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Abstract. In the intricate landscape of the cybersecurity, critical infrastructures represent the most vital systems 

underpinning the societal and economic wellbeing, with their disruption or incapacitation having potentially 

catastrophic consequences. The increasing complexity, digitalization and interconnectedness of these systems have 

rendered them susceptible to a broad spectrum of risks challenging the existing paradigm of the safety and security. 

Thus, securing critical infrastructures against the escalating cybersecurity threats has become an essential yet 

extremely challenging endeavour. In the light of these considerations, the paper offers a deeper understanding of 

the dynamic, adaptive and intelligence-driven approaches in the cyber defence that leverage the AI power, thus 

representing a transformative innovation with a potential to redefine the security strategies and frameworks in 

critical infrastructures. The cybersecurity threats and vulnerabilities are addressed and the existing and emerging 

approaches and best practices in the sector-specific intrusion detection and prevention systems and deception 

technology are investigated, followed by an in-depth study of AI applications in the cyber defence. This includes 

the current approaches and early best practices complemented by a discussion on advanced topics, such as 

explainable and adversarial AI. Finally, guidelines are drafted to inform and provide guidance on the introduction 

of the AI applications for the cyber defence purposes in critical infrastructures.   
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Varnejša prihodnost: Izboljšava kibernetske varnosti 

kritičnih infrastruktur s pomočjo umetne inteligence 

Kritične infrastrukture predstavljajo v kontekstu kibernetske 

varnosti vitalne sisteme, ki gradijo temelje družbene in ekonomske 

blaginje. Zaradi naraščajoče kompleksnosti, digitalizacije in 

medsebojne povezanosti so ti sistemi vedno bolj dovzetni za širok 

spekter tveganj, uspešni kibernetski napadi nanje pa lahko 

povzročijo katastrofalne posledice. Posledično je zaščita kritičnih 

infrastruktur in njihova odpornost na intenzivno rastoč spekter 

kibernetskih groženj danes bistvenega pomena, obenem pa 

predstavlja vedno bolj kompleksen in večstranski izziv. V luči teh 

premislekov si ta članek prizadeva vzpostaviti globlje razumevanje 

dinamičnih, prilagodljivih in z inteligenco podprtih pristopov v 

kibernetski obrambi, ki za svoje delovanje izkoriščajo moč umetne 

inteligence. Slednja predstavlja transformativno inovacijo s 

pomembnim potencialom za redefinicijo varnostnih strategij v 

kritičnih infrastrukturah. Članek naslovi področje kibernetskih 

tveganj in ranljivosti kritičnih infrastruktur in razišče nove pristope 

in primere iz prakse na področju sektorsko-specifičnih sistemov za 

zaznavanje in preprečevanje vdorov ter tehnologij zavajanja. 

Podrobno analizira možne aplikacije umetne inteligence v okviru 

kibernetske obrambe, vključno z ilustracijo prvih primerov iz 

prakse in diskusijo odprtih raziskovalnih vprašanj, kot sta na primer 

razložljiva in sovražna umetna inteligenca. Na podlagi 

vzpostavljenega razumevanja nato predlaga izhodišča, ki usmerjajo 

in informirajo vpeljavo aplikacij umetne inteligence za kibernetsko 

obrambo v kritične infrastrukture. 

 

Ključne besede: Kritična infrastruktura, kibernetska varnost, 

umetna inteligenca, tehnologije zavajanja 

1 INTRODUCTION 

As the modern world harnesses the benefits of 

digitalization and emerging technologies, nations and 

people are becoming increasingly dependent on a safe 

and resilient operation of critical infrastructures (CI), 

which in turn have taken over a fundamental and 

irreplaceable role in sustaining the functioning of modern 

societies. CIs are the backbone of essential services, 

providing the necessary foundation for the economic and 

social security, public health, and safety of a nation [1]. 

CIs include physical and virtual systems, assets, 

networks and services, and encompass a diverse range of 

sectors, including energy infrastructures, transportation 

systems (airports, highways, and railways), water supply 

and waste management facilities, communication 

systems, healthcare facilities, financial institutions, 

emergency services, and defence. The increasing 

complexity, digitalization and interconnectedness have 

rendered them susceptible to a broad spectrum of risks, 

challenging the existing paradigm of the safety and 

security. Safeguarding the CIs’ resilience and security 

has become paramount, making them a prime focus for 

research and innovation.   

 The cybersecurity emerges as a particularly daunting 

challenge within this context. The progressive 
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digitalization and integration of CIs with the information 

systems and emerging technologies create space for an 

ever evolving and increasingly complex landscape of the 

cybersecurity vulnerabilities. The expanse of the attack 

surface grows with each newly adopted ICT technology, 

such as Industrial Control Systems (ICS), Unmanned 

Aerial Vehicles (UAVs), autonomous systems, Internet 

of Things (IoT), as well as the advanced technologies 

such as Artificial Intelligence (AI) [1][2]. The cyber 

threats exhibit a diverse range of actors, motivations, and 

attack vectors. State-sponsored adversaries, criminal 

organizations, hacktivists, and even insider threats have 

demonstrated their ability to exploit vulnerabilities and 

launch targeted cybersecurity attacks against networks, 

systems, and personnel. The ramifications of the 

cybersecurity attacks can be far-reaching, ranging from 

data breaches and information theft to disruption of 

command-and-control systems, malfunctions of the 

logistics, manipulation of CI, and even the compromise 

of the national security. Although in place, the traditional 

cyber defence mechanisms are often outpaced by the 

agility of the cyber threats that evolve continuously, 

thereby necessitating a more dynamic, adaptive, and 

intelligence-driven approach to safeguard these essential 

systems. 

 In the light of these considerations, AI presents a 

transformative innovation with a potential to redefine the 

security strategies and frameworks for CI. The AI’s 

ability to analyse large volumes of data at an 

unprecedented speed enables the identification of the 

potential cyber threats before they materialize. The 

Machine Learning (ML) algorithms in particular can 

evolve in response to past incidents and emerging threats 

and provide predictive insights that human operators may 

not discern. Automation of monitoring and maintenance 

operations using AI can significantly diminish the 

likelihood of the human error and oversight and reduce 

the window of opportunity for the cyber attackers to 

exploit vulnerabilities. 

 The paper offers a deeper understanding of the 

vulnerabilities and threats CI is exposed to. It 

summarizes the cybersecurity attack types and provides 

illustrative examples of major incidents observed in the 

past decades. It provides a review of the cyber defence 

technologies, methods, best practices and strategies as 

observed in different CI types, focusing on sector-

specific applications, followed by an in-depth 

investigation of the necessary yet challenging 

introduction of AI to the cyber defence. It focuses on the 

early AI best practices and illustrative examples and 

discusses advanced topics and emerging research 

avenues. This knowledge is gathered in order to analyse 

and establish an understanding of the types of threats the 

CI is exposed to through the adoption of AI, and to draft 

a guidance for CI operators on mitigation and protection 

possibilities. 

 The remainder of the paper is organized as follows. 

Section 2 discusses the CI cybersecurity landscape and 

the types of cyber attacks on CI. Section 3 provides a 

review of the applicable cyber defence strategies and 

technologies illustrated with known best practices from 

different CI sectors. Section 4 delves deeper into the 

adoption of AI in the CI cyber defence, focusing on 

technological aspects and early real-world examples. 

Section 5 discusses advanced topics and outstanding 

research challenges. Section 6 details the guidelines 

drafted based on the current knowledge and best practices 

to inform and steer CI operators in introducing AI 

applications for the CI cyber protection purposes. Section 

7 draws conclusions of the presented work. 

 

2 CI CYBERSECURITY THREAT LANDSCAPE 

Compared to the cyber attacks observed in the IT 

systems, the cyber attacks targeting CIs exhibit certain 

complexities and consequences, likely to be contributed 

to the prevailing trend in CI of the converging operational 

technology (OT) and traditional information technology 

(IT) environments (see Figure 1). Such infrastructures, 

including power plants, transportation systems and water 

treatment facilities, rely on specialized systems for their 

operation, such as Supervisory Control and Data 

Acquisition (SCADA), Industrial Internet of Things 

(IIoT) and ICS systems. These systems merge the legacy 

and modern technologies to manage physical processes 

in the infrastructure, and have not always been designed 

with the cybersecurity in mind, making them particularly 

vulnerable to attacks that could lead not only to data 

breaches, but also to a physical damage and disruption of 

essential services [3]. This includes the use of insecure 

protocols and interfaces with a lack of encryption and 

insufficient authentication measures, insufficient OT 

network monitoring, absence of the network 

segmentation, software security issues, such as Windows 

and Linux operating system vulnerabilities, or outdated 

equipment, lack of the access control in real-time OT 

solutions, invisibility of the devices, etc. [1]. Secondly, 

in addition to the IT-OT convergence, modern CIs are 

progressively adopting the state of the art and emerging 

technologies, such as mobile communication networks, 

cloud infrastructure and IIoT, leading to an increased 

interconnectedness and exposure of critical services and 

capabilities. As a result, CIs themselves are becoming 

increasingly interconnected. This further expands the 

attack surface and amplifies the potential for the 

cascading failures and devastating damage. Energy-

related CIs are specifically illustrative of this 

vulnerability where a failure of a smart grid can cause 

outages, failures as well as physical and virtual damage 

in almost all other CIs. Such multi-faceted exposure of 

CIs provides ample opportunities for the attackers to 

exploit vulnerabilities, particularly in parts of the 

infrastructure that provide a real-time control and 

monitoring of CI to maintain its efficiency, stable 

operation, safety and reliability, thus having the 

capability to cause severe damage or disruption of critical 

services [2]. 
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Figure 1. Integration of the IT and OT environments in CI.  

  In consequence, there is a progressive increase in the 

number and variety of the cyber attacks on CI, which is 

highly concerning. Both the number and sophistication of 

the cyber attacks targeting the OT systems in particular 

are fast advancing [4][5] and each individual CI sector is 

continuously challenged by a plethora of emerging 

threats specific to their domain. The technologies and 

methods used to execute a cyber attack on CI are diverse 

and multifaceted. The prevailing threats include the IT 

and OT malware that typically exploit network security 

vulnerabilities and social engineering to gain access and 

propagate through critical control capabilities, advance 

persistent threats (APTs), insider threats, nation-state 

attacks, and ransomware. Ransomware in particular is 

one of the earliest forms of the cyber attacks, which has 

been closely followed by malware. Both types of the 

cyber attacks have been observed for decades and 

through time, the attack methods and mechanics have 

steadily progressed in terms of invasiveness, 

evasiveness, and sophistication.  The APT attacks are 

specifically concerning in the context of CI. They are 

prevailingly nation-state sponsored and target the data 

theft and tampering the control and management 

capabilities, particularly in the energy CI. A general trend 

can be observed about a typical progression of such an 

APT attack, i.e. the cyber kill chain process that involves 

an initial attack to gain access to CI through phishing, 

insider attack or supply chain attack, followed by a 

deployment of malware to implement sabotage actions, 

and finally data exfiltration. Types of the attackers and 

their incentives include cybercrime groups interested in 

financial gains, state-sponsored groups pursuing 

espionage and disruption fuelled by geo-political events, 

and hacktivists. The most common types of the attacks, 

their goals and mechanics are summarized in Table 1 

[6][7].   

 According to the European Union Agency for 

Cybersecurity (ENISA), 2022 and 2023 have seen a 

notable escalation in the cybersecurity attacks on CI, both 

in terms of the variety and number of incidents as well as 

their consequences, with ransomware and Distributed 

Denial of Service (DDoS) attacks representing over 50 % 

of all the detected cyber attacks [6]. The Center for 

Strategic and International Studies (CSIS) [8] maintains 

a report about the significant cybersecurity incidents 

since 2006 targeting government agencies, defence and 

high-tech companies or inducing economic losses of over 

one million US dollars. A simple statistical analysis of 

the reported incidents confirms the concerning growth in 

the number of the cyber attacks on CI (see Figure 2).  

 

 

Figure 2. Number of the significant cybersecurity incidents 

since 2006 [8]. 
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Table 1: Types of cyber attacks, their mechanics and goals 

 
Attack 

type 
Mechanics and goals 

Ransomware 

A cybersecurity attack where the attackers take 

control of the target’s assets (e.g. encryption of the 

files containing sensitive data) and demand a ransom 
in exchange for the return of the asset’s availability. 

Malware 

A cyber attack that involves the use of a malicious 

software or firmware designed to damage, disrupt or 
gain an unauthorized access to the  systems that will 

have an adverse impact on the integrity, 

confidentiality, or availability. Also known as a 
malicious code and malicious logic. Examples 

include viruses, trojan horses, worms and spyware. 

Social 

engineering 

Malicious activities that attempt to exploit the human 

error or human behaviour with the objective of 
gaining access to information or services. It relies on 

various forms of manipulation, including phishing, 

pretexting, baiting and scareware, with the goal to 
trick victims into making mistakes, handing over 

sensitive information, visiting websites, granting 

access to systems or services, or perform other types 
of actions that compromise the security. 

Threats 
against data 

Malicious activities aimed at stealing, altering or 

destroying digital information classified as sensitive, 
confidential or protected. The attacks can be 

classified in two basic groups, i.e. the data breach 

where the attempt is to deliberately gain an 
authorized access and release data, and data leak 

where the attempt is to cause events, such as a human 

error or misconfiguration that can consequently 
cause an unintentional loss or exposure of data. The 

primary consequences of such attacks include 

privacy breaches, financial losses and damage to 
reputation. Man-in-the-middle attacks fall within this 

category. 

Distributed 
Denial of 

Service 

(DDoS) 

A well-known and prevailing type of cyber attacks 
attempting to compromise the availability of 

systems, services, data or other resources, by 

exhausting the resources or overloading the 
components of the network infrastructure. Attackers 

typically use a network of hijacked resources to 

launch the assault. 

Threats 
against 

availability 

Intentional or unintentional disruption causing 
Internet outages, blackouts and shutdowns of 

censorship. This can happen because of government-

directed shutdowns, massive natural events such as 
earthquakes or cyclones, as well as incidents such as 

power outages, cyber attacks, technical failures, or 
military actions. The frequency and diversification of 

the threats continues to proliferate, resulting in a 

significant monetary loss to national economies. 

Information 

manipulation 

Cyber attacks where a false or misleading 
information is deliberately spread or a genuine 

information is altered to deceive, mislead, or 

influence individuals or systems. This can involve an 

altering digital content, creating fake news, or 

manipulating the data to compromise decision-

making processes, public opinion, or the integrity of 
the information systems. The attacks rely mostly on 

non-illegal behaviours that can cause potentially 

negative impacts on values, procedures or political 
processes. False data injection is one type of the 

attack of this group. 

Supply chain 

attack 

Targets less-secure elements in the supply network 
to compromise the final product or organization. By 

infiltrating a trusted vendor or component, attackers 

exploit these relationships to distribute malware or 
gain an unauthorized access to sensitive systems and 

data 

 

 A detailed threat landscape analysis reveals that a 

significant number of the cybersecurity incidents are 

reported across a variety of the CI sectors, including 

government infrastructures, defence, healthcare, 

communications, energy, banking and finance, and 

transport, with all types of attacks represented. Two very 

relevant resources in this respect are MITRE ATT&CK 

for ICS framework that serves as a live online common 

industry lexicon managed by the MITRE Corporation 

that documents the tactics and techniques of attacks on 

the OT systems through eleven categories [9], and the 

recently released NSA Elitewolf, a Github repository 

containing various ICS/SCADA/OT focused signatures 

and analytics made available for the IC operators to 

identify and detect a potentially malicious cyber activity 

in their OT environments [10]. Following a simple 

keyword search applied to the report provided by CSIS 

[8], the volume of the reported attacks per a specific CI 

sector is presented in Figure 3, where the majority of the 

reported incidents target government infrastructures and 

services, followed by defence and energy sectors. 

Interestingly, compared to the statistics reported in [1], 

the government-related CIs have only recently emerged 

as a major target, which can be attributed to the current 

worldwide and regional geopolitical tensions.  

 

Figure 3. Number of the significant cybersecurity incidents 

since 2006 [8]. 
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loss and public distress, and the Ukraine Power Grid 
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that led to disruptions to the Ukrainian power grids, 

causing widespread energy outages [12]. Two other 
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Iranian nuclear facilities, a highly sophisticated malware 

attack that was believed to have targeted the uranium 

enrichment infrastructure and was suspected to be 

nation-state sponsored [13], and the 2020 SolarWinds 

supply chain attack where a malicious software was 

installed on a major software upgrade, resulting in more 

than 18.000 affected businesses [4]. Table 2 provides a 

review of the prevailing types of the cyber attacks 

encountered in specific types of CI with other examples 

of real-world incidents. The timeline of the incidents is 

presented in Figure 4. It must be noted, however, that the 

provided statistics and the selected examples are not 

representative of the entire volume of cyber attacks on 

CI, partially due to the exclusion of smaller-scale 

incidents and due to the scarcity of incident reports for 

the security and privacy reasons, in particular in the most 

devastating or security-sensitive cases. 

 The illustrated threats against CI and escalating 

cybersecurity concerns in general necessitate a 

specialized approach with a comprehensive visibility of 

the entire infrastructure and more sophisticated cyber 

defence mechanisms to effectively prioritize and manage 

the known and suspected vulnerabilities, as discussed in 

the next section.  

 

Table 2: The prevailing types of the cyber attacks on CI with examples of the well-known attack incidents 

 
CI attack type and target Examples 

OT MALWARE 

Malware specifically designed to target the OT systems to 

gain control of management functions, reconfiguration of 
control capabilities, execution of DoS or data theft/exposure 

in an OT system. 

Stuxnet [13] – changes the control configuration/capabilities by exploiting OS 

vulnerabilities to affect the PLC operation. It was used in the 2010 attack on 

the Iranian nuclear infrastructure. 
Havex [14] – exploits through remote access capabilities or compromised 

supply chain by compromising the installation SW to gain access to and report 

information about specific servers in the OT system. 
Industroyer (Crashoverried) [15] – targets industrial control protocols to 

directly control switching and circuit devices, wipe data and execute DoS on 
specific devices. Used in the 2016 (Industroyer) and 2022 (Industroyer 2) 

attacks on the Ukrainian power system. 

TRITON [16] – accesses and reprograms safety instrumented system 
controllers causing the controller to enter a failed safe state, automatically 

shutting down the industrial process. 

BlackEnergy [5] – exploits the MS Office and remote access vulnerabilities. 
Used in the 2016 Ukrainian power grid attack. 

ADVANCED PERSISTENT THREAT (APT) 

A sophisticated attack campaign in which the intruder 

establishes a long-term presence within the system. The 

initial infection vector exploits a compromised supply chain 

and/or social engineering attacks, possibly combined with 

other decoy tactics, such as DDoS, to install malware 
enabling a remote access. This is followed by an expansion 

to critical parts of the system causing an illicit access to the 

sensitive data or even malfunctions, and finally extraction 
when sensitive data is exported from the system using again 

a range of distraction tactics, e.g. a DDoS. 

SolarWinds Orion APT [17] – an APT attack in 2020 exploiting a supply chain 

attack by infiltrating a malicious code into a network monitoring and 

configuration management software suite to install a backdoor into the system, 

followed by privilege escalation and user impersonation to penetrate further 

into the system and perform different types of attacks and compromises.  
A41APT [18] – an ATP attack exploiting the SSL-VPN vulnerabilities and 
installing malware (SodaMaster, P8RAT and FYAnti) to deploy a remote 

management tool. Used to target multiple industries, including for example the 

Japanese manufacturing industry in 2010. 
 

INSIDER THREAT 

Malicious actions taken by individuals within an organization 
that can compromise the CI availability and security. Insider 

threats can either be accidental or intentional. 

Stradis Healthcare [19] – during the COVID-19 pandemic in 2020, a former 
employee accessed the company shipping system and deleted shipping data, 

causing delays in the delivery of the personal protective equipment. 

Pegasus Airlines [20] – personally identifiable information exposed in 2022 as 
a result of a cloud misconfiguration by a system administrator.  

South Georgia Medical Center [21] – patient test results, names, and birth dates 

were leaked in 2021 by a former employee who used a USB stick to download 
the exposed data. 

NATION-STATE ATTACK 

A cyber attack carried out by a state-sponsored actor against 
another government or a private organization, the goal of 

which is espionage, disruption, destruction or political 

message. It exploits a variety of methods, such as phishing, 
DDoS, malware and ransomware. 

Russian cyberattack on Ukraine [22] in Feb. 2022 caused disruptions to 

broadband satellite internet access services by disabling modems that provided 
communication via Viasat Inc's KA-SAT satellite network. Malware AcidRain 

was believed to be used and a probable goal was to disrupt Ukrainian command 

and control during the invasion. 

RANSOMWARE 

An attack using a custom platform-specific SW designed to 

encrypt, lock or exfiltrate data. Most ransomware attacks use 

e-mails as the delivery method and target PCs/workstations 
and exploit vulnerabilities of Windows OS. Supply chain 

ransomware is a specific subgroup of attacks where 

ransomware is distributed through trusted SW distribution 
methods (e.g. SW updates). 

Colonial pipeline attack [23][21] – used DarkSide RaaS and caused a shortage 

of the gas supply for customers by compromising the management computer 

system through compromised credentials for a legacy VPN. 
JBS USA [21]– was based on REvil RaaS and caused a shutdown of beef 

manufacturing operations in 2021. 

Maersk [21] – was attacked in 2017 using NotPetya malware, which exploited 
the EternalBlue Windows vulnerability and spread via backdoor in MeDoc SW, 

and locked the system used to operate shipping terminals all over the world. 

WannaCry attack on NHS [24] – carried out in 2017 by exploiting a Microsoft 
security vulnerability on PCs, leading to a network closure and blockage of 

essential services in NHS, including e.g., ambulance handover process, transfer 

of CT/MR scans and chemo orders, etc. 
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Figure 4. Timeline of major cyber incidents targeting CI. 

 

 

3 CYBER DEFENCE STRATEGIES AND 

TECHNOLOGIES IN CI 

The complexity and persistence of the CI cyber threats 

has recently led to establishment of multi-layered and 

integrated cyber defence strategies that focus on 

resilience of the infrastructure and services by combining 

a multitude of complementary approaches and 

technologies. Cybersecurity advisory organizations, such 

as the US National Institute of Standards and Technology 

(NIST) and Cybersecurity and Infrastructure Security 

Agency (CISA), as well as evidence from the best 

practices encourage the use of proactive and adaptive 

approaches relying on a real-time detection and 

assessment, continuous monitoring and intelligence-

driven analysis to identify, detect, protect against, 

respond and profile specific cyber attacks. In this respect, 

a combination of passive and active cybersecurity 

measures should be considered when establishing a 

trusted and robust security system able to protect the CI, 

crucial data, and the user privacy, and specialized 

deception technology should be employed.  

3.1 Adaptive CI cybersecurity strategy 

 Figure 5 depicts the stages of an adaptive 

cybersecurity strategy in reference to the timing of a 

cybersecurity incident. The respective aims and methods 

of individual stages, and typical systems and tools 

implementing them are the following [25][26].  

 The first stage, prediction, identifies the most probable 

cyber attacks, targets and attack methods in advance, i.e., 

before the incident occurs, becomes apparent or causes 

negative effects. Prediction relies on trend analysis, 

threat intelligence and historical data to predict probable 

attack vectors and targets. It comprises also a risk 

assessment to identify vulnerabilities and prioritize the 

threats, with a focus on critical assets that if compromised 

would have a most significant impact on the public safety 

and services. 

 The second stage focuses on the prevention of an 

attack by securing the infrastructure from external cyber 

attacks in order to avoid the occurrence of any damage or 

loss. The prevention is focused on the measures directly 

blocking a cyber attack or creating conditions that install 

limits or prevent the attack from succeeding, e.g., 

securing the infrastructure (firewalls, antivirus and anti-

malware SW, encryption etc.), training employees, and 

implementing robust security policies and procedures. 

This entails implementation of robust cybersecurity 

frameworks designed for IT and specific OT 

environments [5], such as the IEC 62443 series and NIST 

SP 800-82 for securing the ICS and OT systems, 

including the network security, access control, and 

incident response, ISO/IEC 27001 for information 

security management systems (ISMS), including the OT 

protection guidelines, ENISA OT Cybersecurity 

Recommendations, including threat intelligence, 

network security, and incident response, and sector-

specific regulation, e.g., NERC CIP standards for the 

energy sector, as well as adherence to industry standards 

to establish and enforce guidelines and best practices 

designed to protect information systems against cyber 

threats. This stage incudes implementation of a supply 

chain security to prevent infiltration through third parties, 

robust backup and redundancy strategies ensuring that all 

critical data and systems can be quickly restored in the 

event of a cyber incident, minimizing the downtime and 

operational impact, and adoption of the Zero Trust 
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Architecture to minimize internal and external risks by 

adopting approaches, such as the least-privileged access, 

micro-segmentation and continuous monitoring of the 

network activity, to prevent an unauthorized access and 

data breaches as well as to limit and a contain cross-

contamination, in particular from the IT to the OT parts 

of the infrastructure. The development and maintenance 

of an incident response and recovery plan is also part of 

the prevention stage, specifying procedures for 

responding to the cybersecurity incidents (roles and 

responsibilities, communication plans, recovery 

procedures for systems and services restoration after an 

incident). Regular red teaming exercises and penetration 

testing should also take place to simulate the cyber 

attacks and test the effectiveness of the adopted security 

measures in a controlled environment. The last but not 

the least, this stage entails establishment of the training 

and awareness programmes for employees and 

collaboration capabilities with government agencies for 

threat intelligence sharing and coordinated responses to 

threats. 

 The third stage takes place after an incident 

occurrence. It focuses on identification of an ongoing 

attack that can no longer be prevented in order to 

establish a timely awareness and initiate appropriate 

response procedures. It entails implementation of 

continuous monitoring and layered defence capacities for 

a fast anomaly detection, monitoring of suspicious 

activities, thus providing a timely awareness of potential 

issues and mitigation of any potential incidents. This 

includes combinations of several different 

complementary approaches and techniques, including 

intrusion detection systems (IDS), security information 

and event management (SIEM) systems, and anomaly 

detection tools, as well as other advanced active threat 

intelligence and cyber protection technologies, such as 

intrusion protection systems (IPS) and research and 

operational honeypots. 

 Finally, the fourth stage implements a response and 

recovery. It relies on the incident response techniques, 

methods and solutions designed to take specific actions 

in an attempt to contain an ongoing cyber attack and 

mitigate and manage its consequences. The response can 

be focused on the threat eradication, system recovery to 

a normal operation, and forensic analysis for learning and 

future security strengthening purposes. 

 

 

 

 

Figure 5. Stages of the adaptive cybersecurity.  

 

3.2 Cyber defence technologies 

 Today, there is a broad range of approaches and 

dedicated technologies available for the detection, 

monitoring, profiling and behavioural analytics of cyber 

attacks as well as deterrence and active engagement with 

the threat itself. They can be broadly categorized as 

passive and active cybersecurity measures. The passive 

measures, largely found in the traditional approaches, 

comprise a set of the security practices, tools, and 

technologies that are reactive by nature, work in the 

background or are part of a layered defence strategy and 

operate without a direct intervention during an attack. 

They include firewall configurations, antivirus and 

antimalware software, encryption, and intrusion 

detection systems (IDS) [27][28]. However, the passive 

methods are becoming increasingly inefficient against 

sophisticated and adaptive cyber attacks, where more 

proactive and dynamic defence approaches are required. 

Thus, the emerging strategies are increasingly leveraging 

the capabilities of active and dynamic actions to detect, 

respond to and mitigate threats through a direct hands-on 

interaction with the threat as it occurs. This includes 

intrusion prevention systems (IPS), red team exercises 

and penetration testing, ethical hacking, incident 

response teams and comprehensive threat hunting 

activities such as the Cyber Kill Chain and MITRE 

ATT&CK framework [27][28][29].  
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 The IDS and IPS systems, collectively referred to as 

IDPS, serve as the first line of the defence against a wide 

range of cyber threats, including external hacking 

attempts and insider threats, providing capabilities to 

identify and mitigate potential security threats before 

they can impact the system integrity and functionality. 

The IDS systems monitor the infrastructure for malicious 

activities and policy violations, raising alerts whenever a 

known threat or a suspicious activity potentially 

indicating a new type of attack is detected or whenever 

an unauthorized activity deviates from the established 

policies. They are categorised as the network-based IDS 

when designed for monitoring an incoming network, and 

host-based IDS when focused on individual device 

monitoring, and as signature-based IDS when relying on 

predefined patterns of the known threats to identify 

attacks, anomaly-based IDS when ML and statistical 

modelling are used to identify deviations from a normal 

behaviour, and specification-based IDS combining the 

benefits of the signature and anomaly-based IDS 

approaches by manually specifying the behavioural 

characteristics of an attack [3][30]. The IPS systems 

further extend the IDS detection capabilities by taking 

predefined actions in real-time to prevent the exploitation 

of vulnerabilities. This includes actions to report, block, 

suspend or reset suspected malicious activities, e.g., 

termination of malicious processes, blocking of 

suspicious IP addresses and rerouting the malicious 

traffic, or modifying the firewall rules to enhance the 

security posture. The measures installed by IDPS can 

collectively help identify vulnerabilities and proactively 

tackle ongoing attacks in real-time, and provide the 

capabilities and assets for detection, mitigation, 

monitoring and management of the cybersecurity 

incidents. There are numerous implementations and 

extensive research is underway on the IDPS capabilities 

and technologies for different types of CI, in particular in 

the smart energy and more generally in the IIoT and ICS 

sectors. Some selected examples include an IDS for 

autonomous distributed IoT systems [31], a ML-based 

IPS for unmanned aircraft systems [32], and a distributed 

IDS for the SCADA systems in smart grids [33]. 

 The deception technology, i.e. honeypots, honeynets 

and other forms of digital decoys, introduces an 

additional layer of defence in a dynamic and adaptive 

security environment [5]. In general, the cyber deception 

protects networks by creating uncertainties and 

complexities for the attackers, thus increasing the costs 

and risks associated with their activities. The scientific 

basis for these technologies is their ability to mimic real 

systems designed to mislead the attackers into engaging 

with the decoys, thereby revealing their presence and 

providing an opportunity to observe their tactics and 

intentions without compromising the actual resources 

[34][35]. A honeypot is a technology that complements 

and expands the field of operation of the IDPS systems 

to improve the detection of the zero-day attacks in 

signature-based IDS/IPS systems, and to support the 

operation of the anomaly-based IDPS systems towards a 

more accurate detection [36]. There are two specific 

groups of the honeypots. The research honeypots are 

implemented in an isolated manner and separately from 

actual CI, deliberately exposing interesting systems, 

services and capabilities and thus setting traps for cyber 

attackers in order to observe the attack characteristics and 

collect data, which is used for a detailed analysis, 

profiling and planning of further defence measures. The 

production or in-network honeypots, on the other hand, 

enhance security procedures in an actual infrastructure 

[36]. They are embedded directly inside CI that is being 

protected and serve as active decoys, luring the attackers 

away from the actual resources, thus providing a real-

time protection as well as intelligence collection for the 

analysis and profiling purposes [37]. Honeypots can also 

be categorized as low-interaction, medium-interaction, or 

high-interaction honeypots, depending on the scope and 

complexity of their design and their capabilities to 

interact with and adapt to the attacker activities in real-

time [5][36]. The current research is focused on the 

development of the sector-specific honeypots for 

specialized systems, such as IIoT, ICS and CPS [38], 

complemented with advanced cyber intelligence tools 

capable of delivering actionable insights and decision 

support while minimizing the cognitive burden imposed 

on its users, e.g. tailored visualizations, cyber attack 

modelling with behavioural analytics, and deep learning 

techniques [37][39]. The interconnectedness of the OT 

and IT systems in CI allows for exploitation of a broad 

range of the available general IT-oriented honeypots, 

such as Dionaea [40] for the attack and malware 

detection, SSH/Telnet honeypot Cowrie [41], and 

Honeytrap solution [42][43]. Research on the honeypots 

specialized for specific CIs is also underway, but on a 

much smaller scale. Moreover, a detailed review of the 

available literature reveals that the vast majority of the 

reported CI honeypot experiments is conducted on the 

public Internet infrastructure or within university 

research environments, whereas only a small portion 

takes place in actual CIs or simulation environment 

thereof. Examples of the specialized sector-specific 

honeypots for CIs along with the available evidence 

about practical experiments for particular vertical sectors 

are presented in Table 3. The collected examples are 

primarily in the smart energy, water management and 

smart factory domains, whereas the application of the 

honeypots in other sectors is either less extensively 

addressed or predominately concerned with the IoT 

cybersecurity on the device level, e.g. of medical devices 

in healthcare or of autonomous vehicles in transportation. 

 The integration of the passive and active cyber 

defence measures and deception technology creates 

dynamic and adaptive cybersecurity capabilities and is 

representative of a synergistic approach installing a 

comprehensive and effective cybersecurity strategy. 

However, CIs continue to be particularly exposed and 

impacted by the increasing scale and progressive 

sophistication of cyber attacks. Thus, further advances 

are required towards an even more dynamic, intelligent, 
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and potentially more resilient approach to the CI security. 

To do so, the emerging strategies are increasingly 

leveraging the capabilities of AI, which has found several 

applications to predict, identify, and neutralize the 

cybersecurity threats and provide a new level of threat 

intelligence [65]. The opportunities and challenges of 

introducing AI into the CI cyber defence are addressed in 

more detail in the next section.  

 

Table 3: Review of the specialized sector-specific honeypots in 

CIs  

 

Honeypot 
Mimicked 

systems/services 

Demonstrated 

sector/CI 

Conpot [5] 
(basic and 

extended 

versions) 

ICS/SCADA systems 

simulation incl. ICS 
protocols and 

ICS/SCADA PLCs 

(e.g., Siemens S7-200 
PLC) 

Amazon AWS [44] 

Smart grid [45] 
Scheider Electric 

PowerLogic ION6200 

smart meter [46] 
Siemens S7-200 PLC 

simulation in an 

electric power plant 
[47] 

IEC104 
honeypot [36] 

ICS/SCADA systems Smart energy systems 

(electric power 
installations, power 

grids) 

DiPot [48] ICS systems ICS systems generally 

HoneyPLC [49] 
ICS systems; support 
for a wide range of PLC 

models and suppliers 

Amazon AWS, PLC 
systems generally 

HoneyVP [50] ICS systems ICS systems generally 

GridPot [51] 
SCADA CPS honeynet 
framework  

Smart energy system 
[52] 

CryPLH [53] 
ICS systems (S7-300 

Siemens PLC) 

ICS systems generally 

HoneyPhy [54] 
CPS honeypot (generic 
analogue thermostat 

and the DNP3 protocol) 

ICS systems generally 

iHoney [55] ICS infrastructure Water treatment plant 

XPOT [56] 
PLC honeypot 

(Siemens S7 314C-2) 

ICS systems generally 

TrendMicro[57] ICS honeypots Factory environment 

Cyber CNI [58] 
CPS honeypot (incl. 
PLC, SCADA, HW 

devices) 

Industry 4.0 factory 
emulation 

GasPot  [59] 
Veeder Root Guardian 
AST simulation (tank 

gauge) 

Gas pipelined 
infrastructure 

SHaPe [60] 

Electric power 

substation IED 
simulation 

Power systems 

Wilhoit [61] 

ICS honeypots 

mimicking water 
pressure station 

Water treatment 

infrastructure 

Murillo [62] 

ICS plant simulation 

(water tanks, sensors, 

actuators, and PLC 
devices) 

Water treatment 

infrastructure 

MimePot [63] 

ICS components and 

control processes 
simulation 

Water distribution 

PoC implementation 

NeuralPot [64] 

ICS industrial 

environment 

simulation 

ICS systems generally 

 

4 AI APPLICATIONS IN CI CYBERSECURITY 

The integration of AI into the cybersecurity protocols 

represents a paradigm shift from a static defence to a 

dynamic, intelligent, and potentially more resilient 

approach to securing CIs. AI, and ML in particular, 

provide capabilities for recognizing patterns and 

predicting future events based on a prior experience, 

thereby preventing or detecting and even responding to 

potentially malicious activities [25]. At present, the ML 

algorithms are commonly used for intrusion detection, 

classification, prediction and prevention, automated 

incident response, malware detection and analysis, 

anomaly detection, zero-day attack prediction, as well as 

for advanced analytics and other intelligent applications 

in the threat intelligence that operate based on extraction 

of insights from the cybersecurity data [25][34][66][67]. 

 According to NIST, AI has been recently recognized 

as a major enabler in all stages of the cybersecurity, i.e. 

identification, protection, detection, reaction and defence 

against cyber attacks. A summary of the possible uses 

and applications of AI/ML in different cybersecurity 

stages is provided in Table 4 [34][67]. We hereafter focus 

more thoroughly on the adoption of AI in the cyber 

defence mechanisms of IDPS and deception technologies 

as well as complementary capabilities in the detection 

and response operations, such as predictive intelligence. 

However, AI is expected to empower all stages of the 

cyber protection in the technological, managerial and 

procedural aspects, including the AI-based security by 

design and micro-segmentation, automated AI-based 

vulnerability identification and assessment, AI-assisted 

penetration testing, AI-based cybersecurity infrastructure 

investments optimization, in-depth AI forensics, etc. 

[65]. 

 

Table 4: AI applications in the adaptive cybersecurity 

 
Stage AI/ML applications (examples) 

PREDICT 

Prediction of new attack vectors based on 
identification of trends, anomalies and potential 

new threats, and behaviour analytics, using 

historic and current datasets from various sources 

PREVENT 

Identification and blocking of potentially 

malicious activities, automation of security 

measures and configurations, e.g. through using 
automated network security policy management 

tools, advanced antivirus software, and adaptive 

authentication systems 

DETECT 

Enhancements of traditional (signature-based) 

detection capabilities through pattern recognition 

indicative of threats, e.g., zero-day attacks and 
sophisticated malware 

RESPOND & 
RECOVER 

Automated incident analysis for threat 

prioritisation and future response optimizations 

Advanced forensics 

 

4.1 AI learning approaches 

 In its broadest sense, AI can be referred to as a 

computer system with a human-like intelligence, the 

capabilities of which include the ability to reason, learn, 
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solve problems, self-correct, and interpret the natural 

language [30][66]. Herein, the ML technologies 

represent algorithms that have the ability of making 

decisions or predictions by learning from data instead of 

being explicitly programmed, by automatically creating 

analytical models in the concrete domain of application 

[25]. Depending on the learning type, the ML approaches 

can be classified into supervised learning, unsupervised 

learning, deep learning (DL), generative learning, and 

reinforcement learning, as well as combinations thereof, 

i.e. semi-supervised learning that combines supervised 

classification and unsupervised clustering methods, 

transfer learning where a pre-trained model is applied to 

a new classification task of a related problem, federated 

learning that takes place across several independent 

decentralised datasets, and ensemble learning that 

combines multiple learning algorithms either 

sequentially or in parallel for improving the resulting 

predictive performance. Presently, the supervised 

learning is the most frequently used approach in the 

cybersecurity applications. However, it suffers from two 

significant drawbacks. Firstly, the traditional supervised 

learning is capable of identifying only pre-defined 

features or parameters [3]. In response, other ML 

approaches are currently considered to overcome the 

feature extraction issues. DL, for example, has the ability 

to directly train on the original data without feature 

extraction and as a result it is able to detect nonlinear 

relationships, and is therefore specifically useful for the 

detection of the previously unknown attacks on CI [3]. 

Secondly, the supervised learning requires annotated 

training datasets, which must be recent, representative, 

high-quality and containing relevant features. Thus, a 

choice of the model depends on the learning properties, 

quality of the available cybersecurity data and on the 

effectiveness of the learning algorithm. Studies of the 

AI/ML-based intrusion detection solutions for the IoT 

and CPS systems [67][116][117][118] for example 

demonstrate varied levels of the effectiveness in using 

different models, i.e., decision trees, random forests and 

K-Nearest Neighbours perform well, while deep 

learning, MLP, Naïve Bayes and Logistic Regression 

show a lower performance, and expectedly fusion 

methods outperform the basic classifier models. Thus, 

each particular AI/ML application requires targeted 

studies and careful selection of the most appropriate 

model.  

 

4.2 AI training datasets 

The availability, quality and recency of the training 

datasets is a crucial challenge in the AI/ML-based cyber 

defence [65]. A closer examination shows that most of 

the available datasets are outdated and thus unable to 

support the AI algorithms in establishing understanding 

of the most recent cyber attack patterns [131]. Also, the 

sufficiently broad real-world cybersecurity datasets for 

CIs are scarce, which is partially due to the privacy, 

regulatory and legal limitations, e.g., in healthcare, or 

even explicit requests from the infrastructure operators, 

associated with sensitive nature of such data [132]. 

Moreover, some CIs are subjected to further sector-

specific challenges associated with the data availability. 

In defence, for example, rare or even hypothetical events, 

or out-of-bounds inputs are features rather than dataset 

anomalies [133]. Also, some applications require highly 

varied scenarios with all possible combinations of 

attributes that cannot be realistically captured in the 

original data, i.e. in an AI-assisted UAV-based visual 

reconnaissance application that cannot take place in all 

possible environments and flight conditions. To 

overcome the dataset scarcity problem, the few-shot 

learning approach is an emerging direction where a few 

malicious samples, such as zero-day attacks, are 

collected in realistic settings [69]. Another approach is 

the use of synthetic datasets in place of real-world 

datasets [134][135]. It allows to generate highly diverse 

or even novel datasets, fine grain control of data 

attributes, and automatic annotation or data labelling 

where necessary, which is particularly appropriate for 

CIs that require training datasets comprising unusual or 

rare events, or a broad variety of possible scenarios. The 

scarcity of high-quality datasets is further exacerbated 

also by the fact that the current AI practice predominately 

relies on isolated uses of individual datasets, which in 

addition to the availability issues stems from the poor 

understanding of the relationships between individual 

datasets. The research shows that the same limited choice 

of the available datasets have been used in numerous 

studies on the cyber attack detection mechanisms [65], 

i.e., datasets DARPA'98 [137], KDD'99 [138], NSL-

KDD [139], and CIC-IDS2017 [140]. The AI training 

approaches based on a successful fusion of multiple 

datasets are thus an emerging research topic. Some of the 

well-known and used cybersecurity datasets relevant in 

the context of CI are summarized in Table 5. 

4.3 AI applications in cyber defence 

AI has many applications in IDPS, deception 

technologies and incident response systems. In IDSP, the 

signature-based systems suffer from their inability to 

detect new attacks [69]. For example, sophisticated 

malware uses concealment techniques to reprogram itself 

after each consecutive attack iteration, thus successfully 

preventing the detection based on the attack signature 

[67]. This shortcoming is overcome in the anomaly-based 

IDPS that has capabilities to detect new types of attacks, 

but the approach consequently suffers from false 

positives, i.e. normal traffic patterns wrongly recognized 

as deviations [70]. To overcome these challenges, AI 

enhances the network-based IDPS systems with 

advanced capabilities for an automated and intelligence-

driven detection of novel threats and further reduction of 

false alarms resulting from misclassification of a normal 

behaviour [66][67]. A range of the AI-based capabilities 

is applied for different purposes, such as anomaly 

detection by analysing traffic patterns and payloads, 

detection of encrypted threats by analysing flow 
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properties, outlier detection by means of unsupervised 

clustering, etc. In the host-based IDPS, ML is used e.g., 

for malware classification and detection of malicious 

system state changes. AI is used in IDPS also for 

response and containment purposes, e.g., to adaptively 

modify policies in real time in order to block malicious 

traffic, prioritize and contain host endpoint attacks, or 

even apply an adaptive system-wide response with 

successive strategy refinements after each iteration [71]. 

Such strategies are particularly beneficial in response to 

zero-day attacks where an adaptive response is crucial.  

 

Table 5: Some of the well-known cybersecurity datasets 

 
Dataset Characteristics 

DARPA'98 

[137] 

The 1998 DARPA Intrusion Detection Evaluation 

Dataset consisting of an off-line evaluation using 

network traffic and audit logs collected on a 
simulation network, and of real-time evaluation 

that took place in the AFRL network test bed 

identifying attack sessions in real time during 
normal activities. 

KDD’99 Cup 

[138] 

Most widely used dataset with 41 features 

attributes and class identification. It distinguishes 
between four categories of attacks: DoS, remote-

to-local (R2L) intrusions, user-to-remote (U2R) 

intrusions, and PROB and conventional data. 

NSL-KDD 
[139] 

Updated KDD’99 Cup with removed redundant 
records to avoid skew. 

CAIDA’07 

[141] 

A 2007 dataset with anonymized traces of the 

recorded DDoS attack traffic.  

ISCX’12 [142] 
A dataset containing network traffic generated in 
a real-world physical test environment, containing 

centralized botnets. 

CTU-13 [143] 
A botnet traffic dataset containing 13 separate 
malware captures, including botnet, normal, and 

background traffic. 

UNSW-NB15 

[144] 

A dataset containing 49 features and roughly 

257.700 records, which represent 9 different 
forms of attacks, including DoS. 

CIC-IDS2017 

[140] 

An intrusion detection evaluation dataset 

containing benign and most common attacks, and 
the results of a network traffic analysis with 

labelled flows based on the time stamp, source, 

and destination IPs, source and destination ports, 
protocols and attack. 

CIC-
DDoS2019 

[145] 

A dataset containing common DDoS attacks. It 

includes also the results of the network traffic 
analysis with labelled flows (time stamp, source, 

and destination IPs, source and destination ports, 

protocols and attack). 

UNSW-NB15 

2015 [146] 

A dataset containing an hour of traffic that 
represents 9 types of the major attacks – fazer, 

shellcode, backdoor, DoS, exploit, generic, 

reconnaissance, analysis, worm. 

CSE-CIC-

IDS2018 [147] 

A comprehensive dataset comprising various 

classes of attacks. Six attack scenarios were used: 

bruteforce (dictionary password matching), 
heartbleed (SSL/TLS vulnerability), botnet, DoS, 

DDoS, WEB application attack. 

WUSTL-IIOT-

2018 ICS 

SCADA cyber 
security 

dataset [148] 

A dataset prepared with a SCADA system, 

emulating real-world industrial systems, and 
focusing on reconnaissance attacks (port scanner, 

address scan attack, device identification attack, 

device identification attack – aggressive mode, 
exploit). 

ADFA 2013 

[149] 

A dataset intended for IDS evaluation, containing 

server traffic for Ubuntu Linux 11.04 with Apache 

2.2.17 and PHP 5.3.5, FTP, SSH, MySQL 14.14, 
and TikiWiki software. It includes traces of 

network attacks: Hydra-FTP, Hydra-SSH, 

Adduser, Java-Meterpreter, Meter-preter, 
Webshell. 

Bot-IoT 

Dataset 2018 
[150] 

A large IoT data set containing various attack 

types, including DDoS, DoS and service scanning. 
The included types of the IoT devices are weather 

station, intelligent refrigerator, lamps with motion 

sensors, remote garage doors, and intelligent 
thermostat. 

IoT-23 [151] 

A datatset containing 20 malware captures 

executed in IoT devices, and 3 captures for benign 
IoT devices traffic. 

 

 The analysis of examples of AI-based IDS for CIs 

reveals a varied use of the ML learning approaches, as 

summarized in Table 6. The predominant category of ML 

applications in IDS falls within the scope of the 

supervised learning approaches. Examples of the use of 

the ML classification applications include e.g., IDS for 

advanced metering infrastructure in smart grids using a 

decision tree for anomaly detection [72], Android 

malware detection in the context of IoT using support 

vector machine classification [73], anomaly-based IDS 

using a lightweight logic regression model for network 

security improvement and reduction of the human 

involvement in the botnet detection [74], IDS for a gas 

pipeline infrastructure using K-Nearest Neighbour [75], 

and application of fuzzy logic, neural networks, and 

support vector machines to improve the false-alarm 

problem and detection of different attack types, such as 

DDoS [76]. Examples of ensemble learning applications 

include network-based IDS with a network intrusion 

prediction based on random forest and support vector 

machine using multiple decision trees [77], a random-

forest based man-in-the-middle attack detection for 

SCADA IoT systems [78], and IDS for IoT platform 

integration using a combination of a random forest and a 

neural network [79]. Network-based intrusion detection 

using an association rule-mining approach [80] and 

belief-rule-based association rule with the ability to 

handle the various types of uncertainties in IoT 

environments [81] are examples of the rule-based 

applications. A more recent category of AI-assisted IDS 

utilizes deep learning. The examples include SCADA 

IDS using a Genetically Seeded Flora feature 

optimization technique merged with Transformer Neural 

Network [82], an optimized Back-Propagation Neural 

Network for SCADA intrusion detection in water 

treatment systems  [83] intrusion detection in CPS using 

a LSTM-based recurrent neural network [84], a smart 

grid IDS solution using an Autoencoder-Generative 

Adversarial Network for attack detection [85], 

identification of cyber attacks in IIoT using recurrent 

neural networks and artificial neural networks [86], and 

IDS using CNN for detection of man-in-the-middle 

attacks on military-grade Robot Operating System [87]. 

In the generative learning category, IDS solutions using 

auto-encored based approaches are available for malware 

and intrusion detection [88][89], and intrusion detection 
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based on deep belief networks [90]. Semi-supervised 

learning is also employed, e.g., for fog-based attack 

detection using the ELM-based Semi-supervised Fuzzy 

C-Means method for cloud/fog-computing in IoT 

environments [91], a deep Feed Forward Neural Network 

as a classifier with a deep autoencoder for anomaly 

detection in SCADA systems [82], and for false data 

injection attacks detection in smart grids using 

autoencoders and generative adversarial network [92]. A 

model-free reinforcement learning approach was used for 

online cyberattack detection in smart grid [93], and 

inverse reinforcement learning for anomaly detection 

based on sequential data in safety-critical environments 

[94]. 

 Examples of AI-powered IPS solutions include an IPS 

for unmanned aircraft system incorporating customized 

Threat Analysis and Risk Assessment (TARA) and 

dynamically applied prevention rules for the detected 

attacks using deep learning [95], a network-based IPS 

based on self-organizing incremental neural network and 

support vector machine for industrial applications [95], 

and an IPS based on game theory for Cyber Physical 

Systems (CPS) using reinforcement learning [96]. Other 

generic IPS examples include automatic incident 

characterization using ML to assign severity of the 

incident [97] and solutions for AI-based alert triage based 

on alert grouping in NIDPS using unsupervised 

clustering algorithms [98] and alert prioritization using 

auto-encoders [99]. 

Table 6: ML approaches in IDPS for specific CIs 

 
Learning 

approach 

Examples of applications in specific CIs 

Supervised - 

classification 

Anomaly detection in smart grids [72] 

Android malware detection in IoT [73] 

IDS for gas pipeline infrastructure [75] 
NIPS for industrial applications [95] 

Supervised - 

ensemble 
learning  

Man-in-the-middle attack detection for SCADA 

IoT systems [78] 
IDS for IoT platform integration [88] 

Deep learning  

SCADA intrusion detection in water treatment 

systems [82]  

Intrusion detection in CPS [84] 
Attack detection in smart grids [85],  

Identification of cyber attacks in IIoT [86] 
Detection of man-in-the-middle attacks on 

military-grade Robot Operating System [87] 

IPS for unmanned aircraft system [32] 

Semi-

supervised 

learning 

Attack detection in fog computing IoT [91] 

False data injection attacks detection in smart 

grids [92] 

Reinforcement 

learning 

Online cyber attack detection in smart grid [93] 
Anomaly detection in safety-critical 

environments [94] 

IPS for CPS systems [96] 

 

 In the deception technology generally and the 

honeypots specifically, AI is employed for two principal 

purposes, i.e. to improve the adaptive behaviour 

capabilities [100], and to implement retrospective 

analysis. A variety of ML techniques has been proposed 

for adaptive behaviour capabilities in honeypots, 

including e.g., the use of reinforcement learning for 

concealment purposes and increased engagement [101] 

and for improving emulation capabilities [102], and more 

recently by using various types of Markov chains, e.g., to 

increase the number of commands from an attack 

sequence [103]. Following the attack data collection, 

different ML approaches are employed for analytics 

purposes in order to implement attack classification and 

modelling, with the majority of approaches relying on 

supervised and unsupervised learning, e.g., for DDoS 

identification [104], and for training dataset preparation 

[105]. The AI-assisted honeypot solutions include a 

honeynet for enhanced IoT botnet detection rate using 

logistics regression and cloud computing [106], and a 

production honeypot DeepDig [107] that uses ML for 

attacker profiling and adaptability. Other approaches use 

ML for anti-detection, i.e. reinforcement learning, and 

for zero-day DDoS attack prevention [103]. Honeypots 

Heliza [108] and RASSH [109] utilize reinforcement 

learning to implement interactivity during attacks, e.g., 

allowing and blocking commands and substituting 

messages. Another practical example of the deception 

technology besides the AI-powered honeypots includes 

the use of AI for generating decoy text files and 

deliberate manipulation of comprehensibility of real 

documents protected using genetic algorithm [110]. 

 There are several other relevant AI cybersecurity 

application directions underway in the context of the AI-

assisted cybersecurity in CIs that either incorporate or 

complement and extend capabilities of IDPS and 

deception technology. For example, the use of AI is 

extensively examined also for predictive intelligence in 

order to support capabilities to predict in advance the 

type, intensity and targets of an intrusion. Examples 

include the use of DL for network intrusion alert 

forecasting based on specific targets or malicious sources 

[111][112] and malware attack prediction based on 

recurrent neural networks [113]. Also, for security 

monitoring purposes, AI is considered to support and 

extend capabilities for security threats identification and 

investigation through data analysis and intel presentation. 

Some selected illustrative examples include e.g., SIEM 

for the detection, normalisation and correlation of cyber 

attacks and anomalies in smart grids [114], and a cyber 

attack detection system for ICS [115]. 

 

5 ADVANCED TOPICS AND FUTURE 

RESEARCH DIRECTIONS 

Despite the obvious benefits, the AI-based IDPS and 

deception technology solutions suffer from several major 

challenges. The two prominent ones in the context of CI 

are explainability, measured in terms of the utilized 

model being interpretable, and robustness which 

represents the stability of the model against adversarial 

attacks. Available research demonstrates that there is no 

one approach that exhibits superiority in both aspects 

[71] and each represents a relevant emerging research 

direction. 
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5.1 Explainable AI 

Explainability is an essential aspect in the AI-based 

security applications [67], i.e., the transparency of the 

algorithm functioning that reveals how and based on 

what facts the initial conclusion was made. The current 

AI algorithms lack transparency in their decision-making 

process [65], thus suffering from lack of acceptance and 

trustworthiness. The issue of interpretability or black-box 

AI is a well-known dilemma where there is a trade-off 

between the prediction accuracy and explainability of the 

model, which is particularly challenging for the AI 

applications with high security requirements such as in 

CIs. The challenge has recently led to a new research 

field on explainable AI (XAI) to achieve improved 

transparency, e.g., devising explainable IDS systems (X-

IDS) [70]. Numerous approaches are considered for the 

implementation of the XAI, including feature importance 

ranking, local explanations focused on a specific 

datapoint or prediction, rule-based learning 

implementations and the use of inherently interpretable 

models, i.e. linear and logistic regression, visual 

interpretation of the model attention, and explainability 

layers and user interfaces to support exploration of the 

model internal representations in a human-readable form. 

Despite its potential, however, XAI is a nascent research 

direction. Some of the currently known challenges 

include the introduction of additional complexity, 

reduced prediction accuracy, and human-AI interfacing 

for understandable explanations. 

5.2 Adversarial AI 

Even though designed to improve the robustness of the 

cyber defence, the AI and ML algorithms incorporated in 

IDPS and deception technologies are attractive 

cybersecurity targets themselves, creating a whole new 

attack surface in CIs [119][120]. Cyber attackers target 

vulnerabilities of the AI applications as part of their 

attack strategies, e.g. offensive cyber operations using 

synthetic images, adversarial data manipulation etc., 

while at the same time they progressively leverage the AI 

capabilities to enhance their attack techniques and 

improve the defence avoidance [25][134]. This 

represents a new dimension in the threat landscape that 

the defence mechanisms must recognize, acknowledge 

and manage [152][153].  

 

Table 7: Categories of adversarial attacks on AI 

 
Attack Description 

Poisoning 

attack 
(training) 

Modifies training data to get a desired outcome at 
inference time. This allows the attacker to create 

backdoors in the model where an input with the 

specified trigger will result in a particular output. 

Evasion attack 

(inference) 

Based on adversarial inputs, the attacker elicits an 
incorrect response from a model. Typically, 

malicious inputs are indistinguishable from 

normal data. Evasion attacks can be targeted, 
where the malicious input is designed in a way to 

produce a specific classification, or untargeted 

where any incorrect classification is attempted. 

Functional 

extraction 
(inference) 

In this type of the attack, the model is iteratively 
queried in order to build a functionally equivalent 

model. Also known as a reverse engineering or 

model extraction attack. 

Inversion attack 
(inference) 

Attack that recovers sensitive information about 

training data, either fully or partially (properties, 

attributes).   

Prompt 
injection attack 

(inference) 

In this type of the attack, malicious prompts are 
injected into the model to cause an unintended 

behaviour, typically in the form of ignoring the 

original instructions and instead following the 
adversary instructions. The attack applies to the 

LMM models with complex inputs. 

Cyber attack 
Various cyber attacks targeting the AI 
infrastructure and its components instead of the 

model itself, e.g., API keys, data servers etc. 

 

 

Figure 6. Types of adversarial the AI attacks in training and 

inception stages. 

 

Fundamentally, the adversarial attacks pursue three 

general types of objectives, i.e., reduced availability, 

integrity violation and compromised privacy [154], with 

several different attack types (see Table 7). Attacks can 

be classified into two major groups according to the time 

of their occurrence, i.e. adversarial attacks during the AI 

training phase, and attacks in the inception phase, i.e., 

when an already trained model is tested, verified and 

deployed (see Figure 6). The adversarial attacks in the 

training phase are categorized as poisoning attacks, in 

which false or misleading data is injected into the training 

data, causing the model to learn incorrect patterns or 

behaviours. For example, to induce unpredictable, 

incorrect or even false predictions, the attacks utilize data 

perturbation, i.e., they slightly modify the input data, 

which leads to faulty model predictions. This can result 

in severe consequences in the context of services in CI. 

A model can thus be falsely trained to interpret an image 

of a tank as a civilian vehicle [133]. Poisoning was 
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demonstrated in [121] for the case of an AI-based drugs 

dosage prescription solution where malicious insertion of 

8% of the erroneous data to the AI algorithm caused a 

75% change in the prescribed drug dosage in 50% of the 

patients. Poisoning attacks are specifically problematic 

because they cannot be detected until the trigger is 

activated, and even then, the deviations from the 

expected behaviour can be minimal yet sufficient to 

cause damage. 

 The evasion attacks on the other hand take place in the 

inference phase, where the model inputs are manipulated 

(infected or falsified), inducing misclassification of an 

already trained model. In this type of the attacks, an 

incorrect response is elicited from the deployed model 

using adversarial inputs, which are typically 

indistinguishable from normal input data, causing an 

incorrect classification. The well-known examples from 

the transportation and autonomous driving domain 

include a successful misclassification of stop signs using 

altered images of the stop sign with stickers resembling 

graffiti [122], and autonomous vehicle camera image 

perturbations inserting road markings causing the vehicle 

to steer to the reverse traffic lane [156].  

 

Table 8: Adversarial AI attack scenarios in CI 

 
Type of 

infrastructure 

Potential adversarial AI attack scenarios 

Smart energy 

systems 

Perturbation of the input data to the AI algorithms 

used in energy management systems (e.g., 
falsified weather data) inducing an incorrect 

demand prediction, causing instabilities or even 

blackouts. 

Transportation 

infrastructure 

Input image perturbations inducing an incorrect 
classification causing a wrong interpretation of 

road signs and signatures from the vehicle camera 

and other sensor readings, resulting in dangerous 
driving behaviour (e.g., using wrong lanes or 

falsely interpreting road signs). Tampering of the 

traffic conditions data (traffic jams, accidents) to 
induce incorrect congestion predictions leading 

to suboptimal rerouting decisions resulting in 

congestions and gridlocks. 

Water treatment 

infrastructure 

Tampering with the input sensor data used by AI 

algorithms managing chemical dosing, causing 

public health hazards because of improper 
treatment levels. 

Healthcare 

Exposure of sensitive health data through stealing 

and reconstruction of the data from AI models 
deployed in smart health systems with access to 

patient records. Input image perturbation used by 

AI-based diagnostics tools causing misdiagnosed 
patients and incorrect treatment decisions. 

Financial 

services 

Injection of crafted transaction data that mimics 

normal user behaviour to AI-based fraud 

detection systems causing approval of malicious 
transactions with direct financial consequences. 

 

 The third category that also takes place in the 

inference phase are privacy-related attacks, where an 

attacker reconstructs the model or hijacks the data the 

model was trained on by analysing the black-box model, 

potentially causing an exposure of confidential data in the 

training dataset or the model itself [157]. Health- and 

medical-related CIs are prone to such attacks, possibly 

leading to an exposure of highly sensitive patient data 

[152]. The mechanics of individual adversarial AI attacks 

are represented in Figure 7. 

 An important observation based on the research of the 

relevant literature and other public sources is that there 

are currently no widely reported adversarial AI attacks on 

real CIs that have been confirmed. The documented cases 

are largely experimental, with demonstrations primarily 

taking place in experimental environments. Potential 

attack scenarios in specific CIs are summarized in Table 

8. However, the lack of reported real-world incidents 

does not diminish the concern given the increasing 

integration of the AI systems into CI and the field 

requires a further research attention. Protection against 

the adversarial AI is essential. It includes the application 

of appropriate pre-emptive measures suitable for the CIs 

and AI applications therein. The current approaches 

primarily constitute detection methods, such as real-time 

input monitoring, and robustness methods that comprise 

e.g. resistant training approaches and improved model 

rigidity to adversarial attacks. Adversarial training is 

employed where the training data incorporates examples 

of attack methods. The applicability of the approach, 

however, is highly dependent on the models it can target 

e.g., in IDPS the tree-based algorithms are subject to such 

adversarial training technique in order to improve their 

robustness [123], and on the realism and recency of the 

modelled attacks in a particular CI environment [124]. 

The Adversarial Threat Landscape for Artificial-

Intelligence Systems knowledge base provided by 

MITRE (MITRE ATLAS) is a relevant resource in this 

respect providing adversary tactics and techniques 

against the AI-enabled systems based on real-world 

attack observations and realistic demonstrations from AI 

red teams and security groups [158]. Furthermore, once 

in progress, cyber attacks on AI are very difficult to 

detect because of the explainability problem, where 

further research is also required. 

5.3 Emerging governance 

 To address the AI explainability and robustness 

problems and manage the deceptive consequences of 

cyber attacks on AI, numerous standardization and 

certification frameworks are underway globally. This 

includes ISO/IEC NP TR 24029-1 addressing the 

assessment of the robustness of the neural networks [125] 

and the ISO/IEC TR 5469:2024 on functional safety and 

AI systems [126], the OECD AI principles [127], the G20 

AI Principles, the World Economic Forum ten AI 

Government Procurement Guidelines, and the UNESCO 

Recommendation on the ethics of AI [128]. In the EU, 

the principal frameworks include the EU Cybersecurity 

Act establishing the framework for the cybersecurity 

standards and certification procedures for the digital 

technologies and services available in the EU, which 

among others mandates the EU Agency for Network and 

Information Security (ENISA) to guide the finalization 

of the national certification programmes in the EU 
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member states [129], and the recently enforced EU AI 

Act [130] which provides categorization of the AI 

applications according to their level of risk, establishes a 

regulatory frameworks similar to the GDPR for the data 

protection, and requires high-risk AI applications to 

undergo rigorous audits. Several other regional and 

national regulatory frameworks are also underway 

addressing the security, transparency, trustworthiness 

and ethics of AI. This landscape is expected to undergo 

further developments in the near future in order to arrive 

at a more robust, transparent, ethical, trustworthy and 

acceptable AI capable of serving the domains in question 

and the society as a whole. 

 

 

 

 
 

Figure 7. The mechanics of the adversarial AI attacks 

 

5.4 Other research topics 

There are several further trends emerging in the scope of 

the research on advanced cyber defence and the use of AI 

within the CI purview. Convergence of the blockchain 

technologies and AI is one such direction, aimed to 

establish a decentralized and verifiable approach to the 

cybersecurity with tamper-evident and immutability 

controls. Another comprehensive topic is quantum 

computing, promising to deliver a new generation of 

encryption capabilities through quantum-resistant 

cryptography as well as other emerging areas of 

application, such as the use of the quantum algorithms for 

an enhanced AI-based threat detection and response.  

 Ethical AI is emerging as a prominent and challenging 

research field, currently faced with several crucial 

considerations [7]. This includes discriminatory AI 

through training data bias inheritance that raises ethical 

concerns associated with fairness and justice, and the 

ethics of the AI applications in warfare and offensive 

cyber operations generally which, if not appropriately 

controlled, can unintendedly lead to devastating 

consequences, including collateral damage or conflict 

escalations. The research community is further 

concerned also with the robustness of the AI and the 
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possibility of being repurposed for malicious activities, 

such as AI weaponization. There are also ethical 

concerns and objections with respect to the privacy and 

informed use of AI in the cybersecurity, as well as several 

other challenges associated with the socio-economic and 

legal impacts, including accountability in decision-

making and AI-induced unemployment. In conclusion, 

the identification and discussion of the ethical issues and 

value conflicts involved in cybersecurity in relation to CI 

and the adoption of the AI applications are fundamentally 

important in assisting further guidance. 

6 GUIDANCE ON THE ADOPTION OF AI FOR 

THE CI CYBER DEFENCE  

The preceding sections demonstrate the extensive 

opportunities of AI in providing enhancements to the 

cyber defence capabilities. However, the implementation 

of reliable, resilient and trustworthy AI applications into 

CI is in a nascent phase lacking sufficient best-practice 

examples and guidance about the most appropriate 

approaches. Thus, a set of guidelines is drafted hereafter 

to inform and guide an integrated and strategic approach 

to an AI-powered secure CI. The guidelines draw from 

key findings in relevant scientific literature, and from 

available advisory resources on securing IT and OT in CI 

[159][160] and on the introduction and securing AI in 

such environments [161]. 

 In the process of securing the introduction of an AI 

system into CI, four fundamental perspectives can be 

distinguished, i.e. conducting a thorough risk assessment 

and alignment with the general security practice of CI 

and vulnerability management procedures, securing and 

hardening the IT/OT environment the AI system is 

introduced into, adoption of specific measures and 

technologies to install secure and hardened AI 

specifically, and continuous maintenance of appropriate 

knowledge capacities. Each of the identified perspectives 

is an essential element of the CI overall security posture, 

entailing a range of the possible approaches requiring a 

further consideration and validation through best 

practices and experience to be gained in the next stages 

of the AI-based CI evolution. 

 Risk assessment – The risk assessment is an essential 

initial phase of the AI introduction, including the 

definition of the AI use cases and identification of the 

vulnerabilities and impacts, followed by a risk 

prioritization in the alignment with the CI risks 

management strategy. 

 Securing the CI environment – AI is considered an IT 

system and will thus be deployed in the IT parts of CI. 

The security and resilience must be planned and installed 

in both the IT and OT parts of CI and security measures 

must be in place for the deployment of the AI specifically 

as well as for general robustness of the environment. This 

includes hardening through the adoption of the security-

by-design and Zero Trust principles, strict oversight over 

remote access and Internet connections, using also 

publicly available resources such as Shodan to discover 

Internet-accessible OT devices, and monitoring, 

management and possibly removal of any non-vital 

remote access. A secure network architecture must be 

implemented using a combination of the approaches and 

techniques, i.e. demilitarized zones (DMZs), firewalls, 

sandboxing, and network segmentation to protect the IT 

and OT parts specifically from a direct exposure to the 

Internet wherever applicable.  Secure SW management 

should be implemented, including SW updates and 

patches to minimize the exposure through the known 

vulnerabilities. Network hardening must be addressed 

specifically, by securing remote access through virtual 

private network, encryption and multifactor 

authentication, traffic filtering and the use of geo-

blocking where appropriate etc. Cyber defence capacities 

should be installed by using the IDPS capabilities and 

other targeted cyber protection and defence solutions, 

both in the IT and OT parts of IC. These approaches, 

measures and technologies apply to CI irrespective of the 

AI introduction. 

 Securing AI – Dedicated capabilities and measures for 

the AI system are specifically required, during 

preparation and acquisition, deployment and operation. 

In preparation of the AI deployment, supply chain 

security must be instilled for any part of the AI system 

provided externally. Also, secure software maintenance 

practices should be adopted, such as the use of 

cryptographic mechanisms and digital signatures for the 

AI system validation, secure SW storage and versioning. 

Prior and during the deployment, hardening of the 

boundaries between the IT environment and the AI 

system should be installed along with an implementation 

of access control and instalment of privileged access 

only, and identifying and securing data sources and 

sensitive AI data using encryption at rest and secure 

communication protocols in transit. Testing and 

validation of externally acquired AI models should be 

conducted in a secure development environment prior to 

its deployment into production. Testing of the AI system 

for the robustness, accuracy and potential vulnerabilities 

prior to deployment as well as after any subsequent 

modifications should also be implemented. Advanced 

measures, such as adversarial training, should also be 

considered. If an AI system exposes application 

programming interfaces, they should be secured through 

authentication and authorization and the use of secure 

protocols. Penetration testing and audits should be 

considered by external experts to detect any 

vulnerabilities that have not been detected internally. 

Once the system is deployed, strong access control 

should be employed for access to the AI model to prevent 

any tampering, e.g., by using a role- or attribute-based 

access control. The access protection must be specifically 

focused on the protection of model weights. An 

automated anomaly detection, analysis and response 

capabilities for the AI system should also be considered 

to identify and react to any possible cybersecurity 

incident. This entails active an AI behaviour monitoring 

to detect unauthorized changes and access and inference 
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attempts, as well as any further security posture updates 

as new threats emerge. Finally, capabilities for a manual 

inspection and mitigation should be in place in order to 

prevent overreliance on the AI system and instil its 

augmentation instead. 

 Awareness, training and knowledge capacity building 

– User training and awareness as well as advanced 

knowledge building should be instilled and maintained at 

all times to minimize the human error and support a 

secure and trustworthy AI operation maintenance in CI. 

This includes knowledge about the security principles 

generally as well as about specific topics, such as secure 

password management, secure data handling, phishing 

prevention, etc. Advanced knowledge should be 

maintained and improved on a continuous basis in the 

essential AI-related areas, such as awareness about the 

current and emerging threat landscape, explainability, 

ethics and adversarial robustness. 

 The presented guidelines are drafted in order to 

provide a general orientation in crucial aspects of the use 

of AI for the cybersecurity in the CI environments. 

However, in order to fully exploit the potential of the AI-

enhanced cyber defence, the presented guidance must be 

further complemented with knowledge, capacities and 

procedures to install a continuous evolution in all 

relevant topics, existent and emerging guidance on the 

security, standardization and certification of CI, as well 

as sustained collaboration and communication with the 

relevant cybersecurity advisories and the research 

community to understand and instil the latest 

technological advancements and practices and thus 

maintain a cutting-edge posture of the AI-enabled CI 

cyber defence. 

 

7 CONCLUSION 

The AI adoption marks a significant advancement 

towards enhancing the cyber defence capabilities in 

response to the increasingly sophisticated threats in CI. 

This paper shows that the dynamic, adaptive, and 

intelligence-driven AI applications not only fortify the 

defence mechanisms but also propel the development of 

more resilient critical infrastructures. However, the 

discussed approaches and capabilities introduce 

complexities and considerations, particularly in terms of 

the resilience, robustness, explainability, ethical use, and 

the need for robust AI governance frameworks. In an 

attempt to harness its potential while prioritizing safety 

and trustworthiness, the effectiveness of the AI systems 

for the cyber defence must be continuously assessed 

against the emerging CI threats and vulnerabilities, 

carefully considering also the aspects of dual use, and a 

balance should be sought between the advancements in 

innovation and their ethical application into practice. Last 

but not least, emphasizing collaboration across sectors 

and a continuous and thoughtful consideration of best 

practices as they emerge will be of the utmost importance 

in establishing future pathways for this particular sector. 
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