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Abstract. We describe the method for extracting the elastic scattering phase shift from a

lattice simulation at an introductory level, for non-lattice practitioners. We consider the

scattering in a resonant channel, where the resulting phase shift δ(s) allows the lattice

determination of the mass and the width of the resonance from a Breit-Wigner type fit. We

present the method for the example of P-wave ππ scattering in the ρ meson channel.

1 Introduction

The determination of the strong decay width of a hadronic resonance in lattice
QCD is a much more demanding task than the determination of its approximate

mass. The only available method (that was applied up to now) was proposed
by Lüscher [1] and is rather indirect. It applies for the case when the resonance

appears in the elastic scattering of two hadrons H1H2 → R→ H1H2.

• First, the energy spectrum En of the system of two interacting hadrons H1H2

enclosed in a few-fermi box has to be determined. The system is illustrated in
Fig. 1. The spectrum in a finite box En is discrete and few (one or two) lowest

energy levels have to be determined by lattice simulation.
• The shift of the energyEn with respect to the non-interacting energyEH1(p1)+

EH2(p2) (EHi(pi) =

√

m2
i + pi

2) gives info on the interaction betweenH1 and

H2. Lüscher derived a rigorous relation between the energy shift En − EH1 −

EH2 and the elastic phase shift δ(s) forH1H2 scattering in continuum [1]. The

measured energies En can be used to extract the phase shift δ(s) evaluated at

s = E2
n − P2, where En is the energy of the system and P its total momen-

tum. In order to extract δ(s) at several different values of s, the simulations

are done for several choices of total momenta P of the H1H2 system, which
leads to different values of s = E2

n − P2.
• The resulting dependence of δ(s) as a function of s can be used to extract the

mass mR and the width ΓR of the resonance R, which appears in the elastic
channel H1H2 → R → H1H2. For this purpose, the δ(s) can be fitted with a

Breit-Wigner form or some other phenomenologically inspired form, which

depend onmR and ΓR.
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Fig. 1. The energy of two hadrons in a box of size L. On the left, L ≫ fm and E(L) ≃
EH1(p1) + EH2(p2). On the right, L ≃ few fm and energy gets shifted due to their interac-

tion, i.e. E(L) ≃ EH1(p1) + EH2(p2) + ∆E(L).

The described method, needed for the determination of the resonance width

ΓR, is rather challenging. It requires very accurate determination of a few lowest

energy levels of the system H1H2, since the resulting phase shift depends ulti-
mately on the energy shift. Among all the meson resonances, this method has

been up to now rigorously applied only to ρ resonance. Although Lüscher pro-

posed the method already in late 80’s [1], the first lattice attempt to employ it to
hadronic resonances had to wait until 2007 [2]. Since then, several studies of ρ

have been carried out [3, 4], with the most up to date ones [5–7].

This talk briefly describes the method to extract δ(s),mR and ΓR on an exam-
ple of ππ scattering in the ρ channel. It is based on a recent simulation [6], which

is the statistically most accurate determination of any strong meson width on one
lattice ensemble. The purpose of this talk is to highlight the main physical rea-

soning, which lies behind the lattice extraction of δ(s),mR and ΓR, omitting most

of technical details.

The sections follow the order of steps required, which are listed as items in
the introduction. Section II describes the determination of spectrum En of the

coupled systemH1H2 ↔ R. The Section III described why En allow one to extract

the elastic phase shift δ(s). The extraction of the resonance parametersmR and ΓR
from the phase shift δ(s) is done in Section IV. We end with conclusions.

2 Spectrum of two hadrons in a finite box

The ρmeson is a resonance in ππ scattering in P-wave, and has quantum numbers
IG(JPC) = 1+(1−−). The total momentum P of the coupled ππ − ρ system can

have values 2π
NL

d , d ∈ Z3 due to the periodic boundary condition in the spatial
direction, and we use the following three choices

P = (0, 0, 0) , 2π
NL

(0, 0, 1) , 2π
NL

(1, 1, 0) and permutations . (1)

This enables us to obtain several values of s = E2
n − P2 for the system, thereby

allowing the determination of δ(s) for these values of s without changing the
spatial volume.
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Our simulation is performed on an ensemble of 280 [8] gauge configurations

with dynamical u/d quarks, where the valence and dynamical quarks employ

improvedWilson-Clover action. The corresponding pion mass ismπa = 0.1673±
0.0016 ormπ = 266±4MeV. The lattice spacing is a = 0.1239±0.0013 fm and we

employ a rather small volume N3
L × NT = 163 × 32, which allows us to use the

costly full distillation method [9] for evaluating the quark contractions.

On the lattice, the discrete energies of the system En can be extracted after
computing the dependence of the correlation matrix Cij(tf, ti) on Euclidean time

tf − ti

Cij(tf, ti) = 〈0|Oi(tf) O†
j (ti)|0〉 =

∑

n

〈Oi|n〉〈n|O†
j 〉 e−En(tf−ti) . (2)

The analytical expression on the right is obtained by inserting the complete set
∑

n |n〉〈n| of physical states n with given quantum numbers. The interpolators
Oi have the quantum numbers of the system in question. In our case the inter-

polators have quantum numbers JPC = 1−− and |I, I3〉 = |1, 0〉 and total three-

momentum P. They have to couple well to the ππ state and the quark-antiquark
resonance ρ.

For each choice of P (1), we use 16 interpolators, listed in detail in Eq. (21)

of [6]. We employ fifteen interpolators of quark-antiquark type

Oq̄q
i (t) =

∑

x

eiPx 1√
2
[ūFiu (t, x) + d̄Fid (t, x)] , (3)

where Fi denotes different color-spin-space structures with the same resulting
quantum number JPC = 1−− and |I, I3〉 = |1, 0〉. We use also one π(p1)π(p2)

interpolator, where each pion is projected to a definite momentum

Oππ(t) = 1√
2
[π+(p1)π

−(p2) − π−(p1)π
+(p2)] , p1 + p2 = P ,

π±(pi) =
∑

x

eipix q̄γ5τ
±q (t, x) (4)

In practice, the ππ interpolator is the most important among our 16 interpola-

tors, since it couples to the scattering state much better than the quark-antiquark
interpolators. Let us note that all other lattice studies aimed at Γρ used at most

one quark-antiquark and one ππ interpolator, which may not always allow for
reliable extraction of the first excited energy level E2.

Given the 16 interpolators, we compute the 16×16 correlationmatrixCij(tf, ti)

for all initial and final time-slices ti, tf = 1, ..,NT = 32. The needed Wick con-

tractions that enter the correlation matrix with our q̄q and ππ interpolators are
depicted in Fig. 2. The contributions (a,c,e) in Fig. 2 cannot be evaluated solely

from the quark propagator from one point (ti, xi) to all other points of the lat-
tice (such a propagator allowed most of the spectroscopy studies in the past).

The contributions (a,c,e) require the propagators from all and to all points on the

lattice, which is too costly to evaluate in practice. We use the recently proposed
distillation method for this purpose [9], which enables the exact computation of

the required contractions.
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Fig. 2. Contractions for I = 1 correlators with q̄q (3) and ππ (4) interpolators.

P level n En a s a2 δ

2π
L

(0, 0, 0) 1 0.5107(40) 0.2608(41) 130.56(1.37)
2π
L

(0, 0, 0) 2 0.9002(101) 0.8103(182) 146.03 (6.58) [*]

2π
L

(0, 0, 1) 1 0.5517(26) 0.1579(29) 3.06 (0.06)
2π
L

(0, 0, 1) 2 0.6845(49) 0.3260(69) 156.41(1.56)

2π
L

(1, 1, 0) 1 0.6933(33) 0.1926(49) 6.87(0.38)
2π
L

(1, 1, 0) 2 0.7868(116) 0.3375(191) 164.25(3.53)

Table 1. The results for two lowest levels n = 1, 2 of the coupled ππ− ρ systemwith three

choices of total momentum P on our lattice withmπa = 0.1673 ± 0.0016, L = 16a and the

lattice spacing a = 0.1239 ± 0.0013 fm. The energy levels En are obtained by multiplying

Ena with a−1 ≃ 1.6 GeV. The invariant mass squared of the system is s = E2
n − P2 , but

the dimensionless value in the table s a2 is obtained using the discretized version of this

relation [6].

We average the resulting correlators (i) over all initial time slices ti at fixed

time separation tf − ti, (ii) over all directions of momenta P (1) and (iii) over all

directions of the ρmeson polarization.

The time dependence tf − ti of the correlators Cij(tf, ti) (2) contains the in-
formation on the energies of the system En, and several methods for extracting

En from Cij are available. We extract two lowest energy levels En=1,2 of the sys-
tem from the 16 × 16 correlation matrix Cij(tf, ti) using the so called variational

method [10], which is the most established among the available methods. Table 1

displays the extracted lowest two energies En=1,2 of the coupled ππ − ρ system
for our three choices of total momenta P (1).

The spectrum En in Table 1 for our finite box is the main result of this section.

Each energy level corresponds to a different value of s = E2
n − P2, as calculated

from En and P in the Table 1. In fact, the table lists values of s obtained from the

discrete lattice version of the dispersion relation, which takes into account part of

the corrections to s = E2
n − P2 due to finite lattice spacing [6].
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3 Extraction of the phase shifts from energy levels

Let us consider the case when the resonance R can strongly decay only to two

spinless hadrons H1 and H2, so one has elastic scattering of H1 and H2. We point
out that the non-elastic case, when a resonance can decay strongly to several final

states (i.e. H1H2 and H ′
1H

′
2), is much more challenging for a lattice study.

Suppose one encloses two hadrons H1(p1) H2(p2) with three-momenta p1

and p2 into a large box of size L ≫ fm and measures their energy. In a large

box, they hardly interact and their energy is equal to sum of individual energies

Enon−int = EH1(p1)+EH2(p2) with EH(p) =

√

m2
H + p2. Now, let’s forceH1(p1)

and H2(p2) to interact by decreasing the size of the box to L of a few fm. The en-
ergy of the system E(L) = EH1(p1) + EH2(p2) + ∆E(L) is shifted with respect

to Enon−int: it will increase (∆E(L) > 0) if the interaction is repulsive and de-

crease (∆E(L) < 0) if the interaction is attractive. This simple physical reasoning
indicates that the energy shift ∆E(L) gives info on the interaction.

Fig. 3. The scattering of two interacting particles as series of the interaction vertexM(δL)

and the scattering of non-interacting particles F at finite L [11].

In fact, the energy shift ∆E(L) and the energy itself E(L) do not only give us

”some” info on the interaction. According to the seminal analytic work of Lüscher
[1], E(L) or ∆E(L) rigorously tells us the value of the elastic scattering phase shift

of H1H2 scattering at L→∞, i.e. δ(L =∞):

Luscher method : E(L) −→ δ(s, L =∞) s = E(L)2 − P2 (5)

The derivation and the resulting formulae between E(L) and δ are lengthy and
rather complicated, but let us briefly explain at least why E(L) contains info on

δ(L = ∞). A nice and clear quantum-filed theory derivation is given in [11] and

the main message is illustrated in Fig. 3. The scattering of two interacting spin-
less hadrons H1H2 at finite L (for degenerate case mH1 = mH2 = m) is repre-

sented in QFT by series of:

• scattering of two non-interacting hadrons at finite L, represented by F. The

expression F contains sums over the loop momenta k, which are allowed in a
finite box L with periodic boundary conditions in space. Here f(k0,k) stands

for dependence of the vertices on the left and right on k0 and k.



78 S. Prelovšek, C. B. Lang and D. Mohler

• the interaction vertexM with four hadron legs. This vertex depends on the

elastic phase shift δl (at infinite volume) for the case of elastic scattering in

the l-th partial wave.

The physical scattering requires resummation of the bubbles in Fig. 3, with non-
interacting parts F and the interacting partsM, giving AF 1

1−MF
A ′. The positions

of the poles of the sum AF 1
1−MF

A ′ obviously depend onM and therefore on δl.
The positions of the poles dictate the possible energy levels of the system En(L),

so the energy levels En(L) depend onM and therefore on δl.

The purpose of the above illustration was just to indicate why En(L) depend

on δl. In the case of ππ with JP = 1−, the relevant wave has l = 1 and we de-

note the corresponding phase by δ ≡ δ1. The complete analytic relations between
En(L) and δ(s) needed for our case of the ππ scattering with JPC = 1−− and I = 1

are provided in [6] (for every |P| a different form of relation applies). These allow

to extract δ for each of our six energy levels in Table 1 and the resulting phase
shifts are given in the same Table.

The presented Lüscher formalism applies only for the case of elastic scatter-
ing. The ππ state is the only scattering state in this channel for energies when 4π

state cannot be created, i.e., when s = E2
n < (4mπ)2. For ourmπa = 0.1673 this is

valid for all six levels, with the exception of the level E1 at P = 0, which is above

4π inelastic threshold. As the Lüscher analysis is not valid above the inelastic

threshold, we omit this level from further analysis.

The resulting scattering phase shifts for five values of s are shown in Fig.

4. This is the main result of the lattice study; the resonance properties will be
obtained by fitting δ(s) in the next section.

Note that the resulting phases are determined with a relatively good pre-
cision, which is better than in other available lattice studies of ρ at comparable

u/d quark masses. The good precision can be traced back to various advanced

techniques we used: the distillation method for evaluating contractions, usage
of a large interpolator basis and average over all initial time slices, directions of

momenta P and polarizations of ρ.

4 Extracting resonance mass and width from the phase shift

The phase shift δ(s) in Fig. 4, obtained directly from the lattice study, can be used

to extract the properties of the resonance, in our case the ρ. The phase shift has

a typical resonance shape: it passes from δ ≃ 0◦ to δ ≃ 180◦: the point where
it crosses 90◦ gives the position of the resonance (s = m2

ρ), while the steepness

of the rise gives its width Γρ. In particular, δ is related to resonance parameters
by expressing the scattering amplitude al in terms of δ on one hand, and with

Breit-Wigner form in the vicinity of the resonance on the other hand

a1 =
−
√
s Γ(s)

s−m2
ρ + i

√
s Γ(s)

=
e2iδ(s) − 1

2i
. (6)

Relation (6) can be conveniently re-written as
√
s Γ(s) cot δ(s) = m2

ρ − s . (7)
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Fig. 4. The ππ phase shift δ(s) (in degrees) for five different values of dimensionless sa2 =

(Ena)2 − (Pa)2, extracted from our lattice study [6]. The s is obtained by multiplying sa2

with (a−1)2 ≃ (1.6 GeV)2 .

lattice (this work [6]) exp [PDG]

mπ ≃ 266MeV

mρ 792 ± 12MeV 775MeV

gρππ 5.13 ± 0.20 5.97

Table 2.Our lattice results for the resonance parameters [6], compared to the experimental

values.

The decay width significantly depends on the phase space and therefore on mπ,
so the decay width extracted at mπ ≃ 266 MeV could not be directly compared

to the measured width. So, it is customary to extract the ρ → ππ coupling gρππ

instead of the width, where the width

Γ(s) =
p∗3

s

g2
ρππ

6π
, Γρ = Γ(m2

ρ) (8)

depends on the phase space for a P-wave decay and the coupling gρππ. The cou-
pling is expected to be only mildly dependent on mπ, which was explicitly con-

firmed in the lattice studies [5, 7] and analytic study [12]. In (8), p∗ denotes the

pion momentum in the center-of-momentum frame and we extract it from s us-
ing a discretized version of relation

√
s = 2

√

m2
π + p∗2 [6]. Inserting Γ(s) (8) into

(7), one obtains an expression for δ(s) in terms of two unknown parameters:mρ

and gρππ. We fit these two parameters using five values of δ(s) given in Fig. 4

and Table 1, and we get the values of resonance parameters in Table 2 with small

statistical errors.

The resulting ρ-meson mass in Table 2 is slightly higher than in experiment,
as expected due tomπ = 266 MeV > m

exp
π . The coupling gρππ is rather close to

the value gexp
ρππ derived from the experimental width Γexp

ρ .
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Fig. 5. The crosses are the ππ phase shift δ(s) (in degrees) for five different values of di-

mensionless sa2 = (Ena)2 − (Pa)2 , extracted from our lattice study [6]. The line is the

Breit-Wigner fit (7,8) for the resulting mρ and gρππ in Table 2. The physical value of s is

obtained by multiplying sa2 with (a−1)2 ≃ (1.6 GeV)2 .

5 Comparison to other lattice and analytical studies

The comparison of our results for mρ and Γρ to two recent lattice studies [5, 7]

is compiled in Fig. 8 of [7]. Our result has the smallest error on a given ensem-
ble, demonstrating that accurate lattice determination mR and ΓR for (some) res-

onances is possible now. The other two lattice studies are done for two [7] and

four [5] pion masses and explicitly demonstrate mild dependence of gρππ onmπ.
The discussion concerning the (dis)agreement of the three lattice studies is given

in [7] and will be extended in [13].

The comparison of our δ(s) to the prediction of the lowest non-trivial order
of unitarized Chiral Perturbation Theory [14] is given by the solid line in 6, which

has been recalculated for ourmπ = 266MeV in [15]. The lowest1 order prediction

does not depend on unknown LECs and agrees reasonably well with our lattice
result, given by the bullets.

6 Conclusions

We highlighted the main physical reasoning, which lies behind the lattice extrac-
tion of elastic phase shifts δ(s) and the resonance parameters mR and ΓR. The

purpose was to present the general principle of the method and omit the tech-
nical details. The method was presented on the example of ππ → ρ → ππ scat-

tering. This example demonstrates that a proper first-principle treatment of some

hadronic resonances on the lattice is now possible.

1 One cannot make a fair comparison between out lattice result and the next-to-lowest

order prediction, since it depends on a number of LECs, and some of them have been

fixed usingmρ from another lattice study, which gets a significantly highermρ .
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Fig. 6. The ππ phase shift in the ρ channel δ11(p) ≡ δ(p∗) at mπ = 266 MeV: the solid

line (indicated by “Unit O(p4)”) gives prediction of the lowest order of Unitarized Chiral

Perturbation Theory [14, 15], while bullets are our lattice data.
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Abstract. The importance of the pion cloud in the nucleon has been demonstrated in the

study of the magnetic polarizabilities, electroexcitation, spin properties of the nucleon and,

more recently, in deep inelastic scattering. The model in which the pion cloud of the nu-

cleon is generated by the qqq̄ component in the constituent quark has been successful in

explaining the spin properties and the flavor asymmetric sea of the nucleon. We show that

the same parameters yield the pion in p → nπ+ and p → pπ0 fluctuation in agreement

with the observed value in the (e + p→ e+ forward neutron+X) experiment.

1 Introduction

First we review some evidence for the role of the pion cloud in explaining nucleon

observables. As examples of low-energy processes, we quote the magnetic polar-
izabilities [1] and electroexcitation of the nucleon [2–4]. The pion cloud acts as a

coil and gives a diamagnetic contribution while the virtual excitation of theN-like

quark core into the ∆-like quark core acts as a paramagnet. The magnetic polar-
izability of the nucleon results from an approximate cancellation between these

two contributions. Without the pion cloud, the paramagnetic contribution would
dominate and give much too large magnetic polarizability. In the electroexcita-

tion of the nucleon into ∆ and into the Roper resonance, the linear σ-model with

quarks and the cloudy bag model help us understand why (40 - 50)% of the dom-
inant M1 ampliutude and 100% of the E2 amplitude is due to pion cloud.

The question arises, whether the same amplitude of the pion cloud (or equiv-

alently, the same probability of pion fluctuation) can explain also observables

measured at higher energies where the stucture functions of quarks play a role
and pion is seen through its contribution to the corresponding quark and anti-

quark structure function.

2 Pion cloud in quarks can explain nucleon observables

The notion of the constituent quark applies generally to themassive quark dressed
by gluons, the constituent of the nucleon. This non-relativistic model with three

⋆ Talk delivered by M. Rosina
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massive constituent quarks works well for the hadronic masses and the magnetic

moments. It breaks down if the spin properties of the baryons are considered.

The improved version, the chiral constituent quark model is surprisingly suc-
cesful in explaining the spin properties of nucleons and hyperons. In the simplest

form applied to the nucleon the chiral constituent quark is composed of amassive
quark accompanied by a quark-antiquark pair coupled to the spin-parity quan-

tum numbers of the pion Jπ = 0−. In the following we write the pion symbol

as a shortcut to the quark-antiquark pair coupled to the pion quantum numbers.
This simple model has been first applied by Eichten et al. [5] to explain the flavor

asymmetry of the sea quarks and further elaborated by Baumgärtner et al. [6] and
Pirner [7] in the interpretation of the spin properties of the nucleon. It is related

to the three-flavour extension proposed by Cheng and Li [8]. Explicitly written,

the chiral constituent up-quark (u) structure is

|u〉 =

√

(1−
3

2
a) |u〉 −

√
a|dπ+〉 +

√

a

2
|uπ0〉, (1)

and of the down quark (d)

|d〉 =

√

(1−
3

2
a) |d〉 +

√
a |uπ−〉 −

√

a

2
|dπ0〉. (2)

The basis of pure flavour quarks is denoted by boldface u and d.

At Q2 ≈ 0 gluons do not appear as an explicit degree of freedom and the nu-

cleon is composed of quarks and quark-antiquark pairs. Thus in the lowest order
the Fock state of the constituent quark has the form (1 and 2), where in the sec-

ond and third term the quark-antiquark pair is coupled to the Jπ = 0− quantum

nummbers of the pion. This simple structure of the chiral constituent quark (1)
has two attractive features. Firstly, as we will show, the chiral constituent quark

reproduces the experimental results of the deep inelastic scattering and axial-
vector beta decays of the neutron quantitatively; secondly, this model complies

with our picture of the origin of the quark mass by the chiral symmetry breaking

mechanism of Nambu and Jona-Lasino [9]. Dressing the light quark by gluons is
inevitably accompanied by creation of the Goldstone boson, the pion. The Gold-

stone pion is an inherent part of the constituent quark.

The parameter a of (1, 2) is usually determined from the value of the axial
vector coupling constant gA = 1.269 ± 0.003 [11] yielding a = 0.239 ± 0.002.

The parameter a measures the probability of the constituent quark to be in the

state accompanied with a charged pion. Furthermore, with the probability a/2
the constituent quark is in a state component with the neutral pion. Thus the to-

tal probability of finding a pion in the constituent quark amounts thus to slightly
more than one third. The large probability of the pion in the constituent quark is

best manifested in the measurements of the quark polarization in the deep inelas-

tic scattering. Not only that one third of the constituent quark with the pion does
not contribute to the spin polarization, but even more, with the oppositely ori-

ented quarks reduces the total quark polarization to one third of what would be
without the pions. The loss of the angular momentum because of the oppositely
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oriented quark is compensated by the orbital angular momentum of the pion in

the p-state. The comparison of the experimental results of the deep inelastic scat-

tering with the prediction of the chiral constituent-quark model is given in [10]. It
is also worthwhile to mention that the valence-quark distribution does not peak

at Bjorken x = 0.3 but it is softer and peaks at x = 0.2 corresponding to five and
not three constitunts of the proton even before gluons can get excited. Eichten et

al. ( [5]) ascribe these quark-antiquark pairs to an asymmetric sea.

We consider also other observables which depend strongly on the pions in

the nucleon: the Gottfried sum rule IG (with corrections discussed in [10]), the

integrals of the spin structure functions of proton Ip and deuteron Id and the
quark spin polarization ∆Σ [12,13]. They have larger error bars than gA, but they

agree reasonably well eith the model (Table 1.). The new experimental value for
∆Σ supports even more our assumption that the main contribution to the spin

reduction comes from the pion fluctuation.

observable model value

gA = 1.269 ± 0.003 5
3
(1 − a) = input

IG = 0.216 ± 0.033 1
3
(1 − 2a) = 0.174 ± 0.002

Ip = 0.120 ± 0.017 5
18

(1 − 2a) = 0.145 ± 0.002
Id = 0.043 ± 0.006 5

36
(1 − 3a) = 0.039 ± 0.001

∆Σ = 0.330 ± 0.064 (1 − 3a) = 0.283 ± 0.006

Table 1. The π+ probability a = 0.239 ± 0.002 is used to calculate different observables

3 The proton contains a neutron plus pion component

Let us consider the matrix element 〈nπ+|p〉.
Inserting for constituent quarks our chiral quarks it is evident that the 〈nπ+|

has an overlapp with a Fock component of the proton. The result of the explicit
calculation is

|〈nπ+|p〉|2 = |〈dπ+|u〉|2 = (1−
3

2
a)a = 0.15. (3)

The result (3) means that the constituent u quark has a component of the d quark

and a pion. Although the proton has two u quarks there is no factor 2 in the

amplitude, due to the flavor-spin-color structure of the nucleon. The flavor-spin
wavefunction of the proton has a mixed symmetry combined into a symmetric

flavor-spin function:

|p〉 =

√

1

2

1

3

2

f

× 1

3

2

s

+

√

1

2

1

2

3

f

× 1

2

3

s

. (4)

A similar expression stays for the neutron. Since the combined wavefunction is

symmetric under all permutations it is enough to look at the contribution of the
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particles 1 and 2. In the first term of the proton wavefunction the particles 1 and

2 are symmetric and can both be u quarks and contribute constructively to the

matrix element with a factor of two. In the second term the interference is de-
structive and the contribution cancels. Thus only the first term contributes to the

matrix element. Since both in proton and in neutron the first term appears with
a factor

√

1/2, the factor two is canceled out. This qualitative explanation can be

verified by writing down the three-quark wavefunctions explicitly.

This can be seen even easier in the isospin formalism. In the act of produc-

ing a positive pion, the corresponding u quark loses one unit of charge, it be-
comes a d quark. This can be described with the operator

∑
i t−(i) = T− where

T− = Tx − iTy. We conveniently took the sum over all three quarks since the third
quark, d, contributes zero anyway. The expectation value is < TM− 1|T−|TM >=
√

T(T + 1) −M(M− 1) which for proton (T = 1/2,M = 1/2) gives in fact the

factor 1. It is instructive to compare with ∆+ (T = 3/2,M = 1/2) in the process
ep→ e∆X where one gets the factor 2, pointing out that the two u quarks are

always symmetric and interfere constructively. Of course, for the squared ampli-
tude, we get the additional factor a since only the π+-dressed component of the

u-quark contributes, and the factor (1− 3
2
a) for the naked component of the final

d-quark.

4 Experimental test of the pion fluctuation

The pion fluctuation of nucleon is well known in the classical nuclear physics as

anomalously large pion-nucleon coupling constant g2/4π = 13.6. Many of the
nucleon properties are ascribed to the pion cloud of the nucleon [14]. Hovewer,

there is no direct way of determinig experimentally the probability of finding a
pion fluctuation in the proton. The best way is to calculate the pion flow by using

the pion-nucleon coupling constant and the form factor assuming that the pion is

emitted by a proton [15], [16]

fπ+/p(xL, t) =
1

2π

g2
pπn

4π
(1− xL)1−2α(t) −t

(m2
π − t)2

|G(t)|2. (5)

The pion flow is related to the measured cross section by

dσγ∗p→nX = fπ+/p(xL, t) · dσγ∗π+→X (6)

where the (γ∗π+ → X) DIS cross section is assumed to be 2/3 of the (γ∗p → X)

DIS cross section in the cited analysis, with corrections due to absorption [10].

Obviously the pion is not emitted by a proton but by a quark. But as we

showed above the state of the pion is dictated by the proton wave function and
the pion form factor simulated well the assumption that the emission is from the

proton. In the series of experiments [17]- [18], [19] measuring the spectrum of
the forward neutrons in the reaction (e+p→e+forward n+X) has been shown that

the high energy end of the neutron spectrum is consistent with the assumption

that the deep inelastic scattering takes place on the pion. Thus we are justified to
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say that the forward neutron is the signature of the reaction taking place on the

pion and that the total probability of finding a pion in ep→nπ+ fluctuation can

be obtained by integrating over the variables of the pion flow.

The analysis depends to some extent on the estimation of pion flux fπ+/p.
The analysis has been elaborated in [10] and the quoted results are 〈nπ+|p〉2 =

0.165 ± 0.01 and 0.175 ± 0.01, respectively, for the two form factors best fitting to
the experiment in [15] and [16].

5 Conclusion

The pion fluctuation p→n+π+ and p→p+π0 is an artifact of the quark-antiquark
pairs of the constituent quarks. The impressive agreement between the measured

and the calculated ratios between the probability of the pion fluctuation and the
probability of finding a quark-antiquark pair of the constituent quark is a strong

support of the constituent quark model.

In this section we stress the difference between the notion of the quark-

antiquark pairs coupled to the pion quantum numbers being part of the con-
stituent quarks and the pions of the proton. While the quark-antiquark pairs are

implied by the experimental values of gA, the integrated spin structure functions
and the violation of the Gottfried summ rule, the fluctuating pions are identi-

fied by the characteristic energy and pT distribution of the neutron spectra in the

ep→ nπ+ reaction.

Eichten et al. [5] have named the quark-antiquark pairs of the constituent
quark the asymmetric quark sea. This name emphasizes hopefully sufficiently

the difference of their origin as compared to the normal quark sea.

For the value a = 〈dπ+|u〉2 = 0.24 each quark contains 0.36 quark-antiquark
pairs. Summing up the quark-antiquark pairs one obtains about one quark-anti-

quark pair per nucleon. Using this value of a gives 〈nπ+|p〉2 = 0.15. This num-
ber corresponds well with the experimental value of 〈nπ+|p〉2 = 0.165 ± 0.01

or 0.175 ± 0.01. It follows that in ≈ 0.26 cases the proton is a neutron+ π+ or a

proton+π0. This means that about one quater of the nucleon’s quark-antiquark
pairs show up as the pion fluctuation.
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