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Optimization of markers plays an important role in preparation of order-based industrial production of
clothes. Given a matrix of pieces in size numbers and designs, the task is to find a list of combinations
of size numbers to accomplish a work order. The outcome of this step influences the number of cut out
pieces, the amount of material used in the production phase, and the speed of the work order processing.
As numerous factors affect the production costs and several conflicting criteria can be involved in marker
assessment, marker optimization is a demanding task. In this paper, minimum number of markers per work
order is used as an optimization criterion. Marker optimization is formally defined as a knapsack problem,
and an evolutionary algorithm is proposed to solve the task. It is tested on real problem instances from
industrial clothes production and compared with several other algorithms. Its results on complex work
orders are shown to be superior to those of other tested algorithms.

1 Introduction

The preparatory process for order-based production of
clothes consists of four phases: creation, construction,
multiplication and combining of markers. In the creation
phase, a fashion designer conceives the sketch of a model
together with the appropriate materials and designs to be
used in production. In the construction phase, a construc-
tor sets the sketch in the basic size and defines the con-
stituent parts, such as sleeves and pockets, and materials,
such as lining and buttons. The multiplication phase de-
pends on the sales department which, according to cus-
tomers’ requirements, determines the so-called work order.
The work order is a matrix of pieces in size numbers and
designs. Once the work order is known, the basic size of
the model can be multiplied into additional sizes with re-
spect to the work order. Finally, combining of markers can
start where the size numbers should be combined according
to a prescription defining the outlook of markers. Depend-
ing on the outlook of markers are the number of possible

cut out pieces, the amount of material used in the produc-
tion phase, and the speed of the work order processing, in
particular laying and cutting.

The optimization of markers comes before the phase of
their combining. The key question for the optimization pro-
cedure is what the optimal combination of markers actually
is. Is it the lowest number of markers to accomplish the
work order, or the combination that results in the shortest
time to fulfil the work order, or would it not be even easier
to solve the work order with separate markers in one size
only? As the factors influencing the production costs are
numerous and several conflicting criteria can be involved
in marker assessment, the optimization of markers is a de-
manding and challenging task.

In the paper, the optimization of markers for clothes pro-
duction is first defined as the knapsack problem. Although
the task is multi-objective, a single objective is treated
which is usually considered as the most relevant in prac-
tice. This is to minimize the number of markers needed
for the work order. An evolutionary algorithm with several
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variants is proposed for solving the marker optimization
task and tested on real-world problem instances. Its results
are compared with those produced by other algorithms, and
directions for further improvement of the evolutionary al-
gorithm for marker optimization are given.

2 Problem definition

Suppose we have a set ofn objects and a knapsack of ca-
pacity M . In addition, weights of the objects are given
by a vectorW = (w1, ..., wn), and their profits byP =
(p1, ..., pn). The task is to find a binary vectorX =
(x1, ..., xn) such that

n∑

i=1

xiwi ≤ M (1)

and the objective function

f(X) =
n∑

i=1

xipi (2)

returns the maximum value. In other words, the objects to
fill up the knapsack should be chosen in such a way that the
capacity constraint is satisfied and the profit maximized.
The knapsack problem is known to be NP-hard [3]. For
solving this problem in practice, various approximation and
stochastic algorithms are used.

The marker optimization problem in clothes production
can be formally treated as a knapsack problem. Here, a
work order is given in the form of a matrixA with elements
aij and dimensionn ×m, wheren is the number of sizes
andm the number of designs of clothes to be produced.
Elementsaij are integer values representing the number of
pieces of each size and design. The sizes correspond to the
objects in the knapsack problem, and the weights are

wi ∈ [lb..ub] + {0}, i = 1..n (3)

wherelb andub are the minimum and maximum number
of the same sizes in a marker, respectively. The maximum
number of sizes in a markernM corresponds to the knap-
sack capacity.

The binary vectorX denotes the presence of the sizes in
a marker. The profits are obtained as

pi =
wi

si

m∑

j=1

bj (4)

wheresi is the sum of pieces of thei-th size over all designs
in the work orderA:

si =
m∑

j=1

aij (5)

andB = (b1, ..., bm) is a vector of layers for the applica-
tion of a solution (marker)y(X) = XW to the work order
A. The elements of the vectorB are obtained by

bj = min(
aij

wi
), i = 1..n ∧ xi 6= 0, j = 1..m (6)

From Equation (4) it follows that the vectorsP andW
are highly correlated. A valid solution of the task is any
subsetY ⊆ X for which Equation (1) holds. The goal is
to find the optimal solutionY ∗ for which the value of the
objective functionf(Y ∗) is maximum [8].

The objective is therefore to maximize the number of
pieces per marker. As a marker only partially solves the
work order, a number of markers has to be found to accom-
plish the given work order. To find an optimal marker at
each stage, an instance of the knapsack problem has to be
solved, and the assumption is this will result in the mini-
mum number of markers to complete the work order.

3 An evolutionary algorithm for
marker optimization

An evolutionary algorithm (EA) can be used to optimize
the markers. EAs are stochastic search and optimization
algorithms from the field of evolutionary computation [1]
which considers biological evolution as an inspiration for
computer problem solving. The key idea is to search
for god solutions by means of computer-simulated evolu-
tion where candidate solutions compete against each other.
Their quality in solving the problem is used as a fitness
measure. Low-quality solutions are excluded from the pro-
cess, while high-quality solutions produce offspring and
undergo variation. This procedure runs in iterations (see
Fig. 1) until a termination criterion, such as a prescribed
number of iterations, is fulfilled.

procedureEvolutionary_algorithm;
begin

t := 0;
initialize_populationP (t);
evaluateP (t);
repeat

t := t + 1;
selectP (t) from P (t− 1);
variateP (t);
evaluateP (t);

until termination_criterion
end;

Figure 1: A sketch of an evolutionary algorithm

Despite the lack of theoretical predictions for the quality
of the evolved solutions, EAs are more and more often used
for practical problem solving in numerical optimization,
production scheduling, complex system design and other
domains. Their popularity arises from the simplicity and
generality of the algorithms and their ability to find near-
optimal solutions. To apply an EA to a particular problem,
one has to adjust the problem-specific elements of the algo-
rithm: representation of candidate solutions, initialization
of the starting population, fitness function to evaluate the
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solutions, the operators to variate the solutions, and values
of the algorithm parameters.

In the EA for marker optimization in clothes production,
a candidate solutiony(X) = XW is represented as a vec-
tor of n integers, wheren is the number of sizes in a work
order. It is obtained as a product of a binary vectorX and
vector of weightsW . In the binary vector,xi = 0 denotes
thati-th size is not present in a solution, andxi = 1 denotes
the presence of the size. The weights inW are generated
in the range (3). The starting population of solutions is cre-
ated randomly with uniform distribution. The objective is
to search for the maximum number of pieces to be obtained
by a marker on a work order of the sizen×m, hence Equa-
tion (2) is used to define the fitness of candidate solutions.

The algorithm includes fitness-proportional selection
and two traditional genetic operators to variate the so-
lutions during the evolutionary search process: simple
(single-point) crossover and uniform bit mutation [4]. The
algorithm parameter values set for experimental runs in-
clude population size, number of generations and probabil-
ities of crossover and mutation.

Two approaches to solving the knapsack problem were
applied in marker optimization: an EA with penalty func-
tion and a repair algorithm [7].

3.1 An evolutionary algorithm with penalty
function

Penalty functions are a way of dealing with invalid solu-
tions in EAs. The idea is to impose selection pressure to
invalid solutions by assigning them lower fitness. The ap-
proach is expected to gradually lead to valid solutions in
the population and then search for the best among them.
The fitness function in this approach is determined by sub-
tracting the penalty term from the objective function (2):

g(Y ) =
n∑

i=1

xipi − Pen(Y ) (7)

wherepi is obtained from Equation (4), andPen(Y ) = 0
for valid solutionsY . The number of sizes in a marker for
a given problem instance is equal to the maximum number
of sizesnM prescribed in advance.

Penalty function for invalid solutions can be defined in
various ways. In our problem, invalid solutions are those
with the number of sizes in a marker less thannM . We use
three types of penalty functions with different growth of
penalty for violations, i.e. logarithmic, linear and quadratic:

Pen(Y ) = log

(
1 + ρ (

n∑

i=1

xiwi − nM )

)
(8)

Pen(Y ) = ρ (
n∑

i=1

xiwi − nM ) (9)

Pen(Y ) =

(
ρ (

n∑

i=1

xiwi − nM )

)2

(10)

where in all casesρ is

ρ = max
i=1...n


xi

si

m∑

j=1

bj


 (11)

which represents the ratio between profit and weightpi

wi
.

3.2 A repair algorithm

In this approach only the solutions withnM sizes are eval-
uated using Equation (2) as a fitness function. However, if
a solution is not valid, it is first repaired and then evalu-
ated. Three approaches to repairing the generated vectors
are used: heuristic, greedy and random.

Heuristic repair relies on Cauchy-Schwarz inequality [6]
for determining the angleθ between two vectorsu, v ∈ Rn:

cos θ =
uv

‖u‖ · ‖v‖ (12)

Vectorsu andv are defined as

u = (ai1, ..., aim), i = 1..n (13)

and

v =

(
n∑

i=1

ai1

n
, ...,

n∑

i=1

aim

n

)
(14)

and a vector similarity relation, denoted by≺, is defined as

u ≺ v ⇒ cos θ > cosϑ (15)

whereθ = ∠(u, v) andϑ = ∠(w, v). Relation (15) defines
the heuristic order of putting the objects into the knapsack.

The order of picking the objects for the greedy method
is defined by

si∑n
j=1 sj

<
si+1∑n
j=1 sj

(16)

and the random method generates the sizes that appear in a
solution randomly.

Candidate solutions can either be valid, underestimated
or overestimated. Valid solutions need no repair and can be
evaluated according to objective function (2). In underes-
timated solutions the sum of weights is less than the maxi-
mum number of sizes in the markernM . They are repaired
to get valid by inserting additional sizes. This is done either
by random generation of weights in the range[lb..ub] or ac-
cording to relation (15) or (16). In overestimated solutions,
the sum of weights exceedsnM . In such cases randomly
selected sizes are excluded from the solutions.

4 Experiments and results

The evolutionary algorithm for marker optimization was
tested on ten work orders from industrial clothes produc-
tion taken from [2]. The orders differ in complexity and
their characteristics are summarized in Table 1.
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Table 1: Characteristics of the real-world work orders used
in testing:n denotes the number of sizes in a work order,
m the number of designs,nM maximum number of sizes
in a marker,lb minimum number of the same sizes in a
marker,ub maximum number of the same sizes in a marker,
h_lb minimum number of layers,h_ub maximum number
of layers, andk the total number of pieces in a work order

No. n m nM lb ub h_lb h_ub k

1 5 2 4 1 2 4 50 182
2 9 7 8 1 2 5 40 339
3 9 4 14 1 10 5 40 244
4 6 6 4 1 2 17 70 637
5 6 4 4 1 2 4 50 49
6 8 20 4 1 2 1 60 416
7 29 12 2 1 2 10 40 125
8 23 4 2 1 1 10 40 318
9 20 4 2 1 2 10 40 205
10 45 76 4 1 2 4 60 1236

The objective of marker optimization is to maximize the
number of cut out pieces for each marker and consequen-
tially minimize the number of markers needed to accom-
plish a work order. As a stochastic technique EAs generally
return different solutions in multiple runs, hence their re-
sults have to be analyzed statistically to check for repeata-
bility. The EA for each problem was executed ten times,
and best, worst and average results recorded. The algo-
rithm parameters were set as follows: population size 20,
crossover probability 0.8, mutation probability 0.05, and
the number of generations 50 for smaller work orders (No.
1–5 in Table 1) and 100 for larger orders (No. 6–10).

An example of results obtained in solving work order
No. 6 by the EA with penalty functions is shown in Table 2.
It can be seen that the algorithm variant with the logarith-
mic penalty function is able to find the best result in a sin-
gle run and on average, and also the worst result in a single
run. On the other hand, linear penalty yields much less dis-
persed results with lower average value. This performance
is typical for most work orders. It is to be noted, however,
that the EA with penalties was unable to solve large work
orders (No. 7–10). An analysis of the population showed
that the algorithm was dealing with invalid solutions where
the number of sizes in markers was larger thannM and the
fitness values negative. Reducing the degree of violation
and then finding valid solutions only worked on smaller
work orders.

Table 2: Number of markers for work order No. 6 found by
the evolutionary algorithm with penalty functions

Penalty method best worst average
logarithmic 10 20 13.8
linear 14 18 15.6
quadratic 11 19 15.4

Difficulties with penalty functions can be avoided by ap-
plying the repair algorithm that maintains only valid solu-
tions at each step of the evolutionary search. It turns out
that this algorithm can solve all ten work orders. Results
presented in Table 3 for the work order No. 10 illustrate a
typical outcome on larger work orders. Greedy selection of
sizes is better than the random approach, while the heuris-
tic selection of sizes gives the best average and individual
result for the number of markers needed.

Table 3: Number of markers for work order No. 10 found
by the repair algorithm with different approaches to size
selection

Size selection best worst average
heuristic 59 64 60.8
greedy 60 69 64.1
random 62 69 66.1

In addition to comparing various EAs on real problems
from industrial practice, a comparative study with other
marker optimization algorithms was performed. The fol-
lowing four algorithms were tested:

– exhaustive search that checks for all possible solutions
of a marker,

– a deterministic algorithm with heuristic selection of
sizes according to the vector similarity relation (15),

– an approximation algorithm with greedy selection of
sizes [5],

– an evolutionary algorithm with solution repairing and
heuristic selection of sizes.

Exhaustive search could only be applied on smaller work
orders No. 1–5, while for larger orders it would need more
space and time. The deterministic algorithm is currently
used for marker optimization in the textile factory that pro-
vided the test problems for this study.

The results in terms of the total number of markers to
solve the work orders No. 1–5 are shown in Table 4. The
results for larger work orders No. 6–10 are given in Table 5.

Table 4: Total number of markers for work orders No. 1–5
found by different optimization algorithms

Algorithm best worst average
exhaustive search 44 44 44.0
deterministic 53 53 53.0
approximation 43 51 46.3
EA (repair) 43 50 46.2

To appropriately interpret these results, one should bear
in mind that the algorithms were run for each marker to par-
tially solve a given work order. The resulting numbers of
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Table 5: Total number of markers for work orders No. 5–10
found by different optimization algorithms

Algorithm best worst average
deterministic 161 161 161.0
approximation 157 163 160.0
EA (repair) 150 161 153.1

markers confirm that solving the problem with maximum
number of pieces at each step does not lead to the optimal
solution for the entire work order. Regarding the perfor-
mance of the algorithms no clear conclusion can be made
for small work orders, while for more complex ones the EA
outperforms other tested algorithms. It therefore seems to
be an appropriate candidate to replace the currently used
deterministic algorithm.

5 Conclusion

Optimization of markers is a preparatory step for order-
based clothes production that critically affects production
costs. It can be considered from the point of view of vari-
ous criteria and remains a challenging optimization task. A
specific problem of finding the minimum number of mark-
ers to accomplish a given work order can be defined as
the knapsack problem, and the algorithms for this problem
used to maximize the number of pieces with each marker
and consequently minimize the number of markers.

The key contribution of our work is the implementation
of several variants of the EA for marker optimization, its
application to real-world problem instances from industrial
practice and comparison of the results by various optimiza-
tion algorithms. The numerical experiments indicate the
EA with solution repairing and heuristic selection of sizes
outperforms other algorithms on complex work orders.

Future work on this problem will include experimen-
tal verification of the algorithms on more complex work
orders, application of various optimization criteria, either
in the form of a weighted sum or by means of search for
Pareto-optimal sets of solutions. Finally, a database of the
existing markers from previous orders will be utilized in
solving new orders and the results compared with the cur-
rent approach where all the markers are built in the opti-
mization process.

References

[1] Bäck, T., Fogel, D. B., Michalewicz, Z. (Eds.) (1997).
Handbook of Evolutionary Computing, Institute of
Physics Publishing, Bristol, Philadelphia, and Oxford
University Press, New York, Oxford.

[2] Fister, I. (2003).Optimization of markers in clothing
industry, Technical report, University of Maribor, Fac-

ulty of Electrical Engineering and Computer Science,
Maribor (in Slovenian).

[3] Garey, M. R., Johnson D. S. (1979).Computers
and Intractability, A Guide to the Theory of NP-
completeness. W. H. Freeman, New York.

[4] Goldberg, D. E. (1989).Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley,
Reading, MA.

[5] Horowitz, E., Sahni, S. (1978).Fundamentals of Com-
puter Algorithms, Computer Science Press, Rockville,
MD.

[6] Lipschutz, S. (1974).Theory and Problems of Linear
Algebra, Schaum’s Outline Series, McGraw-Hill, Lon-
don.

[7] Michalewicz, Z. (1992).Genetic Algorithms + Data
Structures = Evolution Programs, Springer Verlag,
Berlin.
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