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0  INTRODUCTION

The rapid development of operational modal analysis 
(OMA) did not start until the year 2000 [1]. In the past 
researchers used it mostly on large structures, where 
the excitation measurement is difficult and therefore 
the ambient excitation was employed [1] to [3]. The 
use of OMA on small and light structures is still a 
subject of research.

Small and light structures have some distinctive 
features that intensify the difficulties of measuring 
their modal parameters. The resonant frequencies are 
usually relatively high; therefore, a wide frequency 
range of measurement is needed. The mass that 
is added to the structure by the sensors cannot be 
neglected and there are also difficulties with ensuring 
the proper excitation, so that all the measured 
modes are well excited and that at the same time the 
excitation level is not too large, which would cause 
a larger response of the structure than the measuring 
range of the sensors can cover.

The goal of this study was to develop an 
effective non-contact OMA method for small and 
light structures. Some non-contact methods for modal 
analysis were already developed [4] to [7]. In these 
cases either ambient or acoustic excitation was used. 
Parloo et al. [4] excited the structure (a 1.7-kg wooden 
board, constrained with clamping devices on both its 
far edges) using an acoustic device. The reference 

response was measured with an accelerometer and 
the roving response with a laser Doppler vibrometer 
(LDV). The method involves unknown non‑contact 
excitation, which is suitable for small and light 
structures. However, the use of an accelerometer for 
a reference response measurement is not suitable, 
because the added mass of the sensor has an influence 
on the measured modal parameters. The main 
contribution of Parloo’s method [4] is that it enables 
the normalisation of operational mode shapes using a 
sensitivity analysis.

Siringoringo and Fujino [5] used a LDV for the 
measurement of the reference response and another 
LDV for the measurement of the roving response. 
Ambient excitation was used, because the sample (a 
steel plate) was only fixed at one edge and the vibration 
transfer from the surroundings was sufficient. This 
method [5] works with the presumption that the input 
force contains equal power within the frequency range 
of measurement (white-noise excitation). However, if 
the excitation is unknown some additional peaks in 
the frequency spectrum of the excitation force could 
introduce additional peaks in the operating-deflection-
shape frequency-response function (ODS FRF) that 
would not agree with the resonant frequencies, as 
mentioned by [3], [8] and [9]. Therefore, a different 
approach is needed.

Ahmida and Ferreira [6] used a more controlled 
excitation. The structure was excited with two small 

Tuned-Sinusoidal Method for the Operational Modal Analysis  
of Small and Light Structures

Rovšček, D. – Slavič, J. – Boltežar, M.
Domen Rovšček – Janko Slavič – Miha Boltežar*

University of Ljubljana, Faculty of Mechanical Engineering, Slovenia

Small and light structures have some distinctive features that intensify the difficulties when measuring their modal parameters. The mass 
that is added to the structure by the sensors cannot be neglected and the resonant frequencies are usually relatively high. As a result, a wide 
frequency range of measurements is needed. There are also difficulties with ensuring the proper excitation, so that all the measured modes 
are excited well and that at the same time the excitation level is not too large, which would cause a larger response of the structure than the 
measuring ranges of the sensors can cover.

In this study an innovative method for the operational modal analysis of small and light structures is presented. The method is non-
contact; therefore, there is no added mass of the sensors to the structure. The structure is acoustically excited with a pure sine signal that 
is tuned to each resonant frequency. A single response measurement with the laser Doppler vibrometer in individual points is needed to 
determine the modal parameters. A mass-change strategy is used for the mass-normalisation of the measured mode shapes. The main 
contribution of the presented method compared to other similar methods is that the mode shapes are better accentuated (due to the sine 
excitation), which can improve the results of the modal analysis on small and light structures, where the response of the structure is weak. 
The method is also easy to perform, because only a single response measurement is needed for each point and the excitation force does not 
need to be measured. The presented method gives accurate results, and this was confirmed with a comparison of the experimental and the 
numerical results on a sample of simple geometry.
Keywords: operational modal analysis, tuned-sinusoidal method, mode-shape normalisation, small and light structures, single response, 
acoustic excitation



Strojniški vestnik - Journal of Mechanical Engineering 60(2014)3, 187-194

188 Rovšček, D. – Slavič, J. – Boltežar, M.

loudspeakers and the response was measured by a 
single LDV at an individual point of measurement. 
The signal that was sent to the loudspeakers for the 
excitation was monitored and used as an excitation 
signal for the experimental modal analysis (EMA). 
White noise excitation was used. This method is 
suitable for small and light structures. Ahmida 
and Ferreira [6] tested it on a very small structure, 
consisting of silicon plates. However, the method 
does not include the mass normalisation of the mode 
shapes, because the actual excitation force on the 
structure is not measured (only the signal that is sent 
to the loudspeakers is measured). It is presumed that 
the excitation is white noise, like the monitored signal 
that is sent to the loudspeakers. The mass‑normalised 
mode shapes are needed to determine the complete 
modal model of the structure; therefore, this method 
can still be improved.

A similar method to [6] was also used by Xu 
and Zhu [7]. The structure was excited acoustically 
(with white noise) and the response was measured at 
individual points with an LDV. The acoustic excitation 
was measured by a microphone near the surface of 
the structure. After the measurement the EMA was 
performed and the results were mass‑normalised mode 
shapes. The measured sound excitation differs from 
the real excitation because it is limited to a single point 

of measurement, although the sound excites the whole 
structure (not only one point). Therefore, the scale of 
the measured mode shapes could be different than the 
real mass‑normalised mode shapes. This measurement 
[7] is also sensitive to the ambient sounds and cannot 
be performed in a loud environment (for instance, 
during the operation of the machine); therefore, a 
different method is proposed in this study.

An innovative method for the measurement of 
the modal parameters was developed in this paper. 
It is suitable for the modal analysis of small and 
light structures. Only one loudspeaker and one 
LDV are needed for the proposed method. The 
mass‑normalisation of the mode shapes is also 
enabled based on the modal sensitivity of the structure 
(mass-change strategy), as described in Section 1.1. 
The method works by tuning the acoustic excitation 
to each resonant frequency and exciting the structure 
with a pure tone (sine) excitation. When using 
the presented method the mode shapes are better 
expressed than with white-noise excitation, because 
all the excitation energy is concentrated at one 
resonant frequency, where the response is therefore 
also more accentuated. The structure responds as if it 
had only one degree of freedom (all the other modes 
are not excited). The more accentuated mode shapes 
make the method very useful for the modal analysis of 

Fig. 1.  Tuned-sinusoidal method for the modal analysis of small and light structures
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small and light structures, where the response of the 
structure is weak and it is important to highlight the 
measured mode shapes in order to correctly measure 
their amplitude.

This study is organised as follows. Section  1 
presents the method that is proposed in this paper. The 
experiment and the numerical model are described in 
Section 2. Section 3 presents the experimental and 
numerical results and their comparison. A summary of 
the work is given in Section 4.

1  TUNED-SINUSOIDAL METHOD

The basic idea of the tuned-sinusoidal method is 
presented in Fig. 1. First, the response of the structure, 
excited by an unknown force, is measured. Different 
excitation techniques, such as sound excitation, 
impact excitation, etc., can be used, as long as the 
spectral density of the excitation is constant across 
the whole frequency range of the measurement 
(white‑noise excitation). The resonant frequencies 
ωr are on the peaks of the measured frequency 
spectrum. Next, the mode shapes {ψr} are measured. 
The structure is subjected to the acoustic excitation 
(with a loudspeaker) and only the response of the 
individual point on the structure is measured. If the 
structure is acoustically excited with a sine that is 
tuned to the resonant frequency ωr, then the structure 
will respond with an ODS, that can be used as an un-
normalised mode shape {ψr}, as shown by Schwarz 
and Richardson [10]. This assumption is valid because 
the mode shape that corresponds to the frequency 
ωr prevails over all the other mode shapes in the 
response of the structure. Therefore, the response of 
the structure is almost a pure sine with a frequency ωr, 
as shown in Figs. 2 and 3.

Fig. 2. Time signal of the tuned‑sinusoidal method  
(ωr = 692.2 Hz)

The structure needs to be excited with all the 
individual resonant frequencies ωr and the responses 

at all the points of the structure need to be measured 
for each resonant frequency. The amplitude of the 
excitation is not of significant importance; it only 
needs to be equal for all the measurements and the 
response needs to be within the measurement range 
of the LDV. Besides the response of the structure, 
the signal that is sent to the loudspeaker for the 
excitation is also measured. The phase between the 
sine of the excitation and response signal is used as a 
phase of individual component ψir of the mode shape 
{ψr}. The actual phase between the excitation and 
the response is different from the measured phase, 
because the sound has to travel from the loudspeaker 
to the structure (the influence of the damping on the 
resonant frequency is neglected). However, to define 
the un-normalised mode shapes, only the relative 
relations between the phases of the individual points 
on the structure are needed. This is especially so 
when the proportional damping is presumed and the 
mode shapes are not complex (the phase is either 90 
or –90°). The amplitude of the response sine signal 
defines the amplitude of the individual component ψir 
of the mode shape {ψr}. Therefore, the structure has 
to be excited and the response needs to be measured 
for every (ith) measurement point at all the resonant 
frequencies ωr to obtain the amplitude and phase of 
each component ψir.

Fig. 3.  Amplitude spectrum of the tuned‑sinusoidal method 
(ωr = 692.2 Hz)

The described tuned-sinusoidal method may 
sound complex in theory; however, the application of 
this method is relatively straightforward. The laser is 
pointed at every measurement point and the structure 
is at first excited with the lowest resonant frequency 
ω1. The amplitude and phase of the component ψi1 
are determined with the measured response. Then, 
without any movements of the sensors, the excitation 
frequency is raised to ω2, and ψi2 is measured. This 
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continues until the last resonant frequency in the 
frequency range of the measurement. This procedure 
is repeated for all the measurement points and the un-
normalised mode shapes {ψr} are defined. The name 
tuned‑sinusoidal method is used for the described 
method since the acoustic sine excitation is tuned to 
the measured resonant frequencies. The support of 
the structure can be free-free or fixed. The free-free 
support is usually more desirable for the comparison 
with the numerical model.

1.1  Mass-Normalisation of the Measured Mode Shapes

The measured mode shapes {ψr} are not mass 
normalised since the excitation force is not measured 
when performing the tuned-sinusoidal method. 
Therefore, the method presented by Parloo et al. [4] 
that enables the mass‑normalisation of the operational 
mode shapes was used. It works on the basis of the 
modal sensitivity of the structure. The main idea of 
Parloo’s method is to normalise the measured mode 
shapes by multiplying them with scaling factors. 
A known mass is added to the selected points of the 
structure to change the resonant frequencies. The 
scaling factors are calculated from these changes by 
using the sensitivity analysis. The term mass‑change 
strategy is frequently used to denote this method. 

Other researchers also analysed the use of modal 
sensitivity to mass-normalise the operational mode 
shapes. Lopez-Aenlle et al. [11] to [14], Fernandez et 
al. [15] and [16] and Coppotelli [17] gave suggestions 
about how to accurately normalise the mode shapes 
using different types of mass-change strategies.

Lopez-Aenlle et al. [11] analysed the equations 
for the calculation of the scaling factors and developed 
an iterative procedure for better accuracy. In [14] and 
[15] Lopez-Aenlle et al. and Fernandez et al. analysed 
and experimentally verified the influence of the 
location, number and size of the added masses on the 
accuracy of the results. Additional instructions on how 
to perform accurate calculations of the scaling factors 
were given by Lopez-Aenlle et al. in [13].

The modal sensitivity of the rth resonant 
frequency ωr and the mode shape {ψr} are defined in 
[18], as shown in Eqs. (1) and (2), where pj represents 
one of the Np structural modifications.
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Modal sensitivity describes the influence of the 
structural modifications on the modal parameters of 
the structure. 

The mass-change strategy is based on Eq. 
(1), as shown by Parloo et al. [4]. If the structural 
modifications pj are the changes of mass at different 
points of the structure, then they can be described by 
a change of the mass matrix [∆M]. A known mass 
[∆M] needs to be added to the structure to perform 
the mass-change strategy. The change of the mass 
matrix causes a variation of the modal parameters. If 
the modal parameters of the unmodified and modified 
structures are measured, then the scaling factors αr can 
be calculated as shown in Eq. (3):
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where ωr denotes the rth resonant frequency of the 
unmodified structure and ωr,M is the rth resonant 
frequency of the modified structure (when the mass 
[∆M] is added). {ψr} is the un-normalised mode shape 
of the structure. A detailed derivation of Eq. (3) can be 
found in [4] and [11], where a presumption is made 
that the mode shapes do not change significantly 
when adding the mass to the structure ({ψr} ≈ {ψr,M}). 
When this presumption is valid, accurate scaling 
factors αr can be calculated from Eq. (3) and the mode 
shapes of the modified structure {ψr,M} can be used 
for the calculation of scaling factors instead of {ψr}, 
as shown by Lopez-Aenlle et al. [11].

When the presumption {ψr} ≈ {ψr,M} is not valid, 
it is advisable to use the Bernal projection equation 
[19] that gives good estimates of the scaling factor 
αr even in cases when the mode shapes change 
significantly during the normalisation procedure. The 
Bernal projection equation is shown in Eq. (4):
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where Brr represents the rth diagonal element of the 
matrix [B]. The matrix [B] is calculated as shown in 
Eq. (5), where [Ψ] denotes the modal matrix of the 
unmodified mode shapes {ψr} and [ΨM] the modal 
matrix of the modified mode shapes {ψr,M}:

	 [ ] [ ] [ ].B M= −Ψ Ψ1 	 (5)

When the scaling factors αr are calculated, the 
mass-normalised mode shapes {ϕr}  can be obtained 
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by multiplying the un-normalised mode shapes 
{ψr} by αr:

	 { } { }.φ α ψr r r= 	 (6)

2  EXPERIMENT AND NUMERICAL MODEL

2.1  Sample

A sample with the proper geometrical and modal 
properties was needed to compare the experimental 
and numerical results. Therefore, a small steel beam 
with a rectangular cross-section (1.94×20.2 mm) was 
used (Fig. 4). The beam was 121.42 mm long and had 
a mass of 37 grams. The geometrical parameters are 
not rounded to integers, because the dimensions of 
the sample were measured with a calliper to ensure 
greater accuracy of the numerical model’s results. A 
total of 13 points, denoted with the numbers 0 to 12, 
were used for the measurement, as shown in Fig. 4. 
The results of the numerical model were calculated for 
the same 13 points. Only the bending mode shapes in 
the direction of the shorter side of the cross-section 
(1.94  mm) were measured; however, all the other 
mode shapes can be measured in a similar manner.

Fig. 4.  The sample that was used for the measurements  
and to build the numerical model

2.2  Numerical Model

A numerical finite-element method (FEM) model 
was built with commercial software (Ansys). The 
model was based on the geometrical and material 
parameters (density, modulus of elasticity, Poisson’s 
ratio [20]) of the sample. A numerical modal analysis 
was performed on the model to determine the 
resonant frequencies and the normalised mode shapes. 
Since the damping is based on the results of the 
measurement, it is reasonable to use only the resonant 
frequencies and mode shapes for the comparison 
with the experimental results. The results of the 
model are relatively accurate, because the structure is 
homogeneous and without any joints or other sources 
of non-linearity [21] and [22].

2.3  Experimental Procedure

First, the response of the structure to impulse 
excitation was measured. The impact excitation was 
carried out using a small steel ball (4  mm diameter, 
0.26  grams weight) that was glued to a string and 
swung into the structure at all the measurement points 
to ensure that all the mode shapes were excited well. 
The resonant frequencies ωr were determined from 
the peaks of the frequency spectrum of the response.

The structure was then acoustically excited with 
the loudspeaker and the un-normalised mode shapes 
ψr were defined from the response of the structure, 
as described in Section 1. The experimental set‑up 
is shown in Fig. 5. A 6-W loudspeaker with a wide 
frequency range was used to excite the structure and 
the response of the structure was measured with a 
Polytec PDV-100 LDV. The frequency range of the 
LDV is from 0.5 Hz to 22 kHz and the sensitivity was 
set to 100 mm/s.

For the normalisation of the mode shapes with the 
mass‑change strategy, six magnets, each with a mass 
of 0.21 grams, were added at points 1, 3, 5, 7, 9 and 
11 on the structure and the resonant frequencies ωr,M 
of the modified structure were measured using impact 
excitation (with a steel ball). Then the scaling factors 
αr were calculated, as described in Section 1.1, and 
finally the normalised mode shapes ϕr were defined 
(ϕr = αr · ψr).

Fig. 5.  Experimental set‑up for the tuned‑sinusoidal method

It was difficult to ensure a proper sine excitation 
above 15  kHz due to the sampling frequency limit 
of the analogue output module. Therefore, the 
measurements were limited to frequencies below 
15  kHz. Six bending resonant frequencies and 
their respective mode shapes were measured in 
this frequency range. LabView was used for the 
acquisition and modal analysis.
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3  RESULTS OF THE NUMERICAL MODEL  
AND THE EXPERIMENTAL PROCEDURE

Table 1 presents the experimental and numerical 
resonant frequencies. OMA denotes the measured 
resonant frequencies ωr before the mass was added 
to the structure for the mass-change strategy and 
OMA-M denotes the resonant frequencies ωr,M after 
the mass was added to the structure. The numerical 
(num) and experimental (OMA) resonant frequencies 
differ by less than 1.5% (∆ num), and the first four by 
even less than 0.3%. Therefore, it was concluded that 
the measurements of the resonant frequencies were 
accurate.

After the mass is added to the structure for the 
mass-change strategy the resonant frequencies 
reduce by about 0.7  to 2.4% (∆ OMA-M). This is a 
relatively small change for the mass-change strategy 
[13]; however, it still ensures the accurate mass 
normalisation of the mode shapes ψr.

Figs. 6 to 11 show the mass‑normalised mode 
shapes that were measured with the tuned‑sinusoidal 
method (ϕOMA) and calculated with a numerical FEM 
model (ϕnum). It is clear that the experimental mode 
shapes are in good agreement with the numerical 
mode shapes. This agreement proves that not only the 
shape of the mode shapes, but also the normalisation 
(the scaling factor), was accurately measured.

The correlation between the experimental and 
the numerical mode shapes was calculated using the 
modal assurance criterion (MAC), which is described 
in detail in [18], [23] and [24]. The result of the MAC 
procedure is a matrix with real values between 0 and 
1. The value of each element of the MAC matrix 
belongs to a pair of mode shapes and describes their 
correlation (a higher value means a better correlation). 
The diagonal values of the MAC matrix are equal to 
1 and the non-diagonal to 0 in the ideal case (when 
the numerical and experimental mode shapes are in 
perfect correlation). The MAC results are shown in 
Fig. 12. All the diagonal values of the MAC matrix 
are close to 1 (higher than 0.96) and the non-diagonal 
values are close to 0 (the highest is 0.12). The MAC 
results prove that the mode shapes were measured 
well, because there is a clear correlation between the 
numerical and the experimental mode shapes.

Table 1.  Comparison of the resonant frequencies calculated 
with the numerical model (num) and measured with the tuned-
sinusoidal method (OMA)

Resonant 
freq.

OMA 
[Hz]

OMA-M 
[Hz]

∆ OMA-M 
[%]

Num  
[Hz]

∆ num 
[%]

1. 692.2  682.4 –1.4 691.7 –0.1
2. 1911.1   1885.7 –1.3 1910.4 –0.1
3. 3752.7   3703 –1.3 3754.5   +0.1
4. 6209.9   6140   –1.1 6224.0 +0.2
5. 9272   9205   –0.7 9335.5   +0.6
6. 12930   12615   –2.4 13113   +1.4

Fig. 6.  Comparison of the 1st experimental and numerical mode 
shape

Fig. 7.  Comparison of the 2nd experimental and numerical mode 
shape

Fig. 8.  Comparison of the 3rd experimental and numerical mode 
shape
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Fig. 9.  Comparison of the 4th experimental and numerical mode 
shape

Fig. 10.  Comparison of the 5th experimental and numerical mode 
shape

Fig. 11.  Comparison of the 6th experimental and numerical mode 
shape

Fig. 12.  MAC correlation of the experimental and the numerical 
mode shapes

4  CONCLUSION

An innovative, non‑contact method for the modal 
analysis of small and light structures was presented. 
The method is based on an acoustic sine excitation 
that is tuned to individual resonant frequencies. 
A single response measurement (with an LDV) is 
needed to determine the resonant frequencies and 
the un-normalised mode shapes. A mass‑change 
strategy is used to calculate the scaling factors for the 
normalisation of the mode shapes.

The tuned‑sinusoidal method gives good results 
on the sample that was used in this study. The resonant 
frequencies are measured accurately and differ from 
the results of the numerical model by less than 1.5% 
in a wide frequency range (up to 15  kHz). The first 
six bending-mode shapes were also measured well, 
which was confirmed by the MAC analysis. The good 
agreement between amplitudes of the experimental 
and the numerical mode shapes confirms that the 
scaling factors for the mass‑normalisation of the 
measured mode shapes were correctly defined. It 
can, therefore, be concluded that the tuned‑sinusoidal 
method gives accurate results for simple small and 
light structures.

The tuned‑sinusoidal method has some clear 
advantages compared to other methods used for the 
modal analysis of small and light structures. It is 
a non-contact method (the contact is only needed if 
the mass-normalisation is to be performed), which is 
very convenient, because the sensors do not add any 
mass to the measured structure and therefore do not 
affect the results of the modal analysis. The presented 
method is also very practical, because a single 
response is measured and the experimental set-up is 
very simple and effective. The whole structure (not 
just a single point) is subjected to acoustic excitation; 
therefore, all the measured mode shapes are excited 
well. An important advantage of the presented 
method compared to similar methods is that the mode 
shapes are better accentuated (due to sine excitation), 
which can improve measurements on small and light 
structures, where the response of the structure is 
relatively weak. The better accentuation of the mode 
shapes is achieved because all the excitation energy 
is concentrated at just a single mode and all the other 
modes are not excited.

The method is most appropriate for lightly 
damped structures without closely spaced modes, 
because they have better distinguished individual 
resonant frequencies and mode shapes. Therefore, it 
works better on structures with not many components 
made of damping materials. The acoustic excitation 
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makes the tuned-sinusoidal method more appropriate 
for smaller structures, because the excitation intensity 
can be too low to excite larger structures.
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