
44

SOURCE CODE ANALVSIS INF0RMATICA4/1988

UDK 681.3:519.683

Radovan Andrejčič
Univerza v Mariboru

Bojan Pečeit
Isicra-Delta, Ljubljana

In a software 1
lot of costs are
programmers source c
solving the similar
some kind of rules f
called "programming

135 programs we
each consisting of
testing, sampling, a
Without knowing inte
source code between
groups. Differences

ife cycle the most expensive is the phase of maintenance. A
caused by different solutions of similar problema. The

ode is an exhibitional example of a variety of algorithms
tasks. In larger programmer groups there are often arranged
or programming the source code. They are nearly always
standards".
re analyzed from four programmers groups (coraputer centers)
2 - 4 programmers. Statistical methods such as statistical

nalysis of variance, etc were used as an unbiased judge.
rmediate appointments about the programming was compared the
programmers, programmers within groups and the code between
between programmers within groups were surprisingly small.

Vzdrževanje je najdražja faza
veliko stroškov povzroča raznol
programerskih skupinah si oblikuje
skoraj vedno imenujejo "programski

Delo opisuje analizo 135
(računalniških centrov) sestavi j
nepristranskih statističnih testih
poznavanja dogovorov o programi
programerji, programerji v okv
nepričakovano majhne razlike med p

živijenskega
ikost reSevan
jo neke vrste
standardi" .

programov iz
enih iz 2 -

vzorčenjih,
ranju je bil
iru skupine
rogramerji v o

cikla programske opreme. Zelo
ja podobnih problemov. V vecjih
pravila programiranja, ki jih

štirih programerskih skupin
4 programerjev, ki temelji na
analizi variance itd. Brez

a primerjana programska koda med
in skupinami. Presenečajo

kviru skupin.

1 Introduction

Many software life cycles from different
authors have been proposed. They differ in
unimportant details. It is common to ali of
them, that the phase of maintenance is the most
expensive. This phase is now the major
programming activity, and very soon more
programmers will be performing maintenance than
development IJones p. 35].

How to reduce costs of maintenance? Few
would disagree that the quality software is not
less expensive. But what is the quality
software anyway?

2 Software Quality

It is as hard to define as defining a
"good car driving". It is differently
comprehended from a programmer to another
programmer, from one manager to another etc.
With the most known facets the software quality
can be defined [by Arthur) as:

software quality F(correctness, efficiency,
flexibility, integrity,
raaintainability,
portability, reliability,
reusability, testability,
usability)

where each facet can be further reviewed
through more criterias. For an example the
niaintainability can be presented as:

maintainability = F(concision, consistency,
modularity, simplicity,
instrumentation,
self-documentation)

Some of these criterias are easy to
measure, others are not. Everyone can explain
modularity, but descriptions vary from one
person to another - from equalling modularity
with the structured programming, over equalling
with a "no GOTO programming", to a philosophy
of cohesion and coupling.

And concision and simplicity? Specter of
ansvvers is nearly unlimited. Different
comprehensions cause different solutions. And
this is very often a reason which makes
programmers spend more time and money to
understand the other programmer than to solve
the problem.

Achieving an uniform coding through exact
standards is not realistic. "Many rules do
have legitimate exceptions" (Grauer p. 921.
But on the other hand - nearly every group of
programmers or computer center elaborates its
own philosophy of programming. That guidelines
are usually called "programming standards".
So, a kind of uni£ormity is possible. But how
muc h?

45

Table 1 Illustration about the Sample Size

3 Source Code Analysis

3.1 Technics

It is of course impossible, or at least
too expen3ive to extract data froni a sample by
hand. A tool or tools are needed.

Our research of the source code has based
on two prograras. The first one has been
oriented on the analysis of the WORKING:-STORAGE
section. Its input has been the cross
reference and the raap listing produced by the
corapiler. Results have given information about
distributions of variable descriptions, number
of references, number of words in variables,
paragraphs, USAGE clauses, etc.

The other program has been oriented on a
procedure division. It has produced a table of
usages of the COBOL reserved verbs.
Occurrences of each verb have also been
analyzed in the IF statement. Logical
operators have been counted detail in either IF
and PERFORM UNTIL statements. This program has
also given a number of coroments, number of
paragraphs, sections, library lines of COPY
statements, total number of verbs etc.

Both programs as well as the whole
research were done under the DELTA/V V2.0
operating system. Because the raajbrity of the
sample programs were written for the PDP-11
Computer with the DELTA/M operating system, a
little recoding was sometimesiv needed. What
does this mean for the transportability of
programs? (This interesting question is not
the subject of this paper).

. 3.2 Sample

3.2.1 Criterion for a Sample

Collect
only a t
operational
immediately
in a sample
or just th
čase, the an
the applica
differences
show greater

ing a
echni
one
aris

- eve
e si
alysi
tion
betwe
simi

nd analyzin
cal probl
Very impo
en: which
ry program
gnificant
s gives the

But this
en similar
larity than

g a sample is not
em, but also an
rtant question is
programs to include
of an application
ones? In the first
exact answer about

perfection can hide
programs. It might
it really exists.

In our research the second method has been
used.

3.2.2 Sample Size

Four applications (programraing groups)
from different computer centers were included
into the sample.. It was common to ali of them
that they used the same computer language -
COBOL and each group had forraed some kind of
its own programming rules. It is not worth
mentioning that they a H sweared on the
structured programming (which was prescribed in
their "standards").

In this paper applications are marked with
letters "A" through "D" and programmers within
a group with numbers. Data in table 1 have no
significant meaning. They are presented just
as an illustration of a sample size.

IProg
Iramr

1 Al
! A2
! A3
! A4
! BI
! B2
! B3
! Cl
! C2
! Dl
! D2
! D3
! sA
< sB
! sC
! sD

ISUM

No p
rgms

11
10
5
9

16
17
2

15
10
22
8

10
35
35
25
40

135

"No of
.lines

5274
5517
1344
4550

13977
17706
2548

10599
6437

45908
15606
11149
16685
34231
17036
72663

140615

! Average
ilin/progr
! 479.45
! 551.70
! 268.80
! 505.56
! 873.56
! 1041.53
! 1274
! 706.60
! 643.70
! 2086.73
! 1950.75
! 1114.90
! 476.71
! 978.03
! 681.44

Stahdar!
deviat.!

277.0 !
331.6 !
180.0 !
209.4 !
349.6 !
555.2 !
393 !
195.9 !
323.1 !
617.6 !
775.2 !
389.3 !
281.9 !
475.8 .1
256.4 !

! 1816.58 ! 731.2 !

1 1041.59 731.9 !

Exec. 1
verbs !

2544 !
3079 !
706 !

2908 !
5116 i
6984 J
1029 !
3042 !
2187 !

19147 !
6834 !
3518 !
9237 !

13229 !
5229 !
29499 !

57194 !

3.3 Analyzing Comment Statements

Comment 3.3.1 Iroportance of the
Statements

"Although COBOL is often thought of as a
self-documenting language, this is only
partially true. With a careful choice bf
words, each statement can indeed be
self-documenting, but it cannot explain its own
purpose: it merely states its contribution to
a technique or algorithm" [Ledin, Kudlik, Ledin
p. 97].

Comments are stili needed, they become
even more and more important. Specially in the
last time, when prograras are often not
maintained by the original author. As iurdon
says "No programmer, no matter how wise, how
experienced, how hard pressed for time, no
matter how well intentioned, should be forgiven
an uncommented program".

3.3.2 Number of Comments per Source Code
C

Absolute number of comments in a program
does not have any meaning. It needs to be
compared with the number of source lines, or
the number of executable statements, or with
the reserved COBOL verbs. Table 2 presents
data about the number of source lines per
comment where source lines per comment (S L O is
calculated as

SLC =
total number of lines

number of comments

Table 2 - Source Lines per Comment

Prog
ramr

Al
A2
A3
A4
BI
B2
B3
Cl
C2
Dl
02
D3

No p
rgms

11
10
5
9

16
17
2

15
10
22
8

. 10

No of
comment

257
318
95

223
1820
2720
432

2611
1387
8140
2922
2418

Average
SLC

20.54
17.35
14.14
20.37
7.68
6.51
5.9
4 .-06
4.64
5.64
5.34
4.61

Standar
deviat.

5.76
3.48
4.43
5.90

•̂ 2.52
1.54
1.50
0.49
1.63
0,42
1.22
0.5

Sum of
squares

5003.5
3131.2
1097.7
4046.0
1044.3
761.1
74.1
250.8
241.7
702.8
239.9
215.1

46

3.3.3 Differences in Percentage of
Comments between Applications

Is there any significant stability in
comnienting programs? This answer was
researched with the analysis of variance. In
table 3 there is an analysis of not only
differences between programs and programmers,
but also of differences between applications.
[Andrejcic p. 1611.

Table 3 - Analysis of Variance between
Applications and Programmers

1 Source of IDeglSum of! Mean ICalcu- ! F !
! Variation !fre!square!square!lated F! tablel
+ + + + + + +
Applications! 3 ! 4506 . 4 ! 1502 .1! 37.33 ! 23.70!
Programraers ! 8 ! 207.3! 25.91! 2.92 ! 2.663!
Programs !123!1091.2! 8.87! ! !

The first null hypothesis - that
differences between groups (applications) are
not significant can be absolutely rejected
'^(3'0.001) ~ 23.7). The second null
hypo£hesis, that differences between
programmers do not exist can be rejected too,
but the risk is this time for a bit greater
over half a per cent 'E'(8'0.01) ~ 2.663). This
has given a reason for a čletailed investigation
about differences between programmers within
groups. (See table 4).

Table 4 - Analysis of Variance between
Programmers within Applications

+ =:=: = = = = = +
ISource !App!Deg! sum !mean!calcula!F(O.1)!
!of var.!lic!fre!squar!squ.!ted F ! table!
lbetween! A
1 prog ! B
1 ramm ! C
1 ers ! D

1 8 4 . 3 ! 6 1 . 4 ! 2 .125 ! 2 .28 !
1 3 . 7 ! 6 . 9 ! 1.502 ! 2 .49 !

2 . 0 ! 2 . 0 ! 1.549 ! 2 .88 !
3 . 6 2 ! 3 . 6 ! 7.262 ! 2.44 !

between!
prog !
ramms !

1

A
B
C
D

31
32
23
37

896.2
146.6.
30.0
18.5

28.9!
4.6!
1.3!
0.5!

These analyses have shown, that the only
application in which significant differences
exist was the application "D" (for the risk of
10%, but it is not greater for the risk of 0.1%
~ ^(2-0.001) " 7.29)1 The t-test proved that
the programraer "D3" had more comments than the
other two. Results have shown greater
stability in viriting comments than it had been
expected.

Comparing the average (9.03 source lines
per comment) of this sample with the previous
investigation gives also unexpected results.
Al-Jarrah-Torsun (page 344) have • counted an
average of 66.5 source cards per comment card.
It is such a great difference, that it needs no
special statistical prof. It does not also
need the result of Smolej-Korelic - 23.82 lines
per comment.

3.3.4 Correlation between Program Length
and Number of Comments

Naturally, it is expected that longer
programs are more complex and for this reason
they need to be more commented. But the
previous investigation of dr. Smolej and
Korelic(*) discovered unexpected negative
correlation .between comments and
characteristics of complex programs.

Table 5 - Correlation between Program Length
and Densitv of Comments

Prog!Coe.cor.! t(table)
Al
A2
A3
A4
BI
B2
B3
Cl
C2
Dl
D2
D3

0.160
-0.186
-0.702
0.771

-0.186
0.148
1.000
0.277

-0.535
0.304
0.705
0,409

0
0
1
3
0
0

1
1
1
2
1

486
525
707
199
708
580

038
790
428
435
269

t(0.50;
t(0.50,
t(0.10;
t(0.01.
t(0.40.
t(0.50.

t(0.20,
t(0.10;
t(0.10.
t(0.05.
t(0.20.

9)
8)
3)
7)

14)
15)

13)
8)

20)
6)
8)

=
=
=
=
=
=
=
=
=
=
=

0.703
0.706
2.353
3.499
0.868
0.691

1.350
1.860
1.725
2.447
1.397

1

1
J
1
1
!
1
1
!
1
1
1

According to table 5 programmer "A4" is
the only one who can be assumed to have larger
programs less commented. The risk of rejecting
the null hypothesis, that the correlation
coefficient is not significant, is about over
1%. The nearest result of the programmer "D2"
increases this risk up to over 5%.

Four programme
"C2") had eve
correlation. This
programs had r
Programmer "A3" h
-0.702, but his
too small to rej
Programmer "C2"
correlation -0.535
(10) was much cl
null hypothesis.

rs (•'A2", "AS", "BI" and
n negative coefficient
means that the larger

elatively more comments.
ad this coefficient even
amount of the sample (5) was
ect the null hypothesis.

with the coefficient
and greater amount of sample
oser to the rejection of the

3.3.5 Sampling Contents Of Comments
"The mere presence of comments, however,

does not ensure a wel1-documented program, and
poor comments are sometiroes Morse than no
comments at ali" IGrauer p. 103].

There are also knoun the first rules which
suggest how to write comments (to explain
reason, not to duplicate code, etc). Their
present usage can be compared with the first
considerations about structured programming in
the early '70.

How to establish the qualitY of comments?
At least two problems occur. The first one is
to distinguish good comments from bad ones. It
is impossible to do it automatically. A man as
an observer and arbiter is needed. And this
causes the second problem. The amount of
comments is too large to examine every corament
line.

Dr. Smolej and Korelic have analy2ed 238
programs written by 8 programmers from one
Computer center with the goal to find
representative characteristics of an
average program.

47

Sainpling was chosen to
illustration of the quality
Samples of comments were collect
programmer. Each line was
estlmated as good or bad. Criter
comment line were easy to sati
that might be of any help in unde
code was accepted as good.
comparing with the nearest lines
was done. Also the AQL was very
the risk of 5%. MIL. STO. 105D d
plan was used.

give an
of comments.

ed from each
subjectively

ias for a good
fy. Each line
rstanding the
No additional
of source code
low - 10% with
ouble sampling

Table 5 - Sampling the Quality of Comments

!Prog Numb. First
! rainr i comm. ! amo

I Al
1 A2
J A3
1 A4
! BI
1 B2
i 33
! Cl
i C2
1 Dl
! D2
! D2

257
318
95

223
1921
2720
432

2610
1378
8140
2923
2418

20
32
13
20
80
80
32
80
80
80
80
80

AC

3
5
2
3

11
11
5

11
11
11
11
11

sample
RE

7
9
5
7

16
16
9

16
16
16
16
16

Second
res lamo

4
14
4

12
46
39
17
5
7
3
7
6

20

13

AC

8

6

sample
RE

9

7

res

7

10

Acc !
Rej !

AC !
RE !
RE !
RE !
RE !
RE !
RE !
AC !
AC !
AC !
AC !
AC !

Results have very clearly rejected
programmers with the less commented programs
and accepted prograiramers with better results.
What coincidence? Obviously, some groups take
a great čare about this problem, while the
others do not!

3.4 Analyzing User-Defined Words

In applications "C" and "D" similarities
are imroediately seen. Not only tests of the
mean values and F-tests of the intermediate
differences of standard deviation, but also
much harder the Kolmogorov-Smirnov test of
goodness of fit have proved that there were no
differences in distributions between
programmers within groups. This was specially
surprising in the application "D", where
distribution of each programmer was bimodal.
(Every programmer had more variables with
length of 13, 14 or 15 characters than with 10,
11 or 12). The first explanation waa, that
this was caused by the influence of the "COPY"
statements. But further analvses had
contradicted this suspicion.

348]
The Kruskal-Wallis procedure [Andrejcic p.

12

1369

12

100

<12 + 1)

361 144

- 3

3 2 3

(12 + 1) = 7.47

7.81 •(0.05:3) reason to reject the null hypothesis.
compared with chi-square
gave no
that there were no significant differences
between applications. However, the result was
very near to the border value for the risk of
5%.

4 Conclusion

4.1 Interpretation

Beside correct comments a mnemonical
significant data names are very important for
understanding a data flow. Nearly ali authors
who deal with programming techniques suggest to
use as many of the 30 characters as needed to
make names in a program easy to understand.
Not only to the original author, but for others
as well.

Maybe this is a reason for a surprise when
Al-Jarrah-Torsun discovered that the average
iiser defined name had "only" 7.81 characters.
In the next table distributions of ali
user-defined names are shown. Results are
grouped into classes of three lengths. The
hyphen is counted as the other characters.

Only programmers "BI" and "B2" have
user-defined names longer than 18 characters.

The first discovery was that the relative
number of comments is increasing (comparing
with the oldest analysis by Al-Jarrah-Torsun
and a bit younger by Smolej-Korelic). Ali
applications were produced with the interactive
editor, while Al-Jarrah-Torsun wrote about
cards. So, maybe also the economical effects
can have some influence on the density of
comments.

Not only the density, but also the
constancy was surprising. It vos even not
effected by the program length, as it had been
measured by the previous analysis. Influence
of the group agreements on the programmer were
reflected immediately. This brings to a
conclusion, that commenting is given more and
more čare. It has now its plače also in "the
programming standards".

Table 7 - Distributions of Lengths of the User-Defined Names

!Length

! 1-3
! 4-6
1 7-9
! 10-12
! 13-15
! 16-18
! 19-21
! 22-24
! 25-27
! 28-30

!average
1 rank

Al ! A2 !

100
334
419
72
22

6.6
8

66 !
548 !
270 !
153 ;
50 !
11 i

7.2 !
6 !

A3

95
105
82
4

4.9
12

1

1

1

A4

248
333
323

5.2
11

BI B2 B3

96 ! 19 ! 15
596

1070
315
255
186
142
105
94
44

10.7
1

995
1400
760
301
126
38
. 1

8.7
2

308
266
58
9
2

6.9
7

! Cl

! 384
11643
1 341
1 76
1 30
1 2

1 5.6
1 9

1

r
1
1
1
1
1

!

1

1

C2

272
1026
221
76
10

5.5
10

1 Dl

1 180
12168
13966
1 385
11155
1 21

1 7.9
1 5

D2 D3

59 1 30
813

1269
238
376
16

8.0
4

731
1072
179
296
13

8.2
3

1

1

1

1
!

48

Sampling of comraents gave some
disappointing results, or at least unexpected.
It was verv easy to distinguish between the
good and the bad comments. Criterias were easy
to achieve, but results rejected programmers
with the less coramented programs.

gave no reason to contradict the hvpothesis
that the both saraples had statistically equal
mean values.

4.2 Comment of the Analysis

After the research was finiahed, each
"programming standard" was studied in detail.
Results of the analysis were compared with
these prescriptions. In applications"C" and
"D" detailed programming guideJines about the
form of comment vere stated, while in others
they were omitted.

Al-Jarrah
user-defined n
expectation th
to be on avera
p. 343] was no
average of 8
value. Equal
user-defined
Descriptional
the long user-

Torsun found that the average
ame had 7.81 characters and their
at it "was expected to find them
ge much longer" [Al-Jarrah-Torsun
t in plače. It seems that an

characters is the most common
ity of distributions of the
names vas greater than expected.
estimates about the importance of
names vere:

Bi - very important
B 2 - very important
B 3 - very important
Cl - less important
C2 - less important
Dl - very important
D2 - important
D 3 - important

It needs to be stated clearly, that the
goal of this analysis vas not to point to the
quality of the aoftvare. The goal vas to find
aimilarities and differences betveen
applicationa and programs vithin an
application. And this paper is only to give a
short illustration of the analysis, so only a
part of the research is shovn. There are of
course more calculations and comparisons.

This analysis neither measures nor
estiraates the quality of applications, It is
impossible to do it just on some facets about
the State of the source code. It is veli
knovn, that the quality of the softvare is
designed and determinated in the previous
phases of the softvare life cycle.

The quality of the source code is not the
most important component of the softvare
quality. So, it cannot be made equally vith
the softvare quality vhich make part of the
linear equation [by ROLAND]

An interviev vith programmers on the
application "A" vas not possible. Ansvers vere
as expected, except the programmer 33's and
Dl • s. Programmer "B3" vas a beginner and the
vorst typist. "D3" vas also very bad, the
vorst in his group, but they both ansvered
under irapreaaion of the group agreements. If
the programmer "B3" vould be separated, the
Kruskal-Mallis procedure

12

1156

11

9

2

(11 + 1)

289 144

- 3 * (11 + 1) = 8.18

vould reject the null hypothesis (vith the risk
of 5%), that there vere no differences betveen
applications about lengths of the user names.
This vould prove, that the statistical
significant differences exist. For this reason
the correlation betveen the typing speed and
the length of user-names vas not analyzed. As
there vere nearly no differences betveen
programmers vithin groups, results vere
obviously more depended on agreements than the
dexterity. The suspicion, that the uniformity
of distribution vas caused by the COPy
statements in the WORKING-STORAGE section vas
comprehended. The amount of user-names froro
the library files vas found to be very lov.

With the method of comparing the mean
value vith the constant it vas evidenced that
each programmer had different average than the
saraple of Al-Jarrah-Torsun (7.81) vith the
great«st risk of 3.67 for the programmer "D2".
Coincidently, the vhoie sampje together had an
average of 7.79 vith standard deviation of
3.52, so critical risk (CR) lAndrejcic p. 100]

7.79
CR = 0.916

3.62

\f 27464

vhere W's are veighting factors and X'a are
softvare metrics - each of vhich may be or may
not be given in turn by linear equation3 of the
same form, and C is the constant. One of them
is also the maintainability as it had been
shovn at the beginning. Uniformity of code can
be of a great help in eliminating difficultiea
and frustrations in authorship of the program.

Anyhov,
differences v
"programming s
if they ali
they are a gre
of similar p
this is a subj
be eliminated
realistic poss

the analysis
ithin groups vere
tandarda" vere d
referred to the

at reaaon for dif
roblems. And our
ective argument,

Our analysis
ibilities to achi

References

proved that
very small, but
ifferent. Even
same philosophy,
ferent solutions
opinion is that

vhich needs to
examines for the
eve it.

dr. Radovan Andrejcic: "STATISTIKA PRI
KADROVANJU IN IZOBRAŽEVANJU" - VSOD Kranj
1979
Lovell Jay Arthur: "MEASURING PROGRAMMER
PROD0CTIVITY AND SOFTWARE QUALITY" - John
Willy & sons 1985
dr. Robert T. Grauer: "STRUCTURED METHODS
THROUGH COBOL" - Prentice Hali
Capers Jones: "PROGRAMMING PRODUCTIVITY" -
McGrav-Hill 1986
M. M. Al-Jarrah and I. S. Torsun:
"EMPIRICAL ANALVSIS OF COBOL PROGRAMS" -
Softvare Practice and Experience 9/1979
George Ledin Jr., Michael Kudlick, Victor
Ledin: "THE COBOL PROGRAMMER'S BOOK OF
RULES" - Belmont California
Dr. Vitomir Smolej and Igor Korelic:
"EMPIRIČNA ANALIZA COBOLSKIH PROGRAMOV" -
Informatica, Ljubljana oct. 1981
John Roland: "SOFTMARE METRICS" - Computer
Lang. 6/1986
d r . F r a n c i s J . W a l l : "STATISTICAL DATA
ANALVSIS riANDBOOK" M o G r . i v - H i l l 1986

