
 Informatica 36 (2012) 263–276 263

Autonomous Push-down Automaton Built on DNA*

Tadeusz Krasiński, Sebastian Sakowski
Faculty of Mathematics and Computer Science, University of Łódź
Banacha 22, 90-238 Łódź, Poland
E-mail: krasinsk@uni.lodz.pl, sakowski@math.uni.lodz.pl

Tomasz Popławski

Department of Molecular Genetics, University of Łódź
Pomorska 141/143, 90-236 Łódź, Poland
E-mail: tplas@biol.uni.lodz.pl

Keywords: push-down automaton, DNA computing

Received: July 19, 2012

In the paper we introduce a biomolecular implementation of the push-down automaton (one of the
theoretical models of computing devices with unbounded memory) using DNA molecules. The idea of
this improved implementation was inspired by Cavaliere et al. (2005).
Povzetek: Predstavljen je avtonomni avtomat na osnovi DNK po vzoru Cavaliereja.

1 Introduction
In the paper written by Cavaliere, Janoska, Yogev, Piran,
Keinan, Seeman [4] the authors propose a theoretical
model (i.e. not tested in laboratory) of implementation of
the push-down automaton built on DNA. The idea was
inspired by two papers: the first one by Rothemund [7]
who proposed a simulation of the Turing machine - the
basic theoretical model of computation - and the second
one by Benenson, Paz-Elizur, Adar, Keinan, Livneh,
Shapiro [1] who proposed a simulation of the finite
automaton – the simplest model of computation. The
above three implementations represent all the basic
theoretical models of computers in the Chomsky
hierarchy. But all these simulations have weak points in
different places.

The Rothemund model is not autonomous. A person
must interfere in the process to obtain the required
sequences of actions through many restriction enzymes.
This is likely a reason why nobody tested it
experimentally.

Next, Benenson et al. [1] model is autonomous,
programmable and was tested in laboratory but it
represents the simplest computational model - a finite
automaton (in fact it was only 2-states 2-symbols finite
automata). The next propositions along the same idea
(Soreni et al. [10], Unold et al. [11], Krasiński and
Sakowski [6]) essentially did not improve the situation.

The last model, Cavaliere et al. [4] is more
powerful (a push-down automaton), autonomous,
programmable (although the action of it was illustrated
only on one simple example) but the problem lies in
obtaining the right sequence of ligations of transition
molecules to the input and to the stack (represented by
the same circular DNA). The authors themselves indicate
this problem “It is first important to know which side is
ligated first, since there is degeneracy in the stack side …

and therefore different transition molecules may be
ligated at that end at any stage” and propose two ways to
reduce (not eliminate) the problem. Moreover, another
problem in their model is that it is not clear
biochemically whether the used enzyme PsrI could not
accidentally cut transition molecules of the first kind
(which add the symbol Z to the stack) before ligating it to
the input and to the stack.

In this paper we suggest an improvement of the last
model of push-down automata to avoid these problems.
However, it is a theoretical model not tested yet in
laboratory. We propose a new shape of transition
molecules and another kind of restriction enzymes,
which cut only when the ligation of a transition molecule
to the circular molecule of the input will be accomplished
on both sides.

2 Push-down Automaton
In this section we recall shortly the definition of the
push-down automaton (PDA). More information can be
found in any textbook (Hopcroft and Ullman [5]; Sipser
[8]).

A push-down automaton is a finite automaton
(nondeterministic) which has a stack, a kind of simple
memory in which it can store information in a last-in-
first-out fashion.

So a PDA has a finite control unit, an input tape and

a stack (Fig. 1).

*
 This project is supported by the National Science Centre of Poland
(NCN). Grant number: DEC-2011/01/B/NZ2/03022.

mailto:sakowski@math.uni.lodz.pl

264 Informatica 36 (2012) 263–276 T. Krasiński et al.

Figure 1: A scheme of the PDA.

In each step the machine, based on its current state (q),
the input symbol which is being currently read (c) and
the top symbol on the stack (A) performs a move
according to a transition rule (from a list of transition
rules associated to a given PDA): pops the top symbol
from the stack, pushes a symbol (or a sequence of
symbols) onto the stack, moves its read head one cell to
the right and enters a new state. We also allow
ε - transitions in which a PDA can pop and push without
reading the next input symbol. The PDA is
nondeterministic, so there may be several transitions that
are possible in a given configuration. We will denote
transition rules in the following way

)','(),,(AqAcq →

where: q' - a new state, A' - a new symbol or a sequence
of symbols (may be an empty sequence) which replaces
A on the top of the stack.

There are two (equivalent) alternative definitions of
acceptance of an input word w: by empty stack and by
final state. Since in the presented implementation we use
the second one we will recall only that one. A PDA
accepts an input word w if it enters a final state (from a
distinguished subset of all states) after scanning the
entire word w, starting from the initial configuration with
w on the input tape and with the special initial symbol
⊥ on the stack.

The class of languages accepted by PDA is the class
of context-free languages which strictly includes the
class of regular languages (accepted by finite state
automata) and is strictly contained in the class of
recursive enumerable languages (accepted by Turing
machines).

We will illustrate the above definition by giving an
example of PDA which adds integers. It will be our
main example in the implementation.
Example 1. A PDA accepting the language

},:{ NmncbaADD mnmn ∈= +
has four states: q0 - initial state, q1, q2, q3 - final state. The
PDA has the following transitions:

1.),(),,(00 ⊥→⊥ Aqaq
2.),(),,(00 AAqAaq →
3.),(),,(10 AAqAbq →
4.),(),,(11 AAqAbq →

5.),(),,(21 εqAcq →
6.),(),,(22 εqAcq →
7.),(),,(32 εε qq →⊥
A sequence of configurations (state, remaining input

word, stack) of this PDA on the input word
ADDaabccc∈ is as follows.

6

2

6

2

5

1

3
0

2

0

1

0

),,(),,(),,(

),,(),,(),,(

→⊥→⊥→⊥→

⊥→⊥→⊥

AcqAAccqAAAcccq

AAbcccqAabcccqaabcccq

),,(),,(3

7

2 εεε qq →⊥ - acceptation,

and on the input word ADDabc∉ is as follows.

5

1

3

0

1

0),,(),,(),,(→⊥→⊥→⊥ AAcqAbcqabcq
),,(2 ⊥Aq ε - stop the action.

3 The Structure of DNA
DNA (deoxyribonucleic acid) is the storage medium for
genetic information in all living things. It is a single-
stranded (ss) or a double-stranded (ds) chain made of
four nucleotides A, C, T, G. In a dsDNA two ssDNA
(with the inverse orientations) are linked by hydrogen
bonds in such a way that A can only pair together with T
and C with G. To manipulate DNA we take various
enzymes from a variety of organisms for catenating,
splitting, cutting and copying DNA. In our consideration
we will use restriction enzymes (restrictases) which
recognize fixed sites in a DNA and cut it, leaving sticky
ends on both sides of the cutting place. For instance the
restrictase FokI cuts in the following way (Fig. 2).

Figure 2: The action of the enzymes FokI.

4 The implementation of PDA
The implementation of a PDA is similar to that of
Cavaliere et al. [4] with changes which eliminate their
obstacles. The main idea of the implementation is as
follows.

The basic elements of a PDA i.e. the input tape and
the stack are represented in the same circular dsDNA
molecule of which one end represents the stack and the
second one the input word (Fig. 3).

Figure 3: The basic elements of implementation of a
PDA.

stack

rest

input tape

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 265

The sticky end of the stack represents the top symbol on
the stack and the sticky end of the input tape represents
the first symbol of the input word (to be read) and
simultaneously the state of the PDA.

The transition rules of a PDA are suitable DNA
molecules which hybridize to both ends of the circular
DNA representing this PDA (Fig. 4).

Figure 4: Process of hybridizing a transition rule to both
ends of DNA.

After ligation, appropriate restriction enzymes cut this
circular molecule. Their actions cause changes in the
stack and in the input word according to the move which
is represented by this transition molecule. A new idea is
that the action of restriction enzymes will take place only
when the transition molecule ligate to both ends of the
circular molecule. It happens because the chosen
restriction enzyme (BglI) has two separated recognition
sites (Fig. 5), which appear both only when a transition
molecules ligates to both ends of the circular molecule.
After the cut additional molecules and restriction
enzymes make adequate changes in the stack and in the
input word. Then the next transition rule may act. When
a sequence of such transitions leads to reading out the
input word and the last sticky end would represent the
final state of the PDA, then a long additional DNA
molecule ligates to the molecule. It can be detected in the
solution by gel electrophoresis. The word is accepted.

Figure 5: The action of the enzyme BglI.

5 The Practical Implementation
The idea of the practical implementation will be
illustrated on the PDA given in Example 1 i.e. on a PDA
performing the addition of integers. The graph of it is
represented in Fig. 6.

Figure 6: The graph of a PDA which adds integers.

It has seven moves. Each of them is represented by a
transition molecule, additional molecules and suitable
restriction enzymes (see Appendix 1).

The action of the enzyme BglI is presented in
Fig. 5. The remaining enzymes act as follows (Fig. 7).

Figure 7: The action of the enzymes AcuI, BbvI, SapI.

The sticky end of an input word represents both a symbol
and a state of the PDA according to the rules (Fig. 8).

Figure 8: DNA codes of the symbols and pairs <state, symbol>.

AAAa
Aa

→
⊥⊥→

,
,

ε→Ac,

AAAb →,
q1

AAAb →,

q2

ε→Ac,

εε ⊥→,

q3

q0

a transition rule

266 Informatica 36 (2012) 263–276 T. Krasiński et al.

The symbols { ⊥,A } on the stack and their
representations on the top of the stack are presented in
Fig. 9.

Figure 9: The representations of the stack symbols.

The representation of the considered PDA with the input
word aabccc in the initial state q0 and the symbol ⊥ on
the stack is shown in Fig. 10.

Figure 10: The PDA with the input word aabccc.

The action of the PDA will be illustrated on two moves,
the first of which pushes a symbol on the stack
(Appendix 2) and the second one of which pops the
symbol from the stack (Appendix 3).

The main idea of the first move
),(),,(00 ⊥→⊥ Aqaq which pushes the symbol A on

the stack is to use the restriction enzyme BglI, which cuts
the DNA strand only when the transition molecule
merges the stack and the input tape. It is caused by the
fact that the enzyme BglI has two separated recognition
sites 5’...GCC(5nt)GGC...3’ which appear when the
transition molecule ligates to the stack and to the input
word. An important fact is to use spacers GGC between
symbols of the input word. After the cut the second
restriction enzyme AcuI together with an additional
molecule make a change in the input word.

A second move),(),,(21 εqAcq → which pops the
symbol from the stack acts by using also the restriction
enzyme BglI (Appendix 3). After cutting with the
enzyme BglI we have to remove actual symbols from the
input word and from the stack. The operation of
removing from the input word is the same as in the first
move (using the restriction enzyme AcuI).

Since we could not find a commercial enzyme which cuts
a DNA molecule in a long distance from the recognition
site and leaves a 3-nt sticky end we have to apply two
restriction enzymes (BbvI and SapI)

The remaining moves act similarly. The whole
process on the word aabccc is presented in Appendix 4.

6 Conclusions
We have presented a new method to implement a push-
down automaton based on DNA molecules and
restriction enzymes. It is an improved version of the idea
presented in [4]. Other attempts (not fully matured and
functioning) are in [9], [13], [14]. A new idea is to use
a restriction enzyme which has two separate recognition
sites. It allows to cut DNA molecules representing
elements of a PDA after ligating of transition molecules
to both sides of circular DNA. It avoids problems that
appeared in Cavaliere et al. [4]. This will enable us in the
future to construct more powerful automata than PDA,
which provides the possibility to solve more complicated
problems. Actually we implemented our theoretical
model of finite automata (more powerful than the one
presented in Benenson et al. [1] in a laboratory in the
cooperation with a research group from the Department
of Molecular Genetics of the Łódź University. This
attempt of a laboratory implementation of our research
groups is described by Błasiak, Krasiński, Sakowski,
Popławski [3]. We tested in the laboratory simultaneous
action of two restriction enzymes AcuI and BbvI which is
a crucial step in the experiment presented in this paper.
The next step could be laboratory implementation of the
PDA presented in this article.

The circular molecule dsDNA used in our model
opens a new possibility to insert and apply our automaton
to the bacteria cell. Such a type of DNA molecules are
plasmids - heritable DNA molecules that are
transmissible between bacterial cells and bacterial
genomes. Bacteria controls DNA replication process via
origin replication elements. These genetic elements are
built with blocks of repeated sequences and replication is
initiated when special proteins (e. g. DnaA in E. coli)
binds to series of repeats. Regulations of bacterial
genome and plasmid propagation is possible with use of
our automaton by controlling the number of repeat motifs
presented in origin (by inserting to the stack or removing
from the stack). In a similar way it is possible to control
in bacteria not only DNA replication but also
transcription of some bacterial genes. Transcription starts
when RNA polymerase binds to special genetic elements
called promoter. The bacterial promoter is built with
some genetic elements essential for efficient initiation of
transcription (e.g. -10 and -30 blocks), thus we can
switch on and off gene transcription by inserting or
deleting some sequence blocks within promoter or even
changing the distance between them. This method of
DNA replication or transcription control with the use of
an automaton has one major advantage in comparison of
natural scheme of control – it allows to make some
logical calculations before cell take the final decision.

Acknowledgement
We thank prof. Jacek Hejduk for an improvement of the
text in the paper.

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 267

References
[1] Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E.,

Livneh, Z., Shapiro, E. (2001). Programmable and
autonomous computing machine made of
biomolecules. Nature 414, 430-434.

[2] Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z.,
Shapiro, E. (2003). DNA molecule provides a
computing machine with both data and fuel. PNAS
100, 2191-2196.

[3] Błasiak, J., Krasiński, T., Popławski, T., Sakowski
S. (2011). More powerful biomolecular automaton.
ArXiv:109.5893v1 [Cs.ET]. Cornel University
Library.

[4] Cavaliere, M., Jonoska, N., Yogev, S., Piran, R.,
Keinan, E., Seeman, N. (2005). Biomolecular
implementation of computing devices with
unbounded memory. Lecture Notes in Computer
Science 3384, 35-49.

[5] Hopcroft, J., Ullman, J. (1979). Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley.

[6] Krasiński, T., Sakowski S. (2008). Extended
Shapiro Finite State Automaton. Foundations of
Computing and Decision Science 33, 241-256.

[7] Rothemund, P. (1995). A DNA and restriction
enzyme implementation of Turing machines. In
DNA Based Computers, American Mathematical
Society, Providence, RI , 75-119.

[8] Sipser., M. (2006). Introduction to the Theory of
Computation. Thomson Course Technology.

[9] Shi, X., Xin, L., Zhang, Z., Xu, J. (2005). Improve
Capability of DNA Automaton: DNA Automaton
with Three Internal States and Tape Head Move in
Two Directions. Lecture Notes in Computer
Science 3645, 71-79.

[10] Soreni, M., Yogev, S., Kossoy, E., Shoham Y.,
Keinan, E. (2005). Parallel biomolecular
computation on surfaces with advanced finite
automata. Journal of the American Chemical
Society 127, 3935-3943.

[11] Unold O., Troć M., Dobosz T., Trusiewicz A.
(2004): Extended molecular computing model.
WSEAS Transactions on Biology and Biomedicine
1, 15-19.

[12] Yin, P., Turberfield, A., Reif, J. (2004). Designs of
Autonomous Unidirectional Walking DNA
Devices. Tenth International Meeting on DNA
Computing (DNA10), Milano, Italy. Lecture Notes
in Computer Science 3384, 7-10.

[13] Zhang, Z., Xu, J., Liu, J., Pan, L. (2006).
Programmable pushdown store base on DNA
computing. Lecture Notes in Computer Science
4115, 286-293.

[14] Zhang, Z., Jie, L., Xiao-Long, S. (2008).
Biomolecular Pushdown Automaton Based on the
DNA Computing. Chinese Journal of Computers
31, 2168-2172.

268 Informatica 36 (2012) 263–276 T. Krasiński et al.

Appendix 1
The transition rules and their molecular representations.

Table 1

Transition
rule

Transition
molecule

Additional
molecule

Restriction
enzymes

),(),,(00 ⊥→⊥ Aqaq

BglI
AcuI

),(),,(00 AAqAaq →
BglI
AcuI

),(),,(10 AAqAbq →

BglI
AcuI

),(),,(11 AAqAbq →
BglI
AcuI

),(),,(21 εqAcq →

BglI
AcuI
BbvI
SapI

),(),,(22 εqAcq →

BglI
AcuI
BbvI
SapI

),(),,(32 εε qq →⊥

BglI
AcuI
BbvI

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 269

Appendix 2
The push a symbol on the stack),(),,(00 ⊥→⊥ Aqaq .

270 Informatica 36 (2012) 263–276 T. Krasiński et al.

Appendix 3
The pop a symbol from the stack),(),,(21 εqAcq → .

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 271

Appendix 4
Process of computing of the word w=aabccc by the push-down automaton from Example 1.

272 Informatica 36 (2012) 263–276 T. Krasiński et al.

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 273

274 Informatica 36 (2012) 263–276 T. Krasiński et al.

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 275

276 Informatica 36 (2012) 263–276 T. Krasiński et al.

