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Human Activity Recognition (HAR) from wearable sensors has gained significant attention in the last
few decades, largely because of the potential healthcare benefits. For many years, HAR was done using
classical machine learning approaches that require the extraction of features. With the resurgence of deep
learning, a major shift happened and at the moment, HAR researchers are mainly investigating different
kinds of deep neural networks. However, deep learning comes with the challenge of having access to large
amounts of labeled examples, which in the field of HAR is considered an expensive task, both in terms of
time and effort. Another challenge is the fact that the training and testing data in HAR can be different
due to the personal preferences of different people when performing the same activity. In order to try and
mitigate these problems, in this paper we explore transfer learning, a paradigm for transferring knowledge
from a source domain, to another related target domain. More specifically, we explore the effects of
transferring knowledge between two open-source datasets, the Opportunity and JSI-FOS datasets, using
weight-transfer for the DeepConvLSTM architecture. We also explore the performance of this transfer at
different amounts of labeled data from the target domain. The experiments showed that it is beneficial
to transtfer the weights of fewer layers, and that deep transfer learning can perform better than a domain-
specific deep end-to-end model in specific circumstances. Finally, we show that deep transfer learning is a
viable alternative to classical machine learning approaches as it produces comparable results and does not
require feature extraction.

Povzetek: V prispevku je raziskan vpliv §tevila ucnih primerov pri prenesenem ucenju, ki kaZe izboljsano
delovanje pri malem Stevilu primerov.
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1 Introduction

With numerous healthcare, smart-home and security appli-
cations on the horizon, human activity recognition (HAR)
is a field which has gained significant traction in the past
two decades. Most of the research done on this topic
has been aimed at understanding human activity using
data from wearable sensors, primarily inertial measurement
units (IMUs). This is in large part due to the rapid develop-
ment of wearable devices, allowing researchers to perform
complex tasks on them, as well as their ubiquitous and un-
obtrusive nature.

Until recently, researchers in the field of HAR were
mainly focused on using traditional pattern-matching meth-
ods as well as machine learning to detect activities [1]. In
order to work properly, these methods require the extrac-
tion of features which in turn requires considerable domain
knowledge in order to extract a diverse and information-
rich feature set. However, in recent years, as the benefit of
using deep neural networks is apparent in domains such as
computer vision and NLP [2], research has shifted towards
deep learning [3]. The focus has mostly been centered
around Convolutional Neural Networks (CNNs). These
networks are capable of automatically capturing hierarchi-



290 Informatica 45 (2021) 289-296

cal feature representations of the data [4], i.e. they produce
features which range from general to application specific as
one goes deeper in the network. Another emerging trend in
HAR is the use of LSTM cells which are able to better cap-
ture the temporal dependencies between sensor readings
[51[6]. Finally, an interesting approach which yields ar-
guably the best result is the creation of hybrid models such
as the one proposed by Ordéfiez et al., where they com-
bine convolutional layers with LSTM cells in order to ex-
ploit both the spatial and the temporal analysis which those
types of layers provide [7].

Nevertheless, as is the case in many other fields where it
is applied, aside from the benefits, deep learning also brings
certain challenges. These challenges are usually even more
emphasized when working on HAR as opposed to fields
such as image classification. For example, large amounts of
(diverse) data are required to train a deep end-to-end clas-
sifier that can accurately predict human activities. These
large amounts of data are usually difficult to collect as it
takes a lot of time and sometimes money to do so. In addi-
tion, deep neural networks require a lot of time to train in
order to reach their full potential, which hampers the ability
to quickly create prototypes that can be further built upon.
Finally, the source and target data in HAR can be very dif-
ferent, as different users perform the same activities differ-
ently depending on their personal preferences. This makes
building end-to-end deep learning models a difficult task.

Given these challenges, it is clear that providing a so-
lution to them could accelerate the development of HAR
models for specific activity domains and make these mod-
els more adaptable to users and data that they have not pre-
viously seen. To this end, we explore transfer learning, a
learning paradigm that deals with transferring knowledge
acquired in one (source) domain to another related (target)
domain, as a method that could help mitigate these issues.

There have been several works in the past which showed
transfer learning to be beneficial in the HAR domain, but
most of them used classical ML methods [8][9][10]. An
extensive analysis of conventional transfer learning meth-
ods can be found in [11]. However, in contrast to this,
there aren’t many works addressing deep transfer learn-
ing. Morales et al. presented the pioneering deep trans-
fer learning approach for HAR in [12]. In this paper the
authors worked with the PAMAP2 and Skoda Mini Check-
point datasets and investigated the transfer of weights of
the DeepConvLSTM model between the two domains.
Unfortunately, they get negative transfer results and con-
clude that the two domains are just too different from
each other. In addition, Hoelzemann et al. have a similar
transfer learning setup to the one presented in [12] and in
their experiments they conclude that transfer between sen-
sor locations in the same domain is feasible, but transfer
between datasets is accompanied with significant perfor-
mance losses. The authors in [13] propose a method which
is able to achieve good results when transferring between
HAR datasets which have the same set of tasks. Finally,
in our previous work [14] we showed promising results for
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a transfer learning system using the MultiResNet architec-
ture [15] at different adaptation set sizes.

In order to provide more detailed insights into some of
the open questions, this paper is going to explore the perfor-
mance of a transfer learning system, using two intuitively
similar datasets which consist of activities of daily living
(ADL). The deep learning architecture we are going to be
using in this work is the DeepConvLSTM architecture. In
more detail, we are going to explore: (i) the performance
of transfer learning when transferring the weights of differ-
ent numbers of convolutional layers; (ii) the performance
of transfer learning when using different sizes of labeled
adaptation sets; (iii) how transfer learning performs in com-
parison to domain-specific classical machine learning ap-
proaches and domain-specific end-to-end learning.

The rest of this paper is organized as follows. In Section
2 we introduce the datasets which are used in our experi-
ments. Section 3 describes the preprocessing and feature
extraction steps which were performed on the raw signal
data before it was presented to the algorithms. The follow-
ing section (Section 4) briefly describes the deep learning
architecture that we chose to use. Following that, in Sec-
tion 5 we give an introduction into our experimental setup,
and in Section 6 we present and discuss the results. Finally,
our work is concluded in Section 7.

2 Datasets

For the experiments we chose two datasets that are intu-
itively similar to each other. Both the Opportunity [16] and
the JSI-FOS dataset [17][18], consist of activities which
users commonly perform in their daily routines. Both of
these datasets contain at least one 3D accelerometer worn
on the right wrist, which allows us to discard the sensor
modality and location as variables in our analysis. An-
other important characteristic of these datasets is the fact
that they consist of data from several different users, which
allows us to test the generalization capabilities of our mod-
els by using a Leave-One-Subject-Out (LOSO) evaluation.

Although they have a lot of similarities, the JSI-FOS and
Opportunity datasets differ in several areas: (i) the num-
ber of activities, with JSI-FOS having 18 and Opportunity
having 21 distinct activities (reduced to 10 and 14 after the
preprocessing steps described in Section 3); (ii) sampling
rate, which is equal to S0Hz and 30Hz, respectively; (iii)
the overall duration of the data, which is around 3 times
larger in the JSI-FOS dataset and amounts to around 20
hours (after the preprocessing steps described in Section
3). Furthermore, the two datasets also differ slightly in the
types of activities, with Opportunity focusing on gestures
and not just locomotion activities. Figure 1 and Figure 2,
show the distribution of the activities we selected from both
datasets.

Finally, a summary of the information about both
datasets is given in Table 1.
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Dataset Type | #Subjects | Sampling rate | #Activities | #Selected activities | # of examples
JSI-FOS ADL 10 50Hz 18 10 36060 [ 20h]
Opportunity | ADL 4 30Hz 21 14 10822 [ 6h]
Table 1: Overview of the two datasets used in our experiments
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Figure 1: The number of examples per selected activity in
the JSI-FOS dataset.

3 Preprocessing and feature
extraction

In order to unify the way data is represented in both
datasets, we constructed a fairly simple preprocessing
pipeline. The first step in this pipeline is the selection of
data which comes from a 3D accelerometer, worn on the
right wrist. In addition to the three channels of data that
these accelerometers produce, we also calculate the mag-
nitude as a virtual fourth channel. Although it is available,
we disregarded data from other sensors in order to simplify
the model and make the analysis easier.

The second step in the preprocessing pipeline is the re-
sampling of the data from the accelerometers to a sampling
rate of 25Hz. We chose this relatively low sampling rate
to make our transfer learning setup more suitable for po-
tential use with wearable devices since a lower sampling
rate results in better energy efficiency. Furthermore, the au-
thors in [15] show that there are no significant performance
differences when using sampling rates between 25Hz and
100Hz. The data from both datasets is downsampled to a

Figure 2: The number of examples per selected activity in
the Opportunity dataset.

common sampling rate to ensure that the filters we trans-
fer from the source model to the target model work as in-
tended. Otherwise, if the source and target data have dif-
ferent sampling frequencies, each of the transferred con-
volutional filters would work on a piece of data that has
a different temporal length in comparison to what it was
trained on. Next, we also convert the units of the measure-
ments to a common unit, "g" (9.81 m/ s2). After we take
care of the raw data format, we turn our attention to the
activities in each dataset. In the JSI-FOS dataset, we only
perform some simple aggregations of the original activi-
ties. For example, the activities lying_back, lying_left_side,
lying_right_side, and lying_stomach are all aggregated to
one activity, lying. This is why, from the original 18 ac-
tivities, we end up selecting only 10 distinct ones. Table 2
shows all the aggregations used for this dataset.

On the other hand, when working with the Opportunity
dataset, whenever a locomotion and gesture label are si-
multaneously available we create a new activity label. This
new activity is simply the concatenation of the locomotion



292 Informatica 45 (2021) 289-296

Original Aggregation
lying_back
lying_left_side )
lying_right_side lying_back
lying_right_stomach
allfours lfours
allfours_still u
standing .
standing_leaning_still standing
tra11.S}t10n_up Null
transition_down

Table 2: Aggregations of activities used for the JSI-FOS
dataset

Original
*_open_doorl
*_open_door2
*_close_doorl
* close_door2
*_open_fridge

*_open_dishwasher
*_close_fridge
*_close_dishwasher
*_open_drawer[1/2/3]
*_close_drawer[1/2/3]

Aggregation

*_open_door

* close_door

*_open_compartment

*_close_compartment

*_open_drawer
* close_drawer

Table 3: Aggregations of activities used for the Opportu-
nity dataset

and gesture label, for example, walking (locomotion) while
drinking from a cup (gesture). After this, we perform the
same aggregation process as with JSI-FOS. Table 3 shows
the aggregation rules for the Opportunity dataset. An as-
terisk is used in this table as a placeholder for a potential
locomotion label.

The penultimate step of the pipeline is segmenting the
raw data into windows of fixed size. Each window in this
work contains 100 sensor readings, which represents 4 sec-
onds of data at a sampling frequency of 25Hz. There is
a 50% overlap between two windows. Windowing is per-
formed for each channel separately, which means that after
this step, both datasets are represented as sets of quadruples
(4 channels).

Finally, as the last step, from both datasets we remove
the windows with a Null activity label and disregard all
activities with fewer than 100 windows (3.3 seconds). At
this point, the preprocessing steps for the DeepConvLSTM
model end, and the quadruples, stacked vertically, can be
fed into the model in order to be processed.

3.1 Feature extraction

In order to be able to use classical machine learning algo-
rithms we need to further change the form of the afore-
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mentioned windows by extracting features. In order to
provide the algorithms with an information-rich represen-
tation, from each quadruple of windows (4 channels), we
extract around 2400 features based on the related work
on HAR. The majority of the features come from the
TSFRESH package, which allows for the extraction of
general-purpose time-series features. On top of the fea-
tures extracted with TSFRESH, we also extracted a set of
frequency-domain features which was previously shown to
work well in other HAR applications [19][20]. This set of
features is based on the Power Spectral Density (PSD) of
the signal and include its binned distribution, entropy, en-
ergy, magnitude, and first four statistical moments of the
PSD, among others.

4 Model architecture

In this work we chose to use the DeepConvLSTM frame-
work, proposed by Ordéfiez et al. in [7]. This architec-
ture consists of stacked convolutional layers which are fol-
lowed by LSTM cells. This allows the network to extract
hierarchical feature representations and model the tempo-
ral dependencies between them. The network architecture
was chosen primarily for its simplicity, which allows for an
easier evaluation of how some changes affect the transfer
learning performance, as well as its frequent use in other
deep transfer learning studies in the field of HAR [12] [21].

The input, in our implementation of the network, is ex-
pected to consist of 4 stacked windows of signal data (one
per sensor channel). This input is then processed through
4 convolutional layers, each with 64 feature maps. The
convolutional layers use the ReLU activation function to
compute their output.

Following them are two pairs of dropout and LSTM lay-
ers. Each dropout layer has a rate of 0.5 and each LSTM
layer has 128 cells. Finally, a softmax layer is attached to
the last LSTM layers in order to produce the final predic-
tions. A diagram of this architecture can be seen on Figure
3.

S Experimental setup

In this paper we adopt the following transfer learning ap-
proach: (i) train a (source) model on the Opportunity
dataset; (ii) transfer the weights of all layers (except the
softmax layer) of that model to a new (target) model in
which the softmax layer fits the number of classes of the
JSI-FOS dataset; (iii) freeze a certain number of convolu-
tional layers and allow all the rest to be fine-tuned; (iv) fine-
tune the rest of the layers using some number of instances
(adaptation set) from the JSI-FOS dataset. Both the source
and target models in this approach are trained using a batch
size of 64 and a learning rate of 0.001. However, there is
a difference in the number of training epochs between the
source and target models and those numbers of epochs are
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Figure 3: A diagram of our implementation of the Deep-
ConvLSTM architecture.

100 and 70, respectively. These numbers were determined
experimentally.

Another important detail to explain, before we move on
to the experiments, is the adaptation set. This is the set of
instances from the JSI-FOS dataset we use to either train
or fine-tune a model. Since we wanted to explore the ef-
ficacy of transfer learning at different amounts of labeled
data from the target domain, we repeat each of our experi-
ments several times, using different sizes of the adaptation
set. The adaptation set sizes range from 100 instances to
12000 instances, that is, between 3.33 minutes and 6.66
hours of labeled data.

Furthermore, it is important to note that, since we use
Leave-One-Subject-Out (LOSO) evaluation, the adaptation
set is produced in a stratified manner, using all subjects ex-
cept for the one which is selected for testing and the two
subjects (randomly chosen from the remaining set of sub-
jects) which are selected for validation. This means that an
adaptation set of 100 instances, will be produced at least
10 times, once in each iteration of the LOSO evaluation.
In order to make the results more relevant and minimize
randomness, we repeat the LOSO evaluation several times
at each adaptation set size and report the average of these
results. For example, given an adaptation set of 100 in-
stances, we repeat the LOSO evaluation 4 times, which
means that a random adaptation set will be produced a total
of 40 times (JSI-FOS has 10 subjects).

Finally, we should note that when we train models on
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the target dataset (JSI-FOS) we use early stopping based on
the loss value on the validation set (two randomly selected
train-users in each iteration).

Experiment 1
The first experiment is aimed at exploring the optimal num-
ber of convolutional layers to freeze in step (iii) of the trans-
fer learning approach. To this end, we repeat the transfer
learning approach 4 times, and in each of them we freeze a
different number of convolutional layers, ranging from 1 to
4.

Experiment 2
The second experiment is aimed at comparing the perfor-
mance of deep transfer learning, deep end-to-end models
and classical ML. As an example of a classical ML algo-
rithm we chose Random Forest, as it often shows state-
of-the-art results and does not require extensive hyper-
parameter tuning [15]. This model is trained only on the in-
stances from the adaptation set, using the features extracted
in Section 3.1. The end-to-end model is also trained using
only the examples in the adaptation set and uses the same
architecture as the transfer learning model, but its weights
were initialized randomly and no transfer of knowledge has
taken place. Finally, the transfer learning model is trained
using steps (i) through (iv) and the number of convolutional
layers transferred between models is based on the results
from the first experiment.

6 Results and discussion

The results from experiment 1 can be seen on Figure 4.
The x-axis of that graph, shows the number of instances in
the adaptation set, while the y-axis of the graph, shows the
macro Fl-score. Based on the results from this experiment,
it seems that there isn’t a huge difference in performance
when freezing different numbers of convolutional layers
from the DeepConvLSTM architecture. However, the setup
in which we only freeze the first convolutional layer and
allow all others to be fine-tuned, performs marginally, but
consistently, better than the rest. This finding seems to be
in line with what was concluded by [12] and supports the
claim that convolutional layers deeper in the model, extract
features which are just too dataset (domain) specific.

The results from experiment 2 can be seen on Figure 5.
Here we compare the performance of a RF classifier, an
end-to-end (E2E) DeepConvLSTM model and a DeepCon-
vLSTM model trained using transfer learning. As is ex-
pected, the E2E model shows very poor performance when
the adaptation set size is very low, and gradually, improves
as the adaptation set grows. It is interesting to note that al-
though it comes close, the E2E model never really matches
the performance of the Random Forest (RF) classifier. On
the other hand, the RF classifier produces strong results
on all adaptation set sizes, except the smallest one. This
is probably due to the fact that relevant features were ex-
tracted by hand. Lastly, it is interesting to see that the Deep-
ConvLSTM model trained using transfer learning produces
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Figure 4: Performance of the DeepConvLSTM architecture
when freezing different numbers of transferred layers.
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Figure 5: A comparison between the performances of a
classical ML algorithm, an end-to-end deep learning model
and a transfer learning model, at different adaptation sizes.

results which are quite similar to the ones produced by
the RF classifier and that it manages to beat the results of
the E2E model across all adaptation set sizes. This seems
to support the idea that relevant features were already ex-
tracted in the first convolutional layer (trained on the source
domain) and that even small adaptation sets contain enough
data for the model to make sense of those features.

Finally, Figure 6 shows a per activity comparison be-
tween the performances of the deep E2E model and the
deep transfer learning model. Each row represents a differ-
ent adaptation set size, while the columns represent the dif-
ferent activities in the target dataset (JSI-FOS). The value
in each of the cells, is the difference in activity Fl-score
between the deep transfer learning model and the domain-
specific deep E2E model. This produces positive values,
whenever the deep transfer learning model is better and
negative values whenever the opposite is true. As we can
see, there are very few situations in which the deep E2E
model manages to perform better than the deep transfer
learning model, which is to be expected based on the results
shown on Figure 5. This figure also, quite clearly shows the
gradual decline in performance gains (as we increase the
size of the adaptation set) for the allfours, allfours_moving,
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cycling, standing, walking activities.

7 Conclusion

In this paper we use the DeepConvLSTM architecture to
explore the benefits of transferring knowledge (represented
by model weights) from the Opportunity dataset, to the JSI-
FOS dataset. Unlike in several previous works, we explore
transfer learning between datasets which come from intu-
itively similar domains and both contain activities from the
daily lives of users. In this work we aim to create a head-to-
head comparison of classical ML, end-to-end deep learn-
ing and deep transfer learning. From the results, we can
conclude that it is better to transfer the weights of fewer
convolutional layers, as there was already extracted a set of
diverse features which only get more domain specific as we
transfer more layers. Furthermore, we also show that deep
transfer learning is able to produce better results in com-
parison to a deep end-to-end model trained on the same
amount of labeled data. Finally, we show that with the use
of deep transfer learning one can produce results compara-
ble to those of a RF classifier without the need for feature
extraction done by hand.
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