsky potential (7.14) with α =
√
2/3 and the

new real parameters β ≥ 0 and ξ ≥ 0. The Starobinsky potential (7.14) is recovered
when ξ = 0. The scalar potential (7.68) falls into our supergravity framework, has
Minkowski minimum at φ = 0 and the inflationary plateau for large positive φ.
But, in addition, it also has an inflection point in the ”waterfall” region between
the inflationary plateau and the Minkowski vacuum. Indeed, the conditions (7.67)
result in two equations,

αe−αφ + 2ξβφe−βφ
2

= 0 (7.69)

and
α2e−αφ − 2ξβe−βφ

2

+ 4ξβ2φ2e−φφ
2

= 0 , (7.70)
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respectively. They imply a quadratic equation on φ,

αφ+ 1− 2βφ2 = 0 , (7.71)

whose solution is given by

φ∗ =
α+

√
α2 + 4β

4β
> 0 . (7.72)

Then the remaining condition above is solved by

ξ =
αe−αφ∗+βφ

2
∗

2βφ∗
. (7.73)

Of course, there are many other possibilities to choose the scalar potential
having the form of a real function squared. We just showed that it is possible to
combine a viable (Starobinsky-like) inflation with a viable (stellar mass type) PBHs
production in the context of supergravity.

7.6 Conclusion

Our results lead to the intriguing unifying picture of CDM, dark energy (positive
cosmological constant) and cosmological inflation, in which their parameter spaces
are linked to each other. This scenario also suggests the interesting phenomenology
in the ultra high energy cosmic rays: super heavy Polonyi particles may decay
into the SM particles, as the secondaries, in top-bottom decays. Cosmological high
energy neutrinos from the primary and secondary decay channels can be tested
by IceCube and ANTARES experiments.

Another interesting outcome is that some (stellar mass type) PBHs remnants
produced from the supergravity fields can compose part of the CDM halo co-
existing with gravitinos. In this scenario, gravitational wave signals from the PBHs
mergers can be envisaged, with intriguing implications for LIGO/VIRGO exper-
iments. In short, gravitational wave experiments may provide us with precious
indirect information about the scalar sector of the inflationary supergravity.

Finally, the intriguing possibility exists for a unification of the inflaton in the
vector multiplet, and the SUSY GUTs such as the flipped SU(5) × U(1) model
arising from (Calabi-Yau) compactified heterotic superstrings or the intersecting
D-branes.

Acknowledgements

The work by SVK on gravity and supergravity is supported by the Competitiveness
Enhancement Program of Tomsk Polytechnic University in Russia. This work
is also supported by a Grant-in-Aid of the Japanese Society for Promotion of
Science (JSPS) under No. 26400252, and the World Premier International Research
Center Initiative (WPI Initiative), MEXT, Japan. SVK is grateful to the Institute
for Theoretical Physics of Hannover University in Germany for kind hospitality
extended to him during part of this investigation. The work by MK on physics
of dark matter was supported by grant of Russian Science Foundation (project
N-18-12-00213).



i
i

“proc18” — 2018/12/10 — 11:44 — page 162 — #178 i
i

i
i

i
i

162 S.V. Ketov and M.Yu. Khlopov

References

1. P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 results. XIII. Cosmological
parameters,” Astron. Astrophys. 594, A13 (2016).

2. P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 results. XX. Constraints on
inflation,” Astron. Astrophys. 594, A20 (2016).

3. P. A. R. Ade et al. [BICEP2 and Keck Array Collaborations], “Improved Constraints
on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave
Background Data with Inclusion of 95 GHz Band,” Phys. Rev. Lett. 116, 031302 (2016).

4. A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,”
Phys. Lett. 91B, 99 (1980).

5. S. V. Ketov, “Supergravity and Early Universe: the Meeting Point of Cosmology and
High-Energy Physics,” Int. J. Mod. Phys. A28, 1330021 (2013).

6. S.V. Ketov and T. Terada, ”Inflation in supergravity with a single chiral superfield”,
Phys. Lett. B736, 272 (2014).

7. S.V. Ketov and T. Terada, ”Generic Scalar Potentials for Inflation in Supergravity with a
Single Chiral Superfield” JHEP 12, 062 (2014).

8. A. Farakos, A. Kehagias, and A. Riotto, ”On the Starobinsky Model of Inflation from
Supergravity”, Nucl. Phys. B876, 187 (2013).

9. S. Ferrara, R. Kallosh, A. Linde and M. Porrati, “Minimal Supergravity Models of
Inflation,” Phys. Rev. D88, 085038 (2013).

10. Y. Aldabergenov and S. V. Ketov, “SUSY breaking after inflation in supergravity with
inflaton in a massive vector supermultiplet,” Phys. Lett. B761, 115 (2016).

11. Y. Aldabergenov and S. V. Ketov, “Higgs mechanism and cosmological constant in
N = 1 supergravity with inflaton in a vector multiplet,” Eur. Phys. J. C77, 233 (2017).

12. J. Polonyi, “Generalization of the Massive Scalar Multiplet Coupling to the Supergrav-
ity”, Hungary Central Inst. Res. KFKI-77-93 preprint (1977, rec. July 1978), 5 pages,
unpublished.

13. M. Y. Khlopov and A. D. Linde, “Is it easy to save the gravitino?,” Phys. Lett. 138B, 265
(1984).

14. M. Y. Khlopov, Y. L. Levitan, E. V. Sedelnikov and I. M. Sobol, “Nonequilibrium cos-
mological nucleosynthesis of light elements: calculations by the Monte Carlo method,”
Phys. Atom. Nucl. 57, 1393 (1994) [Yad. Fiz. 57, 1466 (1994)].

15. M. Kawasaki, K. Kohri and T. Moroi, “Big-Bang nucleosynthesis and hadronic decay of
long-lived massive particles,” Phys. Rev. D71, 083502 (2005).

16. M. Khlopov, “Cosmological Probes for Supersymmetry,” Symmetry 7, 815 (2015).
17. T. Banks, D. B. Kaplan and A. E. Nelson, “Cosmological implications of dynamical

supersymmetry breaking,” Phys. Rev. D49, 779 (1994).
18. B. de Carlos, J. A. Casas, F. Quevedo and E. Roulet, “Model independent properties

and cosmological implications of the dilaton and moduli sectors of 4-d strings,” Phys.
Lett. B318, 447 (1993).

19. G. D. Coughlan, W. Fischler, E. W. Kolb, S. Raby and G. G. Ross, “Cosmological prob-
lems for the Polonyi potential,” Phys. Lett. 131B, 59 (1983).

20. T. Moroi, M. Yamaguchi and T. Yanagida, “On the solution to the Polonyi problem with
O(10 TeV) gravitino mass in supergravity,” Phys. Lett. B342, 105 (1995).

21. M. Kawasaki, T. Moroi and T. Yanagida, “Constraint on the reheating temperature from
the decay of the Polonyi field,” Phys. Lett. B370, 52 (1996).

22. T. Moroi and L. Randall, “Wino cold dark matter from anomaly mediated SUSY break-
ing,” Nucl. Phys. B570, 455 (2000).

23. M. Khlopov, B. A. Malomed and I. B. Zeldovich, “Gravitational instability of scalar
fields and formation of primordial black holes,” Mon. Not. Roy. Astron. Soc. 215, 575
(1985).



i
i

“proc18” — 2018/12/10 — 11:44 — page 163 — #179 i
i

i
i

i
i

7 Extending Starobinsky Inflationary Model in Gravity and Supergravity 163

24. M. Y. Khlopov, A. Barrau and J. Grain, “Gravitino production by primordial black hole
evaporation and constraints on the inhomogeneity of the early universe,” Class. Quant.
Grav. 23, 1875 (2006).

25. M. Y. Khlopov, “Primordial black holes,” Res. Astron. Astrophys. 10, 495 (2010).
26. R. V. Konoplich, S. G. Rubin, A. S. Sakharov, M. Yu. Khlopov, ”Formation of black

holes in first-order phase transitions as a cosmological test of symmetry breaking
mechanisms”, Phys. Atom. Nucl. 62, 1593 (1999).

27. M. Yu. Khlopov, R. V. Konoplich, S. G. Rubin, A. S. Sakharov, ”First-order phase
transitions as a source of black holes in the early universe”, Grav. Cosmol. 6, 153 (2000).

28. Y. Fujii and K-I. Maeda, ”The scalar-tensor theory of gravitation”, Cambridge Univ.
Press, Cambridge, 2007.

29. M. Galante, R. Kallosh, A. Linde and D. Roest, ”Unity of Cosmological Inflation Attrac-
tors”, Phys. Rev. Lett. 114, 141302 (2015).

30. H. Nakada and S. V. Ketov, ”Inflation from higher dimensions”, Phys. Rev. D96, 123530
(2017).

31. J. Ellis, M. A. G. Garcia, D. V. Nanopoulos and K. A. Olive, ”Calculations of inflaton
decays and reheating: with applications to no-scale inflation models”, JCAP 1507, 050
(2015).

32. V. F. Mukhanov and G. V. Chibisov, ”Quantum Fluctuations and a Nonsingular Uni-
verse”, JETP Lett. 33, 532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)].

33. S. Kaneda, S.V. Ketov and N. Watanabe, ”Fourth-order gravity as the inflationary model
revisited”, Mod. Phys. Lett. A25, 2753 (2010).

34. J, Wess and J. Bagger, ”Supersymmetry and supergravity”, Princeton Univ. Press,
Princeton, 1992.

35. Y. Aldabergenov and S.V. Ketov, ”Removing instability of Polonyi-Starobinsky super-
gravity by adding FI term”, Mod. Phys. Lett. A33, 1850032 (2018).

36. A. Addazi, S. V. Ketov and M. Yu. Khlopov, “Gravitino and Polonyi production in
supergravity,” Eur. Phys. J. C78, 642 (2017).

37. A. A. Starobinsky, ”Nonsingular model of the Universe with the quantum gravitational
de Sitter stage and its observational consequences”, in the Proceedings of the 2nd
International Seminar ”Quantum Theory of Gravity” (Moscow, 13-15 October, 1981);
INR Press, Moscow 1982, p. 58 (reprinted in ”Quantum Gravity”, M. A. Markov and
P. C. West Eds., Plemum Publ. Co., New York, 1984, p. 103).

38. A. Vilenkin, ”Classical and Quantum Cosmology of the Starobinsky Inflationary
Model”, Phys. Rev. D32, 2511 (1985).

39. K. S. Jeong and F. Takahashi, ”A Gravitino-rich Universe”, JHEP 01, 173 (2013).
40. B.P. Abbott et al., [LIGO Scientific and Virgo Collaborations], ”Observation of Gravita-

tional Waves from a Binary Black Hole Merger”, Phys. Rev. Lett. 116, 061102 (2016).
41. B.P. Abbott et al., [LIGO Scientific and Virgo Collaborations], ”The Rate of Binary Black

Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914”,
arXiv:1602.03842 [astro-ph.HE].

42. B.J. Carr, ”The Primordial black hole mass spectrum”, Astrophys. J. 201, 1(1975).


