
SVNTACTIC PARSING AND PLOTTING OF
MATHEMATICAL EXPRESSIONS

INFORMATICA 1/89

Descriptors: SYNTAX, ANALVSIS, TEXT NATURAL, SOFTVVARE,
TREE GRAMMAR, MATHEMATICAL ANALVSIS, LANGUAGE
ANALVSIS

Nikola Bogunovič, Institut R. Boškovič
Zagreb

The paper presents the parsing problem of a
sirople context free language. The "language" sentences are
matheroatIca 1 expressions with one variable. A computer program
parses the expression according to the developed context free
grammar rules. Upon building a parse tree, the program
evaluates the expres5ion over a given range of variable
values, and plots the result on the screen. Even though the
program is developed on a PC AT personal computer, it is
highly portable since the C programrolng language is used, and
graphics hardvare dependent routines are removed in a separate
module.

SINTAKTIČKA ANALIZA I GRAFIČKI PRIKAZ MATEMATIČKIH IZRAZA
U radu je predstavljen problem analize resenienog

sloga u kontekstno slobodnom jeziku. "Jeziinu resenicu"
predstavlja matematiiki izraz s jednom varijablom. Raiunarski
program razlaže izraz u skladu s razvijenim kontekstno slobod-
nim gramatiikim pravilima. Program gradi stablo sastavnih
dijelova matematiikog izraza, nalazi vrijednosti izraza za
dati niz vrijednosti varljable, i grafiiki prikazuje rezultat,
lako je program razvijen na računalu PC AT, jednostavno je
prenosiv na druga raiunala, jer je pisan u vifiero jeziku (C), a
grafičke, sklopovskl ovlsne rutine premje«tene su u odvojen
programski modul.

INTRODUCTION

been o
of art
is to
outsid
intern
repres
sentat
operat
though
repres
assume
anothe
the sa

Language
ne of the m
ifictal int

take the
e world and
1 repres

entatlon w
ion, a comm
ed on by

a common
entatlon ma
d that th
r is easy,
me abstract

parsing
ost Intri
el1igence
informati
translat

entatlon.
e mean
on data s
various p
data str
y have di
e transi
and ali f
represen

has tradi 11 ona 11y
gulng research areas
. The problem here
on provided from the
e it into a predse

By the internal
a semantic repre-
tructure produced or
rogram modules. Even
ucture of internal
fferent forms, it is
ations from one to
orms are variants of
tation.

The application of language parsing,
in the context of this paper, is directed to
engineering problems, e.g. intelligent in-
dustrial process control, rather than attempt
to solve an over aspiring and not very well
deflned problem like automatic language trans-
lation. It is more senslble to work on the
internal representation gerteration, since this
is an intermediate point betueen words and
actions .

The problem of language parsing can be
divlded into three areas, wlth the apparent
ambiguity at each level [1]:

1. acoustic-phoneti C: tirne domain and
freguency domain analysis of the
incoming sound, and translation the
input into uords.

2. morphological-syntactic: taking words
and establishing the syntactic form of
the utterance.

3. semantic-pragmatic: finding out the
meaning from the syntactical ly analyzed
utterance.

In this paper we wlll concentrate on
the problems of second and third level only.
Our goal is to develop an internal repre-
sentation from the correctly received input
stream of Information, looking at the major
data structures the computer program ušes. The
problems at first level, and partially at
sečond, can be bound loosely to speech recog-
nition, with major research advances and
results given in [2] and [3].

A computer program that translates
from any natural language to internal repre-
sentation, must in the first step syntacti-
cally analyze, or parse, the sentence. In the
process, one needs to know the rules of syntax
for the language, specifying the legal syntac-
tic structures for a sentence.

A parsed sentence is usually
presented in a tree structure known as parse
tree or phrase marker. Specifying the struc
ture of a sentence in a formal knowledge
structure, by a serles of production rules
i.e. grammar, could be far too complex for any
natural l'anguage [4] . The grammar must be, tn
that čase, context-free, Indicating hou to
replace a nonterminal node of the parse tree
uith louer constituents, without any reference
to the context in uhich the nonterminal node
flnds itself [5].

grammar_rule
grammar_head
grammar-head
gr ammar_body
gram!iiar_body
gr amma r _ i tem

--> g r a mm a r _ h e a d
--> nonterminal_node
-->
-->
-->

->] grammar_body

nonterminal_node termina 1_node
grammar_body grammar_body
grammar_item

--> nonterminal node
grammar_item --> terminal_node

The application of the context-free
grammar to a s 1mp1e sentence like "The parser
makes a tree." is exceedingly clear from the
folloning parse tree:

Since
language is
answered and
1 anguage dev i
centrate on
arithmetlc ex
controlled'
Nevertheless,
applies the
language pars
an ari thmeti
complex ity .

the guestion, whether
context-free or not, i
a context-free grammar
sed, in this paper we
a much easier task of
pressions, which are
by a context-free
the presented pars

very same methodology
ing, and develops a pa
C, expression of c

a natural
s yet to be
for such a
wi 11 con-

parsi ng the
inherently

grammar .
er program
of natural

rse tree of
onsiderable

s
/ \

np vp
/ \ / \

d n v np
/ \

d n

The parser makes a tree

A rough outline of context-free pars-
ing can also be found in [6] . This paper
extends the presented idea uith different and
more efficient algorlthms and data structures
available in C language, introduces complex
expressions based on a family of new func-
tions, evaluates the function of one variable
and develops a graphics interface for the
presentation of the evaluated function over a
given range of v^lues on the terminal of a PC
XT/AT or PS/2 personal computer. The computer'
program uas written in Microsoft C, and linked
uith an assembly language program to run
industry standard monochrome or colour
graphics routines.

THE SYNTAX O.F A LANGUAGE

A context-f
syntax can be sp
usually called prod
A context- free
aluays start uith
parser tree, or a
i.e. uith a node
interior. of the tre
flnal sentence. Eac
replaced by the r
until ue have only
const1tuents , i.e.
flnal sentence.

ree language is one uhose
ecified by a set of rules,
uctions, or simply grammar.
derivation of a sentence

a nonterminal node of the
nonterminal constituent,
that appears only in the

e structure, and not in the
h nonterminal node is then
ight hand side of the rule,
terminal nodes, or terminal
nodes that appear in the

A very slmple context-free
might have the follouing rules:

grammar

This simple example creates more
guestions than it really indicates the solu-
tion of the problem. It' is extremely difflcult
to express every rule of grammar uith context-
free rules. The problem of number agreement
(singular-plura1) , morphology (differences
betueen go, goes, g o i n g) , ref 1 exi v i zat i on
(reflexive pronouns), imperatives, passive
čase, etc. are just the feu most common. One
can add ueakly context-free structure in tha
variation of the above exanple uith the sen
tence like "It does."

Programming languages, on the other
hand, are context-free, and principal compiler
task for such a language is to parse it. In
that čase we may even talk about the ef-
ficiency of parsing, optimal parsing, and so
forth. The expansion of RISC computer ar-
chitecture, as a contemporary industry trend,
causes the compiler construction and language
parsing problem to be of outmost importance.

Mathematical expressions are the most
simple čase of finite character strings uhose
syntax can be captured in a context-free
grammar. Since our primary goal in this paper
is to shou the principles of a uorking parser,
ue have constrained the presented application
to a "language" that can be described uith
only a feu production rules.

Let us assume a mathematical eguation
uith one variable, floating point constants,
four arithmetic (binary). operators, and five
unary operators, uith left to rlght evaluation
in the traditional fashion. An example of such
an expression is:

sentence(s) --> noun-phrase(np) verb-phrase(vp)
verb-phrase(vp) --> verb(v) noun-phrase(np)
verb-phrase(vp) --> verb(v)
noun-phrase(np) --> determiner(d) noun(n)
noun-phrase(np) --> proper-noun(prn)

f(x)=2.5+3.4-4.5Ein(cos(5.8x+2.2)) (1)

We have decided upon these basic set of opera-
tions uith the follouing order of precedence:

The last tuo rule palrs may be combined
uith the logical operator OR (I) :

vp.
np

-->
-->

v np
d n prn

The syntax of grammar rules can be
also descrlbed by the recursive set of grammar
rules themselves:

s i n (X)
cos(X)
log(x)
exp(x)

«
\

unary minus
sine functi on
cosine function
natural log
exponentia 1
multiplication
diVision
addition
subtraction

The syntax of the expresslon (1) can
be captured in the recursiva set of context-
free grammar rules. We may use the notation
introduced at the beginning of this paper or
instead, we may use the famlliar and tradi-
tional Backus-Naur form, from the computer
science literature:

<expr> ::

<term> :;

<factor>

<term> | <terii\> + <expr> |
<teriii>-<expr>
<factor> I <factor>*<terni>
<factor>\<term>
!= <variable> | <number>

-<factor>
cos<expr>
exp<expr>

sln<expr>
log<expr>
(expr)

It is evident that the functions sin,
cos, log, and exp are implemented as unary
functions, like unary minus. Implied multi-
plication, used in the input expresslon. Is
later changed to expllcit (*).

The application of the-se pcoduction
rules to the eguation (1), is presented in
Flg.l. Parslng stacts with the <expr>, which
according to the first rule of ouc grammar may
have three forms: a <term>, <term>+<expr> or a
<term>-<expr>. Slnce it is obvlouBly a
<term>+<expr>, further application of grammar
rules to <term> part yields a <factor>, then a
<number> which is a floating point constant.

term

factor

numDer

2.5

+

term

tactor

numb«r

3.A

expr

-

factor

number

4.5

expr

term

term

(octor

8 in oxpr

term

factor

cos expr

term •

foctor

number

5.B

term

factor

variable

expr

term

factor

number

2.2

Parslng the other part needs a recur-
sive application of the same rules. Since it
is an <expr>, we apply the first rule again,
which yields <terro>-<expr>. The <term> part is
a <factor>, a <number> and a constant. The
<expr> part is a <term>, which is a
<factor>*<term>. The process proceeds until
the terminus of ali branches is reached,
yielding a <number> or a <variable>.

Fig.l The parse tree of eguation (1)

Once a parse tree is constructed, the
expression may be evaluated starting at the
top of the tree by recursively evaluatlng left
and right branches, and then performing addi-
tion or subtraction at the top.

DATA STRUCTURES AND ALGORITHMS

are no
that
either
variab
,sin,c
(+ ,-,*
binary
operan
first
parsed
Right
starti
Ali fo
struct
follow

Th
des
ther
a n

le
os, 1
,/)'

o
ds,
gra
in

ope
ng
ur k
ure,
ing

e pr
Loo

e ar
umbe
(X),
og,e
In

pera
i.e.
mmar
to
rand
with
Inds

in
comp

inci
king
e fo
r (a

a
xp) ,
our
tor
<te
ru

<fac
wi
th

of
C

onen

pal
at

ur k
flo
una
or

čase
(+)

rm> +
le.
tor>
11
e f
node
lang
ts:

elem
Fig

inds
atin
ry

a
th
wi

<exp
Lef

be
irst
s ca
uage

nts of a
1, vre
of nodes

g point c
operator
binary op
e root
th left
r>, accor
t operan
> <numbe
parsed
grammar

n be capt
sense (7

pars
may

A n
onsta

nod
erato
node
and

ding
d wi
r> --
recur
rule
ured
), wi

e tree
deduce
ode is
nt) , a
e (-
r node
is a
right

to the
11 be
> 2.5.
sively
again.
in a

th the

struct node {
int tag;
char operator;
float number;
struct node *left_operand;
struct node *rlght_operand;

} TREENODE, »TREEPTR;

Integer tag identifies a node as a number
(tag=0), a varlable (tag=l), a binary operator
(tag=2), or a unary operator (tag=3). Charac-
ter operator identifies operator as +, -, *,
/, sin, cos, log, or exp. If the node is a
number, the floating point value is held In
the "number" structure member. If the node is
a binary operator, pointers left_operand and
right_operand point to the left and right
"child" nodes (structures) . If the node is a
unary operator, only left_operand pointer is
used. It is absolutely important to note that
the root node structure embeds the vihole parse
tree, because left and right operands, as the
structure members, are pointers to the struc
tures of the same type as the root node it-
self. This recursive declaration of a node ia
correct, as given in [7]. Typedef TREENODE and
TREEPTR, define a node type structure and a
pointer to such a node type structure.

At the beginning of the program, the
string, which corresponds to the input egua
tion, is subject to the preprocess^ng opeta-
tion. The string is converted to louer čase,
and ali surplus spaces are removed. Since sin,
cos, log, and exp functions are implemented as
unary operators, they are stripped to a single
unigue character operators (s,c,l,e). Finally,
implicit multiplication is changed to ex-
plicit. After the preprocesslng phase, our
eguation (i) would fill an array of characters
that would look like:

2.5+3.4-4.5's(c(5.8*x+2.2)) (2)

In the next step a parse tree is
constructed. Any expression, if not con-
stratned wlth parenthesis to a subexpressi on,
must start wlth a term, which must start with
a factor (number,variable or unary operator
applied to <expr,>). In the process of building
a parse tree, we actually make the instances
of node structures defined earlier. As already
stated, the root node contain pointers to the
neighbouring structures, and in essence embeds
the whole tree. There is an initial function
expr(), which calls the function term(), whlch
finally calls function factor(). These func
tions mirror our graminar rules. The function
factor() analyses the beginning of the string.
In our čase it uill find a number 2.5 (a
constant), and it uill make a number node and
return a pointer to its caller. The callee,
function term(), uill further analy2e the
string to find if there is a mul tipiication
(•) or a divlslon (/) sign according to the
second grammar rule. If not, uhich happens in
our čase, term() uill return a pointer of a
number node to expr(). The expr() function
uill analyze the string further and find an
addition sign, hence the root node is a binary
operator node uith left operator already
established (previously found number node).
The rlght node uill be found by a recursive
call to expr() function again.

To illustrate the creatlon of the
number node structure, ue give the function
numbernode(), uhich is called by the factor()
after It has extracted the number and its
value from the beginning of the string.

TRCCPTU n ; / • Iril r i j -s- t r i [--»i'^r^.-t-r -.r A lo-.r.*,--
L.'' t t i ' r o o t n^ri? H l r u c v j r - • '

f l o d t X; / • 2'iifl r a r o m e t ^ r i s a v e f i s L l ' - vn lu- r * /
< float opl.op2;

3wi teti (n- 'laa)
(caae 0: / ' l l 13 a nunit-̂ r nofir ' /

return (n->rnimher t :
br^ak.

capf 1; / • It 1? a var iab l ' nodr * /
rpturnf xI;
br^aV.:

ca? ' ?.: / * It 15 a blfiaiv orctalor nod' * '
opl - ava 1 (n->I a(t opTand . xl ;
op:̂ - *vA 1 (n->r ! ght_opffrand , X t :

Hwitch(n->operator)
(č a s e • •*•• ;

return(opl+op2) ;
break:

čase " - ' • :
return{opl-op2);
break;

časa " • " ;
returnlopl*op2);
break;

čase " / • ' :
returnlopl/op2);
break: I

čase 3: / * i t is a unai~y operator node • /
9witch(n->operator)
i čase • - • :

return(-eva1{n->)eft_operand.x)t;
break:

čase '8 • :
rettjrnfsi n (eval (n- >1 ef t_oper8nd . xn) :
break;

čase "C";
returnt cos leva 1 {n->lef t_oper8nd . xM 1 ;
break;

caee ' e ' ;
return(exp(eva1(n->left_operaod.x))I;
break;

čase • 1 ' :
returndoflteval (n->left_operand .x))) ;
break;

) I

List 1. Evaluation of the expression.

*defIne neu()
(TREPTR) calloc(l,sizeof(TREENODE))

/* Thi^ is a global creatlon of the space
uhich uill hold a node, and return a
pointer to that space. */

»define NULL 0

The • presented function eval() is only
a basic skeleton of the implemented function,
because one has to take great čare hou binary
and unary functions are defined (no negativ«?
values for log, divide uith zero, etc.), ar.ij
uhether a parenthesis is encountered indicat-
ing a subexpression.

TREEPTR numbernode(value)
/* take the number value and return a
pointer to a structure '/
f loat value;
/* the type of passed parameter */
i TREEPTR n;
/• declaration of the pointer '/

n = neu() ;
/* creatlon of an empty struct. *•/

n->tag = 0;
/* it is a number node */

n->number = value;
/• fill in the value */

n->1eft_operand = NULL;
/* numbernode has no neighbours */

n->right_operand = NULL;
return(n);
/* returning a pointer '/
!

Since thls paper describes the equa-
tion parser and plotter, ue have included in
List 1, an evaluation function uhich, for a
given variable value, uill traverse through
the parse tree in a recursive search fashion,
finding the value of the uhole expression. The
function eval(root_node_polnter,x) uill test
the tag of the root node and act accordingly.
If the node is a unary or binary operator
node, eval() uill call itself uith neu poin
ters.

Finally, after obtaining domain and
value points of the eguation, ue can diEplay
it graphically. The graphics functions greatly
depend on the used harduare and can not be
given generally. Houever, since ind\jEtry
standards like personal coroputers PC XT/AT and
PS/2 are readily available, ue uill shou the
principles of implementatlon some sir. p!e
graphics procedures for these computers. Even
uithin the PC and PS family of computers,
graphics standards vary from 320x200 pixels to
an impressive 1024x768 pixels (uith additional
advanced display adapter). In thls paper ue
have chosen to shou Hercules monochrome
graphics implementatlon, in belief to repre-
sent a popular, yet fully acceptable med i um
resolution (720x348) graphics standard.

Hercules graphics functions library is
a set bf memory resident routines, set up hy
INT10.COM, a program supplied and copyuritpd
by the vendor [8]. We have chosen to implement
graphics routines in the assembly language and
link them uith the main C program to achieve
maximum portability. The aBsembly language
program treats Hercules graphics functions as
the extension of the standard display control
softuare interrupt procedures (int 10h). Ali
parameters are simply loaded in reglsters,
uith the function code in AH register, prior
to int IBh.call. Unlike the original set c.f
functions uithin int 10h group, only segment
reglsters are preserved, along uith ali regis-
ters used to pass parameters.

http://INT10.COM

10

An exaniple of assembly language func
tion, which moves the cursor to the x,y posl-
tion (move(x,y)), is given below. The caller
from the C program ulll leave x and y coor-
dinates, as parameters, on the stack. It was
assumed that C program will run on a PC XT/AT
in the small model ("Microsoft" restriction to
64K byte), hence near procedure type.

.text segment byte puhlic 'code'
assume cs:_text

; deflnitions as reguired by Microsoft C
public _move

move

get

get

X

y
it is

call

proč
push
mov
push
mov
from
mov
from
mov

near
bp
bp, sp
di.
di,[bp+4]

stack
bp, [bp + 6]

stack
ah, 48h

function "move"
int

functi
pop
pop

10h
on

di
bp

_move
text

ret
endp
ends
end

Fig.2 The graph of eguatlon (1)

REFERENCES!

CONCLUSIONS AND REMARKS

We have studied string parsing tech-
nigues, applied to the simple mathematical
eguations. The syntax of these strings can be
described by an elementary context free gram-
mar. Nevertheless, the same prinoiples apply
to a broad range of languages described by
context free graromars.

To illustrate the parsing, evaluating
and plottlng operations of the working
program, ws have presented the graph of the
eguation (1) in Fig.2. The function is plotted
over a domain range (-4,+4). The scale of
ordinate values is appropriately chosen to
display points between -6 and +15. The program
prompts for the scale before it plots the
function. By changing the coordinate scale one
can easily zoom, scroll and pan the graph,
sustainlng the same resolution.

It is worth notlng that the program
embeds implicit precedence rules (multiplica-
tion and division before addltion and
subtracti on), and enforced precedence by
parentheses, according to the given grammar
rules .

E.Charniak, D.HcDermott,
Artificlal Intel 1 igence,
Reading, Mass., 1985.

Introduction to
Addison-Wesley,

2. J.L.Flanagan , Speech Analysis, Synthesis,
and Perceptions, Springer Ferlag, New
York, 1972.

3. S .E. Levinson, L.R.Rabiner, M.M.Sondhi, An
Introduction to the Application of the
Theory of Probabi11stic Functions of a
Markov Process to Automatic Speech
Recognition, Bell Syst. Tech. J., Vol. 62,
No. i , 1982.

4. N.Chomsky, Syntactic Structures, Mouton,
The Hague, 1957.

B. A.V.Aho, J.D.Ullman, The Theory of Parsing,
Translation and Compiling, Prent1ce-Ha11,
Engleuood Cliffs, N.J., 1972.

6. J.Amsterdam, Context-free parsing of
Arithmetic Expressions, Byte, Vol. 10,
No. 8, August 1985.

7. B.H.Kernighan, D.M.Ritchle, The C Program-
ming Language, Prentice-Hal1 , Englevood
Cliffs, N.J., 1978.

GRAPHX VI.1 Manual, Hercules Computer
Technologies, 2550 Ninth Street, Berkeley
CA 94710, USA.

