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Spoštovani bralci revije Journal of energy technology (JET)

Uporaba vodnih virov za proizvajanje električne energije je ena najbolj učinkovitih oblik izkoriščanja 
obnovljive energije. Moč vode so sicer znali izkoriščati nekateri narodi že pred začetkom našega 
štetja. Prvi projekt hidroelektrarne na svetu je bil sicer uporabljen za napajanje ene same 
svetilke v podeželski hiši Cragside v Northumberlandu v Angliji leta 1878. Štiri leta pozneje je 
bila v Wisconsinu v ZDA odprta prva elektrarna, ki je služila sistemu zasebnih in komercialnih 
strank. Prvo hidroelektrarno na reki Niagari je zgradil George Westinghouse po načrtih Nikole 
Tesle leta 1895. To je bila prva večja elektrarna, ki je proizvajala izmenični električni tok. Le nekaj 
dni pozneje je začela delovati hidroelektrarna na reki Krki pri Šibeniku. Hidroelektrarna Fužine je 
hidroenergetski objekt na Ljubljanici, ki stoji ob južni steni gradu Fužine v ljubljanskem predelu 
Nove Fužine. Obratovati je začela 14. aprila 1897 kot prva slovenska elektrarna na izmenični tok. 
Razvoj hidroelektrarn po svetu je nato potekal izjemno hitro.

V svetu, pa tudi v Sloveniji, je hidroenergija pomemben vir, saj Slovenija okoli 25 % vse proizvedene 
električne energije pridobi iz hidroelektrarn, v svetu pa se pridobi približno 15 odstotkov vse 
električne energije s pomočjo potencialne energije vode. Takšen način pridobivanja energije je 
okolju prijazen, saj ne povzroča emisij toplogrednih plinov, vendar pa ima kljub temu vpliv na 
okolje. Čeprav hidroelektrarne ne povzročajo onesnaževanja zraka in vode, imajo lahko vpliv na 
okolje, zlasti pri postavitvi jezov. 

V splošnem lahko rečemo, da hidroelektrarne prispevajo k trajnostnemu razvoju, z nadaljnjimi 
raziskavami pa lahko še izboljšamo učinkovitost in zmanjšamo njihov vpliv na okolje. Zato sta 
razvoj in izboljšanje obstoječih tehnologij na področju izkoriščanja vodne energije izjemnega 
pomena.

Bralcem želim zanimivo branje revije JET.

Jurij AVSEC
odgovorni urednik revije JET
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Dear Readers of the Journal of Energy Technology (JET)

The use of water resources to produce electricity is one of the most efficient forms of renewable 
exploitation energy. Some nations have been able to harness the power of water since before 
the beginning of our era. The world's first hydroelectric power project was used to power a 
single lamp at the Cragside country house in Northumberland, England, in 1878. Four years later, 
the first power plant to serve a system of private and commercial customers was opened in 
Wisconsin, USA. The first hydroelectric power plant on the Niagara River was built by George 
Westinghouse according to plans by Nikola Tesla in 1895. It was the first major power plant to 
produce alternating current. Just a few days later, a hydroelectric power plant began operating 
on the Krka River near Šibenik. The Fužine Hydroelectric Power Plant is a hydroelectric power 
facility on the Ljubljanica River, located next to the southern wall of Fužine Castle in the Nova 
Fužine district of Ljubljana. RKD No. It began operating on 14 April 1897 as the first Slovenian 
alternating current power plant. The development of hydroelectric power plants around the 
world has been than extremely rapid….

In the world, as well as in Slovenia, hydropower represents an important source, as Slovenia 
obtains around 25% of all electricity produced from hydroelectric power plants, and, in the world, 
approximately 15% of all electricity is obtained using the potential energy of water. This method 
of generating energy is environmentally friendly, as it does not cause greenhouse gas emissions, 
but it still has an impact on the environment. Despite the fact that hydroelectric power plants do 
not cause air and water pollution, they can have an impact on the environment, especially when 
dams are built.

In general, we can say that hydroelectric power plants contribute to sustainable development, 
and, with further research, we can improve their efficiency further, as well as reduce their impact 
on the environment. Therefore, the development and improvement of existing technologies in 
the field of exploiting hydroelectric power is of the utmost importance..

I wish readers an interesting reading of the JET magazine.

Jurij AVSEC
Editor-in-chief of JET
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THEORETICAL AND EXPERIMENTAL 
INVESTIGATIONS OF A WATER HAMMER 

IN SAVA RIVER KAPLAN TURBINE 
HYDROPOWER PLANTS 

TEORETIČNE IN EKSPERIMENTALNE 
RAZISKAVE VODNEGA UDARA V 

HIDROELEKTRNAH S KAPLANOVIMI 
TURBINAMI NA REKI SAVI

Keywords: hydropower plant, Kaplan turbine, Sava River, water hammer, validation

Anton Bergant1,2R, Jernej Mazij1, Jošt Pekolj1

Abstract
This paper deals with critical flow regimes that may induce an unacceptable water hammer in the 
Sava River Kaplan turbine hydropower plants. The rigid water hammer model is introduced first. 
The computational results are then compared with the results of measurements in two distinct 
hydropower plants (HPP): (i) The refurbished and upgraded Medvode HPP, and (ii) The newest 
Brežice HPP. Comparisons of the computed and measured results are examined for normal operating 
regimes. The water hammer in the two power plants is controlled by appropriate adjustment of 
the wicket gates and runner blades closing/opening manoeuvres. The agreement between the 
computed and measured results is reasonable.1

Povzetek
Prispevek obravnava kritične pretočne režime, ki lahko povzročijo nesprejemljiv vodni udar v 
hidroelektrarnah s Kaplanovo turbino na reki Savi. Najprej je predstavljen model togega vodnega 
udara. Računske rezultate nato primerjamo z rezultati meritev v dveh značilnih hidroelektrarnah 

R 1	 Corresponding author: Anton Bergant, PhD, Full time: Litostroj Power d.o.o., Litostrojska 50, 1000 	
	 Ljubljana, Slovenia, anton.bergant@litostrojpower.eu; Part time: Faculty of Mechanical Engineering, 	
	 University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
1 	 Litostroj Power d.o.o., Litostrojska 50, 1000 Ljubljana, Slovenia
2 	 Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
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(HE): (i) prenovljeni in nadgrajeni HE Medvode ter (ii) najnovejši HE Brežice. Primerjave 
izračunanih in izmerjenih rezultatov so podane za normalne režime obratovanja. Vodni udar 
v obeh elektrarnah je krmiljen z ustrezno nastavitvijo manevrov zapiranja oziroma odpiranja 
vodilnih in gonilnih lopatic turbine. Ujemanje med izračunanimi in izmerjenimi rezultati je dobro.

1	 INTRODUCTION
Hydropower is a key renewable energy asset in Slovenia capable of meeting long term, and, in 
particular, intermittent electrical power demands. In the European Union it accounts for about 
12 % of electricity production. In addition, it offers flexibility and storage of energy, which are 
important for maintaining the stability of the electrical grid system, due to the growing share of 
variable renewable energy sources [1]. In the light of safe and flexible operation of hydropower 
systems this paper deals with water hammer events in the Kaplan turbine hydropower plants 
installed on the Sava River in Slovenia. The Sava River basin is the largest in Slovenia and represents 
more than 50% of the total country area, but is the least utilised in terms of hydropower, with 
a total installed capacity of 230 MW [2]. The Sava River hydropower plants with Kaplan turbines 
are (from north to south): Mavčiče HPP (1968, 2x19 MW), Medvode HPP (1953, upgraded and 
refurbished 2004, 2×12.4 MW), Arto-Blanca HPP (2008, 3x13 MW), Krško HPP (2012, 3×13 MW) and 
Brežice HPP (2017, 3×15.2 MW). Completion of the chain on the lower Sava River is underway, and 
the start of the procedure for the design of the middle Sava River chain with 10 hydropower plants 
is foreseen in the near future. 

Water hammer control is essential, to assure safe and flexible operation of the new, as well as 
the refurbished and upgraded hydropower plants. Large transient loads may disturb the overall 
operation of the plant (operational range) and damage the system components, for example, 
distributor vanes or runners. Hydraulic transients in hydropower plants with Kaplan turbines can 
be kept within the prescribed limits (pressure in the flow passage-system, turbine rotational speed, 
etc.) with the following methods [3], [4], [5]:

•	 Alteration of operational regimes. This method includes typically appropriate control of the 
wicket gate and runner blade manoeuvres (the turbine governor and servomotor mechanism). 
A two- or multi-speed wicket gate closing time function (adding a cushioning stroke) improves 
the safe operation of the plant significantly. Opening of the runner blades during the turbine 
shutdown (normal, mechanical quick stop, emergency) results in a favourable runner blade 
manoeuvring, improved over-speed performance and reduced negative axial hydraulic thrust. 

•	 Installation of surge control devices in the system. A draft tube gate can be used to protect a 
Kaplan turbine against runaway. In addition, sluicing operation of the low-head Kaplan turbines 
can attenuate open channel waves during transient regimes. Surge control devices alter the 
system characteristics (shorten the active conduit length, reduce the liquid compressibility, 
increase the turbine inertia, etc.). The protective devices that may be installed along the inlet 
and outlet conduit or added to the system components are increased turbine unit inertia, a 
surge tank (in HPPs with long conduits), a pressure regulating valve, aeration pipe, air valve, 
etc.   

•	 Redesign of the flow passage system layout includes a change of the conduit profile (high 
point) and dimensions (diameter, length), and different positioning of the system components 
(for example, valves).

Anton Bergant, Jernej Mazij, Jošt Pekolj JET Volume 17 (2024) p.p. 
Issue 4, 2024
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Theoretical and experimental investigations of a water hammer in Sava River Kaplan turbine hydropower plants 

A traditional water hammer control device, particularly in the case of refurbishment and 
upgrading of Kaplan turbines, is the turbine governor coupled to the wicket gate and runner 
blade servomotor mechanisms [6], [7], [8], [9]. The control devices should operate smoothly in 
the following normal operating conditions [4]: turbine start-up, load acceptance, load reduction 
and total load rejection (mechanical quick stop, electrical emergency shutdown). Emergency 
conditions are load rejections in which partial runaway occurs. The turbine runaway is considered 
as a catastrophic transient regime. Water hammer analysis should be performed for normal, 
emergency and catastrophic operating conditions. 

The main objective of this paper is to identify critical flow regimes that may induce unacceptable 
water hammer in the Sava River Kaplan turbine hydropower plants. The rigid water hammer 
model [3], [10] is introduced first. The computational results are then compared with the results 
of measurements in two distinct HPPs: (i) The refurbished and upgraded Medvode HPP, and (ii) 
The newest Brežice HPP. Comparisons of the computed and measured results are examined for 
normal operating regimes.

2	 THEORETICAL MODELLING
The water hammer in hydropower plants equipped with axial turbines (Kaplan, bulb) can be 
calculated using either the elastic [11] or rigid [10] water hammer theory. The run-of-river 
power plants are, traditionally, comprised of relatively short inlet and outlet conduits. The length 
of the conduit is of the same order as the cross-sectional dimensions, as is the case for the 
Medvode HPP and for Brežice HPP. The cross-sectional area is of a complex shape. The standard 
one-dimensional elastic water hammer model cannot predict the physics of wave transmissions 
and reflections accurately [12]. The rigid water hammer model is recommended to be used for 
this case [10]. Incompressible liquid and rigid pipe walls are assumed in the model. Rigid water 
hammer is described by the one-dimensional equation of motion for unsteady pipe flow [3]:

(2.1)

in which H = pressure head, x = distance, f = Darcy-Weisbach friction factor, Q = discharge,  
g = gravitational acceleration, D = diameter, A = cross-sectional area, and t = time. Equation (2.1) 
is solved simultaneously with the dynamic equation of the turbine unit rotating masses, taking 
into account the discharge and torque turbine characteristics [10]:

(2.2)

in which Tx = the net torque applied to the turbine unit shaft, I = the polar moment of inertia, and         
     = the angular velocity. Steady-state turbine characteristics are used for a transient analysis [13]. 
There are some discrepancies between the steady and unsteady performance characteristics, 
due to unsteady flow effects and when the turbine operates in a cavitating region [10]. Transient 
regimes in the HPP are relatively slow (the wicket gates closure time is much slover than the 
wave reflection time); therefore, the unsteadiness should not affect the turbine’s characteristics 
significantly. The complex axial turbine performance characteristics in zones of normal turbine 
operation and energy dissipation, and complex flow behaviour of the turbine, particularly at 
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off-design operating conditions, led researchers to develop a full-three-dimensional model for 
water hammer analysis in axial turbines with relatively short inlet and outlet conduits [14], [15], 
[16]. The three-dimensional model enables the prediction of flow quantities at an arbitrary 
computational domain location. The first step was to develop a model for a bulb turbine, because 
of its relatively simple geometry in comparison to the Kaplan turbine geometry (scroll-case, draft 
tube with elbow). The development of a  three-dimensional water hammer model for Kaplan 
turbines is the subject of the authors’ further research in the field of Fluid Transients in Systems.

The geometric characteristics of the inlet (Gu) and outlet (Gd) conduits are decribed by the 
following equations:

in which L = the length of the conduit.

3	 COMPARISONS OF THE COMPUTED AND MEASURED 		
	 WATER HAMMER EVENTS IN MEDVODE HPP
Medvode HPP is located on the Sava River in the town Medvode, 15 km north of Ljubljana. There are 
two double-regulated Kaplan turbines, each with its own flow-passage system. The plant was built 
in 1953 with the rated output of each turbine of Pr = 9.3 MW. The diameter of the six-bladed runner 
was D = 3060 mm. A major refurbishment and upgrading of the two old turbines were performed 
in 2004. The old turbine runners have been replaced by new five-bladed runners of increased rated 
output, Pr = 12.43 MW, and increased runner diameter, D = 3250 mm [17]. During the development 
and design of the new runner special attention was given to reliable, sustainable and environmentally 
friendly constructional solutions, in order to minimise the unwanted impacts of lubricants on the 
river water’s pollution.  

Jošt Pekolj
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Figure 1: Medvode HPP flow-passage system of the Kaplan turbine unit
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Theoretical and experimental investigations of a water hammer in Sava River Kaplan turbine hydropower plants 

The flow-passage system of the Medvode HPP is comprised of an upper basin (Lake Zbilje), two 
parallel inlet conduits, each with a Kaplan turbine unit and draft tube (Figure 1), and tailrace (Sava 
River). Dynamic loads during the transient regimes are controlled by appropriate adjustment of the 
wicket gate and runner blade closing/opening manoeuvres. The dimensions of the inlet conduit and 
scroll-case, and the draft tube, are expressed as the geometrical characteristics Gu = 1.34 m-1 and  
Gd = 0.82 m-1 (Equations (2.3) and (2.4)), respectively. The polar moment of inertia of the unit’s 
rotating parts (turbine, shaft, generator) is I = 163×103 kgm2.

A hydraulic transient analysis in the final design stage of the refurbished and upgraded turbine 
unit was performed for normal, emergency and catastrophic operating regimes [4]. The rigid 
water hammer model was used for all the computational runs. A number of experimental runs 
for various transient regimes were carried out in the plant, in order to verify the suitability of 
the wicket gate and the runner blade closing/opening procedures. The extreme values of the 
measured quantities during the transients were within the prescribed limits. This paper presents 
two emergency shutdown case studies [17]. The computational results are compared with the 
results of the measurements.

3.1	 Emergency shutdown of the turbine unit from 13 MW 
An emergency shutdown of the turbine unit from the maximum load of 13 MW is the most severe 
normal operating transient regime with respect to the extreme pressure heads and turbine rotational 
speed, and, consequently, the danger of full water column separation under the turbine head cover. 
The turbine is disconnected from the electrical grid, followed by a complete closure of the wicket 
gates (servomotor stroke (ywg)) (Figure 2a). The runner blades (servomotor stroke (yrb)) stay still at 
their fully open position (Figure 2b).

Figure 2: Emergency shutdown of the Kaplan turbine unit in the Medvode HPP from 13 MW – wicket  
gate servomotor stroke a), runner blade servomotor stroke b), rotational speed c) and scroll-case 
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The turbine rotational speed (n) (Figure 2c) and the pressure head in the scroll-case of the turbine 
(Hsc) (Figure 2d) were compared. There was a reasonable agreement between the computed 
and the measured maximum rotational speed rise of 25.9 % and 23.2 %, respectively (Figure 2c). 
The computed maximum scroll-case pressure head rise of 17.4 % was higher than the measured 
pressure head rise of 14.2 % (Figure 2d). The maximum speed rise and the maximum scroll-case 
pressure head rise were well below the prescribed limits (45 % of the nominal speed and 35% of the 
maximum gross head, respectively).

3.2	 Emergency shutdown of the turbine unit from 6.8 MW
Emergency shutdown of the turbine unit from the half-load of 6.8 MW was investigated, in order to 
verify the model for a broader range of input parameters. The turbine was disconnected from the 
electrical grid, followed by a complete closure of the wicket gates (ywg) (Figure 3a). The runner blades 
(yrb) opened to their fully open position (Figure 3b).
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Figure 3: Emergency shutdown of the Kaplan turbine unit in the Medvode HPP from 6.8 MW – 
wicket gate servomotor stroke a), runner blade servomotor stroke b), rotational speed c)  

and scroll-case pressure head d)

The turbine rotational speed (n) (Figure 3c) and the pressure head in the scroll-case of the turbine 
(Hsc) (Figure 3d) were compared. There was an excellent agreement between the computed and 
the measured maximum rotational speed rise of 10.9 % and 11.0 %, respectively (Figure 3c). The 
computed maximum scroll-case pressure head rise of 6.8 % was slightly higher than the measured 
pressure head rise of 6.5 % (Figure 3d). The maximum speed rise and the maximum scroll-case 
pressure head rise were well below the prescribed limits (45 % of the nominal speed and 35% of the 
maximum gross head, respectively).
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4	 COMPARISONS OF THE COMPUTED AND MEASURED 		
	 WATER HAMMER EVENTS IN BREŽICE HPP
Brežice HPP is the fifth in a chain of six planned run-of-the river hydropower plants the 
Slovenian lower Sava River basin. When completed, the 6 hydropower plants will account for 
20 % of hydropower energy production in Slovenia. The three Kaplan units, with a total installed 
discharge of 500 m3/s and rated power of 15.2 MW each with yearly production of 161 GWh, 
are controlled by a remote centre in the nuclear power plant Krško. The runner diameter of the 
four-bladed double-regulated Kaplan turbine is D = 4900 mm. The three turbines have been 
opearting successfully since 2017. Major additional landscaping and municipal engineering work 
was performed, in order to provide flood protection, compensate for lost habitat, and make way 
for possible future tourist development. A fishway, that allows fish and other aquatic organisms 
to pass the hydropower structure, has been built on the left-hand-side river-bank (relative to the 
flow direction)  – see Figure 4.

Figure 4: Brežice HPP layout with clearly visible fishway located on the left-hand-side river-bank 
(relative to the river flow direction) (www.he-ss.si)

The flow-passage system of Brežice HPP is comprised of an upper basin (Sava River forebay), three 
parallel inlet conduits, each with a Kaplan turbine unit and draft tube (Figure 5), and tailrace (Sava 
River). The dynamic loads during transient regimes are controlled by appropriate adjustment of the 
wicket gate and runner blade closing/opening manoeuvres. The dimensions of the inlet conduit and 
scroll-case, and the draft tube, are expressed as the geometrical characteristics Gu = 0.52 m-1 and  
Gd = 0.69 m-1 (Equations (2.3) and (2.4)), respectively. The polar moment of inertia of the unit’s 
rotating parts (turbine, shaft, generator) is I = 735×103 kgm2.
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Figure 5: Brežice HPP flow-passage system of the Kaplan turbine unit

Similar to Medvode HPP, the emergency shutdown of the Kaplan turbine unit from the maximum 
load of 21 MW is considered to be the most severe normal operating regime in Brežice HPP [18]. 
The maximum load is much larger than the rated one, because the turbine has been optimised 
for the complete lower Sava River chain, with a much higher tailrace water level. The turbine 
was disconnected from the electrical grid, followed by the complete closure of the wicket 
gates (Figure 6a), while the runner blades are opened to their fully open position (Figure 6b).  
The agreement between the computed and measured maximum unit rotational speed rise 
of 36.3 % and 35.3 % (Figure 6c), respectively, was very good. The same can be said for the 
maximum scroll-case pressure head rise; the computed value was 7 % and the measured one 
was 6.1 % (Figure 6d). The maximum speed rise and the maximum scroll-case pressure head rise 
were well below the prescribed limits (50 % of the nominal speed and 35% of the maximum gross 
head, respectively).

Figure 6: Emergency shutdown of the Kaplan turbine unit in Brežice HPP from 21 MW – wicket gate 
servomotor stroke a), runner blade servomotor stroke b), rotational speed c) and scroll-case pressure 

head d)
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5	 CONCLUSIONS
The main objective of this paper is to identify the most critical normal transient flow regimes that 
may induce extreme water hammer loads in the Sava River Kaplan turbine hydropower plants. 
These powerplants are comprised of relatively short inlet and outlet conduits. Therefore, the 
rigid water hammer model has been used for hydraulic transient analysis. The computational 
results were compared with the results of measurements in two distinct hydropower plants 
(HPP): (i) The refurbished and upgraded Medvode HPP, and (ii) The newest Brežice HPP. Water 
hammer in the two power plants is controlled by appropriate adjustment of the wicket gates and 
runner blades closing/opening manoeuvres. The agreement between computed and measured 
results was reasonable.
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 ASSESSING THE EFFECTS OF A 
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SPAWNING IN AN UPSTREAM RIVER 
TRIBUTARY

OCENA VPLIVA JEZA HIDROELEKTRARNE 
NA DRSTENJE RIB V GORVODNEM 
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Abstract
This paper presents a combined modeling approach to evaluate the ecological effects on the 
habitat of an upstream tributary of a river with a series of hydropower plants. The influence is 
investigated of the last planned hydropower plant to be built, which has a large impact on the 
river ecosystem. The new hydropower plant basin will affect the tributary with hydropeaking in 
the upstream basin. A simulation was conducted of spawning conditions for two protected fish 
species. The analysis combined a hydro-morphological model with a fish module that considers 
the water depth and velocity necessary for fish reproduction. The different river discharge 
scenarios were simulated, incorporating the hydropeaking effects of the new hydropower plant 
basin on the upstream tributary. With the new hydropower plant, sustainable measures are 
planned to prevent the damaging negative impacts that could lead to the degradation of the river 
ecosystem and the destruction of the existing ecosystem at the river’s confluence. The results 
indicate that, after the hydropower plant begins operation, the habitat`s suitability will decrease, 
and the planned sustainable measures will not provide a fully satisfactory solution.

Povzetek
Članek predstavlja kombinacijo modelov za oceno ekoloških učinkov na habitat reke, na kateri je 
že veriga hidroelektrarn. Načrtovana je zadnja hidroelektrarna v verigi in treba je raziskati njen 
vpliv na ekosistem reke, pravzaprav na pritok reke pred novim jezom. Novi jez hidroelektrarne 
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bo močno vplival na zgornji pritok z nihanji gladine. Izvedena je bila simulacija pogojev drstitve 
za dve zaščiteni vrsti rib. Analiza je kombinacija hidromorfološkega modela in modela indeksa 
habitatov, ki upošteva predvsem globino in hitrost vode, potrebne za reprodukcijo rib. Simulirani 
so različni scenariji pretoka reke, pri čemer so bili upoštevani učinki spremembe gladine jeza 
zaradi obratovanja hidroelektrarne. Z novo hidroelektrarno so načrtovani tudi trajnostni ukrepi 
za preprečevanje negativnih vplivov, ki bi lahko pripeljali do degradacije ekosistema reke in 
uničenja obstoječega ekosistema na sotočju rek. Rezultati kažejo, da bo po začetku obratovanja 
hidroelektrarne ustreznost ekosistema padla, načrtovani trajnostni ukrepi pa ne bodo zagotovili 
povsem zadovoljive rešitve.

1	 INTRODUCTION
Slovenia lies at the junction of four natural areas, the Alps, the Mediterranean, the Dinaric 
Mountains, and the Pannonian Basin. The Slovenian territory drains mainly through the Sava 
River and its tributaries into the Danube, and, finally, to the Black Sea (approximately 80%), while 
the rest drains into the Adriatic Sea. In the highland Alps and subalpine mountains there are 
many torrential streams in which flash flooding can occur during excessive rainfall [1]. Because of 
Slovenia’s specific structure, its river basins, steep slopes, and impermeable bedrock, flash floods 
are the prevailing type of floods along most Slovenian watercourses [2].

The river ecosystems of the area undergo natural fluctuations in their hydrological cycle, with 
a variability ranging from floods to droughts. To deal with this variability, the common human 
response was to regulate rivers. Hydropower is a leading renewable energy resource in Europe, 
which has a “green image” due to its low greenhouse gas emissions. Hydropower plants (HPPs) 
are a synergy of river regulation and electricity generation, but they have negative impacts on 
aquatic ecosystems. The mitigation of the negative impacts on the environment is necessary. 

Since their development, physical habitat models have become an essential tool for evaluating 
the habitat suitability for aquatic organisms, based on physical variables, such as depth, flow 
velocity, and substrate. This is particularly useful in assessing the impact of hydropower plants 
on the ecological state of the river, and the determination of the requirements for sustainable 
conditions for the aquatic population. Many rivers are characterized by structural disturbances, 
such as embankments and flood control weirs. As a significant migration barrier, these weirs alter 
habitat conditions, due to direct changes of the flow characteristic. Physical habitat models could 
enhance and evaluate the selection of options to reduce the impacts of water infrastructures on 
aquatic habitats in Slovenia and elsewhere. 

The fish module of the habitat simulation model Computer-Aided Simulation Model for Instream 
Flow Requirements (CASiMiR) [3] was used to predict habitat availability and suitability for the 
fish species reproduction. PHABSIM is an alternative that must be supplemented with multiple 
observations of the same areas to develop a flow-habitat relation. In [4], the combination of 
HEC-RAS and PHABSIM carried a modeling framework comprised of hydrological, hydraulic, 
and habitat models for water management of unidirectional and tidal rivers. HEC-RAS is an 
integrated system of software, designed for interactive use by the Hydrologic Engineering Center 
of Engineers River Analysis [3]. This software allows researchers to perform one-dimensional 
steady flow, one and two-dimensional unsteady flow calculations, sediment transport/mobile 
bed computations, and water temperature/water quality modeling. 

The evaluations of both models are presented in [5], showing strong and weak points in the 
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simulations. The conclusions present sufficient coverage of the results, and, because CASiMiR is 
used commonly in Europe, it was suitable for our investigation. Habitat suitability is evaluated for 
the targeted life stage as in [6]: spawning in each cell with a direct method. The most used index 
of habitat is the Habitat Suitability Index (HSI), which is a tool to represent the preferences of 
different species for a combination of instream variables (water velocity and depth, the substrate, 
and cover, or shading with trees) [7]. The indices are in the range of 0–1 for each variable. Several 
suitability indices are combined to define a composite suitability index, assuming that all the 
variables are equally important, all the environmental variables are independent, and there is no 
interaction between them. Different methods could be used in CASiMiR to combine the different 
suitability indices obtained for each physical factor, and the indices are combined to calculate 
a composite HSI [8, 30]. The methods to obtain HSI are compared in [9]: the product method 
assumes that the most limiting factor determines the upper limit of habitat suitability, and the 
fact that high values cannot compensate for low values of other variables; the arithmetic-mean 
method is based on the assumption that the habitat variables are compensatory, and that the 
good habitat conditions on one variable can compensate for bad conditions on others [10]; the 
geometric-mean method also implies some compensation, but the product method yields zero 
suitability for any zero-valued indices. In the literature, CASiMiR is used often, and emphasized 
because of fuzzy rules to define the relationship between input variables and habitat suitability 
for certain species’ life stages, which is not the case in PHABSIM. Different scenarios and their 
effects can be investigated, to find the most suitable conditions for species in all life stages [11]. 
Since the amounts of fish data available for this study were limited and the development of 
fuzzy rules for the description of habitat suitability was based on expert knowledge and the 
limited database (Table 1), a quantitative validation of the model could not be performed within 
this study. The outputs of CASiMiR were used to assess the changes in fish habitat availability 
and suitability. First, habitat suitability maps for fish species at each combination of river flow 
and HPP hydropeaking (normal and minimal basin levels) were generated, to visualize the areas 
within the river that provide certain physical conditions for fish under a steady flow situation. 

In the simulation, we used the CASiMiR standard preference function method, in which the 
condition of an aquatic ecosystem is coupled directly with the physical conditions of the reference 
species, focusing on spawning. Changes to the flow rate result primarily in impacting the water 
depth, flow velocity, and substrate conditions, all of which are major factors in determining the 
habitat suitability for spawning, and are evaluated directly with numerical models [12, 13, 32].

This study aimed to assess the effect of a hydropower plant basin and hydropeaking on those river 
habitat descriptors that depend on flow characteristics. Based on this, we evaluated sustainable 
habitat measures that are planned to reduce the impact of the hydropower plant basin. This 
paper aims to apply the CASiMiR approach, to investigate the impact of the hydropower plant 
basin on the habitat suitability of an endangered species spawning in Slovenia. The current 
situation in the tributary stretch will be compared with a simulation of the planned sustainable 
measures situation after the hydropower plant basin implementation. The investigation results 
will apply to other rivers with similar ecological problems.

2	 MATERIALS AND METHODS
Slovenia produces approximately one third of its electric energy by hydropower on its main rivers: 
the Drava, Soča and Sava. HESS (Hidroelektrarne na Spodnji Savi) is a Slovenian hydroelectric 
power company, with its core mission of producing and promoting the construction of hydropower 
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plants, and of engaging in electricity generation that is sustainable, reliable, competitive, and 
environmentally friendly [14] on the lower Sava River, and of improving protection from the 
flooding that occurs in the area annually. The construction of a series of five HPPs on the lower 
Sava started in 1999. The penultimate HHP, Brežice, entered service in 2018, and the final HHP, 
Mokrice, should be active by 2026. Their total output shall account for 21% of the Slovenian 
hydropower production, and it is anticipated that they will meet 6% of the Slovenian energy 
needs. They are all designed and provided with bays, fish paths, channels and spawning 
grounds, additional animal habitats, birds nesting grounds, and maintained or improved farming 
conditions. The last planned HPP is positioned near the Croatian border, where the Sava River 
is enriched by the Krka River; it will have a smoothing reservoir role in the scheduled streaming 
and storage regime on the Sava River. In the area is the Krško Nuclear Power Plant, which uses 
the Sava water to dissipate excess heat. The plant began operating in January 1983. This study 
focuses on the lower part of the Sava, and particularly on its tributary the Krka, presented in 
Figure 1.

Figure 1: Location of the study site. In the map of Slovenia are shown the existing and  
planned hydropower plants [15]. With arrows are marked HPP Brežice, that was put  

into service in 2018; the Sava River and tributary Krka River; their confluence and  
planned HPP Mokrice and its basin

The region of the lower Sava is surrounded by hills. It is riddled with numerous permanent 
streams, as well as intermittent springs and streams. The two major rivers that cross the valley 
are the Sava and the Krka. The Sava is the longest river in Slovenia, and the Krka is its largest 
tributary. The area has experienced many flood events throughout its history, the biggest in 1990, 
and the last in 2010 [16]. The Sava River is sensitive to precipitation due to human impacts, such 
as urban development, and stream channel straightening. Intensive peak flows are observed 
several times a year, sometimes resulting in flooding of inhabited areas. It has to be pointed out 
that the ratio between the flow rates of the Sava and the Krka, especially when they exceed the 
average rate, is high. The power of the Sava’s flow blocks (acting almost as a dam) the flow from 
the Krka and increases the floods upstream of the Krka drastically (Figure 1). Since 1999, the 
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lower Sava has been the subject of human alterations, owing to the constructions of dams for 
hydropower production and embankments. The construction of a chain of hydroelectric power 
plants contributes to the reliable supply of electric power in Slovenia.

The functioning of the energy facilities and the related infrastructure also serve as flood 
preventers. However, the infrastructure impact on the environment causes the degradation of 
river ecosystems and biotic diversity, changing the hydro-morphological characteristics of the 
riverbeds [17] and their habitat suitability [18]. The infrastructure obstructs the connectivity of 
river habitats [19], and fish paths are implemented for the migration of fish; on high waters the 
fish swim down the river, and when the water level decreases the fish migrate upstream, which 
can be observed primarily in regulated rivers [20].

When the chain of HHPs are operating in peak time but in lower than the installed flow Qi=500m3/s, 
the accumulation basins of the HPP Brežice and HPP Mokrice have the role of equalizing the daily 
Sava variability of water flow from the upstream HPPs. In the flow balancing, the fluctuation in 
the accumulation basin of HPP Mokrice is calculated to be up to 1.3 m, the normal water level at 
141.7m above sea level, and minimum water level at 140.4m above sea level. 

By fluctuating the level of the last two basins, the upstream HPPs will work with the full installed 
flow at peak time. Outside the peak time the upstream HPPs will operate at a lower flow, filling 
the basins, while the HPPs Brežice and Mokrice will have the opposite rhythm of operating 
conditions. The effect of the Sava River with the HPP Mokrice basin on the Krka River with the 
daily fluctuation of water level is hydrologically and morphologically tremendous: changing the 
drainage regime from the river to the regime of slowly running water in the river mouth, changing 
the natural dynamics of the river, changing the physical conditions of the aquatic habitat, and the 
river mouth is the spawning grounds of many species. 

The hydrological data for all the Slovenian rivers and lakes are available on the web page of 
the Slovenian Environment Agency (ARSO) [21]. ARSO performs expert, analytical, regulatory, 
and administrative tasks related to the environment at the national level. The riverbed’s form 
and elevation were obtained from the project of the HPP basin provided by INFRA [22], which 
was established as a public company for the implementation and maintenance of the water 
infrastructure facilities in the lower Sava.

The hydraulic structures, such as hydropower plants, dams and wires, affect the water 
environment for plants and aquatic lives in and around rivers. Therefore, before the construction 
of such hydraulic structures, it is necessary to conduct environmental assessments [23]. The 
abiotic parameters, with the morphological characteristic of the river, determine the physical 
habitat for living organisms. Consequently, the availability and suitability of this habitat are 
altered by the modification of the abiotic parameters. Fish are very valuable aquatic organisms, 
and as good indicators of the environmental state of the ecosystem, they are often chosen as the 
target species to study the impact of HPPs on the environment [24]. The studies demonstrated 
that the fish populations are less abundant and have reduced population sizes in hydro-peaking 
rivers in the River Cabriel, Spain [25]. The results from [26] show how the overall habitat quality 
fluctuates daily due to the dam operation in a big river.
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Table 1: Fish spawning conditions

fish depth  
[cm]

substrate size 
[cm]

flow velocity 
[m/s]

Alburnoides 
bipunctatus 14–20 2.0–10.0 0.2–0.5

Squalius cephalus 15–30 >0.5 0.2–0.5
Barbus barbus 15–50 2.0–5.0 0.3–0.5
Vimba vimba <50 0.2–6.0 >0.2
Rutilus rutilus 15–45 5.0–15.0 >0.2
Chondrostoma 
nasus 15–30 2.0–6.3 0.9–1.1

Romanogobio 
uranoscopus 15–20 5.0–20.0 1.0–1.3

The physical habitat conditions were assessed from the Fisheries Research Institute of 
Slovenia, that is a central, expert institution in the field of Fisheries in Slovenia. The institute 
is engaged in activities that contribute to the sustainable management of fish populations and 
the preservation of their diversity; it is very active in order to preserve or substitute fish area 
habitats. They prepared Table 1 on the spawning conditions for some fish species spawning in 
the Krka River. Most fish species in the Krka are spawning in the springtime, from March to May. 
The mean discharge for the previous ten years was calculated for both rivers. The spawning time 
often coincides with a low discharge of the Krka, so we also take into consideration the minimal 
mean discharge for the same period. The Fisheries Research Institute of Slovenia confirmed the 
selected discharges used in the simulations: mean discharge Qs=54.5m3/s and minimal mean 
discharge nQs=10.9m3/s. 

We obtained spawning data for seven fish species (Table 1). Considering the spawning conditions, 
we classified the seven species into two categories with similar requirements. Two reference 
species (marked in Table 1) could represent the hydrological spawning conditions for all the 
species.

2.1	 Planned sustainable measures
It was expected that the HPP basin would have an impact on the Krka ecosystem (confirmed 
with the simulations in Figure 5). Without measures to prevent the damaging of the drainage 
section of the Krka, there would be negative impacts that would cause degradation of the river 
ecosystem and the destruction of existing fish habitats in the affected area.

Several main measures are planned to preserve a sustainable regime in the Krka River [27]:
•	 The Sava riverbed will be deepened, to lower the water surface of the river and to prevent 

floods in the confluence. 

•	 The  bottom of the Krka’s riverbed will be widened and raised, to maintain the hydro and 
morphological river characteristics of the Krka: depth and water velocity.

•	 A Cascade passage will be constructed at the Krka mouth with a  length of 150m, to prevent 
the spread of fluctuations of the HPP basin into the Krka.
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•	 Four approximately 150m-long pebbled shallows will be implemented in the riverbed of the 
Krka, arranged as spawning grounds for fish species. The locations of shallows are presented 
in Figure 2.

The status of the aquatic system and suitability for fish spawning was simulated, considering no 
sustainable measures applied, implementation of sustainable measures (change of the riverbed 
geometry), with the hydrological parameters for fish spawning.

Figure 2 The part of the Krka River with marked shallows as spawn areas [27]

3	 RESULTS
The hydraulic component of this study was performed using the HEC-RAS model [19] to construct 
a one-dimensional hydraulic model simulating water surface levels for the studied stretch, 
based on the prismatic riverbed elevation values [28, 32]. Since changing flow rates influence 
the flow velocity and consequently the fish habitat significantly, water depths and velocities 
were simulated for two different flow values: mean and minimal mean discharge. The HEC-RAS 
model uses geometric and flow data to calculate steady, gradually varied flow water surface 
profiles (steady-flow module) from the energy loss computations. A quasi 2D approximation 
[28] was obtained, by dividing each transect into subsections and distributing the flow along 
the subsections using simple linear interpolation techniques, and respecting the conservation 
of energy. The modeling capabilities of HEC-RAS for the water flow rate and calculated velocity 
values were found to be adequate with the measured values in many publications [e.g., 10, 20, 
29]. 

The hydraulic model was calibrated and validated (Manning’s values) using the values of the 
velocity and depth measurements taken during ongoing field investigations by INFRA.

Each cross-section was divided into several longitudinal subsections, defining a grid for every 
study reach. The water surface levels and flow velocities were simulated for two scenarios: 
the current situation without an HPP basin, and the new situation after the HPP basin 
implementation. The results of these simulations could only be calibrated for the first scenario, 
since the implementation of the HPP basin has not yet been conducted. The study reach was 
analyzed hydraulically, with hydraulic controls at the downstream end.

In the second scenario, the bed elevation in the Krka River was changed according to sustainable 
measures. The bed of the Sava River was deepened, and the bed of the Krka River was raised, 
with spawn areas and deepened buffer intermediate spaces. The change of the Krka riverbed 
is seen in Figure 3 (Ground), and the results of a water surface analysis in the Krka River are 
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presented for the current situation and planned change of the riverbed for normal and minimal 
basin levels.

 

Figure 3: Results of the water surface level from HEC-RAS for a normal basin level  
(141.7m a.s.l.) and minimal basin level (140.4m a.s.l.) a) currently, and  

b) Status after the planned measures

The results in Figure 4 present the Krka reach. CASiMiR linked the water surface level simulations 
from HEC-RAS with morphological data, to calculate and interpolate the flow velocity in the 
river stretch. The depth, flow velocity and dominant substrate values were assigned to each cell 
of the grid, based on linear interpolation. The simulations were performed for two flows of the 
Krka River (mean and minimal mean discharge) with the current form of the Krka riverbed. We 
performed the analysis to simulate the HPP basin impact at normal and minimal basin elevation 
as hydropeaking disturbances [30,31].

The results presenting water depth and flow velocity showing significant ecological impact of 
the HPP basin are shown in Figure 4. Even at minimal basin water level, the changes in water 
depth and velocities are large. The water depth increases severely, and, consequently, the water 
velocity declines severely, especially in the confluence where the elevation of the basin is higher 
than the water surface of the Krka River.

a) Current situation

 b) Planned situation
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Figure 4: Results of water depth and flow velocity with CASiMiR for minimal mean discharge 
nQs=10.9m3/s and mean discharge Qs=54.5m3/s with the current riverbed for HPP Mokrice 
normal basin level (141.7m a.s.l.) and minimal basin level (140.4m a.s.l.), with and without 

sustainable measures implemented in the simulation

The planned sustainable measures were simulated for the same water regime: two flows of Krka 
minimal mean discharge and mean discharge at normal and minimal basin elevation. The new 
riverbed geometry was updated with widened banks and elevated bottom of the Krka River; four 
pebbled shallows were added (spawning area). The results reveal a much more varied picture 
(Figure 5).

Figure 5: HSI results from CASiMiR for two fish species for minimal mean discharge 
nQs=10.9m3/s and mean discharge Qs=54.5m3/s with sustainable measures implemented  

in the simulation for the minimal basin level (140.4m a.s.l.)
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The depth and water velocities at the shallows are much more suitable for fish spawning. We 
simulated spawning conditions for two reference fish species with the data from the Fisheries 
Research Institute of Slovenia presented in Table 1. The results are presented in Figure 5, with the 
HSI index calculated for two fish species for the mean and minimal mean discharge for normal 
and minimal basin levels. The results indicate that the hydropeaking (different basin level) has 
less influence on the HSI index in comparison with the river discharge, which is the primary 
influence parameter. As can be seen from the results of the simulation, the basin level has less 
influence on the spawning parameters than expected, much less than the river discharge.

4	 CONCLUSIONS
Artificial hydraulic river structures, such as HPPs, introduce discontinuity and disturbances 
to river natural flows and ecosystems. This paper examines finding a balance between flood 
management, river regulation, and energy production on the one hand, and the preservation of 
river ecosystems on the other. The implementation of the chain of HPPs in recent years on the 
Sava River has consequences. Many modifications of the flow channel due to HHPs and flood 
control weirs have led to higher depths than under natural conditions and a reduction of the flow 
rate. The last HPP in the chain on the lower Sava River and its basin influence its upstream Krka 
tributary significantly.

Non-government organizations and local initiatives in Slovenia [33] argue that the approved 
project of HPPs leads to the destruction of the flora and fauna of the Sava River, especially 
because the mouth of the Krka into the Sava River is one of the most important spawning grounds 
of this species in Slovenia. Eleven fish species (Barbus balcanicus, Zingel streber, Romanogobio 
uranoscopus, Romanogobio kesslerii, Cobitis elongatoides, Cobitis elongata, Alburnoides 
bipunctatus, Rutilus virgo, Hondrostoma nasus, Barbus barbus and Vimba vimba), protected 
under the EU Habitats Directive (Directive 92/43 of 21 May 1992 on the conservation of natural 
habitats and of wild fauna and flora), are endangered by the project. The proposed measures for 
these species, according to [33], are not conducive, since the basin level intervenes the tributary. 
According to the study of Schwarz [15] commissioned by Riverwatch and EuroNatur, the dispute 
about HHP Mokrice is, thus, crucial for the future of the Sava River and for the ecosystem of the 
Krka River. In contrast to the Sava, the Krka is not a regulated river and is one of few in Slovenia 
with rich fish habitats, particularly with indigenous fish species.

Within the framework of the projects of HPPs, the level of floods at the Sava and Krka are 
reduced significantly, with deepening of the three kilometers of the Sava River downstream from 
the HPP Brežice. The sublimation of the Sava goes a further two kilometers downstream of the 
Krka outbreak. With additional regulatory measures in the Sava and Krka, the flooding level is 
reduced by 1.3 m. These measures are strong: they reduce the required range of flood protection 
of sites that are flooded regularly. In the investigation, the sustainable measures were simulated 
for two flow rates of the Krka and two basin levels. In the simulations, emphasis was placed 
on the planned areas for fish spawning for two representative fish species. The results show 
that the HPP basin has an enormous impact on the hydrological and ecological parameters of 
the tributary (Figure 5). The depth of the Krka River increases, and the flow velocity decreases; 
without sustainable measures, the nature of the Krka is different. The changes in the Krka River 
caused by the basin could be prevented by lifting the bottom of the Krka River in the outflow 
section, and four pebbled shallows in the riverbed will be created to preserve the hydro 
morphological river characteristics of the Krka. Taking the planned sustainable measures into 
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account, the hydrological characteristics and HIS (Figures 5 and 6) of the river are more suitable 
for fish spawning. As can be seen from results, there is no point in  presenting weighted usable 
areas (WUA) or hydraulic habitat suitability (HHS), as only pebbled shallows areas are suitable 
for spawning. Without measures to prevent the damaging of the drainage section of the Krka, 
there would be negative impacts that would cause degradation of the river ecosystem and the 
destruction of existing fish habitats in the affected area. The planned measures need to be 
renamed from sustainable measures to mitigation measures. More thorough investigations 
should be carried out for endangered species for spawning, juvenile, and adult fish. The currently 
planned measures are focused only on spawning and river hydraulics. The uneven bottom along 
the cross-section of the riverbed could distribute the flow velocity, and an additional winding 
channel in the riverbed could increase the habitat quality for various fish species at lower flow 
rates. 

The study showed the potential of the modeling approach, and more parameters have been 
planned to understand the quality and distribution of suitable habitats better very soon.
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Abstract
Nuclear power plants are recognised as complex systems, where maintenance is critical for 
ensuring safety and operational stability. Time-based preventive maintenance programmes are 
employed in most nuclear power plants, relying on periodic inspections to prevent equipment 
failures. However, this method is considered resource-intensive and not always efficient. An 
alternative is offered by Artificial Intelligence and condition-based maintenance, which allow 
early fault detection, reduce unnecessary maintenance tasks, and lower operational costs. 
The potential of Artificial Intelligence in nuclear power plants is vast, ranging from operational 
improvements to predictive maintenance. Techniques such as Supervised and Unsupervised 
Learning are highlighted as essential tools for fault detection, pattern recognition, and predictive 
modelling. In Supervised Learning, known input-output pairs are used to train models, while 
Unsupervised Learning is employed to identify hidden patterns in unlabelled data, which is 
particularly useful in the large, unstructured datasets found commonly in nuclear power plants. 
The challenges in integrating Artificial Intelligence into nuclear power plant operations shall 
be noted, including the lack of standardised procedures for selecting and applying algorithms. 
Despite these challenges, AI-driven tools, including Deep Learning and hybrid models, have 
shown promising results in fault detection and prediction in nuclear power plants. These 
advancements support the broader goal of improving safety and operational efficiency. In 
conclusion, although Artificial Intelligence has not yet been adopted fully across all nuclear 
power plants, it is seen as a promising advancement for the future of nuclear energy operations. 
Its implementation enhances fault detection, reduces operational risks, and ensures more 
reliable energy production.
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Povzetek
Jedrske elektrarne so poznane kot kompleksni sistemi, njihovo vzdrževanje pa je ključno za 
zagotavljanje varnosti in zanesljivega obratovanja. Trenutno se v jedrskih elektrarnah uporablja 
princip časovno zasnovanega vzdrževanja, ki temelji na periodičnih pregledih za preprečevanje 
okvar. Pomembno je poudariti, da takšen pristop zahteva veliko porabo sredstev in ni vedno 
učinkovit. Alternativno lahko uvedemo vzdrževanje na podlagi stanja opreme z uporabo 
umetne inteligence ob predčasnem zaznavanju okvar, s čimer zmanjšamo stroške vzdrževanja 
in obratovanja. Potencial umetne inteligence v jedrski industriji je velik, od zagotavljanja 
zanesljive proizvodnje do vzdrževanja. Tehniki, kot sta nadzorovano in nenadzorovano učenje, sta 
izpostavljeni v članku, saj sta ključno orodje za zaznavanje napak, vzorcev in razvoja preventivnih 
modelov. Pri nadzorovanem učenju algoritem učimo z znanimi podatki, ki so klasificirani. 
Pri nenadzorovanem učenju algoritem učimo z veliko količino neklasificiranih podatkov, iz 
katerih model izlušči vzorce in zaznava odstopanje. Za integracijo umetne inteligence v jedrske 
elektrarne pa ostaja še veliko izzivov, med drugim tudi pomanjkanje standardnih pristopov. Ne 
glede na ponujene izzive pa orodja z uporabo umetne inteligence, globokega učenja in hibridnimi 
modeli obetajo pozitivne rezultate na področju zaznavanja napak in napovedovanja v jedrskih 
elektrarnah. Takšni napredki izboljšujejo varnost in omogočajo zanesljivo obratovanje. Čeprav 
umetna inteligenca še ni bila temeljno vpeljana v jedrsko industrijo, prikazuje pozitivne napredke 
za njeno prihodnost. Njena implementacija povečuje zaznavanje napak, zmanjšuje obratovalna 
tveganja ter zagotavlja stabilno in zanesljivo proizvodnjo električne energije. 

1	 INTRODUCTION
The use of Artificial Intelligence (AI) is on the rise in both the public and private sectors. As interest 
in this technology grows, the U.S. Nuclear Regulatory Commission has recognised this trend and 
published several documents addressing these topics. These publications serve as guidelines 
for the application of AI in nuclear power plants (NPP), and evaluate the current utilisation of 
these technologies within the industry [1]. Through AI adoption, some licensees aim to meet the 
requirements set forth in the Code of Federal Regulations. This shift allows for a transition from 
traditional time-based preventive maintenance (PM) methods to more advanced approaches 
facilitated by AI and condition-based maintenance (CBM) [2]. The use of AI is also recognised 
by the International Atomic Energy Agency, which established a working group in mid-2022 to 
research and implement AI in nuclear power. 

It is essential to recognise that NPPs are complex systems composed of various interrelated 
systems and equipment, including electrical, mechanical, instrumentation and control systems. 
These components must operate reliably within specified parameters and require some type 
of maintenance. In most NPPs, PM programmes are implemented, consisting of scheduled 
activities aimed at ensuring the equipment's proper functioning. These PM programmes involve 
periodic inspections, and a systematic approach to record-keeping and scheduling maintenance 
activities. This structured framework helps to maintain equipment integrity and enhance overall 
operational safety [3].

Time-based preventive maintenance activities could, potentially, be replaced by CBM if faults are 
detected in advance. However, fault detection presents a complex challenge, particularly in large 
systems like NPPs. A significant issue arises when the volume of data collected is as extensive as 
that found in these facilities, making it difficult for manual systems to process and analyse all the 
available information effectively [2].

A review of artificial intelligence in nuclear power plants
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It is important to note that the data collected in NPPs are categorised into two main types: 
process instrumentation and control data, and, periodically, measured maintenance data. The 
first type, often called online monitoring (OLM), encompasses the plant's critical and non-critical 
parameters. These data are displayed in the control room, enabling the operators to monitor 
plant performance and health while being accessible to other personnel. The second type of 
data consist of measurements taken during outages and periodic equipment check-ups. These 
periodically gathered data play a vital role in maintaining the reliability and safety of the plant's 
operations. These data types form the foundation for effective PM strategies and operational 
decision-making in NPPs [4].

This paper outlines the data-gathering process in NPPs and elaborates on its significance. Chapter 
3 discusses the most used advanced computational tools for AI. It is important to note that 
advancements in this field could potentially lead to significant improvements in the safety and 
operational reliability of NPPs. These technologies have the potential to decrease the number of 
faults and reduce operational costs greatly.

Chapter 4 focuses on the application of AI and Machine Learning (ML) in NPPs. The use of these 
technologies is increasing in various areas, including plant safety and security assessments, 
degradation modelling, fault diagnosis, prognosis, and overall plant operation and maintenance. 
By integrating AI and ML, NPPs can enhance their operational efficiency and safety measures, 
paving the way for a more reliable energy future.

2	 DATA GATHERED IN NUCLEAR POWER PLANTS
The data collected in commercially operated NPPs are divided into two categories: process 
instruments and control data, and periodically measured data from maintenance activities. The 
OLM data include plant parameters for individual systems and their components, which are 
crucial for ensuring the plant’s safe and reliable operation [4]. These data are displayed in the 
control room on various screens and alarm panels, while some can be retrieved by the operating 
crew from the local panel. Given the enormous volume of data collected, processing them can 
become challenging, especially during accidents or abnormal operations. In such situations, the 
operators in the main control room follow established procedures designed to guide the crew 
through these critical and stressful steps. Their priority is to secure the safety of the reactor core 
and ensure a safe shutdown, all while minimising the risk of human error [5]. 

The OLM data are, typically, stored in large databases with limited sampling intervals, often set 
to one minute, allowing for efficient monitoring of the system`s performance history. These 
data can then be extracted from the database for further analysis and simulations, enabling the 
engineers to gain insights into the plant's operational status. In short, the OLM data are used to 
evaluate the health and reliability of the NPP processes, systems, and equipment [6].

In contrast, the second type of data rely on periodically gathered information from specific 
PM programmes, which include measurements of component parameters that may indicate 
the overall health of the components. These measurements can be taken through electrical or 
mechanical assessments, varying from once per cycle, to more or less frequently, thus providing 
critical insights into the condition of the components. Such evaluations are essential, as they can 
reflect the operational integrity of the components directly, potentially signalling a failure, or a 
state nearing failure [7].
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Both types of data are instrumental in detecting deviations from stable and reliable operation 
within specific components and systems. However, with process instruments and control data, 
challenges arise from the sheer volume and complexity of the information collected, making 
manual analysis often inadequate for identifying significant deviations. To address this, alarm 
and trip values are established for specific measurements, offering a simplified approach to 
monitoring component states. While effective in alerting operators to faults, this method tends 
to react only after issues have manifested, necessitating timely intervention. In nuclear power 
plants, alarm thresholds are set conservatively at lower levels, to ensure that operators are 
notified promptly, enabling them to take the necessary precautions before situations escalate. 
On the other hand, periodically gathered data are typically evaluated by field professionals, 
who conduct thorough assessments of the components based on this information, allowing for 
informed maintenance decisions, and enhancing the overall safety and reliability of the plant.

A simple dataset collected from a motor-gearbox-pump skid will be examined for easier 
understanding. Typically, when a medium-voltage motor is involved with a larger pump, a 
comprehensive set of data is collected to indicate the skid's running parameters. For the electric 
motor, the temperature of the stator is monitored, often utilising six PT100 sensors or similar 
devices, with two sensors embedded in each phase at the hottest points. During the 1970s, the 
standard insulation system used for motors was Class B, which allows for a temperature rise of 
up to 80°C, as defined by the NEMA MG1 Standards.

In such horizontal machines, sleeve bearings made from Babbitt material with temperature 
monitoring are employed commonly, permitting operating temperatures to reach 130°C. Vibration 
monitoring is also implemented frequently, to track the vibrations of the bearings or housing, 
ensuring they remain within the maximum accepted values. Additionally, the temperatures and 
vibrations of the gearbox and pump are monitored, with operational values defined clearly. 
The system operates by transporting fluid at a specific temperature, so the temperatures and 
pressures at both the discharge and suction sides of the pump are measured typically.

With known operating parameters provided by the original equipment manufacturer and insights 
gained from operational experience, the limits of the system are established and adhered to 
throughout its operation. In cases of parameter deviations, or when alarm or trip values are 
reached, the skid is required to shut down, prompting the initiation of corrective maintenance. 
Such events can lead to economic consequences and impact the reliability of the plant and its 
systems. In NPPs each critical system is equipped with backup trains, to ensure that nuclear 
safety and plant reliability are not compromised by minor defects. However, even simple defects 
can diminish plant reliability, and introduce transients into the continuous operational cycle. 
Each transient can have specific effects on the plant, including necessitating shutdowns.

3	 ADVANCED COMPUTATIONAL TOOLS
Advanced computational tools such as Artificial Intelligence, Machine Learning, Deep Learning 
(DL), and others in NPPs are on the rise, especially in health and reliability assessment. This 
chapter focuses on the advanced computational tools that form the backbone of AI applications in 
nuclear power plants. These tools, ranging from ML algorithms and neural networks to advanced 
simulations and probabilistic risk assessment models, offer robust platforms for addressing the 
unique challenges faced by nuclear energy systems. By leveraging cutting edge computational 
techniques, nuclear power plants can enhance their operational resilience, reduce human error, 
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and anticipate failures before they occur. while maintaining strict regulatory compliance and 
safety standards. The chapter will delve into the specific categories of AI driven tools, their 
architectures, and their implementation strategies in the Nuclear domain.

3.1	 Statistics and Computational Tools 
Before going further into computational tools, it is essential to understand the core difference 
between statistics and computational tools. Statistics is a branch of mathematics, whereas 
computational tools such as AI, ML, and DL are subfields of advanced computing. Statistics focuses 
primarily on data collection, analysis, interpretation, presentation, and organisation. Its purpose 
is to uncover patterns, relationships, and trends within the given data, and draw conclusions 
based on a representative sample. Typically, statistics are applied to smaller datasets, and rely on 
mathematical methods to interpret and understand the data. By contrast, computational tools 
like AI and ML often handle vast amounts of data, leveraging algorithms to automate decision-
making, predictions and other tasks, without requiring explicit human programming for every 
scenario. [8].

3.2	 Artificial Intelligence and Machine Learning
AI is a field of Computer Science focused on developing advanced software systems designed to 
perceive their environment and learn to perform actions autonomously. ML, as a subfield of AI, 
allows machines to be trained using historical data. In ML systems, patterns, rules, or insights are 
identified from the collected data, which are then applied to make predictions or decisions [9].

A variety of approaches and techniques are encompassed within AI, including rule-based systems, 
search algorithms, and more advanced methods like Natural Language Processing, Robotics, and 
Computer Vision. In contrast, as previously mentioned, ML relies on algorithms trained to make 
predictions 

•	 Supervised Learning,
•	 Unsupervised Learning,
•	 Reinforcement Learning,
•	 Recommender systems.

Deep Learning, a specialised subfield of ML, utilises multiple layers of neural networks to address 
complex problems. The primary distinction between AI and ML lies in the fact that, while ML 
focuses specifically on learning from data, AI encompasses a broader range of techniques, 
including those that do not necessarily involve data-driven learning.

In this context, AI and ML are often used together, but it is important to note their differences 
and specific areas of application.

3.2.1	 Supervised Learning
Supervised Learning is a type of AI learning that involves using training data with known input 
and output values. The observed data are input into the model along with the expected output 
values, allowing the model to be trained accurately. Once the training process is completed, 
the model is expected to predict outputs based on the new inputs with a certain degree of 
uncertainty. Various algorithms are used widely in Supervised Learning, including [11]:
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Artificial Neural Networks (ANNs): These networks are composed of three types of layers, with 
each layer consisting of nodes, also known as neurons, as illustrated in Figure 1. Typically, a neural 
network includes an input, output, and multiple hidden layers. The layers are interconnected, 
and the nodes are associated with weights, representing each connection's significance. These 
weights are adjusted throughout the learning process. The number of inputs is determined by 
the dimensions of the input data, while the number of hidden layers and nodes defines the 
complexity of the model. The more complex the model, the greater its ability to capture intricate 
patterns in the data [12].

Figure 1: Simple Artificial Neural Network

Feedforward Neural Networks (FFNs): FFNs are the simplest type of Artificial Neural Networks. 
They consist of layers of nodes (neurons) that are connected through weights. In an FFN, the 
information travels in a single direction, from the input layer to the output layer, without looping 
back. These networks are used commonly in both regression and classification tasks [13].

Convolutional Neural Networks (CNNs): CNNs are designed specifically for processing grid-
like data, such as images. They learn the spatial hierarchies of features automatically by using 
convolutional layers. These layers apply filters to the input data to capture important features 
like edges, textures and shapes, making CNNs highly effective for image classification, object 
detection and similar tasks [14]. CNNs were used in data diagnostics through images created 
from the data generated from large amounts of data gathered in NPPs [15].

Recurrent Neural Networks (RNNs): RNNs are distinguished by their ability to handle sequential 
data, as they have connections that form directed cycles. This allows them to retain information 
from previous inputs, making them suitable for time series analysis, and tasks involving sequential 
data like Natural Language Processing. RNNs use backpropagation through time, an optimisation 
algorithm that enables faster learning by adjusting weights efficiently based on errors from 
previous steps [16].

In addition to the algorithms mentioned, other methods are also used commonly, such as 
Decision Trees (DTs). These aim to create a tree-like model that predicts the output values based 
on a series of simple, predefined rules extracted from the features of the data. Random forests 
were developed to address the limitations of DTs, particularly the issue of overfitting. Overfitting 
occurs when a model performs exceptionally well on the training data, but fails to generalise 
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to new, unseen data [17]. Another important algorithm is the Support Vector Machine (SVM), 
used for classification and regression tasks. SVMs work by constructing a set of hyperplanes 
that separate different classes of data samples optimally. The goal is to maximise the margin 
between the classes, to improve the model's prediction accuracy and robustness.3.2.2	
Unsupervised Learning

Unlike Supervised Learning, Unsupervised Learning is used to train models on large amounts 
of data where the label of the data is unknown. Unsupervised Learning is considered a highly 
promising method in AI, as labelling vast amounts of training data is often difficult. This allows 
models to be trained without human involvement or supervision. Additionally, one key advantage 
of these models is that, even in the early stages of their development, insight into the structure 
of the model can be gained. Similar to Supervised Learning, there are also various algorithms 
used in Unsupervised Learning: 

Clustering analysis: This method enables data to be classified into branches and clusters, ensuring 
that the data within each cluster are more closely related than data from different clusters. This 
definition is based on the understanding that some data points exhibit greater similarity than 
others. Most clustering algorithms operate using numerical attributes, allowing similarity to be 
described through geometric analogies. There are numerous algorithms available for clustering 
data, including K-means, Spectral Clustering, Hierarchical Clustering, and more. Each of these 
algorithms employs distinct methodologies, such as partitional, hierarchical, density-based, 
grid-based, or model-based. By utilising these various approaches, clustering techniques can 
organise and analyse data effectively, revealing patterns and relationships that might otherwise 
go unnoticed [18].

Dimensionality Reduction: These algorithms are used to transform high-dimensional data into 
low-dimensional data when dealing with big data. It is important to note that this reduction 
process should not result in the loss of meaningful properties of the original data. In terms of 
data classification, these methods can be applied in various ways, such as creating superlinear 
traceable classification schemes, reducing the variance of classifiers, and removing noise. 
Traditionally, one of the most commonly used linear techniques is Principal Component 
Analysis (PCA). This method constructs a low-dimensional dataset, that retains as much of the 
original data's variability as possible by identifying a linear basis for reduced dimensionality. 
In recent years, more nonlinear techniques have been introduced, including global methods, 
multidimensional scaling, autoencoders, and Isomap, among others [19].

3.2.3	 Reinforcement Learning
Reinforcement Learning is a learning approach involving the interaction of Artificial Intelligence 
with a dynamic environment. This technique focuses on learning sequential decision-making in 
complex problems and is inspired by the trial-and-error learning process observed in humans. 
Unlike Supervised Learning, where models learn from labelled data, Reinforcement Learning 
operates through feedback in the form of rewards or penalties, which are given based on the 
actions taken by the agent. This feedback mechanism allows the agent to learn and adapt over 
time, ultimately improving its performance in decision-making tasks [20].].
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4	 AN OVERVIEW OF ARTIFICIAL INTELLIGENCE AND MA-
CHINE LEARNING IN NUCLEAR POWER PLANTS

The fault detection methods are classified as model-based, signal-based and data-driven-based, 
and are analysed from on-line data. The method used most commonly is signal-based, and it is 
used for fault detection based on alarm and trip values. The model-based analysis is also well 
established, and they use output values from models and compare them with real-time on-line 
data. The data-based method is the most complex one, as it uses the historical data to learn. 
Through AI, the models are trained, and are capable of making predictions [21].

Many different types of algorithms can be employed in nuclear power plants, depending on the 
specific purpose of the task. For instance, models based on classification algorithms should be 
implemented when AI is utilised to analyse surface images to detect cracks in steel or concrete 
structures. In cases where large amounts of unstructured data, such as logs from operational 
experiences and OLM are available, unsupervised learning algorithms could potentially be 
utilised, particularly those based on clustering techniques.

However, a notable downside of this approach is that there are currently no established procedures 
for determining and incorporating the most suitable algorithm for each specific task. This lack 
of systematic guidance may hinder the effectiveness of algorithm selection and application in 
various scenarios within the nuclear power sector. Further challenges include handling missing 
data in vast datasets, ensuring sufficient training data quality, and the high cost of implementing 
AI systems, particularly in a legacy nuclear power plant infrastructure. Additionally, integrating AI 
technologies into existing NPP systems can pose significant technical and financial hurdles that 
require careful planning and investment.

4.1	  Artificial Intelligence in nuclear power plant operation
The use of AI in operational contexts is welcomed highly, as operators must handle large amounts 
of data during both normal and abnormal operations. Numerous studies have employed 
computational data to assist in training predictive models. Given that NPPs typically operate in a 
stable manner, training models for specific faults and testing their detection capabilities can be 
challenging. The generated data originate from models of NPPs that are known to have specific 
faults [22, 23].

Prediction models were utilised to analyse the operations of a small light water reactor facility at 
Oregon State University, where positive results were reported. Despite the model's complexity, it 
learned them effectively and applied the reactor's features to make predictions. However, some 
behaviours remained undetected by the network [24]. 

Naimi et al. applied Machine Learning techniques to identify faults in NPPs, focusing initially on 
the detection of various faulty scenarios using neural networks. Subsequently, they employed 
K-Nearest Neighbours (KNN), SVM, and ensemble-based fault diagnosis methods for comparison. 
Among all the models tested, the KNN algorithm was identified as the most accurate and cost-
efficient, although all the models were able to detect the presented faults [25]. 

A fault diagnostics method based on a semi-supervised classification approach was described by 
Ma and Jiang, who utilised data from operational NPPs in conjunction with data from a training 
simulator [26]. Young-Kuo et al. proposed a hybrid model that integrates PCA, signed directed 
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graphs, and Elman Neural Networks for fault detection, fault isolation and severity estimation. 
Each component of this hybrid model contributes unique advantages, providing a robust 
foundation for future research in this area [27].
In recent years, hybrid models have been proposed for the operational analysis of NPPs. This 
trend can be attributed to the fact that individual models often possess specific strengths, and 
their integration allows for a more comprehensive approach to fault diagnostics and operational 
efficiency.

4.2	 Artificial Intelligence in nuclear power plant maintenance   
As mentioned, three methods of fault detection are used, and data-based methods are the most 
promising ones for AI applications. Nuclear power plants are critical facilities that need to run 
safely and within their parameters. Every deviation from normal operation can have an impact 
on the facility, environment, and economy of the plant. For normal operation, the plant needs to 
be well maintained; typically, the most successful plant runs on PM with weekly or daily routine 
check-ups on the equipment, or with periodic works on the components. As PM programmes are 
well established in NPPs, the only downside of these is their economic impact. The upgrade to 
PM would be (CBM), which would be viable when a fault detection system would be in place with 
close to 100% certainty. With CBM in place, unnecessary maintenance operations would not take 
place, and the cost would be reduced [28]. 

Data gathered from temperature, vibration and other sensors could be used for Unsupervised 
Learning with SVM or other algorithms [29]. Seker et al. studied RNNs for analysing a 5HP motor 
through spectral analysis in a coherent manner and neural networks. It was studied that, through 
backpropagation of the Elman’s RNN, this model brings advantages to the concepts [30]. Qian 
and Liu studied four deep learning models, Deep-FFN, CNN, GRNN, and CRNN, for fault diagnosis 
of rotating machines, specifically bearings. After their study, those simple models were not able 
to extract the fault features accurately [31]. In another study, Qian and Liu developed a deep 
reinforcement learning that converges more slowly than typical deep learning models that have 
better stability. They show that, no matter if the data samples are small or large, the model will 
react and learn better if we interact with the model [32].  

5	 CONCLUSION 
As mentioned throughout the article, the most important property of nuclear power plants is 
their safe and reliable operation. This can be achieved by following industry regulations and 
recommendations. It is essential that operational, maintenance and other procedures are 
established and aligned with the latest Standards and regulations. These procedures should be 
adhered to by personnel, and human errors must be minimised.

Even when procedures are followed, faults may occur due to human errors or random machine 
failures. Some machine faults have the potential to be detected beforehand but are often ignored, 
misinterpreted, or overlooked because of the vast amount of data available. With the help of AI 
and well-trained models, these faults could be detected in advance and subsequently prevented.

In the nuclear industry, AI is beginning to gain recognition, and some regulations have been 
established by the U.S. Nuclear Regulatory Commission. However, the use of AI remains an 
unfamiliar approach for many traditional NPP operators and personnel, as there are significant 
safety and operational risks involved.
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A thorough study of AI and Machine Learning is necessary to train these models to a level 
of certainty that can earn the trust of the nuclear industry. It is important to note that these 
methods would not automatically regulate the plant but would instead serve as an alarm 
system for operators and other personnel, prompting them to respond to various indications. 
This ensures that human oversight remains central, with AI acting as a decision-support tool to 
enhance safety and operational reliability. It is also important to note that the use of AI in NPPs 
requires an interdisciplinary cooperation of computer scientists, nuclear engineers, regulatory 
subjects, and management for its successful implementation. 
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CNN Convolutional Neural Networks
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FFN Feedforward Neural Networks

KNN K-Nearest Neighbor

ML Machine Learning

NPP Nuclear Power Plant

OLM On-line monitoring 
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RNN Recurrent Neural Networks
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Abstract
The Krško Nuclear Power Plant (NEK) operates based on a Pressurised Water Reactor (PWR), 
which utilises three loops for heat transfer: primary, secondary, and tertiary. Heat generation 
occurs in the primary loop; steam production takes place in the secondary loop; and waste heat 
is discharged in the tertiary loop. During outages, which occur every 18 months, the secondary 
systems are exposed to the atmosphere, increasing the risk of corrosion. To prevent this, in 
2021, the plant used a chemical solution, Film Forming Amine (FFA), which formed a protective 
hydrophobic layer on the inner surfaces of the pipelines.

In March 2021, during the first use of FFA, deviations were observed in the main feedwater 
(FW) flow measurements. This affected the reactor power calculations, leading to a 0.4–0.5 
% reduction in plant output (approximately 4 MWe). The main feedwater flow is a critical 
parameter for secondary calorimetric calculations, and has the largest impact on error in the 
event of deviations.

The power reduction was confirmed by comparing various process parameters, including 
changes in the primary loop temperature differences (ΔT), main steam flow (MS), and generator 
output vs. condenser vacuum. Since the measurement of the main feedwater flow contributes 
the most to the uncertainty of primary flow and reactor calorimetric calculations, NEK is focused 
on improving its accuracy.

Developing a numerical model in the computer-based programming environment is proposed 
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as part of further research. This model would enable independent calculations of the main 
feedwater flow, to reduce the impact of the FFA chemicals on the measurement readout and its 
associated calculations. The model will be based on thermodynamic equations and algorithms 
for determining the flow with lower uncertainty than the current system. Using this model, 
correction factors should be obtained to adjust the current venturi meter readings. Ultimately, 
this approach will ensure better plant management, reduce energy losses, and increase revenues 
for NEK and its stakeholders.

Povzetek
Nuklearna elektrarna Krško (NEK) deluje na podlagi tlačnovodnega reaktorja (PWR), ki 
uporablja tri kroge za prenos toplote: primarni, sekundarni in terciarni. V primarnem krogu 
poteka proizvodnja toplote, v sekundarnem proizvodnja pare in odvajanje odpadne toplote v 
terciarnem. Med remonti, ki potekajo vsakih 18 mesecev, so sekundarni sistemi izpostavljeni 
atmosferi, kar povečuje tveganje za korozijo. Da bi to preprečili, je elektrarna leta 2021 uporabila 
kemično raztopino FFA (Film Forming Amine), ki je na notranjih površinah cevovodov tvorila 
zaščitni hidrofobni sloj.

Marca 2021, ob prvi uporabi FFA, so se pojavila odstopanja pri meritvah pretoka glavne napajalne 
vode FW (Feedwater). To je vplivalo na izračun moči reaktorja in povzročilo upad zmogljivosti 
elektrarne za 0,4–0,5 % (približno 4 MWe). Pretok glavne napajalne vode je ključni parameter za 
sekundarni kalorimetrični izračun in ima največji vpliv na pogrešek v primeru odstopanja. 

Upad moči je bil potrjen s primerjavo različnih procesnih parametrov, kot so spremembe 
temperaturnih razlik v primarnem krogu (ΔT), s pretokom glavne pare (MS ‒ Main Steam) in 
meritvijo električne moči na generatorju. Ker meritev pretoka glavne napajalne vode prispeva 
največ k negotovosti izračuna pretoka primarnega sistema in kalorimetričnega izračuna sredice, 
smo v NEK osredotočeni na izboljšanje natančnosti te meritve.

V sklopu nadaljnjega raziskovalnega dela se predlaga razvoj numeričnega modela v računalniško 
podprtem programskem okolju, ki bo omogočil neodvisen izračun pretoka glavne napajalne vode, 
z namenom zmanjšanja vpliva FFA kemikalije na meritev oziroma s tem povezane izračune moči 
reaktorja. Model bo temeljil na termodinamičnih enačbah in algoritmih za določanje pretoka 
z nižjo negotovostjo od sedanje. S pomočjo modela bi morali pridobiti korekcijske faktorje za 
prilagoditev trenutnih vrednosti venturijevih merilnikov. V končnici bo ta pristop zagotovil boljše 
upravljanje elektrarne, zmanjšal energetske izgube ter povečal prihodke za NEK in njene lastnike.

1	 DESCRIPTION OF THE PROBLEM
Heat transfer in the Krško Nuclear Power Plant (NEK – Nuklearna Elektrarna Krško) occurs in a 
closed loop, with the primary heat source being a nuclear reactor. The plant features a pressurised 
water reactor (PWR), the most widely used reactor type worldwide. The facility operates through 
three largely independent loops [Figure 1].

The primary loop contains the reactor, two steam generators, two reactor pumps, a pressuriser, 
and primary piping alongside safety system connections. NEK uses two primary loops, circulating 
coolant water at 155 bar and 323°C. The reactor pumps (22,711 t/h each) circulate the coolant, 
which transfers the heat to the steam generator without a phase change.

The secondary loop includes steam generators, turbines, reheaters, condensers and a feedwater 
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system. The heat from the primary coolant is transferred to the secondary coolant in the steam 
generator, where the water is converted to high-pressure steam. The steam drives the turbines, 
producing mechanical energy to drive the generator. The spent steam then condenses into water 
in the condenser before returning to the steam generator.

The tertiary loop removes waste heat via the condenser cooling system, which uses Sava 
River water. The heat is transferred to the river, as the cooling water absorbs energy from the 
condensing steam, completing the loop.
NEK operates on an 18-month cycle, with maintenance and refuelling occurring every 18 months. 
The plant runs at full power during operation, following technical specifications limits to ensure 
safety under normal and accident conditions. The reactor power is a critical parameter that’s 
monitored throughout.

Figure 1: Functional diagram of NPP Krško; source: www.nek.si

2	 PRIMARY AND SECONDARY SYSTEM INTERACTION
The thermal power of the core can be described by the following equation:

(2.1)

Q̇T	 Reactor thermal power
ṁprim	 Primary loop mass flow rate 
cp	 Specific heat capacity of water
TH	 Primary loop hot leg temperature
TC	 Primary loop cold leg temperature

The temperature difference (ΔT) is a direct indicator of power (assuming that the primary flow 
rate and specific heat capacity remain unchanged). The losses in the primary loop and additional 
heat power due to the operation of the primary pumps are not considered in the schematic 
calculation. 

The power on the secondary side is determined through a calorimetric calculation, which 
is considered the most accurate power measurement, and serves as the basis for safety 

Robert Kelavić, Jurij Avsec

2 PRIMARY AND SECONDARY SYSTEM INTERACTION 

𝑄̇𝑄𝑇𝑇 = 𝑚̇𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑐𝑐𝑝𝑝 ⋅ (𝑇𝑇𝐻𝐻 − 𝑇𝑇𝐶𝐶) = 𝑚̇𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑐𝑐𝑝𝑝 ⋅ 𝛥𝛥𝛥𝛥

Q̇

ṁ
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analyses, as well as monitoring requirements related to reactor power (Rated Thermal Power – 
RTP = 1994 MWt).

(2.2)

Q̇SG	 Steam generator heat flux
Q̇STM	 Steam heat flux
Q̇BD	 Blowdown heat flux

According to the NEK procedures, the reactor power is determined based on measurements 
from ex-core instrumentation, which is calibrated through the determination of secondary 
calorimetry. The primary parameters used for secondary calorimetry calculations are:

•	 main feedwater temperature,

•	 main feedwater flow,

•	 steam generator pressure,

•	 blowdown system flow,

•	 TH average temperature,

•	 TC average temperature,

The main feedwater flow rate has the greatest impact on the secondary calorimetry 
measurements, making it a key focus for accuracy. This parameter is associated with the highest 
uncertainty in reactor power calculations within probabilistic analyses. It is estimated that the 
deviation of this measurement accounts for 0.66 percentage points of the total 0.81 % calculated 
uncertainty, within the 2 % limit assumed in the safety analyses.

2.1	 Current Secondary Calorimetry Calculation
The calculation of the secondary calorimetry is based on the flow rates of the FW and blowdown 
(BD) from the steam generators, as well as the enthalpy of the MS at the steam generator outlet, 
FW and BD system. The thermal power of the steam generators is calculated by subtracting the 
gains of the reactor coolant pumps (RCP's) and adding the losses of the reactor coolant system 
(RCS).

The main parameters influencing the calorimetry results include:

•	 FW Flow Rate (Venturi): Measured as Δp and converted to t/h. A 1 % deviation in the Δp 
measurement (equivalent to 0.72 % in flow) affects power by 0.72 %.

•	 FW Temperature: A 1 °C deviation impacts the power by 0.249 %.

•	 MS Pressure: A deviation of 1 bar affects the power by 0.065 %.

•	 Steam Moisture Content: A deviation of 0.1 % impacts the power by 0.084 %.

All the other parameters, and their respective deviations, have a smaller influence on the final 
result. A complete sensitivity analysis is available in Reference 6.

FFA FW flow influence at NPP Krško

Robert Kelavić, Jurij Avsec

2 PRIMARY AND SECONDARY SYSTEM INTERACTION 

𝑄̇𝑄𝑇𝑇 = 𝑚̇𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑐𝑐𝑝𝑝 ⋅ (𝑇𝑇𝐻𝐻 − 𝑇𝑇𝐶𝐶) = 𝑚̇𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝑐𝑐𝑝𝑝 ⋅ 𝛥𝛥𝛥𝛥

Q̇

ṁ
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Table 1: Uncertainties in the Calorimetric Reactor Power Calculation Based on Secondary 
Instrumentation (Source: SSR-NEK-3.0 - REVISED THERMAL DESIGN PROCEDURE [ref. 6])

(2.3)

URTP	 Uncertainty in the RTP (Rated Thermal Power) calculation

3	 REASONS FOR FFA INJECTION
The NEK shuts down every 18 months for routine maintenance and refuelling. During these 
outages the secondary systems are drained and exposed to the atmosphere, leading to corrosion 
of the systems while the plant is offline. Upon restart, a significant portion of the rust formed 
during the maintenance period is transported to the steam generators, reducing the heat transfer 
efficiency and contributing to a degradation mechanism known as "denting."

To prevent the formation of corrosive products, NEK decided to inject a protective amine-based 
film-forming solution (FFA). This chemical creates a protective film that prevents oxygen from 
reaching the internal surfaces of the secondary systems during outages when internal structures 
are exposed to the external atmosphere. The FFAs protect the internal surfaces of the carbon 
steels from corrosion by forming a temperature-resistant hydrophobic film. This film prevents 
corrosion during periods when the components are open and empty (during maintenance), 
and enhances the corrosion resistance of the pipelines during operation by reducing the flow-
accelerated corrosion.

During operation, when the systems are filled, the reducing conditions are maintained with a 
high pH, and with hydrazine, which is added to the secondary system as a corrosion inhibitor 
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(oxygen scavenger). However, during maintenance, the surfaces are exposed to oxygen, creating 
conditions that lead to corrosion. The resulting corrosive products are transported throughout 
the secondary system during operation and deposited as sediments in the steam generators.

The injection of the FFA solution must occur while the plant operates at full power. The injection 
point for the FFA solution is located between heaters 4 and 3, where the secondary water 
pressure remains low enough, and the temperature is sufficient to ensure the proper solubility 
of the chemical. The first dosing of the FFA chemical was carried out in March 2021.

3.1	 Deviation description
An impact on the power plant's efficiency and the generator's output was observed as a result of 
the initial dosing of the FFA chemical. It was assumed that a change occurred in:

•	 the measurement of the main FW flow, measured via a Venturi nozzle and Δp meters,
•	 or the heat transfer in the steam generators.

Since the measurement of the main feedwater flow is linked closely to the reactor power 
calculation, any deviation in this measurement is associated directly with an impact on the 
plant's power output and efficiency. At NEK it was presumed at this point that the indicated FW 
flow value was higher than the actual value, as a loss of MWe at the threshold was noticeable, 
ranging from -0.4 % to -0.5 %, or approximately 4 Mwe.

∆T measurements (in °C) were utilised for a representative assessment of the power drop on 
the primary side. These measurements represent the average values obtained from all the RTD 
(Resistance Temperature Detector) NR (Narrow Range) measurements of the primary circuit, and 
are independent of the calorimetric calculations. ∆T is a measurement between TH and TC in the 
primary loop. For better visualisation, a diagram of the average ∆T values over the entire cycle 
(510 days) is presented in Figure 2. The downward trend is attributed to the phenomenon of "Hot 
Leg Streaming," with the slope of the curve representing stable full power and the breakpoint 
indicating the timing of the FFA dosing.

Figure 2: The drop in calorimetric power based on the ∆T measurement of the primary system
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The next independent assessment was based on the change in MS flow, where the MS 
calorimetric power is obtained by considering the enthalpies:

(3.1)

Q̇SG	 Steam generator thermal power
ṁMS	 Main steam mass flow rate 
∆hMS	 Enthalpy change of water during evaporation
ṁBD	 Blowdown system mass flow rate 
∆hBD	 Enthalpy change of water in the blowdown system

Figure 3: The reduction in MS flow normalised to 100 % Rx calorimetric power

The change in power from the MW-power characteristic relative to the vacuum was examined 
additionally. This characteristic illustrates the gross MWe energy as a function of the vacuum, 
enabling an assessment of power variation independent of changes in the thermodynamic 
efficiency (the vacuum in the condenser).

Based on evaluations of the reactor power reduction through independent reviews of the 
following parameters, it was concluded that:

•	 The ΔT measurement between the hot and cold legs of the primary circuit indicated a 
decrease of approximately -0.4 %.

•	 The change in MS flow indicated a decrease of about -0.5 %, as shown in Figure 3.

•	 The change in the power characteristic at the generator relative to the vacuum in the 
condenser suggested a reduction of approximately -4 MWe, or between -0.4 % and  
-0.5 % of the plant's power, as shown in Figure 4.
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 The ΔT 

 

 

40€/MWh. Over an 18

 

Figure 4: The MWe characteristic at the generator relative to vacuum during the addition  
of FFA chemicals

The operators follow "live" calculations of the plant's calorimetric power, ensuring that the reactor 
was kept within a two-hour average range of 99.94 % to 99.98 % during March when the FFA 
chemicals were dosed. However, an issue arose due to suspected inaccuracies in the calorimetric 
calculation, attributed to the influence of the FFA chemicals on the FW flow measurement, or 
changes in the heat transfer coefficient in the steam generators.

At NEK, the long-term steam generator maintenance strategy has been set to include FFA chemical 
dosing before every second outage, starting in September 2025. During this period, accurate 
FW flow measurements will need to be performed, to correct the current "live" calorimetric 
calculations and prevent further MWe losses at the generator.

The cost of electricity purchased from NEK by the owners, Gen Energija and HEP, is approximately 
40€/MWh. Over an 18-month cycle, this results in a significant loss of revenue for NEK, and, 
subsequently, for the owners, who market this energy further.

4	 PURPOSE AND OBJECTIVES OF FUTURE RESEARCH 		
	 WORK
The purpose and objective of the future research work is to establish an independent calculation 
of the calorimetric power of the Krško Nuclear Power Plant. This calculation would enable the 
determination of "live/real-time" correction factors to be applied in the current calorimetric 
calculation, ensuring that future injections of FFA chemicals do not result in further power 
changes caused by their impact on the existing measurements.
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To achieve an independent calculation of calorimetric power, a detailed model of the plant is to 
be developed in a numerically and computationally supported environment. This environment 
must allow matrix manipulations, function plotting, database/measurement integration, and the 
implementation of algorithms, to achieve a more precise final calculation of feedwater (FW) flow 
than the current method, ensuring its suitability for flow correction.

The computationally supported calculation of the main feedwater flow must remain independent 
of the actual measured FW flow value. Instead, it should rely on the thermodynamic 
interdependence of other process variables within the system. Additionally, the calculation must 
meet the accuracy criteria currently set for FW flow measurement. By achieving this, the current 
measured flow value could be corrected using the mathematically derived value.

If the above equation (2.3) is reformulated to eliminate uncertainties associated with the Venturi 
flow meter, the theoretical uncertainty of the parameter can be reduced from 0.81 % to 0.69 %.

This reduction highlights the potential of utilising advanced computational modelling to achieve 
higher accuracy in feedwater flow determination, thereby improving the precision of the overall 
thermal power calculations.

(4.1)

URTPNEW	 New computationally derived uncertainty in the RTP calculation 
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The required correction factor can be calculated with the newly obtained value of the FW flow. 
This factor would be applied to the displayed flow value, to calibrate it, and ensure that the 
actual display reflects the corrected and more accurate flow measurement.

It is assumed that it is possible to model the power plant's secondary system accurately with all 
the necessary process variables, to the extent that the computer-based model will be capable of 
performing the FW flow calculation with less uncertainty than is currently included in the NEK 
safety analyses. The model also assumes that the current measurement of the main feedwater 
flow will not be required as an input variable in the calculation, but can, instead, be determined/
calculated based on other measurable interdependent variables. The NEK model will follow the 
logic of the current heat balance diagram used at NEK [Figure 5], which will then be supplemented 
with on-line process data.
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Nomenclature

(Symbols) (Symbol meaning)

bar Unit of pressure: 1 bar = 105 Pa (Pascal)

BD Blowdown system

°C Degrees Celsius

€/MWh Euro per megawatt hour

°F Degree Fahrenheit

FFA Film-Forming Amines

FW Feedwater system

K Degree Kelvin

kgf/cm2 Unit of pressure in kilogram-force/square centimetre: 1kgf/cm2 = 98066,5 Pa

MS Main Steam system

MWe Megawatt electric

MWt Megawatt thermal

NEK Krško Nuclear Power Plant (Nuklearna Elektrarna Krško)

NPP Nuclear Power Plant

NR Narrow Range

Δp Delta pressure/pressure drop
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psi Unit of pressure in Pounds per Square Inch

PWR Pressurised Water Reactor

RCP Reactor Coolant Pumps

RCS Reactor Coolant System

RTD Resistance Temperature Detector

RTP Rated Thermal Power

t/h Ton per hour

ΔT The difference in temperature between the hot leg and cold leg of the 
primary system
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