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0  INTRODUCTION

In response to increasing energy and resource 
consumption in the automotive industry, designers 
have recently become more interested in lightweight 
alternatives to common materials. Strong expectations 
exist that the automotive industry will begin using 
magnesium alloys in the production of numerous 
components due to their high strength/weight ratio.

Most magnesium products in the automotive 
industry are manufactured via high pressure die 
casting (HPDC); such products include engine blocks 
and heads, transmission housings, and other small 
components [1]. Designers are searching for new 
ways of building automobiles with reduced harmful 
environmental impact. Reducing the weight of 
automobiles is an important opportunity for reducing 
fuel consumption. Therefore, the share of wrought 
magnesium alloys needs to improve. Although these 
alloys have better mechanical properties than cast 
magnesium alloys, they have had limited usage until 
now due to deformation limitations.

In the recent literature, many studies focus on 
the deformation processing of wrought Mg alloys. Li 
et al. [2] performed compression tests to determine a 

basic relationship for a wrought magnesium alloy with 
a wide range of strain rates; the results showed that the 
flow curve reaches a steady state at low strain values. 
Mishra et al. [3] encountered an abnormal change in 
the behaviour of Mg due to the addition of Ce. Luo et 
al. [4] studied high ductility magnesium-zinc-cerium 
extrusion alloys. Their studies showed that by adding a 
small amount of zinc, the strength of the Mg-Ce alloy 
can be improved notably. Luo et al. [5] also examined 
the microstructure and mechanical properties of 
extruded magnesium alloy tubes; the results revealed 
that the mechanical properties can be improved with 
the addition of Ce to pure magnesium. Chino et al. [6] 
investigated the compressive properties of Mg alloys 
from room temperature up to 500 °C to understand 
the effects of Ce on the deformation process; the 
results showed that the addition of Ce increased 
the ductility of Mg alloy at room temperature, but 
decreased it at 300 °C. El-Morsy et al. [7] investigated 
the microstructural evolution of AZ61. They achieved 
fine grain size via a combination of hot extrusion and 
thermomechanical processing.

In light of the literature survey, it can be said 
that a significant part of the current research and 
development projects on magnesium alloys and their 
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Highlights
•	 The compression tests were performed to obtain the flow stress curves of a newly developed magnesium ZE20 alloy for 

automobile applications.
•	 An artificial neural network (ANN) and gene expressing programming (GEP) were used for the estimation of the true stress 

curves obtained from the experimental tests.
•	 Good agreement between predicted and experimental true stress results was obtained for ZE20 alloy using both ANN and 

GEP models.
•	 An equation was derived from the developed GEP model which is simple and can easily be used for further true stress 

predictions of the ZE20 alloy.
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use in the automotive industry is generally focused 
on wrought magnesium alloys. The reason for this is 
the fact that the average usage of magnesium alloys in 
automobiles today is low and, therefore, there is great 
potential for its increase.

The prediction of metal behaviour based on 
nature-inspired computational techniques, such 
as artificial neural networks (ANN), are attracting 
considerable interest from researchers. ANNs offer 
a good and fast alternative to conventional methods 
for predictive modelling [8] and [9]. Regarding the 
application of ANN modelling to metal forming, Li 
et al. [10] showed that ANNs can be used to predict 
the tensile strength of extrusion tubes. Zhou et al. 
[11] used ANN to predict the extrusion load and exit 
temperature for AZ31B magnesium alloy. Bingol et al. 

[12] predicted the extrusion load of gear like profiles 
for different extrusion dies by ANN. Ayer et al. [13] 
performed an ANN modelling for lateral extrusion 
load estimation. The results they obtained were in 
good agreement with the experimental results. Toros 
and Ozturk [14] developed an ANN modelling to 
analyze the material flow curves of strain-hardened 
magnesium alloys. Sabokpa et al. [15] suggested an 
ANN model for the prediction of the flow behaviour 
of AZ81 magnesium alloy. In another study, Qin et al. 
[16] predicted the deformation behaviour of ZK60 by 
ANN. Djavanroodi et al. [17] successfully used ANN 
modelling for die design in equal-channel angular 
pressing.

Another artificial intelligence (AI) technique, 
gene-expressing programming, which is a new 

Fig. 1.  Framework of this study
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evolutionary algorithm developed by Ferreira [18], 
has been used in different engineering areas [19]. 
Several gene-expressing programming (GEP) 
approaches have been conducted and reported in the 
literature, but it is important to note that a predictive 
GEP model for the deformation behaviour of a 
magnesium alloy has not been reported in literature 
and is the subject of this study. In the current study, 
the formability of the ZE20 magnesium alloy, which 
was recently developed by General Motors [4] and 
[5], was studied. After compression tests of the alloy, 
the ANN and GEP models were developed to predict 
the true stress curves of the alloy. The capability of 
the developed models has been evaluated using 
statistical measurement criteria such as the coefficient 
of determination (R2), mean square error (MSE) and 
mean absolute error (MAE).

1  METHODOLOGY

The study was conducted in two phases: in the first, 
the thermo-mechanical tests were performed to obtain 
the flow stress curves for ZE20 magnesium alloy. In 
the second, the ANN and GEP models were developed 
to predict the true stress curves of ZE20 alloy. Finally, 
the best ANN and GEP models developed have been 
compared. The framework of the study can be seen in 
Fig. 1.

1.1  Experimental Study

A new magnesium alloy, ZE20 (Mg – 2 wt.% Zn – 0.2 
wt.% Ce), was deformed to observe the resulting true 
stress behaviour. The detailed results of the physical 
modelling are reported in the literature [20]. The 
accuracy of the ANN and GEP models performed in 
this part of the study depends strictly on the quality of 
the input data regarding the physical properties of the 
material. To build the ANN and GEP models of the 
ZE20 alloy, the data on true stress versus temperature, 
true strain, and strain rate have to be introduced into 
the models. To obtain these data for the performed 
study, uniaxial compression tests were performed at 
temperatures of 200 °C, 375 °C and 425 °C and strain 
rates of 0.01 s-1, 5 s-1 and 15 s-1. The experiments 
for the hot workability analysis were conducted on a 
Gleeble 3500 using the specimens with a diameter of 
8 mm and a height of 12 mm.

1.2  Development of ANN Model

ANN is a computational structure made up of a 
number of simple, highly interconnected processing 

elements that can learn from observing data sets. 
ANNs can capture many types of relationships that 
otherwise may have been very challenging to explain. 
Therefore, researchers attempted to apply ANN to 
some complicated engineering problems. ANNs 
have three layers that are interconnected. The first 
layer is made up of a set of input nodes that contain 
an activation function. Those nodes transfer data 
to the second layer which in turn sends the outputs 
to the third layer. Neurons in each layer behave as 
independent processing elements. After training the 
network using a special learning function, a set of data 
that has not been trained is used for the testing and 
validation of the networks. This process is repeated 
until a minimal error in the entire procedure is obtained 
[21]. Different learning rules can be used in order to 
improve the ANNs’ performance. Back propagation 
is a common algorithm for training the ANNs since it 
has the advantages of being very simple and accurate. 
After the network is initialized with random weights, 
the method updates the weights to match the required 
output. Weight updating repeats until the loss function 
is minimized.

This study takes into consideration three input 
parameters: two of them, temperature and strain rate, 
represent the compression test conditions and one of 
them, true strain (ε), represents the result of the true 
stress for each temperature (T) and strain rate (έ). The 
output layer consists of one neuron, which represents 
the true stress of the ZE20 alloy. A transfer function 
is required to translate the input signals to output 
signals. In this study, a TanhAxon transfer function 
was used to introduce nonlinearity into the network. 
An ANN structure with feed-forward neural networks 
was used for estimating the true stress of the ZE20 
alloy in compression tests. The total experimental data 
(657 samples) was randomized and divided into two 
categories, named training subsets (80 %) and testing 
subsets (20 %). The ideal transfer function and the 
number of neurons and hidden layers should be found 
through a trial-and-error method. In the selection of 
best network structure, measurements (R2, RMSE, 
MAE) were used as the performance criteria between 
the ANN predicted and the experimental true stress 
of ZE20. After several trials of the ANN structure, 
the optimal neural network structure was determined 
with the Levenberg-Marquardt back-propagation 
algorithm, TanhAxon transfer function, and 6 neurons 
in one hidden layer. Fig. 2 shows the structure of the 
feed-forward ANN model used.
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1.2  Development of GEP Model

Another AI technique, GEP, which is also used in this 
study, is an evolutionary algorithm that is capable of 
discovering functions from large data sets by evolving 
computer programs. These programs act much like a 
living organism. They can learn and adapt by changing 
their sizes and shapes. Evolution of the population 
takes place after selecting a population of individual 
by means of the genetic operators. Once a satisfactory 
fitness level is achieved, the algorithm terminates. 
The predicted values are compared with the actual 
ones until a minimal error is obtained. This process 
is repeated until an acceptable solution is achieved. 
There are two major elements of GEP: expression 
trees (ETs) and chromosomes. The chromosome 
symbolizes a mathematical expression and contains 
one or more genes. These genes consist of two 
components, the tail, and the head. After converting 
each chromosome into an ET, a mathematical equation 
is derived.

The aim of GEP models performed in this 
study was to develop a mathematical formulation 
that predicts the true stress of ZE20 alloy. The input 
parameters and the total data used for the developed 
GEP models were the same as the ones used in the 

Table 1.  Parameters of the optimized GEP model

Parameter Description of parameter Setting of parameter
P1 Chromosomes 30
P2 Fitness function error type RRSE
P3 Number of the genes 3
P4 Head size 7
P5 Linking function +

P6 Function set
+, –, ×, /, √, x2, x3, x1/3, 

ln, 1/x
P7 Mutation rate 0.044

P8
One-point recombination 
rate

0.3

P9
Two-point recombination 
rate

0.3

P10 Inversion rate 0.1
P11 Transposition rate 0.1

Fig. 2.  Framework of this study
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ANN models. Different numbers of chromosomes, 
genes, and head sizes affect the performance of the 
GEP model. Therefore, their number was varied 
to obtain the ideal GEP model. The number of 
chromosomes was varied between 10 and 40, the 
number of genes between 2 and 7 and the head sizes 
between 5 and 9. Parameters of the ideal GEP model 
can be seen in Table 1.

Furthermore, true stress prediction equations for 
the best GEP model were obtained. 

Fig. 3 shows the ET of the formulation of the true 
stress, which is:

dblTemp = ((((d[0] × d[2]) – pow(G1c0,3)) – 
	     – (G1c1 / d[0])) × d[2]);

dblTemp += (G2c0 – ((pow(G2c1,3) + 
	       + (d[1] + G2c0)) × d[2]));	          (2)

dblTemp += (G3c1 × ((log(d[0]) + 
	       + (d[0] + G3c0)) – (d[2]×d[1])));

The real parameters in the derived GEP 
formulation are d[0] = έ, d[1] = T and d[2] = ε. Constants 
and coefficients in the Eq. (1) are G1c0 = –9.568298, 
G1c1 = 2.070037, G2c0 = 9.993287, G2c1 = 8.020996, 
G3c0 = 9.602448 and G3c1 = 1.652527. After placing 
the real values, the equation becomes:

σ εε
ε

ε

ε ε
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Fig. 3.  Expression tree (ET) with three genes of the best GEP 

model (Model 9); a) sub-ET 1, b) sub-ET 2, and c) sub-ET 3

Table 2. Performed GEP (with different mathematical and linking functions) and ANN models for the prediction of true stress of ZE20 alloy

GEP Models Linking Function Mathematical functions RMSE MAE R2

M1 Addition +, –, ×, /, √, x2, x3,x1/3, ln 22.52 19.14 0.98
M2 Addition +, –, ×, /, √, x2, x3, x1/3,1/x 17.43 14.68 0.99
M3 Addition +, –, ×, /, √, x2, x3, x1/3, ln, 1/x, (–x) 21.71 17.18 0.98
M4 Addition +, –, ×, /, √, x2, x3, x1/3, ln, 1/x, abs 34.04 25.52 0.96
M5 Addition +, –, ×, /, √, x2, x3, x4, x1/4, x1/3, ln, 1/x 12.68 10.08 0.99
M6 Addition +, –, ×, /, √, x2, x3, x1/3, ln, exp 15.42 11.14 0.99
M8 Addition +, –, ×, /, √, x2, x3, x1/3, ln, exp, 1/x, log 47.25 32.99 0.93
M9 Addition +, –, ×, /, √, x2, x3, x1/3, ln, 1/x 8.48 6.81 0.99
M10 Multiplication +, –, ×, /, √, x2, x3, x1/3, ln, 1/x 17.3 12.13  0.99 
ANN Models Algorithm Transfer function Structure RMSE MAE R2

M1 LM TanhAxon 1-6 3.12 2.17 0.99
M2 Momentum TanhAxon 1-12 26.24 20.73 0.95
M3 LM Sigmoid 1-6 18.09 6.17 0.97
M4 Momentum Sigmoid 1-6 100.31 77.84 0.68
M5 LM TanhAxon 2-12 14.91 3.25 0.98
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2  RESULTS AND DISCUSSION

Fig. 4 shows the true stress vs the true strain curves 
for the ZE20 alloy. The temperatures were selected 
as 200 °C, 375 °C, and 425 °C, and the strain rates 

were selected as 0.01 s–1, 5 s–1, and 15 s–1. It is well 
known that while the strain rate is increasing during 
forming, higher stress is required to deform material 
to the same strain. The integral of the flow stress 
diagram represents input energy and the term energy 

Fig. 4.  Comparison between predicted (with ANN and GEP) and experimental true stress; a, b and c) experimental vs ANN at 0.01 s—1, 5 s—1 
and 15 s—1, respectively, d, e and f) experimental vs GEP at 0.01 s—1, 5 s—1 and 15 s—1, respectively
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is inversely dependent on time. More energy is 
needed to complete the same amount of deformation 
for a shorter time. It can be seen from Fig. 4 that the 
true stress increases with increasing strain rate at 
a true strain value. However, it must be noted that 
higher maximum true strain values occurred at lower 
strain rates. This demonstrates the dependence of 
material ductility on strain rate. Contrary to strain 
rate, the necessary deformation stress decreases with 
increasing temperature.

Fig. 5.  Comparison between ANN predicted and experimental true 
stress of ZE20

Fig. 6.  Comparison between GEP predicted and experimental true 
stress of ZE20

The accuracy of the developed ANN and GEP 
models to predict the results of the compressions 
tests was evaluated using statistical measurement 
criteria (R2, MSE, MAE), which can be seen in Table 
2. Both models’ predictions do match well with the 

experimental results. It is accepted that an obtained 
result of R > 0.8 with the prediction model indicates 
that the estimated results agree well with the measured 
values [22]. In this study, higher values of R2 were 
obtained by a number of developed GEP and ANN 
models. Among them, the best GEP model is Model 9, 
while the best ANN model is Model 1 (See Table 2). A 
very high R2 value (approximately 0.99) was obtained 
by these two models. Taking the other performance 
criteria into consideration, RMSE of 3.12 MPa and 
8.48 MPa, and MAE of 2.17 MPa and 6.81 MPa were 
obtained for the developed ANN (Model 1) and GEP 
(Model 9) models, respectively. These reasonable 
results show that the developed models are efficient 
to be used to predict the true stress of the ZE20 alloy. 
Fig. 4 also graphically compares the experimental 
true stress with the best ANN and GEP predicted true 
stresses. As previously mentioned, the higher R2 and 
lover MAE and RMSE give better agreement between 
the actual and the predicted results. In this respect, 
it can be seen from Table 2 that the developed ANN 
model is slightly better than the developed GEP model 
at predicting the true stress of the ZE20 alloy. Figs. 5 
and 6 also support the results seen in Table 2 that the 
deviations around the regression lines are smaller for 
the ANN models.

3  CONCLUSIONS

Compression tests of ZE20 magnesium alloy were 
performed under different deformation conditions 
using a Gleeble thermo-mechanical simulator. The 
results of the experimental tests were used to develop 
the best ANN and the GEP model. The conclusions 
were summarized as follows:
•	 Good agreement between predicted and 

experimental true stress results were obtained for 
a ZE20 alloy using both ANN and GEP models 
in terms of higher R2 and lower RMSE and MAE 
values. R2 of 0.99 and 0.99, RMSE of 3.12 MPa 
and 8.48 MPa, and MAE of 2.17 MPa and 6.81 
MPa were obtained for the developed best ANN 
and GEP models, respectively

•	 The derived equation by the developed GEP 
model in this study is simple and can easily be 
used for further true stress predictions of the 
ZE20 alloy.

•	 The GEP model was capable of estimating the 
true stress of ZE20 magnesium alloy with high 
accuracy. However, the developed ANN model 
was slightly more successful than the GEP model.
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