
22

STRUCTURED OBJECT-ORIENTED SVSTEM DECOMPOSITION INFORMATICA 1/91

Keywords: object-oriented design, structured system design,
object-oriented models

Stevan Mrdalj
Eastem Michigan Unlversity

Vpsiianti, Michigan 48197, USA
VladanJovanovič

University of Detroit
Detroit, Michigan 48221, USA

ABSTRACT: The aim of this paper is to present a structured method for object-oriented system design
with special emphasis on discovering objects within the system and creating an object-oriented model
of the system. First, a technique for decomposing an object into its components according to the
actions rec^uired by the operations of that object is introduced. Second, system decomposition is
presented as a coherent top-down process bascd on an object-oriented model. Lastly, reusabiUty and
extensibility of such an approach to system design are discussed.

REŽIME: U ovom radu je predstavljen strukturan metod za objektno-orijentisano projektovanje sistema
sa posebnim naglaskom na način na koji se objekti otkrivaju u sistemu i kako se kreira
objektno-orijentisani model sistema. Prvo je dat opis tehnike za dekomponovanje objekata na
komponente u zavisnosti od akcija neophodnih za realizacija njihovih' operacija. Nakon toga je
predstavljen proces dekompozicije sistema kao koherentan proces od vrha nadole koji se bazira na
upotrebi-objektno orijentisanog modela. Na kraju je diskutovana mogucnost ponovne upotrebe objekata
i mogucnost nadgradnje objekata izmenom, odnosno dodavanjem operacija.

1. INTRODUCTION

The object-oriented paradigm has broader impact
on system development than the traditional,
functional or data oriented paradigms, The objective
of object-oriented design is not only to create a
model of the system, but to do so by reusing exist-
ing objects. Thus, object-oriented design rcquircs
more than just choosing objects and arranging them
in class hierarchies. It needs a structured tech-
nique to: (1) avoid confusion in defining objects,
(2) arrange objects into a system model, and (3)
reuse already defined objects from the object li-
brary. Hence, here we propose a formalized approach
for structured object-oriented systcm decomposition
(SOOSD).

In considering the context of creating the
object-oriented model of the system, most of the
existing methods [13,1,3,8,5,15,16,2] are intuitive.
They providc some informal rules for identifying the
objects and their operations and can be categorized
as direct decomposition methods. Also, they plače
little emphasis on the objecfs complexity and
decomposition, and do not support different levels
of either object or system abstractions.

On the contrary, SOOSD focuses on the discovery
and arrangement of the objects of interest in the
real world and creating an object-oriented model of
reality. It allows us to develop an object-oriented
model of a system as a leveled and incremental

top-down decomposition process in which already
existing objects can be reused. SOOSD is based on:
(1) a specification using an object-oriented model
and (2) a structured object decomposition technique.

2. OBJECT-ORIENTED MODEL

We use an object-oriented model called Abstract
Object Model (AOM) as a formal specification tool to
naturally and efficiently design the structure of a
complex system. In AOM aH things or concepts, in
the designer's work environment, that are visible or
otherwise tangible to the designer, are modeled as
abstract objects. An abstract object encapsulates
the problem space inside a set of pre-defined opera­
tions that manipulate and access that space. We
refer the reader to [10] for a fuU description of
AOM, Here we concentrate only on the folIowing
characteristics that are used in the object decompo­
sition process:

1. AOM recognizes two kinds of objects: simple and
composite. Simple objects occupy coherent space
which cannot be further decomposed into meaning-
ful objects, or one is not interested in their
further decomposition. Conversely, composite ob­
jects are an aggregation of simple and/or other
composite objects. Figure 1 illustrates a graphi-

23

cal representation of the object aggregation
structure.

[JJ

f in 1F1 101

en
Figure 1: Object Aggregation Diagram.

2. The State of the composite object is a coilection
of its components' states. Thus, Figure 2 illus-
trates the assumption that the composite object
State can be changed or accessed only by changing
or accessing the state of at least one of its
components.

a

\

/

b

d

/ \

/ \

\ /

/

\

Figure 2: Access to the object space.

3. As a consequence of the previous characteristics,
the operations of the composite objects are com-
posed of the messages sent only to the components
of that object. Figure 2 depicts that the
response to message a are messages b, c, and d.

3. STEPWISE OBJECT DECOMPOSITION

We use the technique called Stepvvise Object
Decomposition (SOD) to discover "new" objects and to
start the specification of- such discovered lower
level abstract objects [11]. SOD is based on the
following two principles:

1. Actions required to construct operations of the
given object determine components of that object.

2. The operations of an object are determined by the
needs of the objects in which the given object is
aggregated.

This is illustrated in Figure 3 where the actions
required for the operations of object X determine
that objects Y and Z become components of object X,

while messages received by objects Y, Z and W
determine their own operations.

The usage of these principles in the process of
object decomposition is summarized into the
fonowing algorithm:

1. List aH operations O of object X.
2. For each operation from O:

2.1. List actions A required for that operation;
2.2. For each action a from A:
2.2.1. Associate a with corresponding object Y;
2.2.2. Assign Y to the list C of X's components;
2.2.3. Assign a to O of Y.

3. For each object from C repeat steps 1 through 3.

Z.a

W. a^ W . a W.b

W

Figure 3: Message Flow Diagram. .

The object that the designer chooses to decom-
posc with this algorithm becomes the context of the
decomposition process. Obviously, if the starting
object is the system itself, the result will be the
entire system specification.

4. SVSTEM DECOMPOSITION

AOM allows us to view any individual level of
system abstraction as an abstract object, as well as
to view the entire system as an abstract object on
the highest level. For example, consider a system
which maintains customers' requests for transporta-
tion and the assignment of taxis to customers as an
abstract object called TAXI-DISPATCH.

Decomposition of the TAXI-DISPATCH object
starts from the messages that it receives from its
environment. Let us say that these messages define
the following list of • operations (AnswerCall,
BuyCar, Hire). These operations can be compared with
basic functions of the TAXI-DISPATCH object that are
required by its environment.

In. order to discover components of the TAXI-
DISPATCH object, one needs to defme actions re-
quired to accomplish operations of the TAXI-DISPATCH
object. Let us start from the AnswerCall operation
for which the list of aH required actions is
(FindAvailable, ReceiveRequest, MonitorTransport).
Next, one associates ali these actions with the
objects which should be responsible to perform them.
For example, by associating the ReceiveRequest
action with the object which has to perform it, one

24

discovers the DISPATCHER object as one of the TAXI-
DISPATCH's components. Of course, at the same tirne
ReceiveRequest becomes the DISPATCHER's operation.
After specification of aH TAXI-DISPATCH's opera-
tions one may have its aggregation structure as it
is displayed in Figure 4.

TAXI -DISPATCH

An s we r C a 1 1

Bu y C a r

H i r e

DISPATCHER

R e č e i v e R e q u e s 1

F i ndAva i 1 a b 1 e

M o n i t o r T r a n s p o r t

/ «,

TAXI

Pu t I n Service

EMPLOYEE

S t a r t J o b

Figure 4: TAXI-DISPATCH's components.

Next, we decompose the system components into
their sub-components. For example, let us decompose
the DISPATCHER object with the following list of
actions required for operation ReceiveRequest:
{GiveName, GiveRoute, FindAvailable, Assign). Now

one has to assign again ali these actions to the
corresponding objects. In that way one discovers the
CUSTOMER, TAXI, and DISPATCH objects and their
operations. Just as before, one may keep decomposing
components of the previously discovered compositc
objects until they are composed only of simple
objects.

After specification of ali TAXI-DISPATCH's com­
ponents one may have the complete aggregation struc­
ture of the system as it is shown in Figure 5.
Notice that the system has been simplified and its
structure is partially presented so that the basic
ideas of the decomposition process can be
emphasized.

5. REUSABILITV AND EXTENSIBILITY

Within a framework of developing complex and
long-lasting systems, we identify two objectives
that SOOSD should provide support for: (1) Reus-
ability - ability of objects to be reused, in whole
or in parts, for the construction of an existing
system or a new system; (2) Extensibility - changes
of the objects to accommodate modifications of their
requirements.

The simplest kind of reusability is the use of
an object type as it already exists. For example,
CUSTOMER object in Figure 5, gets its specification
through the specification of DISPATCHER object.
Later on, it is reused in the aggregation of the
DISPATCH object. This kind of reusability is limited
because object types can only be reused in the con­
struction of the system if there is a need for
exactly the same behavior as provided by that object
type. Thus, it does not solve the reusability
problem in general.

Very often object types need to be extended or
modified to fit in a new aggregation. Object types

I TAXI - DISPATCH

ZT
DISPATCHER J-

I DIS PAT_CH__J

[CUSTOMER

rROUTE J

LOCATION

"t:
EMPLOYEE_J
•~" .f. — — — ^ /K

STATUS [

SSN

CAR-ID DR I VER

LICENCE-NO

NAME

Figure 5: tAXI-DISPATCH's aggregation diagram.

can be extended and modified by means of incremental
design and inheritance.

Incremental design. Since an object can be
aggregated fnto more then one composite object, it
can obtain its specification according to the nceds
of more than one object. For example, TAXI object
from Figure 5, gets its initial specification
through the specification of the TAXI-DISPATCH
object. But then, by decomposing the DISPATCHER
object, action FindAvailable is required from the
TAXI object. That operation has to be added to the
TAXI object prior to its aggregation into the
DISPATCHER object. Later on during the decomposition
of DISPATCH object, action AssignDrive is required
from the TAXI object. That operation again has to be
added to the previous specification of the TAXI
object.

Inheritance. Another čase of reusability is the
usage of inheritance to define new object types out

. of existing ones by adding new components and opera-
tions. For example, EMPLOVEE object from Figure 5
gets its initial specification through the specifi­
cation of the TAXI-DISPATCH object. But then one may
discover the operation Drive for EMPLOVEE object
which is required by TAXI object. Instead of adding
that operation to the EMPLOVEE object, one defines a
new object DRIVER as a subtype of the EMPLOVEE
object shown in Figure 5 by the dashed line. The
newly required operation Drive can now be attached
to the DRIVER object as its specialized behavior. At
this point we may also reconsider the DISPATCHER
object and make it a subtype of the EMPLOVEE object.
In this čase the DISPATCHER and DRIVER! objects
inherit EMPLOVEE*s components SSN and NAME, as
well as its operation StartJob.

Conceptually lower-leveI objects could be the
subtypes with specialized functionalities or even
the special cases of the more abstract objects. An
object library consisting of a set of object type
hierarchies in the background may significantly
reduce effort in the decomposition process. .

As can be seen, an open design architecture
with open-ended sets of extensions to an existing
design is promoted. This is important for long-
lasting systems because a system's functionality
changes over tirne. However, the types of objects
from which the system is composed will probably be
more or less the same over tirne. The changes are
most likely to occur when an object' gets a new oper­
ation, an existing operation changes behavior, or a
new object arises. At- that time, it wrill only be
necessary to add new operations, modify existing
ones, or aggregate existing objects into new ones.
ITierefore, SOOSD enables maintenance of a system
model as a process of reusing objects across time,
and not only across applications.

6. RELATION TO OTHER WORK

There are a few works which explore the merging
of structured system analysis and design techniques

[4,17] and object-oriented design [12,14]. But none
of them view object-oriented system design as a
Icveled process that starts from an entire system as
an object or from any high complexity object and
that decomposes them into lower level objects as it
is in our čase. This is the essential difference
between the existing object-oriented design methods
and our object-oriented top-down system decomposi­
tion. Although we use a top-down decomposition
approach, the solutiori to system decomposition is a
digraph that combines one object aggregation diagram
and many object inheritance diagrams.

We also concentrate on making object types
reiisable through aggregation, incremental design and
inheritance, three powerful mechanisms for sharing
specification and promoting their reuse. That is
what makes our decomposition approach distinct from
most object-oriented designs which use only inheri­
tance as a tool for reusability [9].

Finally, SOOSD is build upon the abstraction
mechanisms (such as encapsulation, classification,
aggregation, and generalization/specialization) from
semantic data models [7] and object-oriented
programming languages.

6. CONCLUSION

Structured object-oriented system decomposition
represents a refinement of the structured system
analysis and design using object-oriented princi-
ples. It allows us to start system decomposition
from the system-object and work top-down to the
complete design solution using the objects' opera­
tions to discover their components.

We have now had about three years of successful
experience in using SOOSD to design and implement
vastly large systems. We have found SOOSD to be
extremely useful in the initial design of the sys-
tems. That is because it provides system decomposi­
tion according to currently existing object opera­
tions. But as with any software project, we have
done as much re-design as design. In such cases,
SOOSD continues to play an important role in reusing
object types through aggregation and inheritance.

7. REFERENCES

[1] G. Booch "Object-Oriented Development", IEEE
Trans, on Software Eng., Vol.SE-12, No.2, 1986,
pp. 211-221.

[2] P. Coad and E. Vourdon, Object-Oriented
Analysis, Prentice Hali, 1990

[3] W. Cunningham and K. Beck "A Diagram for
Object-Oriented Programs", Proč. of the
OOPSLA'86, Sep. 29 - Oct. 2, 1986. pp. 361-367.

[4] T. DeMarco Structured Analysis and System
Specification, Prentice-Hall, 1979.

[5] R.M. Ladden "A Survey of Issues to be Consid-
ered in the Development of an Object-Oriented
Development Methodology for ADA", Software En-
gineering Notes, Vol.l3, No.3, 1988, pp. 24-31.

26

[6] P. Lyngbaek and W. Kent "A Data Modeling
Methodology for the Design and Implementation
of Information Systems", Proč. of the Inter.
Workshop on Object-Oriented Database Syslems,
September, 1986, pp. 6-17.

[7] R. King and D. McLeod "Semantic Data Modcls",
in S.B. Yao (ed.) Principles of Database
Design, Vol.I, Prentice-Hall, 1985.

[8] B. Meyer "Reusability: The Čase for Object-
Oriented Design", IEEE Software, March 1987,
pp. 50-64.

[9] J. Micallef "Encapsulation, Reusabiiity, and
Extensibility in Object-Oriented Programming
Languages", Journal of Object-Oriented Program­
ming, Vol.I, No.l, April/May 1988, pp. 12-35.

[10] S. Mrdalj "Abstract Object Model: Data Model
for Object-Oriented Information System Design",
Informatica, Vol.l4, No.2, April 1990, pp. 1-11.

[11] S. Mrdalj "Stepwise Object-Oriented System
Design", Proč. of the IEEE International Conf
on Computer Systems and Software Engineering -
CompEuro'90, May 7 - 9, 1990, pp. 520-521.

[12] E. Seidcwitz and W. Stark "Towards a General
Object-Oriented Software Development Methodolo-
gy," SlGAda Ada Letters, July/Aug. 1987, pp.
54-67.

[13] R.F. Sincovec and R.S. Wiener "Modular Software
Construction and Object-Oriented Design Using
Ada," J. of Pascal, Ada & Modula-2, March/April
1984, pp. 29-34.

[14] P.T. Ward, "How to Integrale Object Orientation
with Structured Analysis and Design," IEEE
Software, March 1989, pp. 74-82.

[15] A.I. Wasserman, P,A. Pircher and RJ. MuUer
"An Object-Oriented Structured Design Method
for Code Generation", ACM SIGSOFT, Vol.l4,
No.l, January 1989, pp. 32-55.

[16] R. Wirfs-Brock and B. Wilkerson, "Object-
Oriented Design: A ResponsibiIity-Driven
Approach," Proč. of the OOPSLA'89, October 1-6,
1989, pp. 71-75.

[17] E. Vourdon and L. Constantine Structured
Design: Fundameritals of a Discipline of
Computer Program Design, Prentice-Hall, 1975.

