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Abstract. The merits and limitations of the Nambu–Jona-Lasinio model as a model for
strong interactions at nonzero density are critically discussed. We present several exam-
ples, demonstrating that, while in general the results should not be trusted quantitatively,
the NJL model is a powerful theoretical tool for getting new insights and ideas about the
QCD phase diagram and the dense-matter equation of state.

1 Introduction

In 1961, Nambu and Jona-Lasinio published two seminal papers on a “Dynam-
ical Model of Elementary Particles Based on an Analogy with Superconductiv-
ity,” [1, 2], now known as the Nambu–Jona-Lasinio (NJL) model. Originally in-
vented as a model for point-like nucleons, after the advent of QCD the NJL model
was reinterpreted as a schematic model for quarks, interacting by four-point ver-
tices rather than by the exchange of gluons. Subsequently the model was ex-
tended from two to three quark flavors and applied to study effects of nonzero
temperature and chemical potential as well as color superconductivity (for re-
views, see [3–6]). More recently features of Polyakov-loop dynamics have been
added to the model by coupling the quarks to a background temporal gauge field
with a phenomenological potential (PNJL model) [7–10].

The ground-breaking achievements of the original NJL papers were to ex-
plicitly demonstrate how the spontaneous breaking of chiral symmetry in a quan-
tum-field theoretical context leads to the dynamical generation of fermion masses,
while at the same time there appears a massless mode (“Nambu-Goldstone bo-
son”) in the quark-antiquark scattering matrix, which can be identified with the
pion. However, despite this indisputable success (culminating in the 2008 Nobel
prize awarded to Nambu “for the discovery of the mechanism of spontaneous
broken symmetry in subatomic physics”) one may ask why we should still use
a model after QCD was established as the theory of the strong interaction. Of
course, model calculations are in general much simpler than QCD calculations.
But to what extent can we trust the results? In particular we have to face the fol-
lowing problems:

• The essential feature of the NJL model which motivates its use as an effective
model of QCD is the fact that the two share the same global symmetries. How-
ever, the symmetries alone do not uniquely fix the interaction. There could be
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(infinitely) many possible interaction terms, not only containing four-point
but also higher 2n-point vertices (see, e.g., Ref. [11] and references therein),
and thus many parameters.

• In principle, these vertices should be derivable from QCD by integrating out
the gluonic degrees of freedom. However, this procedure would lead to den-
sity dependent coupling constants, while in actual NJL-model calculations
the model parameters are typically fitted to vacuum observables and then
kept unchanged in the medium.

• As far as symmetries are concerned, there are model independent theorems,
which, if not spoiled by an improper approximation, are reproduced by the
model. But those we know anyway while for non-universal properties it is
not clear whether the results obtained in the model agree with those in QCD.

In addition, the NJL model has the well-known shortcomings that it is non-re-
normalizable and has no confinement,1 which could both lead to artifacts.

There are nevertheless situations where QCD-inspired models in general and
specifically the NJL model can be very useful. “Model independent” predictions
are sometimes based on unrealistic assumptions, e.g., Taylor expansions in pa-
rameters which are not really small. Such cases can be uncovered by specific
model calculations. Sometimes models can also be used to test ideas and tech-
niques used in other frameworks. Most importantly, however, models can be em-
ployed for exploratory studies in order to identify interesting problems, worth-
while to be studied more seriously.

In the following these statements will be illustrated by specific examples re-
lated to the QCD phase diagram and the dense-matter equation of state.

2 Phase diagram at nonzero temperature and density

Despite tremendous theoretical and experimental efforts, the exact phase struc-
ture of QCD as a function of temperature and baryon chemical potential µB ≡ 3µ
is still unresolved to a large extent [13, 14]. While at µ = 0 QCD can be solved
on the lattice by standard Monte-Carlo methods, this is prevented at µ 6= 0 by
the so-called sign problem. Our current picture in this regime is therefore mainly
based on model calculations, with the NJL model playing a pioneering role:

In 1989 Asakawa and Yazaki presented an NJL-model calculation of the T -µ
phase diagram [15]. At low temperatures but high chemical potential they found
a first-order chiral phase transition, while at low µ the transition is a crossover, in
agreement with today’s lattice QCD results. As a consequence there is a critical
point where the first-order phase boundary ends. Although not much attention
was paid to this fact at the beginning, this changed dramatically after it was ar-
gued that the critical endpoint (CEP) could have observable consequences [16].
Today the search for the CEP is the main goal of the beam-energy scan at RHIC [17]
and of the future projects at NICA [18] and CBM at FAIR [19].

1 In the PNJL model confinement is statistically realized, meaning that the quark contribu-
tion to the pressure is suppressed at low temperatures. However, this does not prevent
the unphysical decay of mesons into quarks and antiquarks in the model [12].
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To my knowledge the NJL-model calculation of Ref. [15] was the first predic-
tion of the CEP. On the other hand, it was already demonstrated in that reference
that its exact position depends on the choice of the model parameters. For in-
stance the CEP can be moved around considerably by varying the strength in the
vector channel or of the chiral anomaly (parametrized by a six-point interaction
in the three-flavor model) [20]. Indeed, already for rather moderate values of the
vector coupling, the first-order phase boundary (and hence the CEP) disappears
completely.

We can thus conclude that the NJL model (like other models) cannot predict
the position of the CEP and not even tell whether it exists. However, it gave the
first hint for its possible existence and in this way inspired experimental searches
and more serious theoretical investigations. In particular there are now various
works which try to identify the CEP directly starting from QCD, both, within
functional methods which do not have a sign problem (like truncated Dyson-
Schwinger equations [21]) and on the lattice, trying to circumvent the sign prob-
lem in some way [22]. For example, one method to get information about the
µ 6= 0 regime by lattice calculations is to perform a Taylor expansion of the pres-
sure in powers of µ, evaluating the coefficients at µ = 0. The power of this method
can in turn be tested within models which do not have a sign problem and thus
allow for a direct comparison of the Taylor-expanded pressure with the exact
model results at µ 6= 0. Such test have been performed in the NJL model [23] as
well as in the Polyakov-loop extended quark-meson model [24], revealing that
the number of expansion coefficients required for the detection of a CEP located
at µ/T > 1 would be far beyond the present state of the art.

In most studies of the QCD phase diagram it is tacitly assumed that the chi-
ral condensate, i.e., the order parameter for chiral-symmetry breaking is spatially
homogeneous. Allowing for spatially varying condensates, however, it turns out
that in the NJL model there is a region where such an inhomogeneous condensate
is energetically favored over homogeneous or vanishing condensates [25, 26]. In
particular it was found that for the standard NJL Lagrangian the inhomogeneous
phase covers the entire first-order phase boundary which is obtained in the case
when only homogeneous phases are considered [27]. Moreover, the inhomoge-
neous phase turned out to be very robust against various model extensions, like
including strange quarks [28], isospin asymmetries [29], magnetic fields [30] or,
most notably, vector interactions [31] (for a review, see Ref. [32]). Again, the model
cannot be used to prove the existence of such phases in QCD, but in the same
way as the model prediction of a CEP, the possibility of an inhomogeneous phase
should seriously be considered and deserves more thorough investigations. In-
deed, inspired by the NJL model results, inhomogeneous phases have also been
studied within Dyson-Schwinger QCD, where qualitatively similar results have
been found [33].

3 Equation of state for compact stars

Neutron stars can reach densities of several times nuclear-matter densities in their
centers. Under these conditions it has been argued long time ago that matter
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could be deconfined [34,35], so that “neutron stars” would in fact be hybrid stars
with an outer hadronic part and a quark matter core. Although this idea has been
challenged by the recent discovery of two compact stars with masses of about
2M� (whereM� is the mass of the sun) [36,37], the question whether or not there
are deconfined quarks at the centers of compact stars is still open [38, 39]. Here
the problem is again that QCD at µ 6= 0 cannot be studied on the lattice, and that
therefore the QCD equation of state (EoS) at nonzero density is largely unknown.
In this situation one often starts from two independent EoSs, a phenomenological
hadronic one and a quark-matter one and constructs a phase transition between
them by comparing their pressure at given chemical potential.

For the quark-matter part the most common choice are MIT bag-model EoSs,
but more recently NJL-model EoSs have also gained popularity. One reason is that
the critical chemical potential of the phase transition depends sensitively on the
bag constant, which is a largely unconstrained parameter in the bag model, while
in the NJL model it is dynamically generated as the pressure difference between
the vacuum states with spontaneously broken and unbroken chiral symmetry.
Moreover, the NJL model allows for a straightforward incorporation of color su-
perconductivity [6]. Yet, as pointed out earlier, the NJL model has many parame-
ters as well. Indeed, while early studies mostly disfavored the presence of quark
matter in neutron stars [40,41], later analyses succeeded in getting solutions with
a quark-matter core, simultaneously reaching maximum masses above 2M�, by
choosing relative large couplings in the vector and diquark channels [42]. Hence,
the NJL model (in combination with a hadronic model) can serve as a counter-
example against the claim that the detection of compact stars with 2M� already
rules out the presence of a quark-matter core [43]. On the other hand, we con-
clude again that it cannot make qualitative or even quantitative predictions about
its existence.

In fact, it is not even clear, whether resorting to the dynamically generated
bag pressure of the NJL model really makes sense when combining it with a
hadronic model. Basically it means that the NJL model is taken seriously in vac-
uum and at high densities, but not in the hadronic phase in between. Some au-
thors therefore introduced an additional bag constant by hand, which is supposed
to account for confinement effects and other uncertainties [44, 45]. However, it is
then even more questionable to fix the NJL-model parameters in vacuum, and
one may ask why the NJL model should be used at all. (After all, the most im-
portant feature of the NJL model is its nontrivial vacuum.) To my opinion, the
only convincing way to ultimately avoid these problems is to describe quark and
hadronic phase in a single framework, e.g., construct nucleons and nuclear mat-
ter within the NJL model as well. Some steps in this direction have been made
in Refs. [46–48]. As an alternative approach it might also be worthwhile to revisit
the description of baryons as chiral solitons [49, 50] and investigate their relation
to the inhomogeneous phases discussed above.
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