SOURCE CODE ANALYSIS INFORMATICA 4/1988

Radovan Andrejéi¢
Univerza v Mariboru
Bojan Peéek

UDK 681.3:519.683 Iskra-Delta, Ljubljana

In a software life cycle the most expensive is the phase of maintenance. A
lot of costs are caused by different solutions of similar problems. The
programmers source code is an exhibitional example of a variety of algorithms
solving the similar tasks. 1In larger programmer groups there are often arranged
some kind of rules for programming the source code. They are nearly always
called "programming standards".

135 programs were analyzed from four programmers groups {computer centers)
each consisting of 2 - 4 programmers, Statistical methods such as statistical
testing, sampling, analysis of variance, etc were used as an unbiased judge.
Without knowing intermediate appointments about the programming was compared the
gsource code between programmers, programmers within groups and the code between
groups. Differences between programmers within groups were surprisingly small.

Vzdrzevanje je najdrazja faza 2ivljenskega cikla programske opreme. Zelo
veliko stroskov povzroc¢a raznolikost resevanja podobnih problemov. V ve¢ijih
programerskih skupinah si oblikujejo neke vrste pravila programiranja, ki 3Jjih
skoraj vedno imenujejo “"programski standardi”.

Delo opisuje analizo 135 programov iz stirih programerskih skupin
(racunalniskih centrov) sestavljenih iz 2 - 4 ©programerjev, ki temelji na
nepristranskih statistic¢nih testih, vzor¢enjih, analizi variance itd. Brez

poznavanja dogovorov o programiranju je bila primerjana programska koda med
programerji, programerji v okviru skupine in skupinami. Presenetajo
nepricakovano majhne razlike med programerji v okviru skupin.

where each facet can be further reviewed
through more criterias. For an example the
maintainability can be presented as:

1 Introduction

Many software life cycles from different
authors have been proposed. They differ in
unimportant details. It is common to all of
them, that the phase of maintenance is the most

maintainability = F(concision, consistency,
modularity, simplicity,
instrumentation,

expensive. This phase 1is now the major self-documentation)
programming activity, and very soon more
programmers will be performing maintenance than Some of these criterias are easy to

development [Jones p. 351. measure, others are not. Everyone can explain

modularity, but descriptions vary from one

How to reduce costs of maintenance? Few person to another - from equalling modularity
would disagree that the quality software is not with the structured programming, over equalling
less expensive. But what is the quality with a "no GOTO programming”, to a philosophy

software anyway?

2 Software Quality

It is as hard to define as defining a

"good car driving". - It is differently
comprehended from a programmer to another
programmer, from one manager to another etc.

With the most known facets the software guality
can be defined [by Arthur) as:

software quality = F(correctness, efficiency,
flexibility, integrity,
maintainability,
portability, reliability,
reusability, testability,
usability)

of cohesion and coupling.

And concision and simplicity? Specter of
answers is nearly unlimited. Different
comprehensions cause different solutions. And
this is very often a reason which makes
programmers spend more time and money to
understand the other programmer than to solve
the problemn.

Achieving an uniform coding through exact
standards is not realistic, "Many rules do
have legitimate exceptions" {[Grauer p. 92].
But on the other hand - nearly every group of
programmers or computer center elaborates its
own philosophy of programming. That guidelines
are usually called "programming standards".
So, a kind of uniformity is possible. But how
much?

3 Source Code Analysis

3.1 Technics

) It is of course impossible, or at least
too expensive to extract data from a sample by
hand. A tool or tools are needed.

research of the source code has based
programs. The first one has been
oriented on the analysis of the WORKING~STORAGE
gsection. ‘Its input has been the-
reference and - the map listing produced by the
compiler. Results have given information about
distributions of variable descriptions, number
of references, number of words in variables,
paragraphs, USAGE clauses, etc.

Our
on two

The other program has been oriented on a
procedure division. It has produced a table of

usages of the CoBOL rescerved verbs.
Occurrences of each verb have also been
analyzed in the IF statement. Logical

operators have been counted detail in either IF
and PERFORM UNTIL statements. This program has
also given a number of ‘comments, number of
paragraphs, sections, library lines of COPY
statements, total number of verbs etc.

Both programs well as the .whole
research were done under the DELTA/V V2.0
operating system. Because the majority of the
sample programs were written for the PDP-11
computer with the DELTA/M operating system, a
little recoding was sometimesiy needed. What
does this mean for the transportability of
programs? {This interesting guestion 1is not
the subject of this paper). :

as

3.2 Sanple

3.2.1 Criterion for a Sample

45

cross

Collecting and analyzing a sample is not

only a technical problemn, but also .
operational one. Very important question is
immediately arisen: which programs to include
in a sample - every program of an application
or Jjust the significant ones? In the first
case, the analysis gives the exact answer about
the application. But this perfection can hide
differences between similar programs. It might
show greater similarity than it really exists.

In our research the second method has been

used.
3.2.2 Sample Size

] Four applications {(programming groups)
from different computer centers were included
into the sample. It was common to all of them
that they used the .same computer language -
COBOL and each group had formed some kind of
its own programming rules. It is not worth
mentioning that they all sweared on the

structured programming
their "standards”).

{which was prescribed in

In this
letters "A"

paper applications are marked with
through "D" and programmers within
a group with numbers. Data in table 1 have no
significant meaning. They are presented just
as an illustration of a sample size.

an

Table 1 - Illustration about the Sample Size

4T E S ST ECSESTESCCSSSSSSESS SRS SSSSSSSSSSIIRSSRTZSoF
tProg!No p! No of ! Average !Standar! Exec. !
lramrirgms!. lines !lin/progrl!deviat.! verbs !
¢E==SsEZsEZsSSCcoSTE=CS=S=SSSoSTRSTT=SS=SSS=SZSSSzzss=zS====+4
AL ! 11t 35274 Y 479.45 t 277.0 ' 2544 !}
t A2 ! 10 ¢ 5517 ! 551.70 ! 331.6 ! 3079 !
t A3 ! 5t 1344) 268.80 ! 180.0 ! 706 !
t A4 ! 9 ! 4550 ! 505.56 ! 209.4 ! 2908 !
1 B1 ! 16 ! 13977 ! 873.56 ! 349.6 ! 5116 !
{ B2 ! 17 ! 17706 ! 1041.53 ! 555.2 ! 6984 !
! B3 ! 2 ' 2548 ! 1274 t 393 L1029 !
tcl ! 15 ! 10599 ¢t 706.60 ! 195.9 ! 3042 !
! ¢c2 ! 10 ¢ 6437 ! 643.70 ! 323.1 ! 2187 !
1 D1t 22 ! 45908 ! 2086.73 ! 617.6 ! 19147 !
1 p2 ¢t 8 ! 15606 ! 1950.75 ! 775.2 ! 6834 !
! D3 ! 10 ! 11149 ! 1114.90 ! 389.3 ! 3518 !
! sA ! 35 ! 16685 ! 476.71 ! 281.9 ! 9237 !
! sB ! 35 ! 34231 ! 978.03 ! 475.8 ! 13229 !
t sC ! 25 ! 17036 ! 681.44 ! 256.4 ! 5229 !
! sD ! 40 ! 72663 ! 1816.58 ! 731.2 ! 29499 !
o e e - e —————— tmm————— b ————— +
Isom !'135 1140615 ! 1041.59 ! 731.9 ¢ 57194 !
S NN ST TSNS ECSCSS oSNNI SSSNRSREITEITSSSSTIS=SS4
3.3 Analyzing Comment Statements
3.3.1 Importance of the Comment
Statements
"Although COBOL is often thought of as a
self-documenting language, .this is only
partially true. With a careful choice ©of
words, each statement can indeed be
self-documenting, but it cannot explain its own
purpose: it merely states its contribution to
a technigque or algorithm"” [Ledin, Kudlik, Ledin
p. 971.
Comments are still needed, they become

even more and more important. Specially in the
last time, when programs are often not
maintained by the original author. As Yurdon
says "No programmer, no matter how wise, how
experienced, how hard pressed for time, no
matter how well intentioned, should be forgiven
an uncommented program”.

3.3.2 Number of Comments per Source Code
19

- Absolute number of comments in a program
does not have any meaning. It needs to be
compared with the number of source lines, or
the number of executable statements, or with
the reserved COBOL verbs. Table 2 presents
data about the number of source lines per
comment where source lines per comment (SLC) is
calculated as

total number of lines

SLC =
number of comments
Table 2 - Source Lines per Comment
R s L R A - N
!Prog!No p! No of ! Average !Standar! Sum of !
!ramr!rgms!comment! SLC !deviat.! squares !
ST TE RS SR E S ST EZ S S SIS SIS ST CSESESTZSTSZI=SRS=SITS==+
! al 11t 257 ' 20.54 ! 5,76 ! 5003.5 !
a2 ! 10 ! 318 ¢ 17.35 ! 3.48 ! 3131.2 !
t a3t 5! 95 ! 14.14 ! 4,43 ! 1097.7 !
1agt 9 223 4 20.37 ! 5.90 ! 4046.0 !
! Bl ! 16 ! 1820 ! 7.68 !« 2.52.! 1044.3 !
B2 ! 17t 2720 ! 6.51 ! 1.54 ! 761.1 !
B3 ! 2! 432 ! 5.9 ! 1.50 ¢ 74.1 !
cl !t 15 ¢t 2611 ¢ 406 ! 0.49 ! 250.8 !
tc2 ! 10 ¢! 1387 ! 4.64 ! 1.63 ! 241.7 !
! D1-} 22 ! 8140 ! 5.64 ! 0,42 ! 702.8 !
! p2 L 8t 2922 ¢ 5.34 ! 1,22 ! 239.9 ¢
! D3 L 10 ' 2418 ! 4.61 ! 0.5 ! 215.1 !

3.3.3 Differences in Percentage of
Comments between Applications

Is there any significant stability in
commenting programs? This answer was
researched with the analysis of variance. In
table 3 there 1is an analysis of not only
differences between programs and programmers,
but also of differences between applications.
[Andrejcic p. 1611},

Table 3 - Analysis of Variance between
Applications and Programmers
P T T TSSO SESC IS IO IN SRS ST SSCSCSCSSCSoRTSSSSS oS+
! Source of !Deg!Sum of! Mean !Calcu- ! F !
! Variation !frel!square!squaretlated F! table!
b ————— b —————— tmmm——— tm— - o ———— +

tApplications! 3 !4506.4!1502.1! 37,33 !
tProgrammers ! 8 ! 207.3! 25.91! 2.92 ! 2.663!
! Programs !123!1091.2! 8.87! t

The first null hypothesis - that
differences between groups (applications) are
not significant can be absolutely rejected
(F(3.0_001) = 23.7). The second null
hypothesis, that differences between
programmers do not exist can be rejected too,
but the risk is this time for a bit greater -
over half a per cent (F(8~0.01 = 2.663), This
has given a reason for a aeta1ied investigation
about differences between programmers within
groups. (See table 4}.

Table 4 - Analysis of Variance between
Programmers within Applications

iSource !App!Deg! sum !mean!calcula!F(0.1)!
lof var.!lic!frel!squar!isqu.!ted F ! table!

b ———— T S b e o +
!between! A ! 3 1184.3161.4! 2.125 ! 2.28 !
! prog ! B! 2 ! 13.7! 6.9! 1.502 ! 2.49 !
! ramm ! C ¢ 1 ¢ 2.,0! 2.0¢! 1.549 ¢ 2.88 !
! ers t' D¢ 2! 3.62! 3.6! 7.262 4 2.44 !
tm—————— B T o = ————— bm————— +
!between! A ! 311!896.2:28.9! '
! prog ! B ! 32!146.6! 4.6! !
! ramms ! C ! 23! 30.0! 1.3! !
! ! D! 37t 18.5! 0.5! !
+===+

These analyses have shown, that the only
application in which significant differences
exist was the application "D" (for the risk of
10%, but it is not greater for the risk of 0.1%
- F(2;0-001) = 7.29). The t-test proved that
the programmer "D3" had more comments than the
other two. Results have shown greater
stability in writing comments than it had been
expected.

Comparing the average (9.03 source lines
per comment) of this sample with the previous
investigation gives also unexpected results.
Al-Jarrah-Torsun (page 344) have - counted an
average of 66.6 source cards per comment card.
It is such a great difference, that it needs no
special statistical prof. It does not also
need the result of Smolej-Korelic ~ 23.82 lines
per comment.

3.3.4 Correlation between Program Length
and Number of Comments

Naturally, it 1s expected that longer
programs are more complex and for this reason

they need to be more commented. But the
previous investigation of dr. Smolej and
Korelic(*) discovered unexpected negative
correlation .between comments and

characteristics of complex programs.

Table 5 - Correlation between Program Length
and Density of Comments

+ SRS TS ST S S CSSSCSoESSSSSSSSSSSSISRSSTISZScé
!Prog!Coe.cor.! t { t(table) t
P —————— - —— fmmm e —— e ——— . +
! Al ! 0.160 ! 0.486 ! t(0.50; 9) = 0.703 !
t A2 ! -0.186 ! 0.525 ! t(0.50; B8) = 0.706 !
! a3 ¢t -0.702 ! 1.707 ! t(0.10; 3) = 2.353 !
! a4t 0.771 ! 3.199 ! t£(0.01; 7) = 3.499 !
! BL ¢ ~-0.186 ! 0.708 ! £(0.40;14) = 0.868 !
t B2 ! 0.148 ! 0,580 ! t(0.50;15) = 0.691 !
! B3 ! 1.000 ! ! !
tc1 !t 0.277 ! 1,038 ! £(0.20;13) = 1.350 !
t c2 ! ~0.535 ! 1.790 ! £(0.10; 8) = 1.860 !
t' DL ! 0.304 ! 1.428 ! t(0.10;20) = 1.725 !
! D2 ! 0.705 ! 2.435 ! t(0.05; 6) = 2.447 !
t D3 ! 0.409 ! 1.269 ! t(0.20; 8) = 1.397 !
4+ ST E T ESECSSSSETSSSSSCSETISISSSTSSSSSSSTTIIISSSS

According to table 5 programmer "A4" is
the only one who can be assumed to have larger
programs less commented. The risk of rejecting
the null hypothesis, that the correlation
coefficient is not significant, is about over
1%. The nearest result of the programmer "D2"
increases this risk up to over 5%.

Four programmers ("A2", “A3", "Bl1" and
"C2") had even negative coefficient
correlation. This means that the larger
programs had relatively more comments.
Programmer "A3" had this coefficient even
-0.702, but his amount of the sample (5) was
too small to reject the null hypothesis.
Programmer "e2” with the coefficient
correlation -0.535 and greater amount of sample
(10) was much <closer to the rejection of the
null hypothesis.

3.3.5 Sampling Contents Of Comments

"The mere presence of comments, however,
does not ensure a well-documented program, and
poor comments are sometimes worse than no
comments at all" [Grauer p. 103].

There are also known the first rules which
suggest how to write comments (to explain
reason, not to duplicate code, etc). Their
present usage can be compared with the first
considerations about structured programming in
the early '70.

How to establish the guality of comments?
At least two problems occur. The first one is
to distinguish good comments from bad ones. It
is impossible to do it automatically. A man as
an observer and arbiter is needed. And this
causes the second problem. The amount of
comments is too large to examine every comment
line.

* Dr. Smolej and Korelic have analyzed 238
programs written by 8 programmers from one
computer center with the goal to find
representative characteristics of an
average program.

Sampling was chosen to give an
illustration of the gquality of comments.
Samples of comments were collected from each
programner. Each line was subjectively

estimated as good or bad. Criterias for a good
comment line were easy to satisfy. Each line
that might be of any help in understanding the
code was accepted as good. No additional
comparing with the nearest lines of source code
was done. Also the AQL was very low - 10% with
the risk of 5%. MIL. STD. 105D double sampling
plan was used. .

Table 6 - Sampling the Quality of Comments

t{Prog! Numb.! First sample!Second sample!Acc !
!ramr! comm.!amo.AC RE res!amo.AC RE res!Rej !
tmm———pm————— o ——— e ——— e tm———+
t a1y 257 420 3 7 41! 20 8 9 7! AC !
! A2 ! 318 ! 32 S5 S 14 ! ! RE !
! a3 ! 95 ¢+ 13 2 5 4 ! 13 6 7 10 ! RE !
1 A4 ! 223t 20 3 712! ! RE !
! Bl ! 1921 ! 80 11 16 46 ! ! RE !
! B2 ! 2720 ! 80 11 16 39 ! ! RE !
{ B3 ! 432+ 32 5 917 ! ! RE !
! Ccl ! 2610 ! 80 11 16 5 ! ! AC !
! c2 ¢t 1378 ! 80 11 16 7 ! t.AC Y
! D1 ! 8140 ! 80 11 16 3 ! ! Ac !
! D2°! 2923 ¢ 80 11 16 7 ! ! AC !
! D2 ! 2418 ! 80 11 16 6 ! ! AC !
+E s s T S S T S S S S RS SR S S S =SS =SS =S=SS=S=SS==S=S=S=S=====+4
Results have very clearly rejected
programmers with the less commented programs
and accepted programmers with better results.
What coincidence? Obviously, some groups take
a great care about this . problem, while the

others do not!

3.4 Analyzing User-Defined Words

Beside correct comments a mnemonical
significant data names are very important for
understanding a data flow. Nearly all authors
who deal with programming technigues suggest to
use as many of the 30 characters as needed to

make names in a program easy to understand.
Not only to the original author, but for others
as well. . .

Maybe this is a reason for a surprisé when
Al-Jarrah-Torsun discovered that the average

user defined name had "only" 7.81 characters.
In the next table distributions of all
user-defined names are shown. Results are
grouped into classes of three lengths. The
hyphen is counted as the other characters.

Only programmers "Bl" and "B2" have

user-defined names longer than 18 characters.

47

In applications "C" and "D" similarities
are 1immediately seen. Not only tests of the
mean values and F-tests of the intermediate
differences of standard deviation, but also
much harder the Kolmogorov-Smirnov test of
goodness of fit have proved that there were no
differences in distributions between
programmers within groups. This was specially
surprising in the application "D", where
distribution of each programmer was bimodal.
(Every programmer had more variables with
length of 13, 14 or 15 characters than with 10,
11 or 12). The first explanation was, that
this was caused by the influence of the "COPY"
statements. But further analyses had
contradicted this suspicion.

The Kruskal-Wallis procedure [Andrejcic p.
3481

12
H = *
12 *. {12 + 1)
1369 100 361 144
L { + + + }y -
4 3 2 3
-3 * (12 + 1) = 7.47
cohpared with chi-sqguare X(0.05:3) = 7.81
gave no reason to reject the nu?? hypothesis,
that there were no significant differences
between applications. However, the result was
very near to the border value for the risk of
5%. -
4 Conclusion
4.1 Interpretation
The first discovery was that the relative

number of comments 1is increasing {(comparing
with the oldest analysis by Al-Jarrah-Torsun
and a bit younger by Smolej~Korelic). All

applications were produced with the interactive
editor, while Al-Jarrah-Torsun wrote about
cards. So, maybe also the economical effects
can have some influence on the density of
comments.

Not only the density, but
constancy was surprising. It was even not
effected by the program length, as it had been
measured by the previous analysis. .Influence
of the group agreements on the programmer were
reflected immediately. - This brings to a
conclusion, that commenting is given more and
more - care. It has now its place also in "the
programming standards".

also the

Table 7 - Distributions of Lengths of the User-Defined Names
'0'==‘='—':========:v======:==========::========:::::::‘:::::::::::::==================§
!Length ! Al ! A2 ! A3 ! A4 ¢t Bl ! B2! B3 ! Cl! C2! DL ! D2! D3 !
o ————— tmm + - tm———— m———— Fom———— tm—m——— Fm———— o o . —— tmm——— tm———— tm——— +
t 1-3 1 100! 66 ! 95 ! 248 ! 96 ! 19 ! 15 ! 384 ! 272 ! 180 ! 59 ! 30 !
! 4-6 ! 334 ! 548 ! 105 ! 333 ! 596 ! 995 ! 308 11643 !1026 2168 ! 813 ! 731 !
t7-9 1 419 1 270 ! 82 ! 323 11070 11400 ! 266 ! 341 ! 221 13966 !1269 !1072 !
1 10-12 ¢ 72 t 153 ! 4 ! ! 3151 760 I 58 ! 761 76 ! 385 ! 238 ! 179 !
$ 13-15 ¢+ 22 ! 50 ! ! t 255 ! 301 ! 9 ! 30 ! 10 11155 !t 376 ! 296 !
! 16-18 ! to11 e ! ! 186 ! 126 ! 2! 2! L2121t 16 ! 13 !¢
!t 19-21 ! A ! ! 1142 ¢ 38 ! ! ! ! ! ! !
1 22-24 ! ! ! ! t 105 ¢t .1 ¢ ! ! ! i ! !
! 25-27 ! ! ! ! I 94 ! ! 1 ! ! ! ! !
t 28-30 ! ! ! ! 44 ! ! ! ! ! ! ! !
P ——— o ——— t————— o ——— tm———— + o e e e + o - o —— tmm——— tm———— b +
taverage! 6.6 ! 7.2 ¢ 4.9 ! 5,2 !10.7 ! 8.7 1 6.9 ! 5.6 ! 5.5 ! 7.9 ! 8.0 ! 8,2 !
! rank ! 8 ! 6 ! 12 1 11! 1! 2 7! 9! 10 ! 5 ! 4 ! 3!

Sanmpling of comments gave some
disappointing results, or at least unexpected.
It was very easy to distinguish between the

good and the bad comments. Criterias were easy
to achieve, but results rejected programmers
with the less commented programs.

After the research was finished, each
"programming standard" was studied in detail.
Results of the analysis were compared with

these prescriptions. In applications”C" and
"D" detailed programming guidelines about the
form of comment were stated, while in others
they were omitted.

Al-Jarrah~Torsun found that the average
user-defined name had 7.81 characters and their
expectation that it "was expected to find them
to be on average much longer" [Al-Jarrah-Torsun

p. 3431 was not in place. It seems that an
average of 8 characters 1is the most common
value. Equality of distributions of the

user~defined names was greater than expected.
Descriptional estimates about the importance of

the long user-names were:
Bl - very important
B2 - very important
B3 - very important
Cl - less important
C2 - less important
Dl - very important
D2 - important -
D3 - important

An interview with programmers on the
application "A" was not possible. Answers were
as expected, except the programmer B3's and
Dl's. Programmer "B3" was a beginner and the
worst typist. "D3" was also very bad, the
worst in his group, but they both answered
under impression of the group agreements. If
the programmer "B3" would be separated, the
Kruskal-Wallis procedure

12
H = *
11 * (11 + 1)
1156 9 289 144
X e——— + +)y -
4 2 2 3
- 3 * (11 + 1) = 8.18

would reject the null hypothesis (with the risk
of 5%), that there were no differences between
applications about lengths of the user names.
This would prove, that the statistical
significant differences exist. For this reason
the correlation between the typing speed and
the length of user-names was not analyzed. As
there were nearly no differences between
programmers within groups, results were
obviously more depended on agreements than the
dexterity. The suspicion, that the uniformity
of distribution was caused by the COPY
statements in the WORKING-STORAGE section was
comprehended. The amount of user-names from
the library files was found to be very low.

With the method of comparing the mean
value with the constant it was evidenced that
each programmer had different average than the
sanple of Al-Jarrah-Torsun (7.81) with the
greatest risk of 3.67 for the programmer "D2".
Coincidently, the whole sample together had an
average of 7.79 with standard deviation of
3.62, so critical risk (CR) [Andrejcic p. 100}

7.81 - 7.79
CR

= 0.916

i

3.62
VT ITARY

48

gave no reason to contradict the hypothesis
that the both samples had statistically equal
mean values.

4.2 Comment of the Analysis

It needs to be stated
goal of
guality of the software.
gsimilarities and differences between
applications and programs within an
application. And this paper is only to give a
short illustration of the analysis, so only a
part of the research is shown. There are of
course more calculations and comparisons.

clearly, that the
this analysis was not to point to the
The goal was to find

This analysis neither measures
estimates the gquality of applications. It is
impossible to do it just on some facets about
the state of the source code. It is well
known, that the quality of the software is
designed and determinated in the previous
phases of the software life cycle.

nor

The quality of the source code is not the

most important component of the software
quality. So, it cannot be made equally with
the software guality which make part of the

linear equation {by ROLANDI]

X = W) * X; + Wy * Xy + . . .+ Wy * X, +C

where W's are weighting factors and X's are
software metrics - each of which may be or may
not be given in turn by linear equations of the
same form, and C is the constant. One of them
is also the maintainability as it had been
shown at the beginning. Uniformity of code can
be of a great help in eliminating difficulties
and frustrations in authorship of the program.

Anyhow, the analysis proved that
differences within groups were very small, but
"programming standards” were different. Even

if they all referred to the same philosophy,
they are a great reason for different solutions
of similar problems. And our opinion is that
this is a subjective argument, which needs to
be eliminated. Our analysis examines for the
realistic possibilities to achieve it.

References
1. dr. Radovan Andrejcic: "STATISTIKA PRI
KADROVANJU IN IZOBRAZEVANJU" - VSOD Kranj
1979

2. Lowell Jay Arthur:
PRODUCTIVITY AND
Willy & sons 1985

3. dr. Robert T. Grauer: "STRUCTURED METHODS
THROUGH COBOL" - Prentice Hall

4. Capers Jones: "PROGRAMMING PRODUCTIVITY" -
McGraw-Hill 1986

5. M. M. Al-Jarrah and I. S. Torsun:
"EMPIRICAL ANALYSIS OF COBOL PROGRAMS" -
Software Practice and Experience 9/1979

"MEASURING PROGRAMMER
SOFTWARE QUALITY" - John

6. George Ledin Jr., Michael Kudlick, Victor
Ledin: "THE COBOL PROGRAMMER'S BOOK OF
RULES" - Belmont California

7. Dr. Vitomir Smolej and Igor Korelic:

"EMPIRICNA ANALIZA COBOLSKIH PROGRAMOV" -
Informatica, Ljubljana oct. 1981

8. John Roland: "SOFTWARE METRICS" - Computer
Lang. 6/1986
9. dr. Francis J. Wall: "STATISTICAL DATA

ANALYSLS HANDBOOK" McGraw-Hill 1986

