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Abstract—Seaport efficiency and productivity are the critical factors for handling of goods in the international 

supply chains and plays an important role in trade exchange with other countries. It is important to evaluate 

efficiency and productivity of seaports to reflect their status and reveal their position in competitive 

environment. The main purpose of this article is to use Data Envelopment Analysis and Malmquist Productivity 

Index to measure the technical efficiency and total factor productivity of container ports. DEA analysis enables 

one to assess how efficiently a seaports uses the available inputs to generate a set of outputs relative to other 

units in the data set. This article presents the use CCR and BCC DEA model, to determine overall technical 

efficiency, pure technical efficiency and scale efficiency of container ports. The analysis gives a possibility to 

create a efficiency ranking of seaports.  The study also applies the Malmquist Productivity Index (MPI), which 

was used to analyze changes in seaports productivity. The study indicated that technological progress had a 

greater impact on the change in productivity of container ports than changes in technical efficiency. 
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I. INTRODUCTION 

Seaports always play a strategic role in the development of domestic and international trade of 

a country whether it is a developing or developed country. However, in a globalized world where 

distances are becoming squeezed, ports play an active role in sustaining the economic growth of 

a country [1]. 

According to Cullinane et al. (2002) “Efficiency is a main issue in contemporary port economics, 

on grounds of port’s strategic position in connecting inside the country”[2]. Port efficiency is highly 

correlated with handling cost. Countries with inefficient seaports have higher handling costs. The 

clear negative relationship shows that countries where ports are considered the most efficient  are 

at the same time the ones whose ports charge the least for their services [3]. 

As critical international logistics facilities, container ports have been playing increasingly 

important role in national economies in the world. Transportation of goods in containers by sea has 

been the most important for round the world trade exchange and so port systems must have been 

heavily intensified in the recent decades. Financing new port development projects is highly 

capital intensive. A recent study of the scale of future infrastructure demand examined nine 

economies (Brazil, China, France, Germany, India, Japan, Mexico, the United Kingdom, and the 

United States), collectively accounting for 60 % of world GDP, and found that their annual spending 

on long-term investment totaled $11.7  trillion  for  the  year  2012.   

Container port throughput is usually measured in the number of TEUs moved. In 2011, the 

container throughput for developing economies grew by an estimated 8% to 406.9 million TEUs. This 

growth is lower than the 15.8% seen in the previous year, when businesses restocked inventories 

depleted because of uncertainties surrounding the global economic crisis. The growth rate for 

container throughput in developing economies for 2012 is still weak, estimated at 4.8 %. 

There have been hardly papers interested comparing the biggest world container ports. The issue 

of seaports efficiency is usually considered in literature from a one-dimensional perspective, using 

conventional economic indicators, such as: labor productivity or asset productivity. One the other 

hand the use of non-parametric methods for the assessment of the efficiency of seaport is also a 

very popular direction of research. 
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The purpose of this article is to use the Data Envelopment Analysis method and  Malmquist 
Productivity Index to compare the technical efficiency and changes in productivity of container 
ports. The assumption is that as a result of the research a ranking would be created, seaports with a 
high efficiency would be indicated.  A decomposition of calculated Malmquist indices has made it 
possible to identify what factors (technical efficiency or technological progress) determined the 
change in seaports productivity in 1996-2012.  

 

II. REVIEW OF LITERATURE 

There are two main research lines on seaport performance: the productivity evaluation 

approach and the efficiency evaluation approach. Whereas productivity considers actual 

infrastructure outputs, efficiency takes into account the maximum potential output which can be 

produced with the available inputs. 

In shipping industry, port container terminal productivity can be measured in two types of  

operations. First is the vessel operation, which involves discharge and loading of container onto 

vessel. The other one is receiving and delivering operations, where containers transfer to and from 

outside trucks [4]. In addition, productivity in port container operation is key determinant for the 

cost of providing container stevedoring services. 

Meyrick and associates and Tasman Asia Pacific (1998) report, there are two partial productivity 

measures have been used in port productivity studies [5]. First is annually lifts per employee (labor 

productivity), and it is defined as the number of container movements (container lifts) per terminal 

employee. The other is net crane rate (capital productivity), and it is defined as the number of 

container movements (container lifts) per net crane hour. This is the key word  of an efficient 

container terminal to show to the stakeholders for high productivity [6]. 

On the other hand full efficiency is attained by any port container if and only if none of its inputs 

or outputs can be improved without worsening some of its other inputs or outputs.  

Many researchers have used various approaches to evaluate seaport efficiency. There are 

numerous studies on port performance with Data Envelopment Analysis (DEA) and Stochastic 

Frontier Analysis (SFA). For example, Roll and Hayuth (1993) apply a DEA model to measure the 

efficiency of twenty seaports [7]. Tongzon (2001) investigates the efficiency of sixteen international 

seaports [8]. Bonilla et al. (2002) employ DEA in order to measure the commodities traffic efficiency 

of the seaports in Spain [9]. Barros (2003) utilizes  DEA in Portuguese seaports and finds that the 

reform made by the authorities does not fulfil the targets [10]. Similarly, Barros and Athanassiou 

(2004) compared the efficiency of seaports in Portugal and Greece and provided benchmarks 

[11]. Cullinane et al. (2004) used a DEA window analysis in order to achieve more robust results [12]. 

Estache et al. (2004) applied the Malmquist Productivity Index (MPI) to examine if seaport 

liberalization was a success in Mexico [13]. Pang (2006) analyzed and evaluated 50 major ports in 

China by using DEA and dynamically evaluated their efficiency based on 3 years of consecutive 

data [14]. Park and De (2004) used a four-stage DEA to investigate the efficiency of the North 

American seaport Infrastructure productivity from 1984 to 1997 [15]. Min and Park (2008) proposed 

a hybrid DEA-simulation model to evaluate the relative efficiency of major container terminals in 

South Korea [16]. Wu and Lin (2008) performed an international comparison of logistic port 

operations with a focus on India [17]. Ablanedo Rosas and Ruiz-Torres (2009) used DEA to evaluate 

the efficiency of cargo and cruise operations in major Mexican ports [18]. Ablanedo-Rosas et al 

(2010) used a financial ratio-based data envelopment analysis to examine the relative efficiency of 

11 major Chinese ports[19].  
The purpose of this article is to use the Data Envelopment Analysis method and Malmquist 

Productivity Index to compare the technical efficiency of the world leading container ports and 
measure the changes in productivity of major container ports.  

III. METHODS 

Data Envelopment Analysis (DEA) is a non-parametric mathematical programming approach 

for measuring relative efficiencies of comparable DMUs (Decision Making Units)  with respect to 

multiple inputs and outputs [20]. Charnes, Cooper, and Rhodes described DEA as a “mathematical 

programming model applied to observational data that provides a new way of obtaining empirical 
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estimates of relations, such as the production functions and/or efficient production possibility 

surfaces, that are cornerstones of modern economics” [20]. The efficiency score in the presence of 

multiple input and output factors is presented mathematically in the following manner [20]: 

                      (1)  

 

 

 

 

 

 

where: 

s – quantity of outputs, 

m – quantity of inputs, 

uk – weights denoting the significance of respective outputs, 

νj – weights denoting the significance of respective inputs, 

yki – amount of output of k-th type in i-th object, 

xji – amount of input of j-th type  in i-th object. 

 

Each DMU selects input and output weights that maximize its efficiency score. In general, a DMU 

is considered to be efficient if it obtains a score of 1 while a score of less than 1 implies that it is 

inefficient. 

The DEA models may be categorized based on two criteria: model orientation and type of 

returns to scale. Depending on the model orientation a calculation is made of technical efficiency 

focused on the input minimization or of technical efficiency focused on the output maximization. 

But taking into account the type of returns to scale the following models are distinguished: the CCR 

model providing for constant returns to scale [20] and the BCC model providing for changing return 

to scale [21]. The CCR model (the name derives from the authors of the model: Charnes-Cooper-

Rhodes) is built on the assumption of constant returns to scale: this means that inputs and output 

are linked in a strictly proportional manner. The CCR efficiency scores measure the overall technical 

efficiency. The Banker-Charnes-Cooper (BCC) model is an extension of the CCR model and allows 

for the fact that the productivity at the most productive scale size may not be attainable for other 

scale sizes at which a given DMU is operating. Therefore, the BCC model estimates the pure 

technical efficiency of a DMU at a given scale of operation. The only difference between the CCR 

and BCC models is the convexity condition of the BCC model, which means that the frontiers of the 

BCC model have piecewise linear and concave characteristics, which lead to variable returns-to-

scale. 

With the overall CCR and BCC model calculated, it is possible to determine the object scale 

efficiency (Scale Efficiency – SE). The scale efficiency is defined as a ratio of DMUs overall technical 

efficiency (TE) score (measured by the CCR-model) and pure technical efficiency (PTE) score 

(measured by the BCC model), according to the formula: SE = TE/PTE. Scale efficiency (SE) 

calculated in this manner denotes the degree to which the object is efficient in relation to the 

optimum enabling the maximal use of inputs. 

Malmquist Productivity Index (MPI) is the most frequently used approach to quantification of 

changes in total factor productivity. MPI first introduced by Malmquist [22] has further been studied 

and developed in Färe et al. [23, 24]. Färe et al. [23] constructed the DEA-based MPI as the 

geometric mean of the two Malmquist productivity indices of Caves et al. [25] – one measures the 

change in technical efficiency and the other measures the shift in the frontier technology. 
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where: 

xt and  xt+1 are input vectors of dimension l at time t and t+1, respectively. yt and yt+1 are the 

corresponding k-output vectors. Dt  and Dt+1 denote an input – oriented distance function with 

respect to production technology at t or t+1, which is defined as: 
{ }L(y)∈(s/ρs:ρmax=y)D(x,                                                                                                                       (3) 

 

where L(y) represents the number of all input vectors with which a certain output vector y can be 
produced, that is, L(y)={𝑥: 𝑦 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑤𝑖𝑡ℎ 𝑥}. ρ in eq. (3) can be understood as a reciprocal 

value of the factor by with the total inputs could be maximally reduced without reducing output. 

 

M measures the productivity change between periods t and t + 1, productivity declines if  

M < 1, remains unchanged if M = 1 and improves if M > 1. The first term on the left hand side 

captures the change in technical efficiency change (EFCH) between periods t and t + 1. EFCH > 1 

indicates that technical efficiency change improves while EFCH <1 indicates efficiency change 

declines. The second term measures the technology frontier shift (TECH) between periods t and  

t + 1. A value of TECH >1 indicates progress in the technology, a value of TECH < 1 indicates regress 

in the technology. TECH = 1 indicates no shift in technology frontier. The technical efficiency 

change can further be decomposed into scale efficiency change and pure technical efficiency 

change [23].  

Computational experiments have been carried out with the application of DEA method 

implemented in the specialized software called DEA SolverPro6. 

 
IV. RESULTS 

The sample comprises the 18th world leading container ports ranked in 2012. This sample size 

was determined as a function of data availability and in line with recommendations on the 

minimum sample size required to estimate the number of parameters in the DEA models being 

tested (the minimum number of DMU observations should be three times greater than the total 

number of inputs and output). Based on data availability, the ports are listed below according to 

the regions where they are located: 

• Asia: Singapore, Port Klang, Port of Tanjung Pelepas, Hong Kong, Shenzhen, Ningbo, Guangzhou, 

Qingdao, Kaohsiung, Tianjin, Xiamen, Dalian, Shanghai, Busan, 

• Europe: Antwerp, Rotterdam, Hamburg,  

• USA: Los Angeles. 

Since the main activity of container ports is handling containers only one output will be 

identified in this study and four variable input factors: 

 input x1  - number of berths (total number of berths of all terminals); 

 input x2 -  terminal area (total terminal area in m2); 

 input x3  - storage capacity (total storage capacity of all terminals in TEU); 

 input x4  - quay length (total quay length in m); 

 output y1 - annual throughput (annual port throughput in TEU). 

DEA models can be distinguished according to whether they are input- or output-oriented. The 

former is closely related to operational and managerial issues, whilst the latter is more related to 

planning and macroeconomic strategies. Both orientations have their usefulness in the container 

port industry context. With rapid expansion of global business and international trade, many 

container ports must frequently review their capacity in order to ensure that they can provide 

satisfactory services to port users and maintain their competitive edge. Sometimes, the need to 

build a new terminal or increase capacity is inevitable. However, before a port implements such a 

plan, it is of great importance for the port to know whether it has fully used its existing facilities and 

that output has been maximised given the input. From this point of view, the output-oriented model 

provides a benchmark for the container industry. Finally, it has been decided that output-oriented 

models should be chosen as the basis for the analysis undertaken herein.  

Next section presents the results of the two stage analysis of ports. In the first stage, the results of 

the DEA models used for the efficiency measurement of container ports under study are analyzed. 
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In the second stage, the results of the MPI models used for the productivity measurement are 

presented. 

Table 1 indicates the CCR and BCC models which are used to evaluate 18 container ports. In 

2012, the average overall technical efficiency (CCR model) score is 0.855. While decompose it into 

the pure technical (BCC model) and scale efficiencies, their average scores are 0.925 and 0.924 

respectively. 

Respectively, 6 and 12 out of the 18 container ports included in the analysis are identified as 

efficient when the DEA-CCR and the DEA-BCC models are applied. This result is not surprising since 

a DEA model with an assumption of constant returns to scale provides information on pure 

technical and scale efficiency taken together, while a DEA model with the assumption of variable 

returns to scale identifies technical efficiency alone. The relative role of pure technical inefficiency 

and scale effects on the total technical efficiency of container ports can be more easily explained 

through the graphical illustration of the corresponding CCR and BCC scores as data pairs on a two-

dimensional graph (see Fig. 1). This graph is divided into four regions, according to a line vertical to 

the x-axis which denotes the average BCC score (0.925) and a line representing the average scale 

efficiency (SE=0.924), that is, CCR Efficiency= SE* BCC Efficiency = 0.924*BCC Efficiency. The ports 

located at the upper-right part of the graph have both high pure technical and scale efficiency 

scores, which implies that they can well exploit their facilities and serve a large amount of 

containers (TEUs). The ports located at the lower-right part of the graph have high pure technical 

efficiency but relatively low (compared to the average value) scale efficiency. Although these 

ports well manage their facilities, they are subject to scale effects as they are not able to 

adequately accommodate the volume of containers arrived at them. The ports located at the 

upper-left part of the graph have relatively low pure technical efficiency but relatively high scale 

efficiency. These ports accommodate a large number of containers with limited performance, as 

they do not efficiently manage their resources. The ports located at the lower-left part of the graph 

have both relatively low pure technical efficiency and scale efficiency. Namely, these ports serve 

low TEU traffic with inefficient use of their facilities. Thus, they need to improve their competitive 

position by attracting more containers as well as better managing their resources. 

With the information about the returns to scale properties of the individual terminal production 

yielded by DEA-BCC model, in 2012, 7 out of the 18 samples exhibits increasing returns to scale, only 

3 exhibits decreasing returns to scale. Indeed, the eight terminals showed constant returns to scale 

(tab. 1). 
 
Table 1. The technical efficiency, scale efficiency and returns to scale of container ports in 2012 

DMU  

(Container ports) 

CCR-model 

Technical 

efficiency 

BCC-model 

Pure technical 

efficiency 

SE 

Scale Efficiency 

RTS 

Return to Scale 

Singapore 0,92 1,00 0,92 Decreasing 

Shanghai 1,00 1,00 1,00 Constant 

Hong Kong 0,92 1,00 0,92 Decreasing 

Shenzhen 1,00 1,00 1,00 Constant 

Ningbo 1,00 1,00 1,00 Constant 

Rotterdam 1,00 1,00 1,00 Constant 

Hamburg 0,44 0,47 0,93 Decreasing 

Busan 0,90 0,91 0,99 Increasing 

Antwerp 1,00 1,00 1,00 Constant 

Guangzhou 0,81 0,83 0,98 Constant 

Qingdao 0,89 0,92 0,97 Constant 

Kaohsiung 0,81 1,00 0,81 Increasing 

Tianijn 1,00 1,00 1,00 Constant 

Port Klang  0,66 0,73 0,91 Increasing 

Tanjung Pelepas 0,88 1,00 0,88 Increasing 
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Xiamen 0,89 1,00 0,89 Increasing 

Dalian 0,67 0,80 0,84 Increasing 

Los Angeles 0,60 1,00 0,60 Increasing 

 Average 0,855 0,925 0,924 

 Source: Own calculations 

 

Figure. 1. Graphical illustration of container port efficiency 
Source: Own calculations 

In the next step, four ports (Singapore, Hong Kong, Rotterdam, Hamburg) were selected for 

the analysis of changes in productivity in the years 1996-2012. The Malmquist Productivity Index is a 

tool that allows changes in total productivity to be determined and decomposed into each of their 

components. The average annual growth of the MPI for the four container ports amounted to 35% 

in the period covered by the study. The increase of the Malmquist Index was influenced primarily by 

changes in the technology employed. The average growth of the technological change index 

(TECH) was 31% for this period. In turn, the average change of the technical efficiency index (EFCH) 

was 3% for the studied period. 

 When analysing the average level of the Malmquist Index (MPI) in individual container ports 

one should consider that all ports improved overall productivity over the studied period. The highest 

average annual increase in productivity was recorded in the following container ports: Rotterdam 

(57%) and Hong Kong (36%) (Figure 2).  
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Figure 2. Average annual Malmquist Productivity Index (MPI) calculated for selected container ports 

Source: Own calculations 

 
There are two indicators which have influenced and characterised MPI for Singapore, Hong 

Kong, Hamburd and Rotterdam: changes in technical efficiency (EFCH) and changes in 
technology (TECH). 

 
Figure 3. Changes in technical efficiency (EFCH) for researched container ports 

Source: Own calculations 

The highest average indices of changes in technical efficiency were recorded in the Rotterdam 

(24%). In turn, the lowest (less than 1) annual average indices of changes in efficiency were 

observed in the Singapore seaport (Figure 3). 
 

 
Figure 4. Changes in technology (TECH) for researched container ports 

Source: Own calculations 

 

The largest average annual increases in the index of technological change (TECH) were 

recorded in Singapore (36%). One might also assume the least significant level of technological 

progress was made in the European seaports (Figure 4). 
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V. CONCLUSION 

 Changes in international production networks and maritime transport lead to a growing 

importance of container ports as nodes in international supply chains. For the container terminals in 

the competitive circumstances, productivity and efficiency is an important concept and 

concerned with how to use limited resources more economically for any sort of production. To 

meet user demands on time, cost and service, evaluating efficiency of container terminals has 

been recognized. As a benchmarking approach to study efficiency, DEA enables a terminal to 

evaluate its performance from each other in DMUs. By doing this, the possible waste of resources 

and the industry best practice can be identified.  

 The result CCR and BCC models shows that the average of efficiency scores are 0.885 and 

0.925 respectively, and Shanghai,  Shenzhen,  Ningbo,  Rotterdam, Antwerp, Tianijn ports 

demonstrates the best performance in each model.  Furthermore, return to scale approach is used 

to assess whether each terminal is in a state of increasing, decreasing, or constant return to scale. 

The results of this study can provide container terminal managers with insights into resource 

allocation and optimization of the operating efficiency.  

 The paper also uses Malmquist Productivity Index to determine and analyze the productivity 

changes and its decomposition in four container terminals during 1996-2012. The major source of 

productivity growth to be technological progress, rather than an improvement in technical 

efficiency. 

From the methodological point of view the proposed approach for ranking DMU has a 

universal character and can be applied in different industries. It allows comparing relative 

efficiency of DMU by determining the efficient DMUs as benchmarks and measuring the main 

factors which determined changes in productivity. 
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