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Distributed denial-of-service (DDoS) flood attack remains great threats to the Internet. This kind of 
attack consumes a large amount of network bandwidth or occupies network equipment resources by 
flooding them with packets from the machines distributed all over the world. To ensure the network 
usability and reliability, real-time and accurate detection of these attacks is critical. To date, various 
approaches have been proposed to detect these attacks, but with limited success when they are used in 
the real world. This paper presents a method that can real-time identify the occurrence of the DDoS 
flood attack and determine its intensity using the fuzzy logic. The proposed process consists of two 
stages: (i) statistical analysis of the network traffic time series using discrete wavelet transform (DWT)
and Schwarz information criterion (SIC) to find out the change point of Hurst parameter resulting from 
DDoS flood attack, and then (ii) adaptively decide the intensity of the DDoS flood attack by using the 
intelligent fuzzy logic technology to analyze the Hurst parameter and its changing rate. The test results 
by NS2-based simulation with various network traffic characteristics and attacks intensities demonstrate 
that the proposed method can detect the DDoS flood attack timely, effectively and intelligently.

Povzetek: Opisan je postopek za prepoznavo spletnega napada DDoS s pomočjo mehke logike.

1 Introduction
Distributed denial-of-service (DDoS) attack has been one 
of the most frequently occurring attacks that badly 
threaten the stability of the Internet. According to CERT 
Coordination Center (CERT/CC)[1], there are mainly 
three categories of DDoS attacks: flood attack, protocol 
attack and logical attack. This paper mainly focuses on 
flood attack. In the DDoS flood attack, an intruder bombs 
attack packets upon a site (victim) with a huge amount of 
traffic so as to actually jam its entrance and block access 
by legitimate users or significantly degrade its 
performance[2]. Therefore, a real-time and accurate 
detection of these attacks is critical to the Internet 
community.

Usually, the attack detection methods are classified 
into two categories. One is misuse detection and the 
other is anomaly detection. Misuse detection is based on 
a library of known signatures to match against network 
traffic. Hence, unknown signatures from new variants of 
an attack mean 100% miss. Anomaly detection does not 
suffer from this problem. Considering that DDoS flood 
attack is a process changing dynamically and frequently, 
anomaly-based detectors play a key role in detecting this 
kind of attack. As far as anomaly detection is concerned, 
quantitatively characterizing statistic of network traffic 
without attack is fundamental[2].

As shown by Leland[3] et al., and supported by a 
number of later research [4-5], the measurements of local 
and wide-area network traffic, wire-line and wireless 
network traffic all demonstrate that network traffic 
possesses self-similarity characteristic in large time-scale. 
Self-similarity is the property associated with the object 
whose structure is unchanged at different scales, and its 
degree can be described by the Hurst parameter. 

Several studies show that DDoS flood attack can 
exert remarkable influence on the self-similarity of 
network traffic. Thus, this kind of attack can be 
effectively detected by monitoring the change of the 
Hurst parameter[6-7]. Existing flood attack detection 
methods based on the self-similarity nature of network 
traffic divide the network traffic into non-overlapping 
segments. The Hurst parameter of each segment is 
estimated, once the Hurst parameter changes beyond a 
pre-defined fixed threshold, the loss of self-similarity 
(LoSS) occurs and the DDoS flood attack is detected. 
However, the DDoS flood attack may take place at 
arbitrary moment whenever the traffic changes its self-
similarity characteristic. The intensity of DDoS flood 
attack is also varying, which leads to changing Hurst 
parameter. Therefore, these existing fixed threshold 
detection methods lack flexibility and self-adaptability.
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In this paper, we propose a DDoS flood attack 
detection method using discrete wavelet transform (DWT) 
and Schwarz information criterion (SIC) to determine the 
change point of self-similarity. The SIC[8] statistic is 
based on the maximum likelihood function for the model, 
and can be easily applied to change point detection by 
comparing the likelihood of the null hypothesis (i.e., no 
change in the variance series) against the alternative
hypothesis (i.e., a change is present). This paper presents 
the SIC algorithm working with the DWT to detect the 
change point of self-similarity in real-time. After the 
change point detection, we use the fuzzy logic[9-15] to 
adaptively determine the intensity of the DDoS flood 
attack. We also design a set of decision rules for the 
fuzzy logic to determine the intensity of the DDoS flood 
attack. As a result, this proposed attack detection method 
can accurately detect not only the moment when the 
flood attack happens, but also the intensity of the attacks.

The remainder of this paper is organized as follows. 
Section 2 reviews related work. Section 3 gives a brief 
introduction to self-similarity and the relationship 
between the wavelet coefficients and the Hurst parameter. 
Section 4 first deduces the basic detection principle, and 
then presents the outline of the whole detection process. 
Section 5 describes the on-line self-similarity change 
point identification in detail. In section 6, the decision 
rules of the attack intensity are given. Section 7 discusses 
the performance of our method by NS2-based simulation 
with various network traffic characteristics and attack 
intensities. Finally, a brief summary of our work and 
future research are provided in section 8.

2 Related work
Several anomaly detection methods have been proposed 
against DDoS flood attack in the literature[16-18]. In these 
methods, the network traffic activity is captured and then 
a profile representing its stochastic behavior is created. 
This profile is mainly based on metrics such as the 
network traffic rate, the number of packets or bytes for 
each protocol, the rate of connections, the number of 
different IP addresses, etc. Any activity that deviates 
from the profile is treated as a possible attack. 

There is a serious problem with these statistical 
anomaly detection methods. That is, it is hard to decide 
the appropriate metric on the global scale, because the 
linear superposition of these micro-based detection 
methods can not cope with the complex behavior of 

whole network. In 1993，Leland[3] et al. first found that 
the network traffic is self-similar and this attribute is one 
of the basic natures of the network traffic. Later, the 
work in [19] pointed out that the self-similarity of 
Internet traffic is attributed to a mixture of the actions of 
a number of individual users, and hardware and software 
behaviors at their originating hosts, multiplexed through 
an interconnection network. In other words, this self-
similarity always exists regardless of the network type, 
topology, size, protocol, or the type of services the 
network is carrying.

The research done by Li[20] first mathematically 
proved that there is a statistically significant change in 
the average Hurst parameter under DDoS flood attack. 
Allen[21] et al. and W.Schleifer[22] et al. proposed a 
method using Hurst parameter to identify attack, which 
causes a decrease in the traffic’s self-similarity. Those 
methods consider the normal range of Hurst parameter to 
be [0.5, 0.99], and there is an attack when the Hurst 
parameter runs out of this range. The experiment results 
demonstrate that the method proposed in [21-22] has an 
average detection rate of 60% to 84% depending on the 
intensity of the attack. Ren[23] et al. proposed using the 
wavelet analysis method to estimate the Hurst parameter, 
and consider there is an attack when the Hurst parameter 
runs out of the range [0.6, 0.9]. The cut down of normal 
range of Hurst parameter can be more efficient in 
detecting the low-rate DDoS flood attack. Nevertheless, 
all of these existing detection methods can only detect 
the presence of attack after the attack occurs, they can 
not identify at what time the attack happened.

Fuzzy logic is one of the most popular methods used 
in attack detection for it can deal with the vague and 
imprecise boundaries between normal traffic and
different levels of attacks[10]. Wang[24] et al. proposed to 
use the fuzzy logic to analyze the Hurst parameter and 
estimate the time duration of DDoS attack. However, the 
work in [24] didn’t consider the intensity of the attack 
traffic compared with the background traffic, therefore 
cannot accurately reflect the level of damage that is 
caused by the attack.

The major contributions of this paper are: (i)
considering the inherent relationship between DWT and 
self-similarity, we propose to use SIC combined with 
DWT to detect the occurrence of the DDoS flood attack, 
therefore real-time DDoS attack detection is achieved; 
(ii) we propose a fuzzy set and its implementation to 
decide the intensity of DDoS flood attack against the 
background traffic dynamically and intelligently, which 
provides an accurate indication of the possible damage 
caused by the attack.

3 Self-similarity

3.1 A brief review of self-similarity
Self-similarity means that the sample paths of the process 
W(t) and those of rescaled version cHW(t/c), obtained by 
simultaneously dilating the time axis t by a factor c>0, 
and the amplitude axis by a factor cH, can not be 
statistically distinguished from each other. Equivalently, 
it implies that an affine dilated subset of one sample path 
can not be distinguished from its whole. H is called the 
self-similarity or Hurst parameter. For a general self-
similar process, the parameter H measures the degree of 
self-similarity.

Network traffic arrival process is a discrete time 
process, so the discrete time self-similarity definition will 
be used here. Let { , }iX x i  � be a wide-sense 
stationary discrete stochastic traffic time series with 
constant mean , finite variance 2, and autocorrelation 
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function r(τ), ( ) � . Let ( ) ( ){ , , }m m
iX x i m  � be an 

m-order aggregate process of X, then 
( )

1( )m
i mi m mix x x m    .                      (1)

For each m, X(m) defines a wide-sense stationary 
stochastic process with autocorrelation function r(m)(τ).

Definition 1. A second-order stationary process X is 
called exactly second-order self-similar (ESOSS) with 
Hurst parameter H=1-/2, 0<<1, if the autocorrelation 
function satisfies

r(m)(τ)=r(τ),                                  (2)
where 2 2 2( ) [( 1) 2 ( 1) ] 2r             .

Definition 2. A second-order stationary process X is 
called asymptotical second-order self-similar (ASOSS) 
with Hurst parameter H=1-/2, 0<<1, if the 
autocorrelation function satisfies

( )lim ( ) ( )m

m
r r 


 .                          (3)

In the field of network traffic theory, it is more 
practical to use ASOSS.

3.2 Wavelet-based Hurst parameter 
estimation

Currently, several methods have been proposed to 
estimate the Hurst parameter. Some of the most popular 
ones include the aggregated variance, local whittle, and 
the wavelet-based methods. However, the wavelet-based 
estimator[25] of the Hurst parameter stands out as one of 
the most reliable estimators in practice since it is more 
robust with respect to smooth polynomial trends and 
noise.

In this section, an on-line Hurst parameter estimation 
is proposed using the multiple resolutions feature of 
wavelet analysis. The estimation process is summarized 
as follows: 
 Wavelet decomposition: For a given traffic trace 

time series X, we compute the wavelet coefficients 
d(j,k) using a pyramidal filter bank in an on-line 
fashion for each scale j and position k, as shown in 
Figure 1. At each level in the recursive structure, the 
bandpass (BP) output wavelet coefficients d(j,), and 
the lowpass (LP) output scale coefficients a(j,), 
occur at half rate of the input a(j-1,).

Figure 1: Pyramidal filter bank.

 Detail variance estimation: Let the current stored 
sum of squares calculated from the available wavelet 
coefficients at scale j be

      2

1
( , )jn

j k
S d j k


  ,                        (4)

where nj means the number of wavelet coefficients 
available at scale j. Assume that the arrival of a new 
traffic sample results in the new wavelet coefficient 
d(j,nj+1) at scale j from the filter bank. The sum is 
then updated as follows:

2

1

( , )

j j

j j j

n n

S S d j n

 

 
.                      (5)

When the variance estimation at scale j is required 
for the next step, it can be calculated as j=Sj/nj.

 Analysis using the Logscale diagram: We make a 
plot of log2(j) versus scale j and apply a weighted 
linear regression over the curve region that looks 
linear, and then compute the slope . There is no 
need to compute the Logscale diagram every time a 
new traffic sample is acquired, since they may be 
recalculated only when needed.

 Hurst parameter estimation: The Hurst parameter 
H can be estimated according to 

= ( 1) 2H   .                               (6)
This on-line wavelet-based Hurst parameter estimation is 
performed in an accumulative way, that is, it returns the 
updated Hurst parameter computed over all available 
samples from beginning to current time. We can see that 
this estimation method is accumulative but not dynamic, 
thus can not be used directly in detecting the change 
point of self-similarity in the network traffic. Therefore, 
a change point detection method combined with DWT is 
proposed and discussed in detail in section 5.

4 Attack detection process

4.1 Attack detection principle
Let { , }iX x i  � and { , }iY y i  � be normal and 

abnormal traffic respectively, and { , }iZ z i  � be the 
attack traffic during transition process of attacking. X and 
Z are uncorrelated[2], so Y can be abstractly expressed by 
Y=X+Z. 

Figure 2 illustrates the components of normal and 
abnormal traffic. xi(p) represents the number of bytes 
sent out by node  p at time i for normal network services, 
and zi(q) represents the number of bytes sent out by node 
q at time i for network attack, and yi is the total traffic the 
target received at time i.

Figure 2: Composition of normal and attack traffic.

Based on the theorems in reference [26], we can get 
the conclusion that no matter whether Z is a self-similar 
process, if X is a second-order stationary self-similar 
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process, then Y will still be a self-similar process, but the 
degree of self-similarity may be changed. Let rX, rZ and 
rY be the autocorrelation functions of X, Z and Y
respectively. During the attack, ||rY-rX|| is noteworthy[2], 
and rY=rX+rZ. For each value of H(0.5,1], there is 
exactly one autocorrelation function with self-
similarity[27]. Thus, the consequence is that ||HY-HX|| is 
considerable, where HY and HX are average Hurst 
parameters of Y and X, respectively. Hence, H is a 
parameter that can be used to describe the abnormality of 
network traffic.

4.2 Outline of the attack detection process
The whole process of the DDoS flood attack detection is 
displayed in Figure 3.

From Figure 3, we can see that the whole detection 
process consists of two stages: on-line attack moment 
identification and intelligent attack intensity decision. In 
the part of attack moment identification, the wavelet 
coefficients and SIC statistic will be updated along with 
the incoming of new traffic samples, then the  change 
point detection will re-run in every scale to find out 
whether there is a change point. It will signal a change 
point of self-similarity in network traffic if change points 
exist in enough scales at the same moment. After the 
attack moment identification, we then segment the 
network traffic into pieces around the identified attack 
moment. After that, we can decide the intensity of the 
attack using intelligent fuzzy logic technology. 
According to the Hurst parameter and its changing rate 
(the difference between the Hurst parameters of traffic 
pieces prior to and after the identified attack moment), 
we can determine the intensity of the DDoS flood attack 
using the fuzzy decision rules. The next two sections 
present the detailed implementation of attack moment 
identification and attack intensity decision.

5 Change point estimation with SIC

5.1 SIC
The SIC is a powerful approach in detecting the change 
point of self-similarity in network traffic[8]. The principle 
of SIC is that a sequence with a variance change point
has higher entropy than a sequence with constant 
variance.

Given a sequence of length M, and suppose there is 
only one change point at position g (1<g<M). The way of 
simultaneously detecting the presence and location of 
this change point is to compute the entropy of the entire 
sequence and of the pairs of pieces (f1=1,…, g and f2=g
+1,…, M), compare their values and then decide if there 
is a change point at position g according to whether the 
entropy of the pieces is significantly lower than the 
entropy of the entire sequence. 

We test the null hypothesis A0 (no change is present) 
against the alternative A1 (a single change is present). 
Assuming gaussianity and independence[8], the SIC 
statistic for the two hypotheses is given by

2
0 ˆ:SIC( ) log2π log logA M M M M M    ,

2 2
1 1 2ˆ ˆ:SIC( ) log2π log ( )log 2logA g M g M g M M       ,

where 2̂ , 2
1̂ and 2

2̂ are the unbiased maximum 

likelihood estimators (MLEs) of the variances of the 
entire sequence and of the first and second pieces, 
respectively. 

Our decision will follow the principle of minimum 
information, that is, A0 will not be rejected if

SIC( ) SIC( )gM g mi n ,

otherwise A0 will be rejected if 
SIC( ) SIC( )M g ,

for some g. The change point at position g can be 
estimated according to

1SIC( ) SIC( )g Mg g  mi n .                    (7)

Reference [28] gives a proof that g is a consistent 
estimator of the true change point, and it also gives the 
expression for computing the signification level of SIC 
statistic. The analytic study by Tian[29] et al. shows that 
the Hurst parameter has close relationship with variance 
structure of wavelet coefficients. The SIC has the merit 
of detecting the change point in the variance structure of 
the sequence, so the combination of DWT and SIC can 
be used to detect the change point of Hurst parameter in 
the network traffic.

5.2 Connecting DWT and SIC
In this section, we apply the SIC change point detection
to the wavelet coefficients d(j,k) at each scale j. It will 
signal a change point of Hurst parameter if we find the 
same variance change position across all or a significant
number of scales. A change in variance at a single scale 
only tells us of non-stationary in the variance at that scale

Figure 3: Diagram of DDoS flood attack detection
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For the DWT, the number of wavelet coefficients at 
each scale is not the same, since each branch of the filter 
bank suffers a different number of decimations. Let nj be 
the number of available wavelet coefficients at scale j 
and nj+1 be the number of wavelet coefficients at scale 
j+1, then the relationship between adjacent  scales of nj

and nj+1 satisfies nj=2nj+1. Figure 4 (a) shows the 
temporal relationship between the wavelet coefficients 
of each scale. We can see that the wavelet coefficients 
of each scale in the dotted line correspond to certain 
length of network traffic. In order to provide a good 
estimation of the change point at all available scales, a 
phase correction should be applied to higher scales, with 
a scale dependent delay as illustrated in Figure 4 (b). 
This phase correction aligns the position of the wavelet 
coefficients with a scale-dependent delay and with their 
zone of influence to the change point detection.

Figure 4: Temporal relationship between: (a) wavelet 
coefficients; (b) phase corrected wavelet coefficients.

There are two main requirements for the attack 
detection performance, one is accurate detection and the 
other is real-time detection. In the subsequent section, a 
real-time detection method is emphasized, which 
performs DWT and SIC statistics in sequential fashion, 
and with a slide-window to detect the change point of 
self-similarity on-line.

5.3 On-line change point estimation
The on-line detection scheme of the change point of 
self-similarity in network traffic comprises three steps: 
network traffic update using slide-window, wavelet 
coefficients update using pyramidal filter bank and SIC
statistic update with new wavelet coefficients available 
at each scale.

 Network traffic update: Let l represent the 
original number of network traffic time series used 
to detect the change point of self-similarity, and h
represent the size of slide-window. The process of 
updating network traffic is displayed in Figure 5. 
When h samples of new traffic are acquired, we add 
these new traffic samples into the tail of original 
traffic and discard the same number of old samples 
at the head of original traffic simultaneously, so the 
reserved network traffic for the next detection is l-h. 
This process is iterated whenever new samples are 
acquired. By doing so, we can guarantee that there 
is only one change point of self-similarity in this 
finite length of traffic before we perform the 
detection.

Figure 5: Network traffic update.

 Wavelet coefficients update: For the new acquired
h traffic samples, we feed them into the pyramidal
filter bank displayed in Figure 1. The transforms 
give the new wavelet coefficients corresponding to 
the convolution of the new acquired h samples and 
the memory of the filter. For example, let h be 64 
(26), then only wavelet coefficients at scales 1~5 
need to be updated. Therefore, the change points in 
the variance structure will appear progressively in 
the higher scales as new samples are acquired. For 
the discarded traffic, we only need to discard the 
wavelet coefficients of each scale related to the 
discarded traffic, as we can see in Figure 4 (b).

 SIC statistic update: The update of SIC statistic is 
relatively simple to implement, since it only 
requires the variance of the new wavelet 
coefficients at each scale to be added and the 
variance of the discarded wavelet coefficients at 
each scale to be discarded. We then re-test the null 
hypothesis A0 against the alternative A1 at each scale 
to find out whether there are change points in the 
variance structure.
A decision that there is a change point of self-

similarity in network traffic can be made if change 
points in the wavelet coefficients variance structure exist
in enough scales at the same moment. A change in the 
wavelet coefficients variance structure in one scale or a 
few scales only tells us the non-stationary at that scale. 
After the change point of self-similarity detection in 
network traffic, we then segment the network traffic into 
pieces around the identified change moment. After that, 
we can determine the intensity of DDoS flood attack 
using intelligent fuzzy logic technology, which takes the
Hurst parameter and its changing rate as decision-
making basis.
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6 Attack intensity decision with 
intelligent fuzzy logic

6.1 Intelligent fuzzy logic
Intelligent fuzzy logic decision disposes information 
based on fuzzy or non-fuzzy reasoning rules[10-12]. It 
makes self-adaptive decision in light of mature 
experience. The general fuzzy decision process consists 
of three parts: fuzzy quantitative disposal, fuzzy 
decision rules and fuzzy decision. The fuzzy 
quantitative disposal makes the real input parameter as a 
fuzzy set, and then the fuzzy decision carries out the 
output calculation based on the fuzzy set and fuzzy 
operators defined at fuzzy decision rules. This section 
will describe in detail how fuzzy logic can be utilized in 
DDoS flood attack intensity decision.

6.2 Attack intensity decision
Based on the basic theory and method of fuzzy 
mathematics, we propose an intelligent DDoS flood 
attack intensity decision system. DDoS flood attack 
intensity itself includes fuzziness, because the boundary 
between the light attack, moderate attack and severe 
attack is not well defined. So when judging the intensity 
of attack, one should take the intensity of background 
traffic into consideration. For example, a DDoS flood 
attack is considered as light attack if it causes slight 
decline of the network performance when the traffic 
load is high, but is considered as severe attack if it 
causes serious decline of the network performance when 
the network load is light.

In the proposed decision system, the DDoS flood 
attack intensity decision rules and operations are 
expressed by fuzzy sets, and then we feed these fuzzy 
decision rules and related information into knowledge 
repository. The network elements take the dynamic 
process of actual attack into consideration, and then use 
fuzzy reasoning to determine the intensity of attack 
dynamically and intelligently.

In this paper, the structure of fuzzy decision is two-
dimensional input and one-dimensional output. The two 
inputs are the Hurst parameter and its changing rate. The 
Hurst parameter reflects the influence of dynamic 
normal traffic on attack intensity and the changing rate 
reflects the influence of attack on normal traffic. The
output is the intensity of the attack. As shown in Figure 
6, the fuzzy decision process of the intensity of the 
attack consists of three parts: Hurst parameter and its 
changing rate fuzzification, fuzzy decision rules of 
attack intensity and fuzzy reasoning of attack intensity.

The description of each part of the fuzzy decision 
process is as follows:

 Hurst parameter and its changing rate 
fuzzification: Fuzzification makes the real input 
parameters of Hurst parameter and its changing rate 
as fuzzy sets. According to the change scope of 
Hurst parameter and its changing rate, we define the 
universe of discourse of the Hurst parameter as 
UH={0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1}; the 
universe of discourse of the changing rate as 
UHC={0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 
0.45, 0.50}. The fuzzy sets of UH and UHC are 
H’={S, M, B} and HC’={S, M, B}, where “S” stands 
for small, “M” the moderate, and “B” the big. The 
variable’s membership degree function of each 
fuzzy language  satisfies normality assumption

2 2( ) ( )x x v b   =exp - ,                    (8)

where v and b2 are the mean and variance of the
membership degree function. Through Eq. (8), we 
can obtain fuzzy judgment model of every 
parameter as well as the membership degree 
assignments of every fuzzy subset. 

 Fuzzy decision rules of attack intensity: The 
decision rules take note of the relationship between 
input fuzzy sets and output fuzzy sets. Define the 
fuzzy decision result of DDoS flood attack intensity 
as a variable L, and the fuzzy set of L as L’={LA, 
MA, SA}, where “LA”, “MA” and “SA” represent 
light DDoS flood attack, moderate DDoS flood 
attack and severe DDoS flood attack, respectively. 
Considering the relationship between Hurst 
parameter, its changing rate and DDoS flood attack 
intensity, we can get the fuzzy decision rules 
displayed in Table 1.

Table 1. The fuzzy decision rules of the DDoS flood 
attack.

HC’
H’

S M B
S MA LA LA
M SA MA LA
B SA SA MA

 Fuzzy reasoning of attack intensity: After 
fuzzifying the input parameters Hurst parameter and
its changing rate, we can reason the intensity of 
attack according to decision rules presented in
Table 1. For example, when the Hurst parameter is 
considered moderate, we infer there is a light DDoS 
flood attack if the changing rate of the Hurst 
parameter is considered small. In a similar way, 
there is a moderate DDoS flood attack if the 
changing rate of the Hurst parameter is moderate, 
and severe DDoS flood attack if the changing rate 
of the Hurst parameter is big.

Figure 6: Intelligent fuzzy decision process.
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7 Experiments and analysis

7.1 Simulation environment
The test traffic time series is constructed using NS2 
simulator with varying parameters (e.g. the self-
similarity degree of normal traffic and the attack 
intensity). The simulated traffic model is shown in 
Figure 2, and we let the number of nodes that provide 
normal service is p=100, and the number of nodes that 
implement the attack is q=100. 

We conducted our simulation in two steps: First we 
generate the normal traffic using fractional Gaussian 
noise (=fGn) model with Hurst parameter H={0.6, 0.7, 
0.8, 0.9}. The FGN model was first introduced by 
Mandelbrot and Van Ness[30], and now it is widely used 
in network traffic modeling for its simplicity and 
mathematically attractive. Other traffic models also can 
be used in this simulation in the same way. Second we 
inject constant rate attack traffic at time 600 (second) 
with maximum attack intensity varying from 100KBps
to 500KBps. The constant rate attack achieves its 
maximum rate immediately and lasts for about 400 
seconds. The normal traffic will persist for another 200 
seconds after the attack stops.

The simulated abnormal traffic trace with different 
self-similarity degree and attack intensity is displayed in 
Figure 7. The merging time scale is 100 ms.

In Figure 7, every piece of traffic in the same 
column has same self-similarity degree with Hurst 
parameter displayed at the top of the column, and every 
piece of traffic in the same row suffered from same 
attack intensity. From the first row to the last row, the 
attack intensity is 100KBps, 200KBps, 300KBps, 
400KBps, and 500KBps, respectively.

7.2 Test results and analysis
We use Daubechies(3) as mother wavelet and set the 
decomposition level to 6. In the experiment, the size of 
slide-window is h=64, and l=8h. Under the condition of 
significance equal to 10-5, we can identify the change 
points of Hurst parameter at points 6000 and 10000 as 
shown in Figure 8. In the simulation, point 6000 is when 
attack happens and point 10000 is when attack stops.

Figure 8 shows the results of phase corrected 6-
level DWT-SIC statistics analysis of the simulated 
traffic trace. For normal traffic with same degree of self-
similarity, we can see that: (i) At lower scales, the 
change points caused by both light DDoS flood attack 
and severe DDoS flood attack are clearly identified; (ii)
At higher scales, the change points caused by light 
DDoS flood attack disappear because the DWT lacks 
temporal accuracy. Under the condition of same attack 
intensity, we can see that more change points appear at 
higher scales when self-similarity degree is higher, 
which means the higher degree of traffic self-similarity, 
the more sensitive the network is to DDoS flood attack.

Figure 7: Simulated abnormal traffic trace: (a) attack intensity-100KBps; (b) attack intensity-200KBps; (c) attack 
intensity-300KBps; (d) attack intensity-400KBps; (e) attack intensity-500KBps.
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Figure 8: Change point candidates at each scale. The test traffic trace: (a) attack intensity-100KBps; (b) attack 
intensity-200KBps; (c) attack intensity-300KBps; (d) attack intensity-400KBps; (e) attack intensity-500KBps.

We segment the simulated abnormal traffic around 
the identified change points 6000 and 10000, and 
estimate the Hurst parameters of first and second traffic 
pieces. The changing rate of Hurst parameter can be 
computed by calculating the difference of these two 
Hurst parameters. Table 2 displays the changing rate of 
Hurst parameter under different degree of network 
traffic self-similarity and DDoS flood attack intensity. 

Table 2. Input parameters in fuzzy decision of DDoS 
flood attack.

Attack 
intensity

H
0.6 0.7 0.8 0.9

100KB 0.011 0.018 0.026 0.035
200KB 0.030 0.043 0.061 0.088
300KB 0.053 0.074 0.105 0.152
400KB 0.082 0.119 0.170 0.248
500KB 0.120 0.187 0.272 0.397

We select the input parameters H and HC in Table 2, 
and put them into the fuzzy logic decision process 
shown in Figure 6. We first fuzzify H and HC as fuzzy 
sets based on the membership degree function defined in
Eq. (8). The mean and variance of the membership 
degree function is 0 and 1. According to the decision
rules in Table 1, we can get the decision results of 
DDoS flood attack intensity shown in Table 3.

Table 3. Fuzzy decision results of DDoS flood attack.

HC
H

0.6 0.7 0.8 0.9
0.011 LA LA LA LA
0.018 LA LA LA LA
0.026 LA LA LA LA
0.030 LA LA LA LA
0.035 MA LA LA LA
0.043 MA LA LA LA
0.053 MA MA LA LA
0.061 MA MA LA LA
0.074 MA MA MA LA
0.082 MA MA MA LA
0.088 SA MA MA LA
0.105 SA MA MA MA
0.119 SA MA MA MA
0.120 SA MA MA MA
0.152 SA SA MA MA
0.170 SA SA MA MA
0.187 SA SA MA MA
0.248 SA SA SA MA
0.272 SA SA SA MA
0.397 SA SA SA SA
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7.3 Comparison with existing detection 
method

In order to compare our proposed detection method with 
the existing self-similarity based detection methods, we 
carry out the following experiments.  Firstly, we divide 
each network traffic with different degree of self-
similarity into non-overlapping sections of length l=8h,
where h=64. Secondly, we estimate the Hurst parameter 
of each section using Abry-Veitch wavelet-based 
estimator[31], and the Matlab source code for this 
estimator is available at [32]. The Hurst parameter of 
each section under different attacks intensity is 
displayed in Figure 9.

In Figure 9, we can see that the Hurst parameters of 
section 12 (corresponds to points 5633-6144) and 
section 20 (corresponds to points 9729-10240) are larger 
than the Hurst parameter before the attack happens. This 
is because at the beginning and ending moments of 
attack, the network traffic becomes more bursty and 
non-stationary, which leads to increase of the Hurst 
parameter. But during the attack, the normal traffic is 
overwhelmed by the attack traffic, and the Hurst 
parameter decreases (from section 13 to section 19, 
corresponding to points 6155-9728). Using the detection 
threshold proposed by Allen[21], we find that those 
attacks with severe intensity can be detected properly, 
but attacks with light or moderate intensity will be 
missed. Using the detection threshold proposed by 
Ren[23], we find that those attacks with severe or 
moderate intensity can be detected properly, but attacks 
with light intensity are missed. To make things even 
worse, in Ren’s method, normal traffic with light degree 
of self-similarity and high degree of self-similarity are 
taken as attack behaviors. Our detection method takes
the self-similarity degree of normal traffic into account, 

and study the influence of different attack intensities to 
the network traffic self-similarity. So our detection 
method can detect light, moderate and severe intensity 
of attacks accurately and intelligently. 

In addition, in methods proposed by Allen and Ren,
it is important to choose a proper length of the section(l), 
because short section can not guarantee the amount of 
data required for estimating the Hurst parameter, and 
long section will result in prolonged detection latency. 
But our detection method does not suffer from this 
problem, because if there is a change point of self-
similarity in network traffic, we only need to sample a 
few more data after the change point, then we can detect 
this change point timely by detecting the changes of 
wavelet coefficients variance structure at several scales. 
For example, if the wavelet decomposition level is 5, 
then we only need to sample another 64(26) sample data 
to find out this change point.

8 Conclusion
In this paper, we proposed a method to detect the 
occurrence and intensity of DDoS flood attack based on 
the change of self-similarity in network traffic. To 
identify the DDoS flood attack, we adopt a kind of 
Schwarz information criterion that can not only find out 
the presence of attack in network traffic, but also its 
occurring moment. After the attack identification, we 
further propose a method to determine the intensity of 
attack based on intelligent fuzzy logic technology. To 
verify the effectiveness of our method, we conducted 
experiments using traffic trace constructed by NS2 
simulator. The results demonstrate that the proposed
method can detect the DDoS flood attack timely, 
effectively and intelligently. The future work will focus

Figure 9: Change trend of Hurst parameter under different DDoS flood attack intensity. The degree of normal traffic 
self-similarity is: (a) 0.6; (b) 0.7; (c) 0.8; (d) 0.9.
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on constructing fuzzy rule base by some learning 
techniques and testing this method on traffic trace from 
live networks.
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