
 Informatica 28 (2004) 405–414 405

Information Systems Integration Process Model
Matjaž B. Jurič, Marko Tekavc and Marjan Heričko
University of Maribor, Faculty of Electrical Engineering and Computer Science
Institute of Informatics, Smetanova 17, SI-2000 Maribor, Slovenia
matjaz.juric@uni-mb.si, http://lisa.uni-mb.si/~juric/

Keywords: integration, process, EAI, B2B, information systems

Received: June 23, 2004

Integration of information systems is a complex field where major challenges are semantic, process and
technology related. Integration must be performed using methods, disciplines and activities that enable
it to be effective in terms of costs and time – thus it should be supported by a well defined integration
process. This article presents an information systems integration process model proposal with the goal
to guarantee the quality of the integrated solution. The article focuses particularly on the integration
specific disciplines: analysis of existing applications and integration design.
Povzetek: članek opisuje integracijo kompleksnih informacijskih sistemov.

1 Introduction
The growing need for the easy accessibility of
information presents new challenges for information
system development. This need is unlikely to be fulfilled
by the separate "stand-alone" applications. Applications
need to be integrated to make the information they
contain available and accessible [17].

Integration is not an easy task; indeed it has become
one of the most difficult problems facing enterprise
application development in the last few years. The major
challenges are semantic, process and technology related
[16]. Information system integration or Enterprise
Application Integration (EAI) as seen from the business
perspective, is the competitive advantage an enterprise
gets when all applications are integrated into a unified
information system, capable of sharing information and
supporting business workflows. From the technical
perspective, EAI refers to the process of integrating
different applications and data, to enable sharing of data
and integration of business processes among applications
without having to modify these existing applications.
EAI must be performed using methods, disciplines and
activities that enable it to be effective in terms of costs
and time. EAI should be project oriented and should be
supported by a well defined integration process.

The review of related work shows that not much has
been done in the field of integration processes. In [1] the
authors address the problems of EAI with ERP systems.
In [2] the author addresses the problem of using
middleware in integration projects. In [3] authors
introduce agentified enterprise components to improve
integration and cooperation. In [4] EAI is addressed from
the workflow perspective. In [5] authors explain the
integration of heterogeneous e-commerce applications
and focus on technology questions. In [6] the use of web
services for integration is discussed. In [7] the authors
present a notation for modeling EAI architectures. In [8]
the authors give an overview of architectures and

technologies used for EAI. In [9] the component
approach to EAI is presented. In [10] an XML based
framework for integration is presented and in [11] a web
based infrastructure is presented. None of these articles
addresses the integration process. Some directives related
to agile approach to integration can be found in [12],
[13], [14], and [15]. They do not present the whole
process however.

In this article we present the integration process
model proposal which is based on the EMRIS
methodology [18]. The integration process as presented
in this article defines the sequence of activities to be
done in a disciplined manner in order to successfully
develop an integrated information system. The goal of
the integration process is to guarantee the quality of the
integrated solution that will satisfy the customer, will be
completed on schedule, and will be within the allocated
financial resources. The integration process is tightly
connected to the software development process, with
which it shares several disciplines. It is based on real-
world experience and has been successfully used in
several large-scale integration projects.

The article is organized as follows: section 2 gives
an overview of the integration process, section 3
describes the analysis of existing applications, section 4
describes the integration design and section 5 gives the
concluding remarks.

2 Integration Process Outline
The presented integration process is based on the
following integration practices: iterative development,
incremental development, prototyping, reuse, design
simplification, test automation, and customer
involvement.

Integration process consists of disciplines which are
performed in several iterations. We focus on technical

406 Informatica 28 (2004) 405–414 M.B. Jurič

disciplines only: Requirements gathering, Analysis of
existing applications, Selection of the integration
infrastructure, Problem domain analysis, Integration
design, Implementation, Testing, and Deployment.
Figure 1 presents the integration process outline.

Business
Method
Level

Application
Interface

Level

Data
Level

Te
ch

ni
ca

l D
is

ci
pl

in
es

Presentation
Level

Integration Phases

Testing

Implementation

Requirements Gathering

Problem domain
analysis

Integration design

Analysis of existing
applications

Deployment

Selection of integration
infrastructure

Figure 1: Integration process outline

The disciplines that are common to all phases are

shown with a single box. The other disciplines are shown
with separate boxes. The size of the boxes represents the
approximate duration of each discipline in a certain
integration phase. For example, problem domain analysis
and the integration design disciplines require the most
effort in business-method-level integration phase, where
we have to define the global design model of the
integrated information system. The least implementation
effort is usually in data-level integration phase because it
rarely requires changes to existing applications.

Integration is usually achieved in four phases:
 Data-level integration phase
 Application interface level integration phase
 Business-method-level integration phase
 Presentation integration phase

Each integration phase requires a lot of effort and
time. Therefore, it has to be considered as a sub-project.
To support iterative incremental development, each
integration phase is usually broken into several iterations.
Iterations enable a finer-grained control over the
integration phase. Usually there are at least four
iterations for each integration phase. These main
iterations can however have further sub-iterations,
depending on the project size and the schedule. The four
main iterations for each integration phase are: inception,
elaboration, construction, and transition.

Inception defines the business perspective of
integration and estimates its size. We have to specify the
requirements, identify all entities our system will
cooperate with, and define how it will cooperate. We also
have to define the milestones and the criteria for
assessing the success of the integration, analyze the risks,
and select the resources.

In elaboration we analyze the existing applications
and get a clear understanding of what applications we
have to deal with. We also analyze the problem domain,
define the project plan, the basic architecture, and solve
the most hazardous parts of the integration project. We
also specify the requirements for the integrated
information system. As we have to make architectural
choices, it is very useful for us to build architectural
prototypes to validate the chosen architecture. At the end
of elaboration we evaluate the goals, the size of the
project, and the architecture decisions, and we should
once again assess the risks.

The goal of the construction is to actually implement
the integration that will result in completing a certain
integration phase. This part is the most time-intensive
and will have the largest number of iterations. When
constructing the integrated system, we obtain a clear
understanding of the integrated information system that
we are building. We also need to know how the existing
applications map to the newly defined integration
architecture and which functionality we will be able to
reuse. Then we build the design model, write the
implementation code, and perform testing and
verification. At the end of the construction we verify
whether the developed integration satisfies the
requirements.

In transition we deploy the developed integration
components into the production environment. Upon
deployment there are often additional problems and
complications that arise, which we have to solve. The
transition usually begins when we have a beta version of
the integration components ready. Transition finishes
when we are satisfied with the functionality of a certain
integration phase. After transition we usually proceed to
the next integration phase (from data-level to application
interface level for example).

The integration process differs from the usual
software development process in that it has to take
existing applications into account. Analysis of existing
applications has to be made and the integration design
discipline has to be adapted. In this article we will focus
on both mentioned disciplines:
 Analysis of Existing Applications
 Integration Design

Selection of integration infrastructure has been
addressed in [17], the integration assessment in [19].
Other disciplines, such as requirements gathering,
problem domain analysis, implementation, testing, and
deployment do not differ considerably from general
software development disciplines, as described in [18].

3 Analysis of Existing Applications
Before we start analyzing existing applications we have
to select the applications to be integrated. This should
include all the major primary "backbone" applications.
But we should also not forget subsidiary applications,
often self-made or locally developed solutions that users
use on a daily basis.

In the analysis of existing applications, we identify
and specify the functionality of each application that will

INFORMATION SYSTEMS INTEGRATION... Informatica 28 (2004) 405–414 407

be included in the integrated information system. We
identify the data models, perform the functional analysis,
identify the architecture of existing applications, and
identify ways to access this functionality.

We also need to identify redundancy and other
semantic problems, where the functionality of several
applications may be overlapping. Usually in this
discipline we will look at the applications in two ways.
First, we'll study the data that is stored in applications.
Second, we'll identify the functionality that is provided
and the ways in which to access it – we will extract the
business rules that are embedded in the existing
applications. The outcome is the data- and functionality-
level analysis models.

We perform the analysis of existing applications in a
controlled and disciplined manner and follow the
following activities in order to analyze each existing
application selected for integration: functional analysis,
technical analysis, analysis of functional overlapping,
analysis of existing integration. Figure 2 shows the main
activities and their refinements.

Functional
Analysis

Identification
of

functionality

Setting the
experiment
environment

Black-box
analysis

Logical
architecture
identification

Dependen-
cies analysis

Data model
identification

Integrity
analysis

Transactional
behavior
analysis

Security
analysis

Technical
Analysis

Identification
of application

interfaces

Application
architecture
identification

Position of
the

applications in
the IS

Sensibility to
failures

System load
and

performance
analysis

Identification
of

technologies
used

Source code
availability

Overlapping
Analysis

Functional
overlapping

Data model
overlapping

Existing Integration
Analysis

Identification
of

applications

Type of
integration

Integration
procedure

Analysis of Existing Applications

Figure 2: Analysis of existing applications discipline

3.1 Functional Analysis

3.1.1 Identification of Functionality
In order to reuse as much functionality as possible, it is
important to identify all the functions the existing
applications possess. In addition, we also have to identify
how often a function is used. This is important because
the existing application could even have some functions
that have never been used. There may be no guarantee
that these functions actually work correctly. To avoid

unpleasant surprises, it is recommended that we consider
only the functions that are actually used and which we
know work correctly.

The documentation that will be interesting for the
identification of functionality includes requirements
specifications, analysis and design documentation,
testing documentation, and user documentation. For
commercial applications, we'll probably have up-to-date
documentation, or at least the user documentation (user
manual) that will explain how to use the application. For
applications developed in-house we probably won't have
up-to-date documentation, but we may be able to find the
requirements specification. The requirements
specification is often the basis for getting a software
development project approved. This can be a good start,
but we still have to check how each function is
implemented. If the application is not too old, we may be
in luck and the original developers may still be around.
They will have the best understanding of the application
and it is well worth talking to them about the functions
that their application implements.

If we cannot talk with the original developers we
have to talk with system administrators and users.
System administrators will have an overview of how
often the application has been used and where the
problems have been. Users will be familiar with the
functions. Although this is not the time to start
developing code, we may take this opportunity to check
whether the source code actually exists, and if so is it in-
synch with the executable versions? Many existing
applications do not have adequate documentation. For
some, even the source code does not exist. Even if the
source code does exist we have to check if it is in-synch
with the executable versions.

For outsourced applications we are faced with
similar problems as with in-house developments. If the
outsourced projects have been managed efficiently then
there should be documentation available that will be
comprehensive and up-to-date. However, many projects
have not been well managed and we will not have the
documentation. On the plus side, for almost every
outsourced project the requirements specification should
exist. It usually forms the basis for the contract and for
assessing the value of the software development project.
Software development companies are also more aware of
the importance of documentation.

However, for an outsourced application it might be
even more difficult to get in touch with the original
developers. They are probably not employed by the same
company. Even if they are, they are not likely to want to
talk with us for free. This problem is exacerbated when
we find out that the consulting company does not exist
anymore and it has delivered the executable application
without source code.

3.1.2 Setting Experimental Environment
After we have prepared the list of functions with their
frequency of use, we have to check each function to get
an idea how it works. We do this in an experimental
environment that we have to set up. This will basically be

408 Informatica 28 (2004) 405–414 M.B. Jurič

a copy of the production environment, which will enable
us to experiment with existing applications without
disturbing their everyday operation. Setting the
experiment environment is important not only for the
analysis phase, but is very useful later when we apply
modifications to the existing applications. Without an
experimental environment it would be absolutely
impossible to safely test and validate the integration
solutions.

Setting it up can vary in complexity. It is easy in
cases where we have the necessary hardware, and where
we can simply copy the applications, with or without the
persistent data. The more complicated the application
architecture, the more work we have to set up the
environment. Becoming comfortable in the environment
of the existing applications is crucial to achieving
integration.

This will be the most difficult for legacy
applications. For them, there will be the problem of
obtaining the necessary hardware, and we probably won't
be familiar with the environment and the tools, which
may present the biggest obstacle. A big problem can be
setting up experimental databases. Again it depends on
the architecture of the application: if it uses some
standard way to access the database it will be easier.

Only with commercial applications we expect to
have some form of installation procedure. However, we
have to be sure that the actual product is identical to the
application that is used in production. Otherwise it is a
better idea to use the production version.

For applications where performance workload is not
limited, we are able to use the same hardware for the
production and experimental configurations. If we make
this decision, we have to be very careful not to interfere
with the production data. This approach will not be
applicable if the application has a high workload and/or
is mission critical. In this case we have to set up a fully
isolated experimental environment.

If we are unable to set up an experimental
environment for an application we want to integrate, we
have to be very careful with the tests that we do. We
have to consider what time to perform the tests, for
example, when the application is not in use (during
nights, weekends, or holidays). This will influence our
flexibility considerably.

3.1.3 Black-box Analysis
We then have to check each function that we have listed
in the functional specification. Note that we're not only
talking about the functions accessible from the user
interface, we have to include all functions, even those
that the application provides through APIs.

We call this activity black-box analysis because we
don't care about how the function is performed by the
existing application. We are interested solely in the
output that we get and what input parameters we have to
provide to get the desired output.

When specifying the input and output behavior we
should pay particular attention to the boundary
conditions. This means we should consider the allowed

intervals for input parameters. We should specify this in
the form of preconditions for the input parameters. This
will become important later when we reuse the
functionality.

To describe the functions of existing application we
can use a textual form, where we produce a table and
description of the functions. The proposed table should
include the following columns:
 Function – name of the function that the application

provides.
 Description – description of the functionality.
 Access via user interface or via API – we should

identify how we can access the functionality.
 Frequency of use – we should identify if the function

is used at all and, if so, how frequently it is used. If
possible we should use an objective metric, for
example number of times per week.

 Required inputs – we should clearly identify the
input parameters and their allowed ranges.

 Outputs – we should identify the outputs that we get.

3.1.4 Logical Architecture Identification
and Dependencies Analysis

After we have identified the functionality of the existing
applications, we have to recognize its internal structure.
Here we first have to identify if the application is
monolithic, client/server, or multi-tier. Then we try to
categorize how it is constituted – if there are several
modules or components, where the business logic is, etc.

After we have identified the logical architecture we
have to classify the dependencies between the
applications. Here we should identify all the
dependencies. Two applications can have logical
dependencies that can be implemented either
automatically or manually.

If implemented automatically then there is a sort of
interoperability between the applications – these
applications share data or functionality. Often,
particularly with legacy systems, such connections are
implemented through data exchange, very often via
shared files or tables. This will be important later when
we come to identify the existing integration between
applications. Then we will consider how the integration
is implemented from a technical perspective.

More frequently, we will see dependencies that are
carried out manually. This means that the users will have
to re-enter the same data, leading to possible
inconsistencies. An application can provide a summary
of some data it processes that the users then enter into
some other application. There is obviously a dependency
between them that we should identify and show on a
diagram. If possible, we can also document these
dependencies. This information will be useful later in the
analysis.

3.1.5 Data Model Identification
Another very important activity in functional analysis is
the identification of the data models used by each
application. This is important because we have to

INFORMATION SYSTEMS INTEGRATION... Informatica 28 (2004) 405–414 409

understand how data is stored. We have to analyze the
persistence storage of each application. We will be faced
with one or more of the following types of databases:
relational, object-oriented, universal, multidimensional,
hierarchical and network, other formats, such as flat files.

We have to construct the database model for each
existing application. This will be the basis for data-level
integration. Often it is possible to generate database
models automatically with the tools provided by the
database. The majority of relational databases, for
example, have tools to generate entity-relational (ER)
schemas out of existing databases. This is usually better
that depending on possibly out-of date documentation.

3.1.6 Integrity Analysis
Here we identify how the integrity of databases is
achieved and which party is responsible for it. Most
likely each application will be responsible for assuring
the integrity of their own databases. In this activity we
should identify the integrity rules for each database that
the system uses. Identifying the integrity rules will be
particularly important for data-level integration when we
exchange data between applications based on direct
database transfers. Since we will most likely omit the
business rules at this stage, we have to be aware what the
integrity rules are.

The integrity rules are sometimes described in the
documentation. Sometimes they are incorporated within
the database, if the database allows this. More often these
rules are coded within existing applications. Database
administrators can be very helpful with the identification
of integrity rules.

The problem with the identification of these rules is
that it is very difficult to be sure that we have identified
all of them. Not identifying them on the other hand can
lead to breaking the integrity of databases. Identifying
this problem is a difficult task, and tracking down
failures to database integrity problems is very time
consuming.

3.1.7 Transactional Behavior Analysis
Transactions play an important role in all non-trivial
applications. Their management is known as
transactional processing. Transaction monitors can be a
DBMS or some dedicated middleware. Transactions can
work with a single resource – these are the simplest and
most commonly used. However, in large systems the
transaction might need to be invoked over several
systems. This is when distributed transactions come into
play. A distributed transaction spans more than one
resource. Their context can be propagated or shared by
more than one component; they require the cooperation
of several different transaction monitors.

Our goal will be to identify the transactional model
(flat, nested, chained or saga) and become familiar with
how it works together with the existing application. We
have to familiarize ourselves with transactional
properties of the existing application, identify how the
existing application uses transactions, and how critical
the failures are.

3.1.8 Security Analysis
In security analysis we have to examine the way that
security is utilized by the existing applications. Generally
we need to answer: Does the application implement
security? If yes, how is the security implemented? If no,
should we add security now? There are four important
security mechanisms found in existing applications.
Authentication is the process of verifying that a client is
who they claim to be. It can be performed on the client
before it interacts with the server. It can also be
performed on the server.

Authorization checks whether the client application
is allowed to perform a certain operation. Authorization
can be defined programmatically or declaratively,
depending on the implementation. Typically it is defined
in terms of security roles and Access Control Lists
(ACLs). Extracting info on how authorization is
performed from existing applications can be complicated
because the logic may be in the application code.

Communication channel security – newer
applications will typically use Secure Socket Layer
(SSL) and Transport Layer Security (TLS), but this can
differ significantly with older legacy systems.

Auditing let us see an exact history of operations
performed on the system and is useful for analysis of past
events.

The fact is that a lot of existing applications do not
have much security implemented. Therefore attention
will have to be paid to how to introduce security to
existing applications.

3.2 Technical Analysis

3.2.1 Identification of Interfaces
In this activity we focus on the application interfaces.
Our goal will be to specify the interfaces that an existing
application provides to other applications. First of all, we
have to identify how many interfaces there are and which
operations they provide. Then we have to identify which
technology is used to access them.

To identify the number of application interfaces we
will have to go through the documentation, talk with the
developers, and even analyze the source code. We might
also consider using tools for analyzing existing
applications. Such tools sometimes can identify
application interfaces even if no source code is available.
We should mention that we could consider every form of
communication between two applications as an
application interface. For now it's not important if those
interfaces are implemented in a proprietary technology, if
they are procedural or functional, even on protocol level.

We specify the interfaces on the UML component
diagrams using the interface stereotype. We also identify
the operations of each interface and show their
signatures. This means that we have to identify the
names and the syntax of operations, the necessary
parameters and the return value.

Sometimes we have a situation in which the
applications are tightly coupled, so there will have to be

410 Informatica 28 (2004) 405–414 M.B. Jurič

some preconditions fulfilled before an operation can be
called or invoked. We need to identify these
preconditions (and maybe post-conditions). We also try
to identify if there are some restrictions in the order in
which the operations have to be invoked. Another
important thing is to recognize the way that the
application signals errors or other exceptional conditions.

Identifying the interfaces is very important,
particularly for application-to-application integration, but
sometimes also for data-level integration. Accessing data
through operations is better than going directly to the
database because we avoid circumventing the business
logic. This makes it easier for us to maintain database
integrity.

3.2.2 Architecture Identification
Having identified the logical architecture and the
interfaces, we should now consider the physical
architecture. We need to become familiar with the
environment in which the production application is
deployed, so we identify the computers on which the
application parts are deployed and the type of connection
between them. This step should be done for each
application separately, although applications will
frequently share resources.

To represent the architecture we can use UML
deployment diagrams. They show the runtime
configuration of hardware devices and the software
components that execute on them. Nodes contain
component instances, which show that the instances
execute on a certain node. Typically there will be several
component instances on a single node; however this
depends on the granularity of the application. Monolithic
and client/server applications will be typically
represented by a few components only.

It is also very useful to show the dependencies
between the component instances using a dependency
relationship. If the components provide interfaces that
their communication relies on, then we should show the
dependencies using the interfaces that we have already
identified. For example, an existing application can
provide a custom API for communication with clients,
and clients can use a remote procedure call or message-
oriented middleware to call the procedures and functions
in the API. This can be seen as an interface although it is
not an interface in the sense of component/OO-based
development. If there are no interfaces that we can
identify, then we should just show the dependencies
between the components. Sometimes we can specify the
communication protocol for each dependency too.

After we have identified the architecture of each
application separately we should build the diagram of the
whole existing information system. This basically means
that we gather together the deployment diagrams that we
drew in the previous step. We also need to identify which
resources the application share and denote the
dependencies (already identified previously) on this
diagram.

We should extend this diagram with the other
existing applications that are present in the current

information system, but have not been selected for
integration. We should mark them clearly with the
<<external>> stereotype, and note whether there are
some dependencies between the external applications
(those not selected for integration) and the applications
that we are integrating.

Sensibility to failures analysis is the next step in the
technical analysis of existing applications. Here we have
to identify how critical each application is for the
company. We have to see if the company has alternative
scenarios regarding what to do if an application fails. If it
does not (and most do not have such scenarios), we must
develop them. Note that when altering an existing
application we will considerably increase the risk of
failing, so we have to take every measure possible to
minimize the risk. This includes efficient backup
systems, which include application data as well as the
executable application files.

3.2.3 Performance Analysis
Here we should clarify what the performance
considerations of applications are. In the requirements
gathering phase we should have already identified the
performance expectations for the integrated system. Here
we have to see how the existing applications perform.
When integrating applications, one of the goals is to
provide instant access to information. The technical
implications are that after integration there will be a
larger number of clients that will simultaneously use the
application. Sometimes, for example when making
applications accessible online, this number can be
considerably higher.

It would be wrong not to consider the performance
limitations now. We will look at the system from two
perspectives: the client load, that is, the number of
concurrent clients, and the data load, that is, the quantity
of persistent data.

To identify the client load we should look at the
predicted average and maximum number of concurrent
clients; the response time by average and maximum
number of clients; the highest acceptable response time;
how much we increase the number of clients to fulfill the
response time limit in the current configuration; the
possibilities there are to increase scalability (hardware
and software solutions).

If we identify that the application currently offers
acceptable response times (and it should, because this is
a production application, although in real-world it often
does not), we will try to identify how much potential
there exists in the application for raising the number of
simultaneous clients. From this, we will try to infer the
highest possible number of concurrent clients that the
existing system can support in its current configuration.

To identify the data load we will first assess the
current persistent data size. Then we try to identify if the
integration will increase the data size. The reasons can be
different. For example, it is possible that pre-integration
the data between applications is transferred only once per
month and only summary values are recorded. Upon
integration we may require this transfer several times per

INFORMATION SYSTEMS INTEGRATION... Informatica 28 (2004) 405–414 411

day or even instantly. This will also mean that the
integrated system will record each transaction separately,
thus increasing the persistent data dramatically.

3.2.4 Identification of Technologies
In this step we have to familiarize ourselves with the
technology used in each existing application. If this is a
commercial application we have to check the exact
version that is being used. If it is a custom-developed
application we have the following points to check:
programming language, compiler, IDE, linker, operating
system version, DBMS versions, middleware, and all
other related software. We also have to look if those
versions of software still exist, and if not, how we can
obtain them. This will be important for making decisions
on rebuilding the system using the source code.

After we have defined the technology we have to see
if the source code is available for the existing
application. There are a large number of systems
(particularly legacy) where source code is not available.
Source code will also probably not be available for
commercial applications.

For custom-built applications, we will most likely
have access to the source code, unless they are old or the
source code has been lost, be it accidentally or
intentionally. But even if we find the source code we
have to check that we have all the necessary tools to
rebuild the application and the source code version
corresponds to the actual version used in production.
Often it happens that a single missing library or
configuration file prevents us from rebuilding the
application.

To check whether the production version is identical
to the source code we can use a simple procedure. We
build the application from the source code and compare it
to the production version using a file compare utility. We
have to be sure that we compare the executable files
only, without any data. If this simple procedure does not
work then we will have to compare applications, which
can be very difficult for small changes.

3.3 Overlapping Analysis
After we have analyzed the existing applications from
functional and technical perspectives, we are familiar
enough with them to perform an overlapping analysis.
The objective here is to identify which parts of the
applications overlap – which functionality and data is
redundant. We also select which application is
responsible for which overlapping functionality.
Overlapping analysis consists of two steps: functional
overlapping, and data model overlapping.

3.3.1 Functional Overlapping
As existing applications are not usually integrated, an
application can often contain certain functionality that
has already been implemented by some other application.
This is essentially due to a lack of architecting.

So, we are often faced with two or more applications
that implement the same functionality. Often one

application implements it in the detail, while another
implements only the parts that they need. Typically these
applications will introduce a slightly modified view of
the functionality, which will complicate the situation
even more.

We would like to identify which functionality is
overlapping in the applications that we have selected for
integration. Now we identify which functions of which
existing application we will use later, when we reuse
some existing functionality for the integrated information
system.

To identify the overlapping functions it is a good
start to have a look at the dependency analysis that we
performed as part of the functional analysis. We should
look at the dependencies; particularly those that are
implemented manually are suspicious. Implementing a
dependency manually means that the user has to re-enter
some data that has been processed from one application
into another. This may mean that the applications had to
overlap a part of their functionality. We also have to
check the dependencies that are implemented
automatically. If there is only data exchange between
applications it can still mean that the functionality is
overlapping.

To describe the functionalities that are overlapping
we first have to identify the function, then all the
applications where the function is implemented and
finally select the application that will be responsible for
that function (the application that we will use when
reusing this function for integration).

3.3.2 Data Model Overlapping
After we have analyzed the functions, we also have to
identify the data that might be overlapping in the
databases of different applications. Dependency and
functional overlapping analysis can be useful here.
Functional overlapping almost always means that there is
data overlapping under it. But note that there might be
data overlapping somewhere else, too.

To identify it, we should again focus on identified
dependencies between applications and evaluate first
those implemented manually and then those implemented
automatically. For data model overlapping analysis, it is
very helpful if we have the schemas of all the databases.
Then we can identify the data that is overlapping.
Similarly, as in functional overlapping, we should select
the databases that will be responsible for certain data.
These databases will then be used in the integrated
information system.

If we are lucky we will only have to deal with one
database model, probably relational. Then we have to
identify the entities that are overlapping. If we build the
data dictionary is very useful to supplement the
information that each entity name represents. This point
it is also a good opportunity to resolve the name conflicts
and to explain the cryptic names for entities and
attributes. The most difficult task will however be to
resolve semantic issues.

412 Informatica 28 (2004) 405–414 M.B. Jurič

3.4 Existing Integration Analysis
The last activity is to identify any existing integration
solutions. It is very likely that we will be faced with
some form of already implemented integration. The most
common ways are data exchange using shared databases
or flat files, or the use of message-oriented middleware
to enable point-to-point communication between
applications. We have to be aware of existing solutions
when planning our integration, although it is often
simpler if we don't have any integration at all and can
start from scratch.

First we identify all the applications that each
application is integrated with. As we have already done
the dependency analysis this will not be very difficult.
We pay attention to all automatic dependencies, and
focus on some specific details that we need to identify:
type of integration, exact procedure of how integration is
implemented and performed.

The type of integration identification is the second
step. We will identify what integration level the existing
integrated applications use.

4 Integration Design
In this discipline we focus on the global architectural
design model, where we represent the integrated
information system as a set of components (identified in
the problem domain analysis discipline) that have well
defined interfaces through which they communicate.
Instead of focusing on how to implement each
component from scratch, we focus on how to reuse
existing applications to provide implementations for the
components.

We approach architectural design from a high-level
perspective. Due to the size and complexity of the
problem domain, it is practically impossible to design the
integration architecture down to the finest detail. This
would also be unreasonable because a lot of functionality
is implemented by existing applications. Accordingly, we
approach the architectural design in a more high-level
way, where we define the global architecture in the sense
of components and their interfaces. This is somewhat
analogous to the planning of a city's architecture
compared to designing a house.

Several key activities of this discipline characterize
the architectural integration design process. Firstly, we
cope with the global situation, and then we focus on
information system-specific-functions. Here we start to
solve the use cases that influence the architectural
decisions and, as a result, we produce a set of
subsystems. Each of the subsystems realizes a use case.
After iterating though the subsystems we start building
the global architecture step-by-step and finally define a
stable architecture.

The main activities of the integration design
discipline can be organized into three groups as shown in
Figure 3.

The integration design discipline is a highly
important discipline. Getting the integration design
wrong will result in the failure of the whole integration

project. Of course the quality of the results in the design
discipline is dependent on the quality of the inputs from
previous disciplines. Still we should be aware of the
importance of this discipline. The risk of mistakes can be
greatly reduced with iterative and incremental
development.

Design

Reusing to Existing
Applicaitons

Logical Architecture

Identifying the higher-
level virtual
components

Identifying the
interfaces

Identify the
dependences

between virtual
components

Identifying the relations
to existing applications

Defining the sequence
for each operation

Mapping operations to
existing applications

Physical Architecture

Selecting the implemen-
tation technologies

Defining the physical
architecture

Figure 3: Integration design discipline

4.1 Logical Architecture
Identifying the higher-level virtual components [20] is
the first activity in the integration design discipline. We
need to identify the higher-level virtual components that
constitute the integrated system. The problem is that
although this task sounds easy, in reality it is not.

Selecting the correct higher-level virtual components
will have a long-lasting influence on the information
system as a whole. The selection also determines how
suitable the integration architecture is to re-engineering
existing applications and replacing them with newly
developed solutions.

To identify the high-level virtual components, we
focus on the analysis model class diagram. The analysis-
level entity and control components that we identified
will map to virtual components on the business logic tier,
so we will focus on them. The analysis-level boundary
components represent user interface constructs. These
will be realized in the client and web component tiers.

To identify the virtual components we go through the
control and entity components from the problem domain
analysis discipline. We try to group them into virtual
components based on their functionality. Components
encapsulate their internal implementation and represent
their functionality through the interface. To identify the
higher-level virtual components we can follow these
guidelines:
 Start with the analysis class diagram.
 Gather the analysis components that are logically

connected because they implement a part of a larger
functionality.

 Try to make the virtual components as independent
of other components as possible.

 Often we will have to add other specific components
that will implement non-functional requirements, for
example, or model some implementation-related
concepts.

INFORMATION SYSTEMS INTEGRATION... Informatica 28 (2004) 405–414 413

After we have identified the higher-level virtual
components, we define the interfaces through which we
access the functionality of these components. We should
ensure that the interfaces are high-level and that they
focus on business processes and not on implementation
details. The interfaces act as the contracts between the
components. The interfaces represent a part of the
integration architecture that we should not change – each
change will influence all dependent components.

Keep in mind, however, that we can still add
operations to existing interfaces without creating
problems on related components. Therefore we will often
introduce modified methods as new methods with a
slightly different signature. This protects us from having
to change all related components. However, doing this
too many times will make the interfaces very hard to use
because we will have to cope with the redundancy of
methods – we will not know exactly which to use and
when. So we have to be very cautious with the interfaces
that we define.

Identifying the dependencies is important because
they show how the changes to one part of the system will
influence other parts. Dependencies between parts of the
system can be direct, in which case a change in one part
will require a modification to another part. For example,
if part A is directly dependent on part B, this means that
if we change something in B we also need to update A.

Dependencies can also go through interfaces, which
will decouple the direct connection between the two parts
of a system. This will obviously be the preferred way and
we will model the integration architecture through
interfaces, as we have already stressed several times
over. Making components dependent only on component
interfaces simplifies their management considerably. As
long as we do not modify the interfaces we can change
the implementation of the component.

Still, we have to be aware which dependencies exist
between virtual components, so we will identify them
and show them on the diagram. This enables us to
efficiently track and measure the complexity. As we
apply changes to the architecture, we should also update
these diagrams, otherwise they are effectively useless.

The degree of coupling between components can be
used to identify and describe the dependencies. Weak
coupling shows that the groups are relatively
independent, and fewer dependencies between
components show that we have gathered the classes
correspondingly and that the system will be relatively
easy to understand, maintain, and extend.

Strong coupling, on the other hand, indicates that
there are many dependencies between components. This
suggests that changes to one part of the system (to an
interface, for example) will require modifications in
many other parts. It also makes the structure of the
system less easy to understand. Sometimes strong
coupling is a consequence of incorrectly gathered classes
and poorly identified components, and in such cases, it
might be a good idea to rethink the architecture. Indeed,
such re-evaluations can be a normal part of the whole
process.

4.2 Reusing Existing Applications
Identifying the relations to existing applications is the
first step in this activity. It is recommended to show the
relations for each component, because this will make it
easier to follow later steps. This stage is dependent on the
existing applications that we have. To be able to identify
the relations to existing applications we have to be
familiar with their functionality, and to achieve this we
have to do the analysis of existing applications.

When we have identified the existing applications
that the higher-level virtual component has to interact
with, we identify the exact sequence of operations that
the higher-level virtual component has to invoke in order
to get the desired result. To identify the operations and
the sequence that needs to be invoked we study the
interfaces of existing applications lower-level virtual
components and map the desired functionality in the best
possible way.

In real-world examples we will frequently be
overwhelmed with the complexity of the interfaces that
existing applications provide. We will often also be
confused about which operations to actually use, because
often there will be more than one way to achieve the
same result. To model the sequence of operations that
have to be invoked we can use UML sequence diagrams.
It is very important that we model all possible sequences
of operations, including the normal flow of events and
any alternative flows in which something could go
wrong. In this way we can define how to handle all
exceptional situations, how and to whom we should
propagate the exceptions, and we will ultimately make
our components highly robust.

The sequence of operations sometimes is not enough
and the component has to do some calculation, and
perform other operations to get the desired result. As
such, in this step we must identify what exactly has to be
done. The goal is to identify the interaction with the
existing application to such a level that we will be able to
write code directly from the specification.

It will vary from operation to operation how complex
a mapping we will have to use. With a highly complex
mapping we might consider representing the whole
procedure with an activity diagram too; sometimes we
could even use "pseudo code". We have to map each
operation of the newly defined higher-level virtual
component to lower-level virtual components that
represent existing applications. Sometimes we will not be
able to find the corresponding methods in the existing
applications. This means that the functionality we require
is not supported by existing applications, in which case
we have to implement it from scratch. Or we might be
able to reuse only a part of the whole functionality.
Following the proposed integration process we will be
able to add the missing functionality in a relatively
painless manner.

4.3 Physical Architecture
In this activity we have to select the implementation
technologies and physical architecture. The selection of
implementation technologies will depend of the used

414 Informatica 28 (2004) 405–414 M.B. Jurič

software platform. We have to take into account the
requirements regarding performance and reliability. This
will then influence the deployment scenarios that we
select.

To achieve acceptable performance we consider
locating tightly-coupled components inside a single
container and use local access to components to optimize
the method invocation performance [21]. To achieve
higher reliability we might consider clustering or
replication.

To identify the most suitable physical architecture
we select a few different candidate architectures first.
Then we build prototypes that help us to validate these
candidate architectures by the criteria that we have to
meet. Only then will we select the final appropriate
architecture and do the implementation.

5 Conclusion
In this article we have presented the process model
proposal for information systems integration that
specifies a disciplined approach to top-down integration.
The integration process introduces sound practices, like
iterative and incremental development, prototyping and
reuse. It specifies the phases, disciplines, and activities.
The four integration phases are: data-level, application
interface level, business-method-level, and presentation-
level phase.

For each phase the integration process defines
several disciplines that have to be performed in order to
obtain results. Some of these disciplines are equal for all
phases, some depend on the phases. We have focused on
the technical disciplines only.

Analysis of existing applications and integration
design are highly important disciplines for integration
projects. We have to get a clear understanding of the
existing situation in order to be able to later map the
functionality to the newly integrated system. We also
need to adapt the design phase to involve existing
applications. This is why in this article we have focused
on those two disciplines and presented detailed activities
which should be carried out as a part of each discipline.

One of the important features of the presented
integration process model is its ability to be adapted to
specific need of each company, which will be addressed
in our future work.

References
[1] J. Lee, K. Siau, S. Hong (2003) Enterprise integration

with ERP and EAI, Communications of the ACM,
ACM, Vol. 46, Iss. 2, pp. 54 – 60.

[2] M. Stonebraker (2002) Too much middleware, ACM
SIGMOD Record, ACM, Vol. 31, Iss.1, pp. 97 – 106.

[3] J. Sutherland, W. J. van den Heuvel (2002) Enterprise
application integration and complex adaptive
systems, Communications of the ACM, ACM, Vol.
45, Iss. 10, pp. 59 – 64.

[4] Z. Wu, S. Deng, Y. Li (2004) Introducing EAI and
Service Components into Process Management,

Proceedings of the Services Computing, IEEE,
Shanghai, pp. 271 – 276.

[5] A. Eyal, T. Milo (2001) Integrating and customizing
heterogeneous e-commerce applications, The VLDB
Journal, Springer, Vol. 10, Iss. 1, pp. 16 – 38.

[6] S. Baker (2002) The three steps to web service
integration, IONA, www.iona.com.

[7] F. Losavio, D. Ortega, M. Pérez (2002) Modeling
EAI, XII Int. Conference of the Chilean Computer
Science Society, IEEE, Chile, pp. 195 – 204.

[8] I. Gorton, A. Liu (2004) Architectures and
Technologies for Enterprise Application Integration,
26th Int. Conference on Software Engineering, IEEE,
Edinburgh, pp. 726 – 727.

[9] P. Maheshwari (2003) Enterprise Application
Integration using a Component-based Architecture,
27th Annual Int. Computer Software and Applications
Conference, IEEE, Dallas, pp. 557 – 560.

[10] V. S. Pendyala, S.Y. Shim, J. Z. Gao (2003) An
XML Based Framework for Enterprise Application
Integration, Int. Conference on E-Commerce, IEEE,
California, pp. 128 – 133.

[11] D. Gawlick (2001) Infrastructure for Web-based
Application Integration, 17th Int. Conference on
Data Engineering, IEEE, Heidelberg, pp. 473 – 477.

[12] B. Hunter, M. Fowler, G. Hohpe (2002) Agile EAI
Methods: Minimizing Risk, Maximizing ROI,
ThoughtWorks Inc.

[13] S. Chatterhee (2004) Managing EAI Projects in
Agile way, Cap Gemini Ernst & Young Consulting.

[14] M. Fowler, G. Hohpe (2002) Agile EAI,
ThoughtWorks Inc.

[15] G. Hohpe, W. Istvanick (2002) Test-Driven
Development in Enterprise Integration Projects,
ThoughWorks Inc.

[16] D. S. Linthicum (1999) Enterprise Application
Integration, Addison Wesley.

[17] M. B. Juric et al. (2001) Professional J2EE EAI,
Wrox Press Ltd.

[18] M. Silic et al. (2000) EMRIS - Enotna metodologija
razvoja informacijskih sistemov, Zv. 4, Objektni
razvoj, Center Vlade RS za informatiko.

[19] M. Pusnik, B. Sumak, M. B. Juric, M. Hericko
(2004) Ocenjevanje pripravljenosti podjetij na proces
integracije s pomočjo indeksa integrabilnosti, 7th
Internation Multiconference Information Society IS
2004, Inštitut Jožef Stefan, Ljubljana, pp. 53 – 56.

[20] M. B. Juric et al. (2003) Application integration
patterns, Technology supporting business solutions,
Advances in computation: theory and practice, Nova
Science Publishers, New York, pp. 115-138.

[21] M. B. Juric et al. (2002) J2EE Design Patterns
Applied, Wrox Press Ltd.

