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In this paper, the governing equations of stiffness constant and effective mass for a round folded 
suspension beam in Micro-Electro Mechanical System (MEMS) accelerometer are derived and solved. 
The stiffness constant is determined by the strain energy and Castigliano’s displacement theorem, whereas 
the effective mass is determined by the Rayleigh principle. The stiffness constant and the effective mass 
are solved separately by components and then combined by using the superposition method. The results 
obtained by the derived equations agree well when compared with the finite element results for several 
thickness values. The governing equations derived in this paper can be used to predict the natural 
frequencies and sensitivity of the MEMS-accelerometer.
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0 INTRODUCTION

The development of MEMS devices has 
become increasingly important since the beginning 
of the 1990s. MEMS-accelerometers are the most 
commercially successful MEMS devices [1] and 
[2]. Among these, the comb finger type capacitive 
accelerometer is the most successful type of 
MEMS accelerometer due to its high sensitivity, 
low drift, stable dc-characteristics, low power 
dissipation, high bandwidth, simplicity of the 
fabrication process, absence of exotic materials, 
and low temperature sensitivity [2] to [5].

Stiffness constant and resonant frequency, 
which are the topics of this research, are two of 
the most important functionalities required in 
the design of any MEMS devices with moving 
parts. Sensors and actuators in particular, often 
require a specific stiffness constant and resonant 
frequency to guarantee successful and repeatable 
performance. The stiffness constant and 
effective mass, which incorporate both material 
properties and physical geometry, characterize 
the sensitivity and resonant frequency of the 
MEMS accelerometer. The sensitivity of the 
accelerometer is a measure of displacement with 
respect to acceleration. In contrast, resonant 
frequency characterizes the bandwidth of the 
accelerometer. The suspension beam can be of 

different designs depending on the application 
of the MEMS accelerometer. However, the study 
on the structural analysis of suspension beam in 
the comb finger type accelerometer has not been 
established well yet. Analytical derivation of 
these two parameters is only available for simple 
designs, such as straight beams [5] to [11]. 

For different geometric shapes, Legtenberg 
et al. [8] and Zhou and Dowd [9] determined 
the material properties of the suspension beam 
and the stiffness constant by using Hooke’s law 
and the total potential energy, respectively. Tay 
et al. [10] used the Rayleigh’s energy principle 
for the determination of resonant frequency as a 
function of effective mass. Wittwer and Howell 
[11] used Castigliano’s displacement theorem for 
the analysis of the vertical deflection due to an 
applied moment or shear force and the geometric 
shape. As far as the authors know, the formula for 
the round folded beam has not yet been derived. 
Therefore, there is a need to derive the stiffness 
constant theoretically for a round folded beam to 
predict the performance of this type of design. 

In this paper, a detailed derivation of the 
stiffness constant, as well as the effective mass for 
the round folded beam as used for the suspension 
beam in MEMS accelerometer, is carried out. The 
principle of the strain energy and Castigliano’s 
displacement theorem is extensively used in 
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the derivation. From the derived equations, the 
stiffness constant and effective mass for various 
parameters are determined and compared with the 
finite element simulation using ANSYS® 8.1.

1 EQUIVALENT STIFFNESS CONSTANT 
OF THE SUSPENSION BEAM IN MEMS 

ACCELEROMETER

A schematic design of MEMS 
accelerometer with the round folded beam is 
shown in Fig. 1a. The close up of the round folded 
beam with the symbol used in derivation is shown 
in Fig. 1b, where L is the length of the beam, r is 
the radius of the round part, and w is the width of 
the beam. 

Fig. 1. Round folded beam as the suspension 
beam in accelerometer, a) a 2D schematic 

diagram of MEMS accelerometer, b) the round 
folded beam of suspension beam

Fig. 2. Free body diagram of typical arrangement 
of an accelerometer

In Fig. 1a, the proof mass is suspended by 
four suspension beams symmetrically at the four 
edges. The proof mass can be approximated by a 
central proof mass supported by four springs. The 
free body diagram of the typical arrangement of 
an accelerometer can then be approximated by a 
system of mass and spring as shown in Fig. 2. 

In Fig. 2, m is mass of the proof mass; k1, 
k2, k3, and k4 are the stiffness constants of each 
suspension beam; and x is the displacement. In 
this spring-mass system, the mass is supported by 
four springs, thus the external forces are balanced 
by the four springs evenly and stored as the strain 
potential energy. The equivalent stiffness constant 
of the spring-mass system as shown in Fig. 2 
can be determined by the following equation of 
equilibrium: 

	
F mx

k k x k k x mx
x∑ =

− +( ) − +( ) =





,

,1 2 3 4

	 (1)

	 mx k xe+ = 0, 	 (2)

where x  is the acceleration and Fx is the force.
Therefore, the equivalent stiffness constant, 

ke = k1 + k2 + k3 + k4.
Since the four suspension beams are in the 

same dimension and of the same material, then
	 k1 = k2 = k3 = k4 = k1/4 ,   ke = 4k1/4 ,	 (3)
where k1/4 is the stiffness constant of a quarter 
system. 

In obtaining the governing Eqs. of the 
suspension beam for the stiffness constant, the 
following assumptions are made: 
•	 The proof mass and comb fingers of the 

structure are rigid.
•	 The flexible members are attached to 

perfectly rigid supports.
•	 The device only vibrates in the sensing axis.
•	 Young’s modulus is constant.
•	 Damping is ignored.
•	 3D effects such as fringing field and comb 

finger end effects are neglected [12] to [14].
•	 Euler–Bernoulli beam model assumption is 

applied. 

2 DETERMINATION OF STIFFNESS 
CONSTANT IN ROUND FOLDED BEAM

The resolved components of the round 
folded beam are shown in Fig. 3. The quarter 
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model of the suspension beam together with its 
boundary condition is shown in Fig. 3a, and its 
free body diagram is shown in Fig. 3b. In the 
analysis, the round folded beam can be resolved 
into three components, with two models of half 
fixed-fixed beam (Fig. 3c and d) and a model of 
half ring (Fig. 3e). 

Since the device is assumed to vibrate 
only in the sensing axis, the total displacement of 
the quarter model δ1/4 is equal to the sum of the 
displacement of each component, δ1/4 = δc1 + δc2 
+ δc3 .

Based on Hooke’s law (i.e., F = kδ), there 
 
is k ∝ 1

δ
. In this context, the stiffness constant of 

the quarter model can be given in a complementary 
form by:

	 1 1 1 1

1 4 1 2 3k k k kc c c
= + + , 	 (4)

where kc1, kc2, and kc3 are the stiffness constants 
for components 1 to 3, respectively.

2.1 The Stiffness Constant for the First and 
Third Components

The free body diagram of the first and third 
components are similar to the model of half fixed-
fixed beam subjected to the transverse loading, 

as shown in Fig. 4. Fig. 4a shows a fixed-fixed 
beam with length 2L subjected to a transverse load 
F at the midspan of the beam. This force causes 
bending, which could result in reactions at both 
fixed ends consisting of forces and moments. 
The maximum displacement δmax occurs at the 
midspan of the beam. If this model is cut through 
its midspan, this part can be modeled as a half 
fixed-fixed beam. The reactions at both fixed ends 
are the bending moment M0, shear reaction force 
in y-direction Ry, and the axial reaction force in 
x-direction Ra, as shown in Fig. 4b. Since the load 
is transverse to the axis of the beam, the axial 
reaction force Ra is extremely small compared to 
the bending moment and shear force. Therefore, 
Ra is ignored in the calculation. The shear reaction 
force Ry, and bending moment M0 for the model of 
the half fixed-fixed beam is obtained as Ry = F/2 
and M0 = FL/4.

The maximum displacement in the model 
of the half fixed-fixed beam δmax is caused by both 
displacement due to bending moment δbm , and the 
displacement due to shear δs , or δmax = δbm + δs. 
Thus, the stiffness constant of the half fixed-fixed 
beam is taken as:

	
1 1 1
k k khalp bm s

= + . 	 (5a)

Therefore, the stiffness constant for 
components 1 and 3 is equal to the stiffness 

Fig. 3. Resolved components of theround folded beam
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constant of the half fixed-fixed beam as given in 
Eq. (5a) as:

	
1 1 1 1 1

1 3k k k k kc c halp bm s
= = = + . 	 (5)

2.1.1 The Stiffness Constant Due to Bending 
Moment

Fig. 4. Fixed-fixed beam

For a fixed-fixed beam (Fig. 4), the 
maximum deflection due to a bending moment 
occurs at the middle of the beam. It is given by 
[15]:

	 δbm
F L

EI
FL
EI

=
( )

=
2

192 24

3 3
. 	 (6)

The stiffness constant due to the bending 
moment kfull for the full model of the fixed-fixed 
beam is then derived as:

	 k F EI
Lfull

bm
= =
δ

24
3 . 	 (7)

Thus, the stiffness constant due to the 
bending moment kbm for the half model of a fixed-
fixed beam is:

	
1

12

3

k
L
EIbm

= , 	 (8)

where E is the Young’s modulus, I is the second 
moment of the cross sectional area, and L is the 
length of the half model of the fixed-fixed beam.

2.1.2 The Stiffness Constant Due to Transverse 
Force

For a rectangular cross sectional area of 
width b and depth d, with the total beam length 
L, and with the applied transverse load of F/2, 
as shown in Fig. 4b, the maximum deflection (at 
middle point) due to the shear is given as [15]: 

	 δs
sF L
bdG

=
3
5

, 	 (9)

where G is shear modulus, G E
=

+( )2 1 µ
 and μ is 

 
the Poisson’s ratio. By knowing Fs = F/2 and by 
replacing G and Fs in δs, the maximum deflection 
(at middle point) due to the shear is:

	 δ
µ

s
FL

bdE
=

+( )6
5
1

. 	 (10)

Since ks = F/δs, stiffness constant due to 
shear ks in the complementary form is given as

	 1 6
5
1

k F
L

bdEs

s= =
+( )δ µ

. 	 (11)

2.2 The Stiffness Constant for the Second 
Component

The second component is approximated to 
be the model of a half ring with simple support 
on the left, transferred from the first and third 
components. The free body diagram is shown in 
Fig. 5a. This component is subjected to two forces, 
the transverse force Ry and bending moment M. 
The stiffness constant of the second component 
kc2 is the combination of the stiffness constant 
due to transverse force kt (Fig. 5b), and stiffness 
constant due to bending moment km (Fig. 5c). kt 
is approximated to be half of a stiffness constant 
in the ring kc due to the same value of transverse 
force, as shown in Fig. 6.

a)		  b)	          c)
Fig. 5. Free body diagram of the second 

component of round folded beam

Fig. 6. Transverse force in the second component
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2.2.1 The Stiffness Constant Due to Transverse 
Force Acting on Half a Ring 

The stiffness constant of the ring 
component (Fig. 5b) due to transverse force can 
be determined by using Castigliano’s displacement 
theorem. The theorem states that deflection at a 
point on a member in the direction of a force 
applied at the specific point is given by the partial 
derivative of the complementary energy with 
respect to the external force at the point, or  
δc = ∂U/∂R, , where U is the internal strain energy 
 
given by U

E
dV

V
= ∫

1
2

2σ . For a beam subjected 

to bending, the direct stress is σ = My / I , where M 
is the bending moment, y is the distance from the 
neutral axis to the point in question, and I is the 
second moment of the cross sectional area 
I y dA

A
= ∫ 2 . 

Thus, U M
EI

y dAdx M
EI
dx

A

L L
= =∫∫ ∫

2

2
2

0

2

02 2
, 

where L is the length of the beam. Accordingly, 
 
 δc

LU
R R

M
EI
dx=

∂
∂

=
∂
∂ ∫

2

0 2
.

For a full ring, the total length is given as 
 
L rd rd= =∫ ∫φ φ

π π

0

2

0

24 , where r is the radius of 

the ring, and ϕ is the angle at any point within the 
 
ring. Since the integration of dφ

π

0

2

∫  is always 

zero, and in view of the symmetry of the ring, 
only one quadrant of the ring needs to be 
considered as shown in Fig. 7. 

Fig. 7. Transverse forces at a ring

According to Castigliano’s displacement 
theorem, deflection of the ring at any point c is:

	
δ φ

φ

π

π

c
c

y y

c

c c

y

U
R R

M
EI
r d

M
EI

M
R
r d

=
∂
∂

=
∂
∂









 =

=
∂
∂

∫

∫

4
2

4

2

0

2

0

2 .

	 (12)

By cutting the ring at any section within 
the quadrant of the ring, the bending moment at 
any point c with an angle of ϕ is given as [15]:

	 M M
R r

c
y= − −( )0 2
1 cos ,φ 	 (13)

where M0, the imaginary bending moment, is 
unknown but may be obtained from the strain 
energy.

The strain energy for the quadrant of the 
ring is:

	
U

EI
M r d

EI
M

R r
r d

q c

y

= =

= − −( )










∫

∫

1
2

1
2 2

1

2

0

2

0

2

0

2

φ

φ φ

π

π
cos .

	(14)

The total strain energy for the ring is given 
by:

	U U
EI

M
R r

r dc q
y= = − −( )









∫4 4 1

2 2
10

2

0

2 cos ,φ φ
π

	(15)

owing to the symmetry at ϕ = 0, ∂U/∂M0 = 0. 
Therefore, 

	 1
2
1 00

0

2

EI
M

R r
r dy− −( )









 =∫ cos .φ φ

π
	 (16)

Since 1 / EI ≠ 0 and r ≠ 0, 

M
R r R r

dy y
0

0

2

2 2
0− +









 =∫ cosφ φ

π
 solved as 

M
R ry

0 2 2 2
1 0π π






 = − −( )





. Therefore,

	 M R ry0
1
2

1
= −






π
.  	 (17)

Substituting Eq. (17) into Eq. (13), the 
bending moment at any point c within the full 
ring, is:

	 M R rc y= −







1
2

1cos .φ
π 	 (18)
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By partial derivative with respect to Ry:

	
∂
∂

= −







M
R

rc

y

1
2

1cos .φ
π

	 (19)

Substituting Eqs. (18) and (19) into Eq. 
(12),

	

δ φ

φ
π

φ
π

π

c
c c

y

y

M
EI

M
R
r d

EI
R r r

=
∂
∂

= −





 ⋅ −






∫4
4 1

2
1 1

2
1

0

2

cos cos



= −







∫

∫

rd

R r
EI

dy

φ

φ
π

φ

π

π

0

2

3 2

0

24 1
2

1cos ,

	(20)

	 δ
π

π πc
yR r
EI

= − +







4
16

1 1
2

3

. 	 (21)

Since Ry = F,

	 δ
π

π πc
Fr
EI

= − +







4
16

1 1
2

3
. 	 (22)

The stiffness constant of the ring is then 
given by:

	
1 4

16
1 1

2

3

k F
r
EIc

= = − +







δ π
π π

. 	 (23)

Since the stiffness constant for the second 
component is equal to the half of the stiffness 
constant of the full ring, kt = ½ kc . Therefore, the 
stiffness constant for the second component due to 
transverse force is given by:

	 1 2 8
16

1 1
2

3

k k
r
EIt c

= = − +







π
π π

. 	 (24)

2.2.2 The Stiffness Constant Due to Bending 
Moment 

The stiffness constant due to the bending 
moment for this component (Fig. 5c) can be 
determined by using the energy method. The 
internal strain energy is:

	
U

E
dV

E
M
I

y dA rd
E

M
I

rd

M r
EI

V

cA c

c

=

= ⋅ =

=

∫

∫∫ ∫

1
2
2
2

1

2

2

2
2

2

0

2
2

20

2

2

2

σ

φ φ
π π

⋅⋅

=

π

π

2

2

2

2

,

.U M r
EIc

	

U
E
dV

E
M
I

y dA rd
E

M
I

rd

M r
EI

V

cA c

c

=

= ⋅ =

=

∫

∫∫ ∫

1
2
2
2

1

2

2

2
2

2

0

2
2

20

2

2

2

σ

φ φ
π π

⋅⋅

=

π

π

2

2

2

2

,

.U M r
EIc

	(25)

Since the total internal strain energy is 
equal to the external work performed, U = ½ Fδ , 
 
 then, π δ

M r
EI

F
c

2

22
1
2

=  .Substituting M = FL/2 into  
 
 
the equation, FL r

EI
F

c2 2
1
2

2

2







 =

π
δ .

By rearranging the above equation, the 
deflection due to the bending moment is:

	 δ
π

=
FL r
EIc

2

24
. 	 (26)

Therefore, the stiffness constant due to the 
bending moment is given by:

	
1

42

2

2k F
L r
EIbm c

= =
δ π

.	

Since the width and depth of the second 
component is equal to the width and depth of the 
first component,

	 Ic2 = Ic1 = I, thus 1
42

2

k
L r
EIbm

=
π . 	 (27)

2.3 The Effective Stiffness Constant of the 
Round Folded Beam

The effective stiffness constant of the 
round folded beam can then be determined from 
Eq. (3): 

	

1 1
4

1
4
1

1 1
4

1 1 1

1 1
4

1
4

1 2 3

1

k k k

k k k k

k k

e

e c c c

e c

= = 







= + +










= +

,

,

kk k

k k k k k k

c c

bm S t bm bm S

2 3

2

1
4

1
4

1 1 1
4
1 1 1

4
1 1

+ =

= +








 + +









 + +











= + + +

,

.1 1
2

1
2

1
4

1
4 2k k k k ke bm S t bm

	 (28)

Substituting Eqs. (8), (11), (24), and (27) 
into Eq. (28): 
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1 1
2 12
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4
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bdE
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EI

e
=









 +

+( )
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1 1
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π π
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 +
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

.

	(29)

3 DETERMINATION OF EFFECTIVE MASS 
IN ROUND FOLDED BEAM

The effective mass of the folded beam is 
determined by using the Rayleigh principle. By 
taking a beam model with a cross sectional area 
A, length L, the displacement at any point x to be 
δ(x), and velocity at any point x to be dδ(x)/dt, 
the maximum displacement δmax is related to the 
distribution function N(x) as: 

	 δ(x) = N(x) δmax and 
d x
dt

N x
d
dt

δ δ( )
= ( ) max . 	(30)

The effective mass is given by:

	 m N x A x dxe
L

= ( ) ( )∫ρ 2

0
. 	 (31)

3.1 Effective Mass for Half Model of Fixed-
fixed Beam

Since the distribution function is 
independent of the applied force, the distribution 
function can be determined by assuming the half 
model of the fixed-fixed beam is deflected under 
a concentrated force F. Displacement at any point 
within the beam is given by James et al. [16] as:

	 δ x F
EI

Lx x( ) = −



12

3 22 3 . 	 (32)

The maximum displacement occurs at x=L 
thus,
	 δmax .=

FL
EI

3

12
	 (33)

Consequently, the distribution function is:

	 N x
x Lx x

L
( ) = ( )

=
−δ

δmax
.3 22 3

3 	 (34)

Effective mass of half model of fixed-fixed 
beam under bending moment is then given as:

	

m N x A x dx

A Lx x
L

dx

A
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L x

b e
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5
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	 (35)

Thus, the effective mass of the first 
component m1 is equal to that of the third 
component m3 or:

	 m m m ALb e1 3
13
35

= = =, .ρ 	 (36)

3.2 Effective Mass for Half Model of Ring

For the half model of ring under transverse 
force (Fig. 5), the displacement at any point within 
the beam is given by Eq. (20) as:
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or by expanding:
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The maximum displacement is given by 
 
Eq. (21) as δ π
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Effective mass of the half model of the ring 
under transverse force is then given as:

	

m N x A x dx
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As a result, the effective mass of the second 
component m2 is:

	 ρ π π π π

π π π

Ar
6

2 47 32 6144
16 64

7 5 3

2 4 2

+ − −

− +( )















. 	 (39)

Thus, the effective mass of the device is

	
m m m m m nm

m m m nm
e pm f

b e a e pm f

= + + + + =

= + + +
1 2 3

8 4, , ,
	 (40)

where mpm is the mass of proof mass, mf is the 
mass of finger, and n is the number of fingers.

4 COMPARISON RESULTS WITH THE FINITE 
ELEMENT SIMULATION

The round folded beam in MEMS 
accelerometer is further analyzed by using the 
finite element (FE) package, ANSYS® 8.1. 
The three-dimensional 20-node structural solid 
element, SOLID 186, has been used in this 
analysis. The material properties and the physical 
geometries used in the FE simulation are shown 
in Table 1. The FE model meshed by the free 
meshing is shown in Fig. 8. The simulation 
result will be used for a comparison with the 
analytical results obtained by Eqs. (29) and (40). 
The resonant frequency is obtained directly from 
the modal analysis. The stiffness constant is 
determined by using a static analysis. 

Fig. 8. Meshed model

Table 1. Material properties and physical 
geometries for accelerometer

Elastic modulus 127×103  
kg/µm s2

Poison’s ratio 0.27

Density 2330×10-18  
kg/µm3

Length of suspension beam (L) 803 mm
Width of suspension beam (w) 11 mm
Radius of ring, r 50 mm
Length of comb finger (lfinger) 650 mm
Width of comb finger (wfinger) 15 mm
Number of comb finger 56 pairs
Sensing gap distance (d0) 2 mm

Table 2 shows the result of the comparison 
between the analytical and simulation analysis for 
stiffness constant and effective mass for several 
thicknesses (t). From Table 2, it can be seen 
that the stiffness constant and the effective mass 
obtained from the derived equations based on the 
analytical analysis show good agreement with 
those obtained from the finite element simulation. 
The difference between analytical and simulation 
results is below 5%. Based on this, it can be 
concluded that the derived analytical formulas 
are capable of obtaining the effective mass and 
the stiffness constant of the round folded beam 
of the suspended comb finger type accelerometer. 
Therefore, they are capable of predicting the 
resonant frequency and the sensitivity of the 
accelerometer.

5 CONCLUSIONS

The stiffness constant and the effective 
mass of round folded beam in MEMS 
accelerometer have been derived successfully. 
The derivation of the stiffness constant is obtained 
by using the strain energy method and the 
Castigliano’s displacement theorem, while the 
derivation of the effective mass is determined by 
using the Rayleigh principle. The result obtained 
from these derived formulas agree well with the 
results obtained from FE software ANSYS.
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Table 2. Comparison of stiffness constant and effective mass between analytical result and simulation 
(ANSYS) result

t [mm] k [mN/mm] meff [×10-7 kg]
Analytical ANSYS % diff Analytical ANSYS % diff

120 59.79 62.01 3.59 4.88 4.72 -3.50
80 39.86 40.46 1.50 3.26 3.13 -4.01
60 29.89 30.39 1.64 2.44 2.35 -3.93
40 19.93 19.85 -0.42 1.63 1.58 -3.26


